JPH06282774A - Radiation type fire sensor - Google Patents

Radiation type fire sensor

Info

Publication number
JPH06282774A
JPH06282774A JP6697093A JP6697093A JPH06282774A JP H06282774 A JPH06282774 A JP H06282774A JP 6697093 A JP6697093 A JP 6697093A JP 6697093 A JP6697093 A JP 6697093A JP H06282774 A JPH06282774 A JP H06282774A
Authority
JP
Japan
Prior art keywords
light
light receiving
test
receiving element
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6697093A
Other languages
Japanese (ja)
Other versions
JP3248114B2 (en
Inventor
Nobuyuki Ichikawa
信行 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP06697093A priority Critical patent/JP3248114B2/en
Publication of JPH06282774A publication Critical patent/JPH06282774A/en
Application granted granted Critical
Publication of JP3248114B2 publication Critical patent/JP3248114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To provide a radiation type fire sensor which can clearly the defective operations caused by a dirty light transmissive cover and the fault of a photodetecting circuit including a photodetector and also can decide the degrees of dirtiness and deterioration. CONSTITUTION:A radiation type fire sensor is provided with the outer LED 4L and 4R which are placed outside a light transmissive cover 7 and emit the 1st pseudo flame signals, the inner LED 3Lb, 3Lr, 3Rb and 3Rr which are placed inside the cover 7 and emit the 2nd pseudo flame signals, a 1st action test means which makes the light receiving elements 1L and 1R receive the 1st flame signals to test the fire detecting actions of these elements, a 2nd action test means which makes the light receiving element 1L, 2L, 1R and 2R receive the 2nd pseudo flame signals to test the fire detecting actions of these elements, and a sensor control circuit including a dirtiness degree test means which decides the propriety of the degree of dirtiness of the cover 7 from the extinction rate of the cover 7 during the test of the 1st action test means, and a receiving sensitivity test means which decides the propriety the degrees of deterioration of the photodetecting elements from the receiving sensitivity of these elements during the test of the 2nd action test means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火炎から放射される輻
射光を検出して火災を感知する輻射式火災感知器、特に
擬似炎信号による自己試験機能を有する輻射式火災感知
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiant fire detector for detecting a radiant light emitted from a flame to detect a fire, and more particularly to a radiant fire detector having a self-test function by a pseudo flame signal.

【0002】[0002]

【従来の技術】従来、輻射式の火災感知器としては、火
炎から放射される特定波長帯の輻射エネルギーが一定量
以上に達したことを検出する定輻射式、火炎特有のちら
つきを検出するちらつき式、さらに複数の波長帯の輻射
エネルギーの大きさを比較する2波長式、3波長式等の
各種方式が存在する。そして、これらの輻射式火災感知
器においては、火炎から放射される紫外線や赤外線等の
輻射光を受光素子(例えばホトダイオード、焦電素子、
放電管等)で検出するものが多い。
2. Description of the Related Art Conventionally, as a radiation type fire detector, a constant radiation type that detects when the radiant energy of a specific wavelength band emitted from a flame has reached a certain amount or more, a flicker that detects a flicker peculiar to a flame There are various formulas, such as a two-wavelength formula and a three-wavelength formula, which compare the magnitudes of radiant energy in a plurality of wavelength bands. Then, in these radiant fire detectors, the radiant light such as ultraviolet rays or infrared rays emitted from the flame is received by a light receiving element (for example, a photodiode, a pyroelectric element,
There are many things to detect with a discharge tube).

【0003】また前記受光素子の前面には、防塵用の透
明ガラスや光学フィルタなどよりなる透光性カバーを設
けて、前記火炎からの輻射光はこの透光性カバーを透過
して受光素子に受光させるが、外部からの異物、水分も
しくはガス等の通過は阻止する構造(例えば気密構造)
とし、受光素子及び内部の火災感知回路等の保護を行っ
ているものが多い。
A transparent cover made of dust-proof transparent glass, an optical filter, or the like is provided on the front surface of the light receiving element, and radiant light from the flame passes through the transparent cover to reach the light receiving element. A structure that allows light to be received, but blocks the passage of foreign matter, moisture, gas, etc. from the outside (eg, airtight structure)
In many cases, the light receiving element and the internal fire detection circuit are protected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら輻射式火
災感知器に前記気密構造の透光性カバーを設けて、例え
ば焦電素子やホトダイオード等の受光素子を保護して
も、これらの素子の受光感度等の諸特性を、長期間にわ
たり初期状態と同一に保持することは困難であり、時間
の経過と共に感度劣化が生じ、時には火炎検出ができな
いことがある。また火災感知器が設置されてから時間が
経過すると、前記透光性カバーは、外気に含まれるゴミ
等の付着により汚損し、光の透過率が徐々に低下し、そ
の結果受光素子の受光量の減少により火炎検出ができな
いことがある。
However, even if the radiation-type fire detector is provided with a light-transmitting cover having the above-mentioned airtight structure to protect light-receiving elements such as pyroelectric elements and photodiodes, the light-receiving sensitivity of these elements is also reduced. It is difficult to maintain various characteristics such as the same as in the initial state for a long period of time, and the sensitivity deteriorates with the lapse of time, sometimes flame detection cannot be performed. Also, when time passes after the fire detector is installed, the translucent cover is contaminated by dust and the like contained in the outside air, and the light transmittance is gradually reduced, and as a result, the amount of light received by the light receiving element is reduced. The flame may not be detected due to the decrease of

【0005】このため、一部の高機能化された火災感知
器では、透光性カバーの外部に設けた擬似炎光源を点灯
させ、火災感知器が正常に火災感知動作を行なうかどう
かの動作試験を行なうものがある。しかし前記動作試験
で火災感知ができない場合に、透光性カバーの汚損によ
る動作不良で、この汚れを清掃すれば火災感知動作が正
常に復帰するのか、または受光素子を含む受光回路の故
障で、メーカの修理を要するものであるかの判別ができ
ないという問題点があった。
Therefore, in some high-performance fire detectors, a pseudo flame light source provided outside the translucent cover is turned on to determine whether or not the fire detector normally performs the fire detection operation. Some have tests. However, when fire detection cannot be performed in the operation test, malfunction occurs due to contamination of the translucent cover, and if the dirt is cleaned, the fire detection operation returns to normal, or the light receiving circuit including the light receiving element fails, There was a problem that it was not possible to determine whether the maker required repair.

【0006】本発明は、かかる問題点を解決するために
なされたもので、透光性カバーの内側に設けられた受光
素子により、火炎からの輻射透過光を受光して火災を感
知する輻射式火災感知器が動作不良の場合に、前記透光
性カバーの汚損に起因する動作不良と、前記受光素子を
含む受光回路の故障とを明確に判別し、あわせて透光性
カバーの汚損程度及び受光素子の劣化程度をも判別する
ことができる輻射式火災感知器を得ることを目的とす
る。
The present invention has been made in order to solve the above problems, and a light receiving element provided inside a light transmissive cover receives a radiant transmitted light from a flame to detect a fire. When the fire detector is malfunctioning, the malfunction due to the contamination of the translucent cover and the failure of the light receiving circuit including the light receiving element are clearly discriminated, and the degree of contamination of the translucent cover and It is an object of the present invention to obtain a radiation fire detector that can determine the degree of deterioration of a light receiving element.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
輻射式火災感知器は、火炎から放射される輻射光を透過
させる透光性カバーと、該透光性カバーの内側に設けら
れ該透光性カバーからの透過光を受光する受光素子と、
該受光素子の検出信号に基づき火災を感知する手段とを
有する輻射式火災感知器において、前記透光性カバーの
外側に設けられ、第1の動作試験手段の駆動により第1
の擬似炎信号を発光し、前記透光性カバーを透過して前
記受光素子を照射する第1の試験用発光素子と、前記第
1の試験用発光素子を駆動して第1の擬似炎信号を発光
させて前記受光素子を照射し、該受光素子の検出信号に
基づき前記火災を感知する手段が正常に動作するか否か
を試験する第1の動作試験手段と、前記透光性カバーの
内側に設けられ、第2の動作試験手段の駆動により第2
の擬似炎信号を発光し、直接又は間接的に前記受光素子
を照射する第2の試験用発光素子と、前記第2の試験用
発光素子を駆動して第2の擬似炎信号を発光させて前記
受光素子を照射し、該受光素子の検出信号に基づき前記
火災を感知する手段が正常に動作するか否かを試験する
第2の動作試験手段とを備えたものである。
A radiant fire sensor according to a first aspect of the present invention is provided with a translucent cover that transmits radiant light emitted from a flame, and an inner side of the translucent cover. A light receiving element for receiving the transmitted light from the transparent cover,
A radiant fire detector having a means for detecting a fire based on a detection signal of the light receiving element, the first fire testing device being provided outside the translucent cover and driven by a first operation test means.
Of the first test light-emitting element that emits the pseudo-flame signal of No. 1 and transmits the light-transmitting cover to irradiate the light-receiving element, and a first pseudo-flame signal by driving the first test light-emitting element. Of the light-transmissive cover by illuminating the light-receiving element to test whether the fire-sensing means operates normally based on the detection signal of the light-receiving element. It is provided on the inner side and is driven by the second operation test means to drive the second
Of the second test light-emitting element for directly or indirectly irradiating the light-receiving element, and driving the second test light-emitting element to emit the second pseudo-flame signal. Second operation test means for irradiating the light receiving element and testing whether the means for detecting the fire normally operates based on a detection signal of the light receiving element.

【0008】本発明の請求項2に係る輻射式火災感知器
は、前記第1の動作試験手段の試験時に、前記受光素子
の検出信号レベルを計測し、該計測値が、あらかじめ設
定された汚損程度許容範囲の下限値以上であるか否かを
判別し、該判別結果により前記透光性カバーの汚損程度
の可又は否を示す信号を出力する汚損程度判別手段を含
む汚損程度試験手段と、前記第2の動作試験手段の試験
時に、前記受光素子の検出信号レベルを計測し、該計測
値が、あらかじめ設定された劣化許容範囲の下限値以上
であるか否かを判別し、該判別結果により前記受光素子
の劣化程度の可又は否を示す信号を出力する劣化程度判
別手段を含む受光感度試験手段とを前記請求項1に係る
輻射式火災感知器に付加したものである。
According to a second aspect of the present invention, in the radiant fire detector, the detection signal level of the light receiving element is measured at the time of the test of the first operation test means, and the measured value is a preset contamination level. A stain degree test means including a stain degree determination means for determining whether or not the degree is equal to or more than the lower limit value and outputting a signal indicating whether or not the stain degree of the translucent cover is acceptable according to the determination result, During the test of the second operation testing means, the detection signal level of the light receiving element is measured, and it is determined whether or not the measured value is equal to or higher than the lower limit value of the deterioration allowable range set in advance. According to the first aspect of the present invention, the radiation fire detector according to claim 1 is further provided with a light receiving sensitivity testing means including a deterioration degree determining means for outputting a signal indicating whether or not the light receiving element is deteriorated.

【0009】本発明の請求項3に係る輻射式火災感知器
は、前記第1の動作試験手段の試験時に、前記受光素子
の検出信号レベルを計測し、該計測値と減光率基準値と
の比を前記透光性カバーの減光率として算出する減光率
算出手段と、前記減光率の算出値が、あらかじめ設定さ
れた減光率許容範囲の下限値以上であるか否かを判別
し、該判別結果により前記透光性カバーの汚損程度の可
又は否を示す信号を出力する汚損程度判別手段とを含む
汚損程度試験手段と、前記第2の動作試験手段の試験時
に、前記受光素子の検出信号レベルを計測し、該計測値
と受光感度基準値との比を前記受光素子の受光感度とし
て算出する受光感度算出手段と、前記受光感度の算出値
が、あらかじめ設定された受光感度許容範囲の下限値以
上であるか否かを判別し、該判別結果により前記受光素
子の劣化程度の可又は否を示す信号を出力する受光感度
判別手段とを含む受光感度試験手段とを前記請求項1に
係る輻射式火災感知器に付加したものである。
In the radiation type fire detector according to claim 3 of the present invention, the detection signal level of the light receiving element is measured during the test of the first operation testing means, and the measured value and the extinction rate reference value are used. The ratio of the extinction ratio calculating means for calculating the extinction ratio of the light-transmitting cover, and the calculated value of the extinction ratio is equal to or more than the lower limit value of the preset extinction ratio allowable range. A stain degree determining means including a stain degree determining means that outputs a signal indicating whether or not the stain degree of the light-transmitting cover is stainable according to the determination result, and the second operation test means, in the test, Light receiving sensitivity calculating means for measuring the detection signal level of the light receiving element and calculating the ratio of the measured value and the light receiving sensitivity reference value as the light receiving sensitivity of the light receiving element, and the calculated value of the light receiving sensitivity set in advance. Determine whether it is greater than or equal to the lower limit of the sensitivity tolerance range. The radiation fire detector according to claim 1, further comprising a light-reception sensitivity test means including a light-reception sensitivity determination means for outputting a signal indicating whether or not the deterioration degree of the light-receiving element is acceptable according to the determination result. Is.

【0010】本発明の請求項4に係る輻射式火災感知器
は、あらかじめ複数の感知領域をそれぞれほぼ独立した
3次元空間として設定し、該設定された複数の各感知領
域内の火炎からそれぞれ放射される輻射光を、前記各感
知領域の方向別にそれぞれ透過させる透光性カバーと、
該透光性カバーの内側に設けられ、該透光性カバーの前
記方向別の透過光をそれぞれ各感知領域毎に受光する複
数の受光素子と、該複数の各受光素子別の検出信号に基
づき、前記複数の各感知領域別に火災を感知する手段と
を有する輻射式火災感知器において、前記複数の各感知
領域毎にそれぞれ前記透光性カバーの外側に設けられ、
第1の動作試験手段による前記各感知領域毎の駆動によ
りそれぞれ第1の擬似炎信号を発光し、前記透光性カバ
ーを透過して前記各感知領域毎の受光素子をそれぞれ照
射する複数の第1の試験用発光素子と、前記複数の第1
の試験用発光素子を個別に駆動して第1の擬似炎信号を
発光させ、前記複数の各感知領域毎の受光素子を個別に
照射し、該各受光素子毎の検出信号に基づき前記複数の
各感知領域毎に火災を感知する手段が正常に動作するか
否かをそれぞれ試験する第1の動作試験手段と、前記複
数の各感知領域毎にそれぞれ前記透光性カバーの内側に
設けられ、第2の動作試験手段による前記各感知領域毎
の駆動によりそれぞれ第2の擬似炎信号を発光し、直接
又は間接的に前記各感知領域毎の受光素子をそれぞれ照
射する複数の第2の試験用発光素子と、前記複数の第2
の試験用発光素子を個別に駆動して第2の擬似炎信号を
発光させ、前記複数の各感知領域毎の受光素子を個別に
照射し、該各受光素子毎の検出信号に基づき前記複数の
各感知領域毎に火災を感知する手段が正常に動作するか
否かをそれぞれ試験する第2の動作試験手段とを備えた
ものである。
In the radiant fire detector according to claim 4 of the present invention, a plurality of sensing areas are set in advance as substantially independent three-dimensional spaces, and the flames in each of the set sensing areas are radiated respectively. A radiant light that is transmitted through each of the sensing regions in each direction, and a translucent cover,
Based on a plurality of light-receiving elements provided inside the light-transmitting cover and receiving transmitted light of each direction of the light-transmitting cover for each sensing region, and a detection signal of each of the plurality of light-receiving elements. A radiant fire detector having means for detecting a fire for each of the plurality of sensing areas, wherein each of the plurality of sensing areas is provided outside the translucent cover,
A plurality of first pseudo flame signals are emitted by the driving of the sensing areas by the first operation test means, and the plurality of first irradiating elements each of which senses the light receiving elements of the sensing areas through the transparent cover. One test light-emitting element and the plurality of first
Driving the test light-emitting elements individually to emit a first pseudo flame signal, irradiating the light-receiving elements for each of the plurality of sensing regions individually, and the plurality of light-receiving elements for each of the plurality of light-receiving elements based on the detection signal. First operation test means for respectively testing whether or not the fire sensing means operates normally for each sensing area, and each of the plurality of sensing areas is provided inside the translucent cover, A plurality of second test devices that emit second pseudo flame signals by driving the respective sensing areas by the second operation test means and directly or indirectly irradiate the light receiving elements of the respective sensing areas. A light emitting device and the plurality of second
Driving the test light-emitting elements individually to emit the second pseudo flame signal, irradiating the light-receiving elements for each of the plurality of sensing regions individually, and the plurality of light-receiving elements based on the detection signal for each of the light-receiving elements. Second operation test means for respectively testing whether or not the fire detecting means operates normally for each of the detection areas.

【0011】本発明の請求項5に係る輻射式火災感知器
は、前記第1の動作試験手段の試験時に、前記複数の各
感知領域毎に照射される受光素子の検出信号レベルをそ
れぞれ計測し、該各計測値が、あらかじめ設定された汚
損程度許容範囲の下限値以上であるか否かをそれぞれ判
別し、該判別結果により前記透光性カバーの複数の各感
知領域方向毎の汚損程度の可又は否を示す信号をそれぞ
れ出力する汚損程度判別手段を含む汚損程度試験手段
と、前記第2の動作試験手段の試験時に、前記複数の各
感知領域毎に照射される受光素子の検出信号レベルをそ
れぞれ計測し、該各計測値が、あらかじめ設定された劣
化許容範囲の下限値以上であるか否かをそれぞれ判別
し、該判別結果により前記各感知領域毎の受光素子の劣
化程度の可又は否を示す信号をそれぞれ出力する劣化程
度判別手段を含む受光感度試験手段とを前記請求項4に
係る輻射式火災感知器に付加したものである。
According to a fifth aspect of the present invention, in the radiation type fire detector, the detection signal level of the light receiving element irradiated to each of the plurality of sensing areas is measured during the test of the first operation test means. It is determined whether or not each of the measured values is equal to or more than the lower limit value of the preset contamination level allowable range, and the determination result indicates the contamination level of each of the plurality of sensing areas of the translucent cover. A pollution level test unit including a pollution level determination unit that outputs a signal indicating yes or no, and a detection signal level of a light receiving element irradiated to each of the plurality of sensing areas during a test of the second operation test unit. Respectively, it is determined whether or not each measured value is equal to or more than the lower limit value of the deterioration allowable range set in advance, and whether the degree of deterioration of the light receiving element for each sensing region is acceptable or not according to the determination result. Show no Signal is obtained and a light receiving sensitivity testing means including a deterioration degree determination means for outputting respectively added to radiant fire detector according to claim 4.

【0012】本発明の請求項6に係る輻射式火災感知器
は、前記第1の動作試験手段の試験時に、前記複数の各
感知領域毎に照射される受光素子の検出信号レベルをそ
れぞれ計測し、該各計測値と減光率基準値との比を前記
透光性カバーの複数の各感知領域方向毎の減光率として
それぞれ算出する減光率算出手段と、前記各方向毎の減
光率の算出値が、あらかじめ設定された減光率許容範囲
の下限値以上であるか否かをそれぞれ判別し、該判別結
果により前記透光性カバーの複数の各感知領域方向毎の
汚損程度の可又は否を示す信号をそれぞれ出力する汚損
程度判別手段とを含む汚損程度試験手段と、前記第2の
動作試験手段の試験時に、前記複数の各感知領域毎に照
射される受光素子の検出信号レベルをそれぞれ計測し、
該各計測値と受光感度基準値との比を前記各感知領域毎
の受光素子の受光感度としてそれぞれ算出する受光感度
算出手段と、前記各感知領域毎の受光感度の算出値があ
らかじめ設定された受光感度許容範囲の下限値以上であ
るか否かをそれぞれ判別し、該判別結果により前記各感
知領域毎の受光素子の劣化程度の可又は否を示す信号を
それぞれ出力する受光感度判別手段とを含む受光感度試
験手段とを前記請求項4に係る輻射式火災感知器に付加
したものである。
According to a sixth aspect of the present invention, in the radiant fire detector, the detection signal level of the light receiving element irradiated to each of the plurality of sensing areas is measured during the test of the first operation test means. A light extinction ratio calculating means for calculating a ratio between each measured value and a light extinction ratio reference value as a light extinction ratio for each of a plurality of sensing areas of the translucent cover; Whether or not the calculated value of the rate is equal to or more than the lower limit value of the preset light attenuation rate allowable range, and the degree of contamination of each of the plurality of sensing area directions of the translucent cover is determined by the determination result. Contamination degree test means including a contamination degree determination means for outputting a signal indicating yes or no, respectively, and a detection signal of a light receiving element irradiated to each of the plurality of sensing areas at the time of testing by the second operation test means. Measure each level,
A light receiving sensitivity calculating means for calculating a ratio between each of the measured values and the light receiving sensitivity reference value as the light receiving sensitivity of the light receiving element for each of the sensing regions, and a calculated value of the light receiving sensitivity for each of the sensing regions are preset. And a light receiving sensitivity determining means for determining whether or not the light receiving sensitivity is lower than or equal to the lower limit of the allowable range, and outputting a signal indicating whether or not the degree of deterioration of the light receiving element in each of the sensing regions is acceptable or not based on the determination result. A light-receiving sensitivity test means including the light-sensing sensitivity is added to the radiation-type fire detector according to the fourth aspect.

【0013】[0013]

【作用】本請求項1に係る発明においては、火炎から放
射される輻射光を透過させる透光性カバーと、該透光性
カバーの内側に設けられ該透光性カバーからの透過光を
受光する受光素子と、該受光素子の検出信号に基づき火
災を感知する手段とを有する輻射式火災感知器におい
て、第1の試験用発光素子は、前記透光性カバーの外側
に設けられ、第1の動作試験手段の駆動により第1の擬
似炎信号を発光し、前記透光性カバーを透過して前記受
光素子を照射する。第1の動作試験手段は、前記第1の
試験用発光素子を駆動して第1の擬似炎信号を発光させ
て前記受光素子を照射し、該受光素子の検出信号に基づ
き前記火災を感知する手段が正常に動作するか否かを試
験する。第2の試験用発光素子は、前記透光性カバーの
内側に設けられ、第2の動作試験手段の駆動により第2
の擬似炎信号を発光し、直接又は間接的に前記受光素子
を照射する。第2の動作試験手段は、前記第2の試験用
発光素子を駆動して第2の擬似炎信号を発光させて前記
受光素子を照射し、該受光素子の検出信号に基づき前記
火災を感知する手段が正常に動作するか否かを試験す
る。
In the invention according to the first aspect, the translucent cover that transmits the radiant light emitted from the flame and the light transmitted through the translucent cover that is provided inside the translucent cover are received. In the radiant fire detector, the first test light-emitting element is provided outside the translucent cover. The first pseudo-flame signal is emitted by driving the operation test means, and the light-receiving element is irradiated with light through the light-transmitting cover. A first operation test means drives the first test light emitting element to emit a first pseudo flame signal to irradiate the light receiving element, and senses the fire based on a detection signal of the light receiving element. Test whether the means work properly. The second test light-emitting element is provided inside the translucent cover, and is driven by the second operation test means to generate the second test light-emitting element.
The pseudo flame signal is emitted to directly or indirectly irradiate the light receiving element. Second operation test means drives the second test light emitting element to emit a second pseudo flame signal to irradiate the light receiving element, and senses the fire based on a detection signal of the light receiving element. Test whether the means work properly.

【0014】本請求項2に係る発明においては、前記請
求項1に係る発明に汚損程度試験手段及び受光感度試験
手段が付加され、該汚損程度試験手段は、前記第1の動
作試験手段の試験時に、前記受光素子の検出信号レベル
を計測し、内蔵する汚損程度判別手段により、前記計測
値が、あらかじめ設定された汚損程度許容範囲の下限値
以上であるか否かを判別し、該判別結果により前記透光
性カバーの汚損程度の可又は否を示す信号を出力する。
また前記受光感度試験手段は、前記第2の動作試験手段
の試験時に、前記受光素子の検出信号レベルを計測し、
内蔵する劣化程度判別手段により、前記計測値が、あら
かじめ設定された劣化許容範囲の下限値以上であるか否
かを判別し、該判別結果により前記受光素子の劣化程度
の可又は否を示す信号を出力する。
According to a second aspect of the present invention, a stain degree test means and a light receiving sensitivity test means are added to the invention of the first aspect, and the stain degree test means is a test of the first operation test means. At this time, the detection signal level of the light receiving element is measured, and by the built-in contamination degree determination means, it is determined whether or not the measured value is equal to or higher than the lower limit value of the contamination degree allowable range set in advance. Outputs a signal indicating whether the light transmissive cover is dirty or not.
Further, the light receiving sensitivity test means measures the detection signal level of the light receiving element at the time of the test of the second operation test means,
A built-in deterioration degree judging means judges whether or not the measured value is equal to or more than a lower limit value of a deterioration allowable range set in advance, and a signal indicating whether or not the deterioration degree of the light receiving element is possible according to the judgment result. Is output.

【0015】本請求項3に係る発明においては、前記請
求項1に係る発明に汚損程度試験手段及び受光感度試験
手段が付加され、該汚損程度試験手段は、内蔵する減光
率算出手段により、前記第1の動作試験手段の試験時
に、前記受光素子の検出信号レベルを計測し、該計測値
と減光率基準値との比を前記透光性カバーの減光率とし
て算出する。そして汚損程度判別手段により、前記減光
率の算出値が、あらかじめ設定された減光率許容範囲の
下限値以上であるか否かを判別し、該判別結果により前
記透光性カバーの汚損程度の可又は否を示す信号を出力
する。また前記受光感度試験手段は、内蔵する受光感度
算出手段により、前記第2の動作試験手段の試験時に、
前記受光素子の検出信号レベルを計測し、該計測値と受
光感度基準値との比を前記受光素子の受光感度として算
出する。そして受光感度判別手段により、前記受光感度
の算出値が、あらかじめ設定された受光感度許容範囲の
下限値以上であるか否かを判別し、該判別結果により前
記受光素子の劣化程度の可又は否を示す信号を出力す
る。
According to a third aspect of the present invention, a stain degree test means and a photosensitivity test means are added to the invention of the first aspect, and the stain degree test means is provided with a built-in extinction ratio calculation means. During the test of the first operation test means, the detection signal level of the light receiving element is measured, and the ratio between the measured value and the reference value of the light reduction ratio is calculated as the light reduction ratio of the translucent cover. Then, by the stain degree determining means, it is determined whether or not the calculated value of the light extinction rate is equal to or higher than the lower limit value of the preset light extinction rate allowable range, and the stain degree of the translucent cover is determined by the determination result. A signal indicating whether or not is output. Further, the light-reception sensitivity test means uses a built-in light-reception sensitivity calculation means to perform a test of the second operation test means.
The detection signal level of the light receiving element is measured, and the ratio between the measured value and the light receiving sensitivity reference value is calculated as the light receiving sensitivity of the light receiving element. Then, the light-reception sensitivity determining means determines whether or not the calculated value of the light-reception sensitivity is equal to or more than the lower limit value of the preset light-reception sensitivity allowable range, and whether the deterioration degree of the light-receiving element is acceptable or not based on the determination result. Is output.

【0016】本請求項4に係る発明においては、あらか
じめ複数の感知領域をそれぞれほぼ独立した3次元空間
として設定し、該設定された複数の各感知領域内の火炎
からそれぞれ放射される輻射光を、前記各感知領域の方
向別にそれぞれ透過させる透光性カバーと、該透光性カ
バーの内側に設けられ、該透光性カバーの前記方向別の
透過光をそれぞれ各感知領域毎に受光する複数の受光素
子と、該複数の各受光素子別の検出信号に基づき、前記
複数の各感知領域別に火災を感知する手段とを有する輻
射式火災感知器において、複数の第1の試験用発光素子
は、前記複数の各感知領域毎にそれぞれ前記透光性カバ
ーの外側に設けられ、第1の動作試験手段による前記各
感知領域毎の駆動によりそれぞれ第1の擬似炎信号を発
光し、前記透光性カバーを透過して前記各感知領域毎の
受光素子をそれぞれ照射する。第1の動作試験手段は、
前記複数の第1の試験用発光素子を個別に駆動して第1
の擬似炎信号を発光させ、前記複数の各感知領域毎の受
光素子を個別に照射し、該各受光素子毎の検出信号に基
づき前記複数の各感知領域毎に火災を感知する手段が正
常に動作するか否かをそれぞれ試験する。複数の第2の
試験用発光素子は、前記複数の各感知領域毎にそれぞれ
前記透光性カバーの内側に設けられ、第2の動作試験手
段による前記各感知領域毎の駆動によりそれぞれ第2の
擬似炎信号を発光し、直接又は間接的に前記各感知領域
毎の受光素子をそれぞれ照射する。第2の動作試験手段
は、前記複数の第2の試験用発光素子を個別に駆動して
第2の擬似炎信号を発光させ、前記複数の各感知領域毎
の受光素子を個別に照射し、該各受光素子毎の検出信号
に基づき前記複数の各感知領域毎に火災を感知する手段
が正常に動作するか否かをそれぞれ試験する。
In the invention according to the fourth aspect, a plurality of sensing areas are set in advance as substantially independent three-dimensional spaces, and the radiant light emitted from the flame in each of the set plurality of sensing areas is set. A plurality of light-transmitting covers that transmit the respective sensing areas in different directions, and a plurality of light-transmitting covers that are provided inside the light-transmitting cover and that receive the light transmitted in the respective directions of the light-transmitting cover for each of the sensing areas. Of the plurality of light receiving elements, and a means for detecting a fire in each of the plurality of sensing areas based on the detection signal of each of the plurality of light receiving elements, the plurality of first test light emitting elements are provided. , Each of the plurality of sensing areas is provided outside the translucent cover, and each of the sensing areas is driven by the first operation test means to emit a first pseudo-flame signal. sex It passes through the bar irradiates each light receiving element of the respective sensing region. The first operation test means is
The plurality of first test light emitting elements are individually driven to
The pseudo-flame signal is emitted to individually illuminate the light receiving elements of each of the plurality of sensing areas, and the means for detecting a fire in each of the plurality of sensing areas is normally operated based on the detection signal of each of the light receiving elements. Each test whether it works. The plurality of second test light-emitting elements are provided inside the light-transmitting cover for each of the plurality of sensing areas, and are driven by the second operation test unit for each of the sensing areas to generate the second testing light-emitting element. A pseudo flame signal is emitted to directly or indirectly irradiate the light receiving element of each of the sensing areas. The second operation test means individually drives the plurality of second test light emitting elements to emit a second pseudo flame signal, and individually irradiates the light receiving elements of each of the plurality of sensing regions, Based on the detection signal of each light receiving element, it is tested for each of the plurality of sensing areas whether or not the means for sensing a fire operates normally.

【0017】本請求項5に係る発明においては、前記請
求項4に係る発明に汚損程度試験手段及び受光感度試験
手段が付加され、該汚損程度試験手段は、前記第1の動
作試験手段の試験時に、前記複数の各感知領域毎に照射
される受光素子の検出信号レベルをそれぞれ計測し、内
蔵する汚損程度判別手段により、前記各方向毎の計測値
が、あらかじめ設定された汚損程度許容範囲の下限値以
上であるか否かをそれぞれ判別し、該判別結果により前
記透光性カバーの複数の各感知領域方向毎の汚損程度の
可又は否を示す信号をそれぞれ出力する。また受光感度
試験手段は、前記第2の動作試験手段の試験時に、前記
複数の各感知領域毎に照射される受光素子の検出信号レ
ベルをそれぞれ計測し、内蔵する劣化程度判別手段によ
り、前記各感知領域毎の計測値が、あらかじめ設定され
た劣化許容範囲の下限値以上であるか否かをそれぞれ判
別し、該判別結果により前記各感知領域毎の受光素子の
劣化程度の可又は否を示す信号をそれぞれ出力する。
In the invention according to claim 5, a stain degree test means and a light receiving sensitivity test means are added to the invention according to claim 4, and the stain degree test means is a test of the first operation test means. At this time, the detection signal level of the light-receiving element irradiated to each of the plurality of sensing areas is measured, and the measurement value for each direction by the built-in contamination degree determination means is within a preset contamination degree allowable range. Whether or not it is equal to or more than the lower limit value is discriminated, and, based on the discrimination result, a signal indicating whether or not the degree of contamination of each of the plurality of sensing regions of the translucent cover is acceptable or not is output. Further, the light-receiving sensitivity test means measures the detection signal level of the light-receiving element irradiated to each of the plurality of sensing regions during the test of the second operation test means, and the built-in deterioration degree determination means allows each of the detection signals to be detected. It is determined whether or not the measurement value for each sensing area is equal to or more than the lower limit value of the deterioration allowable range set in advance, and the determination result indicates whether the degree of deterioration of the light receiving element for each sensing area is acceptable or not. Output each signal.

【0018】本請求項6に係る発明においては、前記請
求項4に係る発明に汚損程度試験手段及び受光感度試験
手段が付加され、該汚損程度試験手段は、内蔵する減光
率算出手段により、前記第1の動作試験手段の試験時
に、前記複数の各感知領域毎に照射される受光素子の検
出信号レベルをそれぞれ計測し、該各計測値と減光率基
準値との比を前記透光性カバーの複数の各感知領域方向
毎の減光率としてそれぞれ算出する。そして汚損程度判
別手段により、前記各方向毎の減光率の算出値が、あら
かじめ設定された減光率許容範囲の下限値以上であるか
否かをそれぞれ判別し、該判別結果により前記透光性カ
バーの複数の各感知領域方向毎の汚損程度の可又は否を
示す信号をそれぞれ出力する。また受光感度試験手段
は、内蔵する受光感度算出手段により、前記第2の動作
試験手段の試験時に、前記複数の各感知領域毎に照射さ
れる受光素子の検出信号レベルをそれぞれ計測し、該各
計測値と受光感度基準値との比を前記各感知領域毎の受
光素子の受光感度としてそれぞれ算出する。そして受光
感度判別手段により、前記各感知領域毎の受光感度の算
出値があらかじめ設定された受光感度許容範囲の下限値
以上であるか否かをそれぞれ判別し、該判別結果により
前記各感知領域毎の受光素子の劣化程度の可又は否を示
す信号をそれぞれ出力する。
According to a sixth aspect of the present invention, a stain degree test means and a photosensitivity test means are added to the invention according to the fourth aspect, and the stain degree test means is provided with a built-in extinction ratio calculation means. During the test of the first operation test means, the detection signal level of the light receiving element irradiated to each of the plurality of sensing regions is measured, and the ratio of each measured value to the reference value of the extinction ratio is used for the light transmission. It is calculated as the extinction ratio for each of the plurality of sensing area directions of the property cover. Then, the stain degree determining means determines whether or not the calculated value of the light reduction rate for each direction is equal to or more than the lower limit value of the preset light reduction rate allowable range, and the light transmission rate is determined based on the determination result. A signal indicating whether or not there is a degree of contamination in each of the plurality of sensing area directions of the property cover is output. Further, the light-reception sensitivity test means measures the detection signal level of the light-receiving element irradiated to each of the plurality of sensing areas by the built-in light-reception sensitivity calculation means at the time of testing the second operation test means, The ratio between the measured value and the light-receiving sensitivity reference value is calculated as the light-receiving sensitivity of the light-receiving element for each sensing region. Then, the light-receiving sensitivity determining means determines whether or not the calculated value of the light-receiving sensitivity for each of the sensing areas is equal to or more than the lower limit value of the preset light-receiving sensitivity allowable range, and for each of the sensing areas based on the determination result. A signal indicating whether or not the light receiving element is deteriorated is output.

【0019】[0019]

【実施例】図1は本発明の一実施例を示す輻射式火災感
知器の構成ブロック図である。図2は図1の輻射式火災
感知器の構造図であり、同図の(a)はその平面図を、
(b)はその断面図を示している。図3は図1の輻射式
火災感知器の左側と右側の2つの感知領域を示す図であ
り、図4は図2の受光素子と内部発光ダイオード(LE
D)との位置関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a radiation type fire detector showing an embodiment of the present invention. 2 is a structural view of the radiant fire detector of FIG. 1, and FIG. 2 (a) is a plan view thereof,
(B) has shown the sectional view. 3 is a diagram showing two sensing areas on the left side and the right side of the radiant fire detector of FIG. 1, and FIG. 4 is a diagram of the light receiving element and the internal light emitting diode (LE) of FIG.
It is a figure which shows the positional relationship with D).

【0020】最初に単一の火災感知器でも複数の感知領
域を有することが可能であることを説明する。図1の実
施例の輻射式火災感知器は、例えば壁面に設置される
と、火災感知器の正面方向(壁面に垂直な方向)に対し
て左右にそれぞれ45度の方向を中心軸とする2つのほ
ぼ独立した3次元空間の火災感知領域を有する。図3は
図1の輻射式火災感知器が壁面に設置された場合に、水
平面における左側と右側の感知領域を示すものであり、
例えば受光素子の受光面に垂直な直線距離で約50メー
トル程度までをこの感知領域とすることが可能である。
図3の左側と右側の感知領域内の火炎からそれぞれ放射
される輻射光は、方向別にその受光指向特性が前記感知
領域と一致するように配設された受光素子によりそれぞ
れ受光される。
First, it will be explained that a single fire sensor can have multiple sensing areas. When the radiant fire detector of the embodiment of FIG. 1 is installed on a wall surface, for example, the central axis is 45 degrees to the left and right with respect to the front direction (direction perpendicular to the wall surface) of the fire sensor. It has three almost independent fire sensing areas in three-dimensional space. FIG. 3 shows the left and right sensing areas in a horizontal plane when the radiant fire detector of FIG. 1 is installed on a wall surface,
For example, the sensing area can be up to about 50 meters in a linear distance perpendicular to the light receiving surface of the light receiving element.
The radiant light emitted from the flames in the sensing areas on the left and right sides of FIG. 3 are respectively received by the light receiving elements arranged such that the light receiving directional characteristics thereof match the sensing area in each direction.

【0021】図1〜図4において、1L,1Rは、それ
ぞれ左側と右側の感知領域に生じた火炎から放射される
赤外光のうち青色光成分(例えば波長が0.6〜0.7
5μ程度の成分であり、本発明では短波長成分ともい
う)を別個に受光する青色光受光素子であり、この実施
例では、共にフォトダイオードを使用する。2L,2R
は、それぞれ前記左側と右側の感知領域に生じた同一の
火炎から放射される赤外光のうち赤色光成分(例えば波
長が0.8〜2μ程度の成分であり、本発明では長波長
成分ともいう)を別個に受光する赤色光受光素子であ
り、この実施例では、共に焦電素子(赤外線を吸収し温
度変化を生じると、電圧又は焦電流を発生する素子)を
使用する。そして前記ホトダイオード1Lと焦電素子2
Lが図3の左側感知領域の受光センサとして、ホトダイ
オード1Rと焦電素子2Rが図3の右側感知領域の受光
センサとして、それぞれ炎の青色光成分と赤色光成分と
を別個に検出する。
1 to 4, 1L and 1R are blue light components (for example, wavelengths of 0.6 to 0.7) of the infrared light emitted from the flames generated in the left and right sensing areas, respectively.
It is a blue light receiving element for separately receiving a component of about 5 μm, which is also referred to as a short wavelength component in the present invention). In this embodiment, both photodiodes are used. 2L, 2R
Is a red light component (for example, a component having a wavelength of about 0.8 to 2 μm) in the infrared light emitted from the same flame generated in each of the left and right sensing areas, and is a long wavelength component in the present invention. Red light receiving element for separately receiving light), and in this embodiment, a pyroelectric element (an element that generates a voltage or a pyroelectric current when infrared rays are absorbed to cause a temperature change) is used together. Then, the photodiode 1L and the pyroelectric element 2
L is a light receiving sensor in the left side sensing area of FIG. 3, and the photodiode 1R and the pyroelectric element 2R are light receiving sensors in the right side sensing area of FIG. 3, respectively detecting the blue light component and the red light component of the flame separately.

【0022】3Lb,3Lrは、受光感度試験を行なう
ときに、それぞれ左側の青色光受光フォトダイオード1
Lと、左側の赤色光受光焦電素子2Lとを別個に照射す
るため、火炎と同一帯域の赤色光を、炎のゆらぎ周波数
である約8〜12Hzで点滅して発光する左側用の第2
の試験用の発光素子であり、この実施例では発光ダイオ
ードを用い、受光ガラス7の内側に設けられるので、以
下左側の内部LEDという。同様に、3Rb,3Rr
は、受光感度試験を行なうときに、それぞれ右側の青色
光受光フォトダイオード1Rと、右側の赤色光受光焦電
素子2Rとを別個に照射する火炎と同一帯域の赤色光を
約8〜12Hzで点滅して発光する右側用の第2の試験
用の発光素子であり、この実施例では発光ダイオードを
用い、受光ガラス7の内側に設けられるので、以下右側
の内部LEDという。上記左側又は右側の内部LED3
Lb,3Lr,3Rb,3Rrと、受光素子であるフォ
トダイオード1L,1R及び焦電素子2L,2Rとの位
置関係は図4に示されている。
3Lb and 3Lr are blue light receiving photodiodes 1 on the left side, respectively, when a light receiving sensitivity test is performed.
L and the left side red light receiving pyroelectric element 2L are separately irradiated, so that red light in the same band as the flame flashes and emits at a flame fluctuation frequency of about 8 to 12 Hz.
In this embodiment, a light emitting diode is used, and it is provided inside the light receiving glass 7. Similarly, 3Rb, 3Rr
When the light sensitivity test is performed, the red light in the same band as the flame that separately illuminates the right blue light receiving photodiode 1R and the right red light receiving pyroelectric element 2R blinks at about 8 to 12 Hz. The second test light-emitting element for the right side, which emits light, is provided inside the light-receiving glass 7 in this embodiment, and is hereinafter referred to as the right-side internal LED. Internal LED3 on the left or right side
The positional relationship between Lb, 3Lr, 3Rb, 3Rr and the photodiodes 1L, 1R and the pyroelectric elements 2L, 2R which are light receiving elements is shown in FIG.

【0023】4L,4Rは、受光ガラス7の左側と右側
の光透過部分についての汚損程度(具体的には光の透過
率)の試験を行なうため、それぞれ受光ガラス7の外部
に設けられ、火炎と同一帯域の赤色光を前記約8〜12
Hzで点滅して発光する左側用と右側用の第1の試験用
の発光素子であり、汚損程度の試験時には、左側又は右
側の方向から発光した炎の擬似光を、それぞれ、受光ガ
ラス7を透過させ、その内側にある左側のフォトダイオ
ード1Lと右側のフォトダイオード1Rとを別個に照射
する。この実施例では、発光素子として発光ダイオード
を用い、以下左側、右側の外部LEDという。
4L and 4R are provided outside the light-receiving glass 7 to test the degree of contamination (specifically, the light transmittance) on the left and right light-transmitting portions of the light-receiving glass 7, and are provided with flames. The red light in the same band as
The first and second light-emitting elements for the first test for flashing and emitting light at a frequency of Hz, and at the time of a stain level test, the pseudo-light of the flame emitted from the left-side or right-side direction is received by the light-receiving glass 7 respectively. The photodiode 1L on the left side and the photodiode 1R on the right side, which are inside, are separately illuminated. In this embodiment, a light emitting diode is used as a light emitting element, which will be hereinafter referred to as left and right external LEDs.

【0024】5L,5Rは、それぞれ左側と右側の動作
・火災表示灯であり、この実施例では、緑色と赤色の2
色発光ダイオードを用い、緑色LEDは動作表示灯とし
て、赤色LEDは火災表示灯として使用している。そし
てこの2色LEDによる表示状態は、火災感知器が火炎
検出信号を受信機へ送信し、これを受信した受信機の指
示に基づき行なわれるものであるが、この実施例におい
ては、最初に火炎を検出したときには、緑色LEDによ
るフラッシング点灯が行なわれ、この最初の検出信号が
受信機により蓄積復旧(リセット)された後の連続する
2回目の火炎を検出したときには、赤色LEDによるフ
ラッシング点灯が行なわれ、連続する3回以上の火炎検
出信号が受信機により確認された後には、赤色LEDに
よる連続点灯となる。なお、2色LEDの表示モード
は、上記3つの表示状態のほかに、2つの各LEDにつ
いて、フラッシング点灯(点滅周波数の低い場合と高い
場合がある)、連続点灯又は消灯を組み合せると、多く
の表示モードが考えられる。下記の表1にその表示モー
ド例を示す。
Reference numerals 5L and 5R are operation / fire indicator lights on the left side and the right side, respectively.
A color LED is used, a green LED is used as an operation indicator, and a red LED is used as a fire indicator. The display state by the two-color LED is performed based on the instruction of the receiver which transmits the flame detection signal to the receiver by the fire detector and receives the flame detection signal. In this embodiment, the flame is first displayed. Flashing lighting by the green LED is detected, and flashing lighting by the red LED is carried out when the second continuous flame after the initial detection signal is restored (reset) by the receiver is detected. After the continuous flame detection signal is confirmed three or more times by the receiver, the red LED continuously lights. In addition to the above three display states, the two-color LED display mode is often combined with flashing lighting (the flashing frequency may be low or high) and continuous lighting or extinction for each of the two LEDs. Possible display modes are. Table 1 below shows an example of the display mode.

【0025】[0025]

【表1】 [Table 1]

【0026】この実施例においては、点検用テスタの擬
似炎光源からの照射光をこの火災感知器に受光させて点
検試験を行なう場合に、前記テスタによる点検試験中で
あることを当該火災感知器に知らせるため、前記テスタ
にあらかじめ設けられた点検告知信号発生手段から火炎
に含まれる周波数帯とは異なる周波数で変調された光、
例えば約500Hzで点滅する光を発生する。6はこの
テスタから発生される前記点検告知信号の受光素子であ
り、この例では前記約500Hzで点滅する光を受光す
るホトダイオードである。なお点検用テスタについて
は、図6及び図7により説明する。7は受光ガラスであ
り、火災発生時の炎信号をこの受光ガラス7を透過さ
せ、フォトダイオード1L,1R及び焦電素子2L,2
Rへ受光させる。8L,8Rは、それぞれ左側の外部L
ED4L及び動作・火災表示灯5Lと、右側の外部LE
D4R及び動作・火災表示灯5Rの上に設けられた透明
ガラスである。9A,9Bは、それぞれこの火災感知器
のケースA、ケースBである。
In this embodiment, when the fire detector receives the irradiation light from the pseudo-flame light source of the inspection tester to perform the inspection test, it is determined that the inspection test by the tester is underway. In order to notify to, the light modulated at a frequency different from the frequency band included in the flame from the inspection notification signal generating means provided in advance in the tester,
For example, it emits light that blinks at about 500 Hz. Reference numeral 6 is a light receiving element for the inspection notification signal generated from this tester, which is a photodiode for receiving the light blinking at about 500 Hz in this example. The inspection tester will be described with reference to FIGS. 6 and 7. Reference numeral 7 denotes a light-receiving glass, which transmits a flame signal at the time of a fire through the light-receiving glass 7, and the photodiodes 1L, 1R and the pyroelectric elements 2L, 2
Let R receive light. 8L and 8R are the left external L respectively
ED4L, operation / fire indicator light 5L, and external LE on the right side
It is a transparent glass provided on the D4R and the operation / fire indicator light 5R. 9A and 9B are case A and case B of this fire detector, respectively.

【0027】図1の11L,11Rは、それぞれフォト
ダイオード1L,1Rの受光出力信号を増幅するプリア
ンプ、12L,12Rは、それぞれ焦電素子2L,2R
の受光出力信号を増幅するプリアンプ、13L,13
R,14L,14Rはそれぞれプリアンプ11L,11
R,12L,12Rの出力信号を増幅するアンプであ
る。ここで前記プリアンプ11L,11R,12L,1
2R及びアンプ13L,13R,14L,14Rは、各
受光素子から得られる出力信号のうち眞の火炎信号のみ
を増幅するため、例えば火災時の炎のゆらぎ周波数帯域
である約8〜12Hz程度の交流信号のみを、内蔵する
帯域通過フィルタ(BPF)により抽出して増幅するよ
うに設計されている。例えばアクティブフィルタを組込
んだ狭帯域増幅器として設計され、入力信号のうちの直
流成分と約12Hz以上の高域成分は減衰させ、前記狭
帯域信号のみを増幅している。
Reference numerals 11L and 11R in FIG. 1 denote preamplifiers for amplifying received light output signals of the photodiodes 1L and 1R, respectively, and reference numerals 12L and 12R denote pyroelectric elements 2L and 2R, respectively.
Preamplifier for amplifying the received light output signal of
R, 14L and 14R are preamplifiers 11L and 11L, respectively.
An amplifier that amplifies the output signals of R, 12L, and 12R. Here, the preamplifiers 11L, 11R, 12L, 1
Since the 2R and the amplifiers 13L, 13R, 14L, and 14R amplify only the flame signal of Mako among the output signals obtained from the respective light receiving elements, for example, an alternating current of about 8 to 12 Hz, which is the fluctuation frequency band of the flame at the time of fire. It is designed so that only the signal is extracted and amplified by a built-in band pass filter (BPF). For example, it is designed as a narrow band amplifier incorporating an active filter, a direct current component of an input signal and a high band component of about 12 Hz or more are attenuated, and only the narrow band signal is amplified.

【0028】またプリアンプ11Lとアンプ13L、1
2Lと14L、11Rと13R、又は12Rと14Rよ
りなる2段の増幅回路は、ハイゲインで高感度であるの
で、火災の輻射光エネルギーが小さい遠方又は小規模火
災の場合にも、十分な計測値が得られる回路として使用
される。そしてプリアンプ11L,12L,11R、又
は12Rのみの増幅回路は、ロウゲインで低感度である
ので、火災の輻射光エネルギーが大きい大規模の場合に
も、増幅回路の出力は飽和せず、正しい計測値が得られ
る回路として使用される。15L〜18L及び15R〜
18Rは、それぞれ平滑回路であり、例えば抵抗器とコ
ンデンサとで構成され、前記プリアンプ又はアンプの出
力信号を入力して、この入力信号の平滑化信号を出力し
てセンサ制御回路20へ供給する。
Further, the preamplifier 11L and the amplifier 13L, 1
The two-stage amplifier circuit consisting of 2L and 14L, 11R and 13R, or 12R and 14R has high gain and high sensitivity, so even in the case of a distant or small fire where the radiant energy of the fire is small, sufficient measurement values can be obtained. Is used as a circuit to obtain. Since the amplifier circuit including only the preamplifier 11L, 12L, 11R, or 12R has a low gain and low sensitivity, the output of the amplifier circuit does not saturate even when the radiant energy of a fire is large and the measured value is correct. Is used as a circuit to obtain. 15L-18L and 15R-
18R is a smoothing circuit, which is composed of, for example, a resistor and a capacitor, receives the output signal of the preamplifier or the amplifier, outputs a smoothed signal of the input signal, and supplies the smoothed signal to the sensor control circuit 20.

【0029】センサ制御回路20は、前記火災の輻射光
エネルギーの大小に応じて、プリアンプ出力の入力され
た平滑回路の出力、またはアンプ出力の入力された平滑
回路の出力のいずれかを選択し、さらにプリアンプ又は
アンプの増幅度を制御することにより、受光信号レベル
が微小レベルと飽和レベルの中間に存在するリニア領域
における信号値を計測する。19は点検告知信号受光素
子6の出力信号を増幅するアンプであるが、常時動作可
能ではなく、この火災感知器が外部の受信機や中継器か
ら点検開始許可信号を受信したときに、センタ制御回路
20によって動作不能状態から動作可能状態にセットさ
れるアンプである。
The sensor control circuit 20 selects either the output of the smoothing circuit to which the preamplifier output is input or the output of the smoothing circuit to which the amplifier output is input, according to the magnitude of the radiant light energy of the fire. Further, by controlling the amplification degree of the preamplifier or the amplifier, the signal value in the linear region in which the light reception signal level exists between the minute level and the saturation level is measured. Reference numeral 19 is an amplifier for amplifying the output signal of the inspection notification signal light-receiving element 6, but it is not always operable, and when the fire detector receives an inspection start permission signal from an external receiver or repeater, the center control is performed. It is an amplifier that is set from an inoperable state to an operable state by the circuit 20.

【0030】20はセンサ制御回路、21は伝送制御回
路であり、それぞれマイクロプロセッサMPU、複数の
リード・オンリ・メモリROM、複数のランダム・アク
セス・メモリRAM、入出力(I/O)インタフェース
等を内蔵するものである。
A sensor control circuit 20 and a transmission control circuit 21 each include a microprocessor MPU, a plurality of read only memory ROMs, a plurality of random access memory RAMs, an input / output (I / O) interface and the like. It is built-in.

【0031】図5は図1のセンサ制御回路の一例を示す
構成ブロック図である。図5において、MPU1と、R
OM1〜ROM9、RAM1〜RAM6及びI/Oイン
タフェースとは、データバス及びアドレスバスを介して
相互に結合されている。そして、この実施例では、RO
M1は制御プログラムの記憶領域、ROM2は受光素子
及び増幅器を介して得られる受光出力信号の正常範囲基
準値の記憶領域、ROM3は受光素子単体の補正可能範
囲しきい値の記憶領域、ROM4は受光素子及び増幅器
を介して得られる受光出力信号の汚損補正可能範囲のし
きい値の記憶領域、ROM5は減光率基準値の記憶領
域、ROM6は火災判断用のしきい値の記憶領域、RO
M7は複数の火災感知器を識別するため各火災感知器毎
に付与されたアドレスコード、種別コード種の記憶領
域、ROM8はその他の補助記憶領域にそれぞれ割当て
られた読出し専用メモリである。
FIG. 5 is a block diagram showing an example of the sensor control circuit shown in FIG. In FIG. 5, MPU1 and R
The OM1 to ROM9, the RAM1 to RAM6 and the I / O interface are coupled to each other via a data bus and an address bus. And in this embodiment, RO
M1 is a storage area for the control program, ROM2 is a storage area for the normal range reference value of the received light output signal obtained through the light receiving element and the amplifier, ROM3 is a storage area for the correctable range threshold value of the light receiving element alone, and ROM4 is the light receiving area. A storage area for a threshold value of a stain-correctable range of a received light output signal obtained via an element and an amplifier, a ROM 5 storage area for a reference value of extinction ratio, a ROM 6 storage area for a threshold value for fire judgment, and RO
M7 is a read-only memory assigned to an address code assigned to each fire detector for identifying a plurality of fire detectors, a storage area for the type code, and a ROM 8 for each of other auxiliary storage areas.

【0032】またRAM1はデータの作業領域、RAM
2は減光率データ格納領域、RAM3は受光素子単体の
受光感度算出値格納用領域、RAM4は受光センサから
の受光出力値格納用領域、RAM5はタイマ領域、RA
M6はその他の補助記憶領域にそれぞれ割当てられた読
み書き自在のメモリである。I/Oインタフェースは、
内部にA/D変換器、マルチプレクサ、出力ポート、入
力ポート等を含んでいる。このマルチプレクサは平滑回
路15L〜18L、15R〜18Rや、アンプ19から
アナログ入力信号を選択してA/D変換器へ供給し、A
/D変換器はこれをディジタルデータに変換して、セン
サ制御回路内でのディジタル信号処理を可能にする。ま
たこの出力ポートは、例えば点灯回路へ点灯制御信号を
出力し、入力ポートは例えば伝送制御回路21からのデ
ータを入力する。
RAM 1 is a data work area, RAM
2 is an area for storing the extinction ratio data, RAM 3 is an area for storing a light receiving sensitivity calculated value of the light receiving element alone, RAM 4 is an area for storing a light receiving output value from the light receiving sensor, RAM 5 is a timer area, RA
M6 is a readable / writable memory assigned to each of the other auxiliary storage areas. The I / O interface is
It contains an A / D converter, a multiplexer, an output port, an input port, etc. inside. This multiplexer selects an analog input signal from the smoothing circuits 15L to 18L and 15R to 18R and the amplifier 19 and supplies the analog input signal to the A / D converter.
The / D converter converts this into digital data to enable digital signal processing within the sensor control circuit. The output port outputs a lighting control signal to, for example, the lighting circuit, and the input port receives data from the transmission control circuit 21, for example.

【0033】22は信号送受信部であり、受信回路、デ
ータの直列/並列変換回路、送信回路、データの並列/
直列変換回路等で構成され、伝送制御回路21の制御に
基づき、信号伝送線を介して、受信機又は中継器とデー
タの送受信を行なう。23L,23Rは、それぞれセン
サ制御回路20からの出力信号に基づき、外部LED4
L,4Rの点灯を制御する点灯回路、24Lと24R
も、それぞれセンサ制御回路20からの出力信号に基づ
き、内部LED3Lb,3Lrと3Rb,3Rrの点灯
を制御する点灯回路である。
Reference numeral 22 denotes a signal transmission / reception unit, which is a reception circuit, a data serial / parallel conversion circuit, a transmission circuit, and a data parallel / parallel circuit.
It is composed of a serial conversion circuit or the like, and transmits / receives data to / from a receiver or a repeater via a signal transmission line under the control of the transmission control circuit 21. 23L and 23R are based on the output signal from the sensor control circuit 20, respectively, and
Lighting circuit for controlling lighting of L and 4R, 24L and 24R
Is also a lighting circuit that controls lighting of the internal LEDs 3Lb, 3Lr and 3Rb, 3Rr based on output signals from the sensor control circuit 20, respectively.

【0034】25L,25Rは、それぞれセンサ制御回
路20からの出力信号に基づき、動作・火災表示灯5
L,5Rの点灯(連続点灯及びフラッシング点灯を含
む)を制御する点灯制御回路である。26,27は、共
にクロック回路であり、それぞれのクロック信号を発生
し、センサ制御回路20、伝送制御回路21へ供給す
る。28,29は、共にリセット回路であり、電源投入
後の初期動作や手動操作によりそれぞれリセット信号を
発生し、センサ制御回路20、伝送制御回路21へ供給
する。
25L and 25R are based on the output signal from the sensor control circuit 20, and the operation / fire indicator lamp 5 is provided.
It is a lighting control circuit for controlling lighting of L and 5R (including continuous lighting and flashing lighting). Clock circuits 26 and 27 both generate respective clock signals and supply them to the sensor control circuit 20 and the transmission control circuit 21. Reference numerals 28 and 29 are reset circuits, which generate reset signals by initial operation after power-on and by manual operation, and supply them to the sensor control circuit 20 and the transmission control circuit 21.

【0035】図6は火災感知器の点検用テスタの外観図
であり、同図の(a)は側面図を、(b)は前面図を示
している。図6において、31L,31Rは、それぞれ
左側と右側の擬似炎信号として、前記火炎の赤外光帯域
において、炎のゆらぎ周波数である約8〜12Hzで発
光する発光素子(例えば発光ダイオード)である。また
32は、この点検用テスタによりある火災感知器を点検
中に、該当火災感知器に点検試験中であることを知らせ
ることを目的とする点検告知信号として、上記炎のゆら
ぎ周波数より高い周波数(この実施例では約500H
z)で発光する発光素子である。また図6の(a)に示
されるように、点検用テスタには、左側(L)、右側
(R)、左右両方(中央位置)の3位置のいずれかを選
択するスイッチが設けられており、8〜12Hz用発光
素子31Lまたは31Rのいずれか一方、または両方を
選択して発光できるようにしている。なお以下の例で
は、左側(L)と右側(R)の片側づつ点検試験を行な
う場合について説明する。
6A and 6B are external views of a tester for inspecting a fire detector. FIG. 6A is a side view and FIG. 6B is a front view. In FIG. 6, 31L and 31R are light emitting elements (for example, light emitting diodes) that emit light at the flame fluctuation frequency of about 8 to 12 Hz in the infrared light band of the flame, as left and right pseudo flame signals. . Further, reference numeral 32 is a check notification signal for informing the relevant fire sensor that it is undergoing an inspection test while inspecting a fire detector by this inspection tester, and a frequency higher than the fluctuation frequency of the flame ( In this embodiment, about 500H
It is a light emitting element which emits light in z). Further, as shown in (a) of FIG. 6, the inspection tester is provided with a switch for selecting one of the three positions of left side (L), right side (R), and both left and right (center position). , 8 to 12 Hz light emitting element 31L or 31R, or both of them are selected to emit light. In the following example, the case where the inspection test is performed on each of the left side (L) and the right side (R) will be described.

【0036】図7は点検時の火災感知器と点検用テスタ
の位置関係を示す図である。図7において、点検時に
は、点検用テスタの前面を火災感知器の受光ガラス7に
かぶせるまで押しつける。その結果、8〜12Hz用発
光素子31L又は31Rから発光された光は、それぞれ
フォトダイオード1L及び焦電素子2L又はフォトダイ
オード1R及び焦電素子2Rにより受光され、また50
0Hz用発光素子32から発光された光は点検告知信号
受光素子6により受光され、火災感知器の点検動作を行
なうことが可能となる。
FIG. 7 is a diagram showing the positional relationship between the fire detector and the inspection tester at the time of inspection. In FIG. 7, at the time of inspection, the front surface of the inspection tester is pressed until it covers the light-receiving glass 7 of the fire detector. As a result, the light emitted from the light emitting element 31L or 31R for 8 to 12 Hz is received by the photodiode 1L and the pyroelectric element 2L or the photodiode 1R and the pyroelectric element 2R, respectively.
The light emitted from the 0 Hz light emitting element 32 is received by the inspection notification signal light receiving element 6, and the fire detector can be inspected.

【0037】なお、上記実施例において、センサ制御回
路20のMPU1、ROM1とROM6が火災感知手段
の一例であり、外部LED4L、4Rが第1の試験用発
光素子の一例であり、センサ制御回路20のMPU1、
ROM1、ROM4、ROM5と点灯回路23L、23
Rが第1の動作試験手段の一例である。また、内部LE
D3Lb、3Lr、3Rb、3Rrが第2の試験用発光
素子の一例であり、センサ制御回路20のMPU1、R
OM1、ROM2、ROM3と点灯回路24L、24R
が第2の動作試験手段の一例である。また、センサ制御
回路20のMPU1、ROM1とROM4が汚損程度判
別手段の一例であり、同じくMPU1、ROM1、RO
M2とROM3が受光感度判別手段の一例である。ま
た、センサ制御回路20のMPU1、ROM1とROM
5が減光率算出手段の一例であり、同じくMPU1、R
OM1とROM2が受光感度算出手段の一例である。
In the above embodiment, the MPU1, ROM1 and ROM6 of the sensor control circuit 20 are an example of fire detection means, the external LEDs 4L, 4R are an example of the first test light emitting element, and the sensor control circuit 20. MPU1,
ROM1, ROM4, ROM5 and lighting circuits 23L, 23
R is an example of a first operation test means. Also, the internal LE
D3Lb, 3Lr, 3Rb, and 3Rr are examples of the second test light emitting element, and MPU1 and R of the sensor control circuit 20 are included.
OM1, ROM2, ROM3 and lighting circuits 24L, 24R
Is an example of the second operation test means. Further, the MPU1, ROM1 and ROM4 of the sensor control circuit 20 are an example of the stain degree determining means, and similarly the MPU1, ROM1 and RO.
The M2 and the ROM 3 are an example of the light receiving sensitivity determining means. In addition, the MPU1, ROM1 and ROM of the sensor control circuit 20
5 is an example of the extinction ratio calculation means, and is also MPU1, R
The OM1 and the ROM2 are an example of the light receiving sensitivity calculating means.

【0038】図8は図1の輻射式火災感知器の制御プロ
グラムのメインルーチンを示すフローチャートである。
図9及び図10は、図1の輻射式火災感知器の受信割込
プログラムのその1及びその2を示すフローチャートで
ある。図11は図1の輻射式火災感知器の試験プログラ
ムを示すフローチャートである。図12及び図13は図
1の輻射式火災感知器の炎検出プログラムのその1及び
その2を示すフローチャートである。以下図8〜図13
を用いて、図1及び図4の火災感知器の動作を説明す
る。
FIG. 8 is a flow chart showing the main routine of the control program for the radiant fire detector of FIG.
9 and 10 are flowcharts showing No. 1 and No. 2 of the reception interrupt program of the radiant fire detector of FIG. FIG. 11 is a flow chart showing a test program for the radiant fire detector of FIG. 12 and 13 are flow charts showing No. 1 and No. 2 of the flame detection program of the radiant fire detector of FIG. 8 to 13 below
The operation of the fire detector of FIGS. 1 and 4 will be described with reference to FIG.

【0039】図8のステップS31において、火災感知
器は、電源投入後のイニシアル処理を行なう。このイニ
シアル処理としては、例えば、センサ制御回路20及び
伝送制御回路21に含まれるRAMデータのクリアとR
OMデータのサムチェック(データの加算値のチェッ
ク)、図5のRAM3へ受光素子単体の補正用初期デー
タの格納、タイマ、カウンタ等のクリア、アンプの安定
化所要時間(例えば約0.5秒程度)の待機等の動作を
行なう。
In step S31 of FIG. 8, the fire detector performs an initial process after the power is turned on. As the initial processing, for example, clearing of RAM data included in the sensor control circuit 20 and the transmission control circuit 21 and R
Sum check of OM data (check of added value of data), storage of initial data for correction of the light receiving element alone in RAM 3 of FIG. 5, clear of timer, counter, etc., time required for stabilizing amplifier (for example, about 0.5 seconds) The operation such as standby of (about) is performed.

【0040】図8のステップS32において、火災感知
器内のセンサ制御回路20は、図5のI/Oインタフェ
ースを用いて各受光センサの出力信号を平滑回路15L
〜18L、15R〜18Rから読込み、その値を量子化
してRAM4に格納する。前記I/Oインタフェース
は、MPU1の指令に基づき、内蔵するマルチプレクサ
により前記各平滑回路から出力される8つの入力信号か
ら逐次1つの信号を選択し、この選択された信号をA/
D変換器により量子化して、該量子化データを逐次RA
M4に格納し、該格納した複数データの平均値を算出す
る演算を行ない最終的な火災監視データを得るようにし
ている。
In step S32 of FIG. 8, the sensor control circuit 20 in the fire detector uses the I / O interface of FIG. 5 to smooth the output signal of each light receiving sensor by the smoothing circuit 15L.
-18L, 15R-18R are read, the value is quantized, and it stores in RAM4. The I / O interface sequentially selects one signal from the eight input signals output from each of the smoothing circuits by a built-in multiplexer on the basis of a command from the MPU 1 and outputs the selected signal to A / O.
Quantization is performed by the D converter, and the quantized data is sequentially RA
The final fire monitoring data is stored in M4 and the calculation for calculating the average value of the stored plural data is performed.

【0041】また前記A/D変換器を介したデータのサ
ンプリング周波数は、ナイキストのサンプリング定理に
基づき、火炎のゆらぎの最高周波数12Hzの2倍以上
の周波数、例えば25Hz以上とすることが望ましい
(即ちサンプリング周期は、0.04秒以下が望まし
い)。また前記サンプリングされた複数データの平均値
の算出は、サンプルデータの最大値と最小値の影響を排
除し、積分的機能を持たせるため、サンプルデータの数
はできるだけ多い方が望ましい。しかし火炎発生から火
災感知までに許容される時間は、一般に制約があるの
で、この時間的制約の範囲内で、左側及び右側の感知領
域につき、それぞれ長波長と短波長の各受光センサにつ
いて、可及的に多数のサンプルデータを収集し、この収
集したデータの平均値を算出して、この値を各波長域の
火災監視データとしている。
The sampling frequency of the data passed through the A / D converter is preferably at least twice the maximum frequency of flame fluctuation of 12 Hz, for example 25 Hz or more, based on the Nyquist sampling theorem. The sampling cycle is preferably 0.04 seconds or less). Further, the calculation of the average value of a plurality of sampled data eliminates the influence of the maximum value and the minimum value of the sample data and has an integral function, so that it is desirable that the number of sample data is as large as possible. However, since the time allowed from flame generation to fire detection is generally restricted, within the range of this time restriction, it is possible to detect the long-wavelength and short-wavelength light receiving sensors for the left and right sensing areas, respectively. A large number of sample data are collected, the average value of the collected data is calculated, and this value is used as fire monitoring data in each wavelength range.

【0042】なお、受光センサの出力レベルが大きい場
合には、アンプから平滑回路を経た信号は飽和レベルと
なるので、その前段のプリアンプから平滑回路を経た信
号を取込み、飽和レベルに達する前のリニア領域におけ
る信号レベルを計測するようにしている。
When the output level of the light receiving sensor is high, the signal from the amplifier that has passed through the smoothing circuit becomes the saturation level. Therefore, the signal that has passed through the smoothing circuit from the preamplifier at the previous stage is taken in and the linear signal before the saturation level is reached. The signal level in the area is measured.

【0043】図8のステップS33において、センサ制
御回路20は、受光素子単体の補正が必要か否かを判別
する。これはフォトダイオード1L,1R又は焦電素子
2L,2Rの各素子単体の受光感度が、使用後の時間の
経過と共に劣化することに対する補正の要否である。従
って所定期間毎に、内部LED3Lb,3Lrと3R
b,3Rrを駆動し、左側のフォトダイオード1L及び
焦電素子2Lと、左側のフォトダイオード1R及び焦電
素子2Rの受光出力値をそれぞれ計測し、該計測値と設
置初期の基準値との比を受光感度として算出し、該算出
値を図5のRAM3に格納しておく。
In step S33 of FIG. 8, the sensor control circuit 20 determines whether or not the light receiving element alone needs to be corrected. This is the necessity of correction for the photosensitivity of each of the photodiodes 1L, 1R or the pyroelectric elements 2L, 2R that deteriorates over time after use. Therefore, the internal LEDs 3Lb, 3Lr and 3R are set at predetermined intervals.
b, 3Rr are driven to measure the received light output values of the left photodiode 1L and the pyroelectric element 2L and the left photodiode 1R and the pyroelectric element 2R, respectively, and the ratio between the measured value and the reference value at the initial stage of installation is measured. Is calculated as the light receiving sensitivity, and the calculated value is stored in the RAM 3 of FIG.

【0044】前記受光感度の算出値は、設置時の初期値
が1.00で、受光感度の低下に応じ、例えば、0.9
5、0.90、0.85…等と更新される。従って図5
のMPU1は、RAM3内の該当受光センサの受光感度
算出値を読出し、正常範囲(例えば1.00〜0.8
5)内であるか否かを判別し、ROM2に格納されてい
る正常範囲内であれば補正は不要と判断し、ステップS
35へ移り、正常範囲の下限値以下の値のときは補正は
必要と判断し、ステップS34において、前記火災監視
データに補正値(前記受光感度の逆数、即0.60の場
合には逆数の1/0.6)を乗算して補正演算を行な
う。これにより火災監視データは受光感度の低下による
影響が除去される。なお、前記受光感度には許容範囲
(例えば1.00〜0.50)をあらかじめ設定してR
OM3に格納しておき、受光感度の算出値が、この下限
値(上記例の0.50)以下になると、補正演算は行な
わずに、補正の限界を越えた旨の信号を出力する。この
詳細は図11おいて説明する。
The calculated value of the light receiving sensitivity is 1.00 as an initial value at the time of installation, and is 0.9 if the light receiving sensitivity is lowered.
5, 0.90, 0.85 and so on. Therefore, FIG.
The MPU 1 reads the calculated light-reception sensitivity value of the corresponding light-reception sensor in the RAM 3 and outputs it in the normal range (for example, 1.00 to 0.8).
5) It is determined whether or not it is within the normal range stored in the ROM 2, and it is determined that the correction is not necessary, and step S
35, the correction value is determined to be necessary when the value is equal to or lower than the lower limit value of the normal range, and in step S34, the correction value (the reciprocal number of the light receiving sensitivity, the reciprocal number in the case of 0.60 immediately) 1 / 0.6) is multiplied to perform the correction calculation. As a result, the fire monitoring data is removed from the influence of the decrease in the light receiving sensitivity. In addition, an allowable range (for example, 1.00 to 0.50) is preset for the light receiving sensitivity and R
When the calculated value of the light receiving sensitivity is stored in the OM3 and becomes equal to or lower than the lower limit value (0.50 in the above example), the correction calculation is not performed and a signal indicating that the correction limit is exceeded is output. Details of this will be described with reference to FIG.

【0045】図8のステップS35において、センサ制
御回路20は、受光ガラス7の汚損補正が必要か否かを
判別する。これは、例えば火災感知器がトンネル内等に
設置された場合、時間の経過と共に車の排気ガス等によ
り受光ガラス7の表面が汚れて、光の透過率が次第に低
下するからである。従って所定時間毎に外部LED4
L,4Rを用いて、受光ガラス7の左側及び右側の部分
の光の透過率をそれぞれ測定し、この減光率データをR
AM2に格納しておく。前記減光率データも、設置時の
初期値は1.00で、受光ガラス7の表面の汚れが進む
と、0.95、0.90、0.85、…等と更新され
る。
In step S35 of FIG. 8, the sensor control circuit 20 determines whether or not the stain correction of the light-receiving glass 7 is necessary. This is because, for example, when a fire detector is installed in a tunnel or the like, the surface of the light-receiving glass 7 becomes dirty with the exhaust gas of the vehicle with the passage of time, and the light transmittance gradually decreases. Therefore, the external LED 4
L and 4R are used to measure the light transmittances of the left and right portions of the light-receiving glass 7, and the extinction ratio data is set to R.
Store in AM2. The dimming rate data also has an initial value of 1.00 at the time of installation and is updated to 0.95, 0.90, 0.85, etc. when the surface of the light receiving glass 7 becomes dirty.

【0046】従って図5のMPU1はRAM2内の該当
する左側又は右側の減光率データを読出し、例えば1.
00であれば補正は不要と判別し、ステップS37へ移
り、1.00以下の値のときは補正が必要と判別し、前
記ステップS32による平均値データ又はステップS3
4による補正データに対して、ステップS36におい
て、補正値(前記減光率データの逆数)を乗算して補正
演算を行なう。これにより、平均値データ又は補正デー
タは、受光ガラスの汚損による影響が除去される。なお
前記減光率のデータには許容範囲の下限値(例えば0.
50)をあらかじめ設定してROM4に格納しておき、
この下限値以下になると、前記補正演算は行なわずに、
補正の限界を越えた旨の信号を出力したり、また前記下
限値よりやや上の値(例えば0.6)に設定された前置
下限値になると、受光ガラスの清掃を要する旨の信号を
出力したりする。この詳細は図11において説明する。
Therefore, the MPU 1 of FIG. 5 reads out the corresponding left or right extinction ratio data in the RAM 2, for example, 1.
If it is 00, it is determined that the correction is not necessary, and the process proceeds to step S37. If the value is 1.00 or less, it is determined that the correction is necessary, and the average value data in step S32 or step S3.
In step S36, the correction data of 4 is multiplied by a correction value (the reciprocal of the extinction ratio data) to perform a correction calculation. As a result, the average value data or the correction data is free from the influence of stains on the light-receiving glass. The data of the extinction ratio has a lower limit value (for example, 0.
50) is preset and stored in the ROM 4,
When the value is less than or equal to this lower limit value, the correction calculation is not performed and
When the signal indicating that the correction limit has been exceeded is output, or when the pre-set lower limit set to a value slightly higher than the lower limit (for example, 0.6) is reached, a signal indicating that the light-receiving glass needs to be cleaned is output. To output. Details of this will be described with reference to FIG.

【0047】一般に2波長式輻射火災感知器において
は、火炎の赤色光を検出する受光センサ(この例では焦
電素子)の受光出力から、火炎の青色光を検出する受光
センサ(この例ではフォトダイオード)の受光出力を減
算して差分値を求め、この差分値が火炎判別用のしきい
値を越える場合に火炎と判別している。この実施例にお
いては、MPU1は、図8のステップS37において、
必要に応じあらかじめ前記受光感度と汚れの補正演算が
それぞれ行なわれた、監視領域別の焦電素子の受光出力
算出値からフォトダイオードの受光出力算出値を減算
し、その差データを算出する。そして次のステップS3
8において、前記減算結果の差データが、図5のROM
6にあらかじめ格納されている火炎判別用しきい値を越
えるかどうかを判別し、火炎判別を行なう。
Generally, in a two-wavelength radiant fire detector, a light receiving sensor (a photo sensor in this example) that detects a blue light of a flame from a light receiving output of a light receiving sensor (a pyroelectric element in this example) that detects a red light of a flame. The difference value is obtained by subtracting the received light output of the diode), and when the difference value exceeds the threshold value for flame discrimination, it is discriminated as flame. In this embodiment, the MPU 1 executes the step S37 of FIG.
If necessary, subtraction of the photodetection output calculation value of the photodiode from the photodetection output calculation value of the pyroelectric element for each monitoring area, in which the above-mentioned photodetection sensitivity and stain correction calculations have been respectively performed, is calculated. And the next step S3
8, the difference data of the subtraction result is the ROM of FIG.
It is discriminated whether or not the flame discrimination threshold value stored in 6 is exceeded, and flame discrimination is performed.

【0048】前記火炎判別用しきい値としては、単一の
しきい値で火炎の検出は可能である。しかしこの実施例
では、検出した火炎が遠いか、近いかも同時に判るよう
に、ステップS38で火炎判別を行なう場合に、図5の
ROM6には、火炎判別用に、やや小さな値である第1
のしきい値と、やや大きな値である第2のしきい値とを
格納するようにしている。当然第2のしきい値は第1の
しきい値より大きな値である。そして前記ステップS3
7で算出した差のデータを、ステップS38では、まず
前記第1のしきい値と比較して、第1のしきい値を越え
る場合は火炎と判別する。そして次に前記差のデータを
第2のしきい値と比較して、第2のしきい値を越える場
合は近距離の火炎と判別し、越えない場合は遠距離の火
炎と判別する。勿論前記差のデータが第1のしきい値を
越えない場合は、火炎ではないと判別することになる。
As the threshold value for flame discrimination, a single threshold value can detect a flame. However, in this embodiment, when it is determined in step S38 that the detected flame is far or near at the same time, the ROM 6 of FIG.
And the second threshold, which is a slightly larger value, are stored. Naturally, the second threshold is a value larger than the first threshold. And step S3
In step S38, the difference data calculated in step 7 is first compared with the first threshold value, and if it exceeds the first threshold value, it is determined to be a flame. Then, the difference data is compared with a second threshold value, and if it exceeds the second threshold value, it is determined that it is a short-distance flame, and if it does not exceed the second threshold value, it is a long-distance flame. Of course, if the difference data does not exceed the first threshold value, it is determined that it is not a flame.

【0049】MPU1は、ステップS38の判別結果が
火炎でない場合は、ステップS32に戻り、ステップS
32〜S38の処理を繰返す。また判別結果が火炎の場
合には、ステップS39において、伝送制御回路21に
火炎検出を通報し、伝送制御回路21は、信号送受信部
22を駆動し、信号伝送線を介して受信機に火炎検出信
号を送信する。
If the result of the determination in step S38 is not flame, the MPU 1 returns to step S32 and returns to step S32.
The processes of 32 to S38 are repeated. When the determination result is flame, in step S39, the transmission control circuit 21 is notified of the flame detection, the transmission control circuit 21 drives the signal transmitting / receiving unit 22, and the receiver detects the flame through the signal transmission line. Send a signal.

【0050】なお火災感知器から火炎検出信号を受信し
た受信機は、この検出信号を確認すると、直ちに火炎蓄
積復旧信号を火災感知器に送信し、最初の火炎検出信号
をリセットさせ、再び火災感知器が2回目の火炎検出信
号を送信してくるかをチェックする。そして同一の火災
感知器から連続して所定回数(例えば3回)以上の火炎
検出信号が送信されてきた場合に、眞の火災であると判
断する。このようにして誤警報の発生を防止している。
When the receiver receives the flame detection signal from the fire detector, the receiver immediately confirms the detection signal, immediately sends a flame accumulation restoration signal to the fire detector, resets the first flame detection signal, and restarts the fire detection signal. Check if the instrument sends the second flame detection signal. When a flame detection signal is transmitted a predetermined number of times (for example, three times) or more continuously from the same fire detector, it is determined that there is a true fire. In this way, false alarms are prevented from occurring.

【0051】図9及び図10により図1の火災感知器の
受信割込ルーチンを説明する。まず受信機が複数の火災
感知器のうちの1つを選択し、この選択した火災感知器
にある動作指令を行なう場合には、各火災感知器毎にあ
らかじめ付与されたアドレスと動作指令の情報を信号伝
送線を介して送信する。図9及び図10は、前記受信機
が送信したアドレスと動作指令の情報を受信した火災感
知器が割込み処理として行なうルーチンを示している。
図9の受信割込ルーチンでは、各火災感知器は、まず受
信したアドレスが自己に付与されているアドレスと一致
するかを判別する(ステップS41)。自己のアドレス
と受信アドレスが異なる場合は、受信割込ルーチンから
メインルーチンに戻る。
The reception interrupt routine of the fire detector of FIG. 1 will be described with reference to FIGS. 9 and 10. First, when the receiver selects one of a plurality of fire detectors and issues an operation command to the selected fire detector, information on the address and operation command given in advance for each fire detector Is transmitted via a signal transmission line. 9 and 10 show a routine performed as an interrupt process by the fire detector that receives the address and operation command information transmitted by the receiver.
In the reception interrupt routine of FIG. 9, each fire detector first determines whether or not the received address matches the address given to itself (step S41). If the own address and the received address are different, the process returns from the reception interrupt routine to the main routine.

【0052】火災感知器は、自己のアドレスと受信アド
レスとが一致した場合には、まず受信指令が情報要求で
あるかを判別し(ステップS42)、判別結果がYES
の場合には、自己の現在の情報を受信機へ送出する(ス
テップS43)。ここで火災感知器の現在情報とは、例
えば、現在火炎が検出されているか、もし検出されてい
る場合には、何回目の検出であるか、現在受光ガラス7
の光透過率は許容範囲内であるか、現在受光素子の受光
感度は許容範囲内であるか、等の現在の状態を示す複数
の情報を含むものである。
When the own address and the received address match, the fire detector first determines whether or not the received command is an information request (step S42), and the determined result is YES.
In the case of, the present information of itself is sent to the receiver (step S43). Here, the current information of the fire detector is, for example, whether the flame is currently detected, if detected, how many times the flame is currently detected, or the current light receiving glass 7
Includes a plurality of pieces of information indicating the current state, such as whether the light transmittance is within the allowable range, the light receiving sensitivity of the current light receiving element is within the allowable range, and the like.

【0053】受信指令が情報要求でない場合は、次に受
信指令が試験命令であるかを判別し(ステップS4
4)、判別結果がYESの場合には、火災感知器は、ま
ず図8のステップS33の処理と同様に、左側と右側の
内部LED3Lb,3Lrと、3Rb,3Rrとを順番
に発光させ、左側のフォトダイオード1L及び焦電素子
2Lと、右側のフォトダイオード1R及び焦電素子2R
の受光感度をそれぞれ測定する。そして測定した受光感
度が設定されたしきい値(例えば基準値の50%)以下
であれば、この感度不良を記憶し、さらにこの試験を複
数回繰返して、感度不良の回数が連続して所定回数(例
えば3回)以上に達すると、はじめて試験を行った受光
素子が故障であると判断して、該当受光素子の故障信号
を受信機へ送信する。
If the received command is not an information request, it is then determined whether the received command is a test command (step S4).
4) If the determination result is YES, the fire detector first causes the left and right internal LEDs 3Lb, 3Lr and 3Rb, 3Rr to sequentially emit light, similarly to the process of step S33 of FIG. Photodiode 1L and pyroelectric element 2L and right photodiode 1R and pyroelectric element 2R
Measure the light receiving sensitivity of each. If the measured photosensitivity is less than or equal to the set threshold value (for example, 50% of the reference value), the sensitivity defect is stored, and the test is repeated a plurality of times to continuously determine the number of the sensitivity defects. When the number of times reaches the number of times (for example, three times) or more, it is determined that the photodetector tested for the first time has a failure, and a failure signal of the corresponding photodetector is transmitted to the receiver.

【0054】次に火災感知器は、図8のステップS35
の処理と同様に、外部LED4Lと4Rとを順番に発光
させ、受光ガラス7の汚損程度を示す光の透過率を測定
し、この測定した光の透過率があらかじめ設定されたし
きい値(例えば基準値の50%)以下であれば、この汚
損不良を記憶し、前記と同様にこの試験を複数回繰返し
て、汚損不良の回数が、連続して所定回数(例えば3
回)以上に達すると、受光ガラスの汚れの清掃を要する
旨の通報を受信機に行なう。そして試験処理終了後、メ
インルーチンに戻る。
Next, the fire detector operates in step S35 of FIG.
In the same manner as the processing of step 1, the external LEDs 4L and 4R are sequentially made to emit light, the transmittance of light indicating the degree of stain of the light-receiving glass 7 is measured, and the measured transmittance of light is set to a preset threshold value (for example, If it is 50% or less of the reference value, this stain failure is stored, and this test is repeated a plurality of times in the same manner as described above, and the number of stain failures is continuously a predetermined number (for example, 3).
When the number of times above is reached, the receiver is notified that cleaning of the light-receiving glass requires cleaning. After the test process is completed, the process returns to the main routine.

【0055】受信指令が試験命令でない場合は、次に点
検開始指令であるかを判別し(ステップS46)、判別
結果がYESなら、さらに右側のみか、左側のみか、左
右両方かを判別し(ステップS47)、この判別結果に
より、図6に示した点検用テスタの擬似炎光源により右
側受光素子の点検処理(ステップS48)、左側受光素
子の点検処理(ステップS50)、または右側と左側の
受光素子の点検処理(ステップS49及びS50)を行
なう。上記ステップS46〜S50の処理内容を説明す
る前に、まず、点検開始指令及び点検告知信号の必要性
について説明する。図14はトンネル内に設置された複
数の火災感知器と信号伝送線を介して接続される受信機
とを示す図である。図14のように、一般にトンネル内
では、それぞれの火災感知領域が多少重複するように複
数又は多数の火災感知器が設置され、各火災感知器は、
共通の信号伝送線を介して受信機に接続されることが多
い。
If the received command is not a test command, it is then determined whether it is an inspection start command (step S46). If the determination result is YES, it is further determined whether it is only on the right side, only on the left side, or on both sides ( Step S47), based on this determination result, the right-side light receiving element is inspected by the pseudo flame light source of the inspection tester shown in FIG. 6 (step S48), the left-side light receiving element is inspected (step S50), or the right and left side light-receiving elements are received. Element inspection processing (steps S49 and S50) is performed. Before describing the processing contents of steps S46 to S50, first, the necessity of the inspection start command and the inspection notification signal will be described. FIG. 14 is a diagram showing a plurality of fire detectors installed in a tunnel and a receiver connected via a signal transmission line. As shown in FIG. 14, generally, in a tunnel, a plurality of or a large number of fire detectors are installed so that the respective fire detection areas are slightly overlapped.
Often connected to the receiver via a common signal transmission line.

【0056】図14において、T1〜Tnは、それぞれ
#1〜#n火災感知器であり、いま#1〜#64までの
64個の火災感知器が設置されているものとする。そし
て保守員が前記テスタを用いて点検試験を行なう場合
に、必ずしも番号順に行なうとは限らないし、また使用
中に生じる機器の交換等により火災感知器のアドレスが
順番に設けられているとも限らない。従って点検試験に
よる火炎検出信号を受信する受信機側では、現在何番の
火災感知器をテスト中であるかを知る必要があり、従来
は設置場所の保守員が受信機側の保守員にトランシーバ
等で、これから何番の火災感知器のテストを行なうかを
連絡していた。
In FIG. 14, T1 to Tn are fire detectors # 1 to #n, respectively, and it is assumed that 64 fire detectors # 1 to # 64 are currently installed. When maintenance personnel perform inspection tests using the tester, they are not necessarily performed in the order of numbers, and the addresses of fire detectors are not always provided in order due to replacement of devices that occur during use. . Therefore, on the receiver side that receives the flame detection signal from the inspection test, it is necessary to know which fire detector is currently being tested. I was informed about what number of fire detectors I would like to test from now on.

【0057】この実施例においては、火災感知器は前記
点検開始指令であるかを判別すると(ステップS4
6)、センサ制御回路20は、アンプ19に電源を供給
して、動作可能状態にセットする。また前記テスタに
は、擬似炎光源とは別に、点検告知信号(この例では約
500Hzの光信号)発生手段である発光素子32が設
けられており、点検試験を行なう火災感知器に対して、
現在テスタによる点検試験中であることを告知する信号
として前記約500Hzの光信号を照射する。
In this embodiment, the fire detector determines whether it is the inspection start command (step S4).
6), the sensor control circuit 20 supplies power to the amplifier 19 and sets it in an operable state. Further, in addition to the pseudo flame light source, the tester is provided with a light emitting element 32 which is a means for generating an inspection notification signal (an optical signal of about 500 Hz in this example).
The optical signal of about 500 Hz is emitted as a signal notifying that the inspection test is currently being performed by the tester.

【0058】そして点検試験中の火災感知器は、前記約
500Hzの光信号を点検告知信号受光素子6及びアン
プ19を介して検出すると、この検出信号を自己のアド
レス番号と共に、受信機又は中継器等に送信する。従っ
て従来必要とされたトランシーバ等の連絡は不要とな
る。また前記テスタは、擬似炎光源からの光信号を火災
感知器に照射するから、受光ガラス7の汚損と受光素子
の感度が許容範囲内で、機器が正常に動作していれば、
該当火災感知器から火炎検出信号と点検中信号とが受信
機に送信される。
Then, when the fire detector during the inspection test detects the optical signal of about 500 Hz through the inspection notification signal light receiving element 6 and the amplifier 19, this detection signal together with its own address number is received by the receiver or the repeater. And so on. Therefore, it is unnecessary to communicate with a transceiver or the like, which is conventionally required. Further, since the tester irradiates the fire detector with the optical signal from the pseudo flame light source, if the contamination of the light-receiving glass 7 and the sensitivity of the light-receiving element are within the permissible range and the device is operating normally,
The fire detection signal and the in-inspection signal are transmitted from the corresponding fire detector to the receiver.

【0059】それ故、受信機側は、前記火炎検出信号と
点検中信号とを同時に受信することにより、点検試験中
の火災感知器が正常に動作したことを知ると共に、もし
他の火災感知器から火炎検出信号のみを受信した場合に
は、該当火災感知器が実際の火炎を検出したものである
ことを知ることができる。このように点検試験中の火災
感知器を除く、他のすべての火災感知器の火炎検出機能
を保持したままで、点検試験を行なうことができる。そ
して上記点検試験の処理が終了すると、該当火災感知器
はメインルーチンに戻る。
Therefore, by simultaneously receiving the flame detection signal and the in-inspection signal, the receiver side knows that the fire detector during the inspection test is operating normally, and if other fire detectors are in use. When only the flame detection signal is received from, it can be known that the corresponding fire detector has detected the actual flame. In this way, the inspection test can be performed while maintaining the flame detection function of all the other fire detectors except the fire detector during the inspection test. When the inspection test process is completed, the fire detector returns to the main routine.

【0060】図9のステップS46において、点検開始
指令でないと判別された場合に、センサ制御回路20内
のMPU1は、図10のステップS51において、受信
した動作指令が動作表示灯(この実施例では、動作・火
災表示灯5L,5Rに含まれる2色LEDのうちの緑色
LED)の点灯又は消灯指令であるかを判別し、この判
別結果がYESの場合には、ステップS52において、
右側の動作灯か、左側の動作灯かを判別し、右側の場合
はステップS53で、また左側の場合はステップS54
で、それぞれ動作表示灯を点滅(フラッシング)点灯さ
せるか、または点滅状態を消灯させるかの動作を行な
う。上記点灯又は消灯動作が終了するとメインルーチン
に戻る。
When it is determined in step S46 in FIG. 9 that the command is not the inspection start command, the MPU 1 in the sensor control circuit 20 determines that the operation command received in step S51 in FIG. , The operation / fire indicator lamps 5L and 5R include a green LED of the two-color LEDs) for turning on or off, and if the result of this determination is YES, in step S52,
Whether it is the right operation light or the left operation light is discriminated. In the case of the right side, step S53, and in the case of the left side, step S54.
Then, the operation of turning on or off the operation indicator lamp (flashing) or extinguishing the blinking state is performed. When the lighting or extinguishing operation is completed, the process returns to the main routine.

【0061】図10のステップS51において、動作表
示灯の点灯又は消灯指令でないと判別された場合に、セ
ンサ制御回路20内のMPU1は、ステップS55にお
いて、受信した動作指令が火災表示灯(この実施例では
前記2色LEDのうちの赤色LED)の点灯又は消灯指
令であるかを判別し、この判別結果がYESの場合に
は、ステップS56において、右側の火災表示灯か、左
側の火災表示灯かを判別し、右側の場合はステップS5
7で、また左側の場合はステップS58で、それぞれ火
災表示灯を連続点灯とさせるか、または連続点灯状態を
消灯とさせるかの動作を行なう。上記点灯又は消灯動作
が終了するとメインルーチンに戻る。
When it is determined in step S51 of FIG. 10 that the operation indicator lamp is not the lighting or extinguishing instruction, the MPU 1 in the sensor control circuit 20 determines in step S55 that the received operation instruction is the fire indicator lamp (this operation). In the example, it is determined whether the instruction is to turn on or off the red LED of the two-color LED). If the determination result is YES, in step S56, the right fire indicator light or the left fire indicator light is determined. If it is on the right, step S5
7 or in the case of the left side, in step S58, the operation of turning on the fire indicator light continuously or turning off the continuous lighting state is performed. When the lighting or extinguishing operation is completed, the process returns to the main routine.

【0062】図10のステップS55において、火災表
示灯の点灯又は消灯指令でないと判別された場合に、セ
ンサ制御回路20内のMPU1は、ステップS59にお
いて、受信した動作指令が蓄積復旧指令であるかを判別
する。ここで蓄積復旧指令とは、火災感知器が最初に火
炎を検出し、この検出信号を受信機に送信すると、この
検出信号を受信した受信機は、少し時間をおいて該当火
災感知器に対して、それまで収集して蓄積した火災監視
データをリセットさせ、再び新規データを収集させ、2
回目の火炎検出が行なわれるかどうかをテストしてみる
ため、即ち誤警報の発生を防止するために行なうリセッ
ト指令である。ステップS59の判別結果がYESの場
合には、右側か左側かを判別し(ステップS60)、右
側であればステップS61で、左側であればステップS
62で、それぞれ上記蓄積復旧の動作を行ない、その後
メインルーチンへ戻る。
When it is determined in step S55 of FIG. 10 that the command is not for turning on or off the fire indicator lamp, the MPU 1 in the sensor control circuit 20 determines whether the operation command received in step S59 is a storage recovery command. To determine. Here, the storage restoration command means that when the fire detector first detects a flame and sends this detection signal to the receiver, the receiver that receives this detection signal waits for a while and To reset the fire monitoring data that has been collected and accumulated and collect new data again.
This is a reset command to test whether or not the second flame detection is performed, that is, to prevent the occurrence of a false alarm. If the decision result in the step S59 is YES, it is decided whether it is the right side or the left side (step S60), and if the right side, the step S61, and if the left side, the step S61.
At 62, the above-mentioned storage recovery operation is performed, and then the process returns to the main routine.

【0063】図10のステップS59において、蓄積復
旧指令でないと判別された場合に、センサ制御回路20
内のMPU1は、ステップS63において、復旧指令で
あるかを判別し、この判別結果がYESの場合には、ス
テップS64において、すべてのデータをリセットさ
せ、NOの場合は直ちにメインルーチンに戻る。ここで
すべてのデータをリセットさせるとは、それまで収集し
た火災監視データのリセットのほか、動作表示灯や火災
表示灯の点灯データもリセット(即ち消灯)させて、火
災感知器を電源投入後の初期状態に復旧させることであ
る。この復旧処理の終了後にメインルーチンに戻る。
When it is determined in step S59 in FIG. 10 that the storage recovery command is not received, the sensor control circuit 20
In step S63, the MPU 1 therein determines whether it is a restoration command. If the determination result is YES, all the data are reset in step S64, and if NO, the process immediately returns to the main routine. Here, resetting all data means resetting the fire monitoring data collected up to that point as well as resetting (that is, turning off) the lighting data of the operation indicator light and the fire indicator light, and turning on the fire detector after the power is turned on. It is to restore to the initial state. After the completion of this restoration process, the process returns to the main routine.

【0064】図11のフローチャートにより図1の火災
感知器の試験動作を説明する。この実施例では、図11
の試験ルーチンは、火災感知器の電源投入時、受信機か
らの試験指令、またはタイマ割込処理のいずれかの場合
に起動される。しかしどのような場合に、この試験ルー
チンを起動するかを、スイッチ等により選択するように
してもよい。図11のステップS71では、センサ制御
回路20は、左側又は右側の内部擬似光源(内部LE
D)3Lb,3Lr、又は3Rb,3Rrをフラッシン
グ点灯する。この場合に、前記擬似光は火炎のゆらぎ周
波数帯域である約8〜12Hzでフラッシングさせるよ
うにしている。
The test operation of the fire detector of FIG. 1 will be described with reference to the flowchart of FIG. In this embodiment, FIG.
The test routine of (1) is started when the power of the fire detector is turned on, a test command from the receiver, or a timer interrupt process. However, in any case, the switch or the like may be used to select whether to start the test routine. In step S71 in FIG. 11, the sensor control circuit 20 determines whether the left or right internal pseudo light source (internal LE
D) Flush 3Lb, 3Lr or 3Rb, 3Rr by flashing. In this case, the pseudo light is made to flash in a flame fluctuation frequency band of about 8 to 12 Hz.

【0065】そしてセンサ制御回路20は、前記内部擬
似光源を発光させた状態で、受光素子である、フォトダ
イオード1Lと焦電素子2L、又はフォトダイオード1
Rと焦電素子2Lの検出信号に基づく各受光データを、
それぞれI/Oインタフェース内のマルチプレクサ及び
A/D変換器を介して逐次読込み、この読込んだデータ
を順次RAM4に格納する。そして火災感知までに許容
された時間の範囲内で、できるだけ多く読込んだ受光デ
ータの平均化処理を行ない、この平均化されたデータを
受光出力データとしてRAM4に格納する(ステップS
72)。前記受光データ収集の終了後に、センサ制御回
路20は、内部擬似光源を消灯し(ステップS73)、
前記平均化された受光データと、ROM2内にあらかじ
め格納されている受光感度基準値との比を該当受光素子
の受光感度として算出し、この受光感度の算出値があら
かじめ設定されROM2内に格納されている受光感度の
正常範囲(例えば1.00〜0.85)内であるか否か
により、前記受光データが正常か否かを判別する(ステ
ップS74)。
Then, the sensor control circuit 20 makes the photodiode 1L and the pyroelectric element 2L, which are light receiving elements, or the photodiode 1 in a state where the internal pseudo light source is made to emit light.
Each received light data based on the detection signal of R and the pyroelectric element 2L,
The data is sequentially read through the multiplexer and the A / D converter in the I / O interface, and the read data is sequentially stored in the RAM 4. Then, the received light data that has been read in as much as possible is averaged within the time allowed for fire detection, and the averaged data is stored in the RAM 4 as received light output data (step S
72). After the collection of the received light data, the sensor control circuit 20 turns off the internal pseudo light source (step S73),
The ratio of the averaged light receiving data and the light receiving sensitivity reference value stored in advance in the ROM 2 is calculated as the light receiving sensitivity of the corresponding light receiving element, and the calculated value of the light receiving sensitivity is set in advance and stored in the ROM 2. Whether or not the received light data is normal is determined by whether or not the received light sensitivity is within the normal range (for example, 1.00 to 0.85) (step S74).

【0066】ステップS74の判別結果が正常の場合
は、補正は不要であると判断してステップS78へ移
り、正常でない場合はステップS75へ移る。ステップ
S75においては、前記受光感度の算出値が正常範囲内
ではないが、なお補正可能の範囲内であるかを次のよう
にして判別する。この実施例においては、前記受光感度
の許容範囲を、例えば1.00〜0.50のようにあら
かじめ設定してROM3に格納しておく。そして前記受
光感度の算出値が前記許容範囲の下限値(上記例の0.
50)以上であるか否かにより、前記受光データの補正
が可能であるか否かを判別する。
If the result of the determination in step S74 is normal, it is determined that the correction is not necessary and the process proceeds to step S78. If it is not normal, the process proceeds to step S75. In step S75, whether or not the calculated value of the light receiving sensitivity is not within the normal range but is still within the correctable range is determined as follows. In this embodiment, the permissible range of the light receiving sensitivity is set in advance as 1.00 to 0.50 and stored in the ROM 3. The calculated value of the light receiving sensitivity is the lower limit value of the allowable range (0.
50) Whether or not the received light data can be corrected is determined depending on whether or not the above is satisfied.

【0067】また、この実施例においては、前記受光感
度の許容範囲の下限値(前記0.50)よりもやや上の
値(例えば0.60)を前置下限値としてあらかじめ設
定しておき、前記ステップS75において、前記受光感
度の算出値が、前記前置下限値以下であるかの判別も同
時に行なうようにしている。
Further, in this embodiment, a value (for example, 0.60) slightly higher than the lower limit value (0.50) of the allowable range of the light receiving sensitivity is preset as the front lower limit value, At the step S75, it is also determined at the same time whether the calculated value of the light receiving sensitivity is less than or equal to the front lower limit value.

【0068】ステップS75で補正が可能と判別された
場合には、センサ制御回路20は、前記受光感度算出値
の逆数を前記受光データに乗算して、感度劣化の補正演
算を行ない、前記受光感度の値をRAM3に格納する
(ステップS76)。そしてステップS78へ移る。そ
してステップS75で、前記受光感度算出値が前記許容
範囲の下限値(上記例の0.50)以下であり、感度補
正が限界を越えて不可能と判別されると、火災感知器
は、ステップS77で該当受光素子の感度異常信号を受
信機へ送信する。またステップS75で、前記前置下限
値(上記例の0.60)との比較判別を行ない、前記受
光感度算出値が前記前置下限値以下になった場合には、
同様にステップS77で受信感度劣化の予告信号(感度
劣化の直前であり、部品の手配等の修理の準備を要する
ことを知らせる信号)を受信機に通報するようにしてい
る。
When it is determined in step S75 that the correction is possible, the sensor control circuit 20 multiplies the received light data by the reciprocal of the calculated received light sensitivity and performs a correction calculation for the sensitivity deterioration to obtain the received light sensitivity. The value of is stored in the RAM 3 (step S76). Then, the process proceeds to step S78. Then, in step S75, if the light-reception sensitivity calculated value is equal to or lower than the lower limit value of the allowable range (0.50 in the above example) and it is determined that the sensitivity correction exceeds the limit and is impossible, the fire detector proceeds to step S75. In S77, the sensitivity abnormality signal of the corresponding light receiving element is transmitted to the receiver. Further, in step S75, a comparison determination is performed with the front lower limit value (0.60 in the above example), and when the light reception sensitivity calculated value is equal to or lower than the front lower limit value,
Similarly, in step S77, the receiver is notified of a notice signal of reception sensitivity deterioration (a signal indicating that it is just before sensitivity deterioration and requires preparation for repair such as arrangement of parts).

【0069】火災感知器から受光素子の異常信号を受信
した受信機は、該当火災感知器の同一受光素子の感度試
験を繰返して実施して、連続する所定回数(例えば3
回)以上の異常信号が返信された場合に、該当受光素子
は、故障したものと判断し、直ちに修理の指示を行な
う。また受信機が受光感度劣化の予告信号を受信した場
合も、同様に繰返し動作による確認を行ない、確認後修
理の準備を行なう。なお上記試験は左の試験と右側の試
験とを別個に行なう。
The receiver which has received the abnormal signal of the light receiving element from the fire detector repeats the sensitivity test of the same light receiving element of the fire detector, and repeats it for a predetermined number of times (for example, 3 times).
If more than one abnormal signal is returned, the corresponding light receiving element is determined to have failed, and a repair instruction is issued immediately. Also, when the receiver receives the advance notice signal of the deterioration of the light-receiving sensitivity, the operator repeats the confirmation by repeating the operation and prepares for repair after confirmation. The above test is conducted separately from the left test and the right test.

【0070】図11のステップS78では、センサ制御
回路20は、受光ガラス7の汚損試験のため、左側又は
右側の外部擬似光源(外部LED)4L又は4Rをフラ
ッシング点灯する。この場合に、前記光源は火災時の炎
のゆらぎ周波数帯域である約8〜12Hzでフラッシン
グさせるようにする。
In step S78 of FIG. 11, the sensor control circuit 20 flashes the left or right external pseudo light source (external LED) 4L or 4R for the stain test of the light receiving glass 7. In this case, the light source is made to flush at a frequency range of about 8 to 12 Hz, which is a fluctuation frequency band of a flame at the time of fire.

【0071】そしてセンサ制御回路20は、この外部擬
似光源を発光させた状態で、受光素子である、フォトダ
イオード1L又は1Rの検出信号に基づく受光データ
を、それぞれI/Oインタフェース内のマルチプレクサ
及びA/D変換器を介して逐次読込み、この読込んだデ
ータを順次RAM4に格納する。そして時間の許容範囲
内で、できるだけ多く読込んだ受光データの平均化処理
を行ない、この平均化されたデータを受光出力データと
してRAM4に格納する(ステップS79)。なおこの
受光ガラス7の汚損試験の場合には、受光素子は1個で
足りるので、この実施例では焦電素子の受光データは利
用していない。
Then, the sensor control circuit 20 outputs received light data based on the detection signal of the photodiode 1L or 1R, which is a light receiving element, in the multiplexer and A in the I / O interface while the external pseudo light source is emitting light. The data is sequentially read via the / D converter, and the read data is sequentially stored in the RAM 4. Then, the received light data that has been read in as much as possible is averaged within the allowable range of time, and the averaged data is stored in the RAM 4 as received light output data (step S79). In the case of the stain test of the light-receiving glass 7, one light-receiving element is sufficient, and therefore, the light-receiving data of the pyroelectric element is not used in this embodiment.

【0072】センサ制御回路20は、前記データ収集の
終了後に外部擬似光源を消灯し(ステップS80)、受
光ガラス7の左側と右側毎に、減光率の算出をする(ス
テップS81)。前記減光率は、前記平均化された受光
データとROM5にあらかじめ格納されている減光率基
準値との比として算出される。この実施例においては、
前記減光率の許容範囲を、例えば1.00〜0.50の
ようにあらかじめ設定してROM4に格納しておく。そ
して前記減光率の算出値が前記許容範囲の下限値(上記
例の0.50)以上であるか否かにより前記受光データ
の補正が可能であるか否かを判別する(ステップS8
2)。
After the data collection is completed, the sensor control circuit 20 turns off the external pseudo light source (step S80), and calculates the extinction ratio for each of the left side and the right side of the light receiving glass 7 (step S81). The extinction ratio is calculated as a ratio between the averaged received light data and the extinction ratio reference value stored in advance in the ROM 5. In this example,
The allowable range of the extinction ratio is set in advance as 1.00 to 0.50 and stored in the ROM 4. Then, it is determined whether or not the received light data can be corrected depending on whether or not the calculated value of the extinction ratio is equal to or more than the lower limit value (0.50 in the above example) of the allowable range (step S8).
2).

【0073】また、この実施例においては、前記減光率
の許容範囲の下限値(前記0.50)よりもやや上の値
(例えば0.60)を前置下限値としてあらかじめ設定
しておき、前記ステップS82において、前記減光率の
算出値が、前記前置下限値以下であるかの判別も同時に
行なうようにしている。
In this embodiment, a value (eg, 0.60) slightly higher than the lower limit (0.50) of the permissible range of the extinction ratio is set in advance as the lower limit. At the same time, in step S82, it is determined whether or not the calculated value of the extinction ratio is less than or equal to the front lower limit value.

【0074】ステップS82で補正が可能と判別された
場合には、センサ制御回路20は、前記減光率算出値の
逆数を前記受光データに乗算して、汚損の補正演算を行
ない、前記減光率の値をRAM3に格納する(ステップ
S83)。そしてステップS82で、前記減光率算出値
が前記許容範囲の下限値(上記例の0.50)以下であ
り、汚損補正が限界を越えて不可能と判別されると、火
災感知器は、ステップS84で受光ガラス7の左側又は
右側の汚損異常信号を受信機へ送信する。またステップ
S82で、前記前置下限値(上記例の0.60)との比
較判別を行ない、前記減光率算出値が前記前置下限値以
下になった場合には、同様にステップS84で汚損異常
の予告信号(汚損異常の直前であり、受光ガラス7の該
当受光方向の清掃を要することを知らせる信号)を受信
機に通報するようにしている。
When it is determined in step S82 that the correction is possible, the sensor control circuit 20 multiplies the received light data by the reciprocal of the calculated extinction ratio to perform a stain correction calculation. The value of the rate is stored in the RAM 3 (step S83). Then, in step S82, when the calculated extinction ratio value is equal to or lower than the lower limit value (0.50 in the above example) of the allowable range and it is determined that the stain correction exceeds the limit and is impossible, the fire detector determines that In step S84, the stain abnormality signal on the left side or the right side of the light receiving glass 7 is transmitted to the receiver. Further, in step S82, a comparison determination with the front lower limit value (0.60 in the above example) is performed, and when the calculated extinction ratio is equal to or less than the front lower limit value, in step S84, similarly. A notice signal of the stain abnormality (a signal indicating that the stain-absorbing glass 7 needs to be cleaned in the corresponding light-receiving direction immediately before the stain abnormality) is sent to the receiver.

【0075】火災感知器から汚損異常信号を受信した受
信機は、該当火災感知器の受光ガラスの汚損試験を繰返
して実施して、連続する所定回数(例えば3回)以上の
異常信号が返信された場合に、該当受光ガラスは汚損し
たものと判断し、直ちに清掃の指示を行なう。また受信
機が汚損異常の予告信号を受信した場合も、同様に繰返
し動作による確認を行ない、確認後清掃の準備指示を行
なう。なお上記試験は左側の試験と右側の試験とを別個
に行なう。
When the receiver receives the stain abnormality signal from the fire detector, the receiver repeats the stain test on the light-receiving glass of the fire detector, and the abnormality signal is returned a predetermined number of times consecutively (for example, 3 times) or more. In this case, the relevant light-receiving glass is judged to have been contaminated and the cleaning instruction is given immediately. Also, when the receiver receives the advance notice signal of the stain abnormality, the operator repeats the confirmation by repeating the operation and issues a cleaning preparation instruction after confirmation. The above test is conducted separately for the left side test and the right side test.

【0076】図12及び図13のフローチャートにより
図1の火災感知器の炎検出動作を説明する。なおこのフ
ローチャートに基づく炎検出動作は、実際に発生した火
炎の場合と、点検用テスタから発生される擬似炎信号の
場合に、共通に使用されるもので、図8のフローチャー
トのうち該当部分をさらに詳しく説明するものである。
図12のステップS91で、火災感知器は、イニシアル
処理を行なう。このイニシアル処理は図8のステップS
31の処理と同一のものであり、RAMデータのクリ
ア、ROMデータのサムチェック、受光素子単体の補正
用初期データの格納、カウンタのクリア、アンプの安定
化時間待ち等である。
The flame detection operation of the fire detector of FIG. 1 will be described with reference to the flowcharts of FIGS. The flame detection operation based on this flowchart is commonly used in the case of an actually generated flame and in the case of a pseudo flame signal generated from an inspection tester. This will be described in more detail.
In step S91 of FIG. 12, the fire detector performs an initial process. This initial processing is step S in FIG.
The processing is the same as that of 31, such as clearing the RAM data, checking the ROM data sum, storing the initial data for correction of the light receiving element alone, clearing the counter, and waiting for the stabilization time of the amplifier.

【0077】そして次に受信データが自己の火災感知器
のアドレスと一致したかを判別し(ステップS92)、
一致した場合はステップS101へ移り、一致しない場
合は受光出力データを読込む(ステップS93)。そし
て時間の許容範囲内で、できるだけ多く読込んだ受光出
力データの平均化データを得る処理は、図11のステッ
プS72で説明した処理と同一である。
Then, it is determined whether the received data matches the address of its own fire detector (step S92),
If they match, the process proceeds to step S101, and if they do not match, the received light output data is read (step S93). Then, the process of obtaining the averaged data of the received light output data read as much as possible within the time allowable range is the same as the process described in step S72 of FIG.

【0078】図12のステップS94で、センサ制御回
路20は、図8のステップS38の処理と同様に、前記
2つの受光出力の差データと火災判別用しきい値との大
小比較により、炎が検出されたか否かの判別をする。こ
の際、受光出力は図8のステップS33〜S37の処理
と同様に補正が行なわれた上で判別される。ステップS
94の判別で炎が検出されない場合は、センサ制御回路
20は、炎検出回数を計数するためRAM6内に設けた
カウンタの値fを0にセットし、前記カウンタの計数値
をクリアする(ステップS95)。即ちこのカウンタは
炎検出信号が連続して入力される場合は、順次カウント
アップするが、計数途中で炎検出が行なわれないと、そ
れまでの計数値を0に戻すものである。その後ステップ
S92へ戻る。
In step S94 of FIG. 12, the sensor control circuit 20 compares the difference data of the two received light outputs with the threshold value for fire determination to determine whether a flame is present, as in the process of step S38 of FIG. It is determined whether or not it is detected. At this time, the received light output is determined after being corrected similarly to the processing of steps S33 to S37 of FIG. Step S
If the flame is not detected in the determination of 94, the sensor control circuit 20 sets the value f of the counter provided in the RAM 6 for counting the number of times of flame detection to 0 and clears the count value of the counter (step S95). ). That is, when the flame detection signal is continuously input, this counter sequentially counts up, but if flame detection is not performed during counting, the count value up to that point is reset to zero. After that, the process returns to step S92.

【0079】またステップS94の判別により炎が検出
された場合は、センサ制御回路20は、前記カウンタの
それまでの計数値fに1を加算し(ステップS96)、
前記カウンタfの値があらかじめ設定した数F(例えば
3)と等しいか、またはF以上であるかを判別する(ス
テップS97)。この判別結果として、前記カウンタの
値fが設定数F未満の場合には、ステップS92へ戻
り、炎検出回数の加算を繰返す。
If flame is detected by the determination in step S94, the sensor control circuit 20 adds 1 to the count value f of the counter up to then (step S96).
It is determined whether the value of the counter f is equal to or larger than a preset number F (for example, 3) (step S97). As a result of this determination, when the value f of the counter is less than the set number F, the process returns to step S92 and the addition of the number of flame detections is repeated.

【0080】ステップS97の判別結果として、連続し
て炎検出を行った回数(前記カウンタの値f)が設定数
Fに達したか、またはFを越えた場合には、次に点検フ
ラグがオンかどうかを判別し(ステップS98)、ここ
で擬似炎信号の検出か(点検フラグがオン)、火災発生
による炎信号の検出か(点検フラグがオフ)を判断す
る。そして擬似炎信号の検出の場合には、火炎信号と点
検中信号を共に送出情報としてセットし(ステップS9
9)、火災の炎信号の検出の場合にには、火炎信号のみ
を送出情報としてセットし(ステップS100)、ステ
ップS92へ戻る。
As a result of the determination in step S97, when the number of times flame detection is continuously performed (the value f of the counter) reaches or exceeds the set number F, the inspection flag is turned on next. It is determined whether or not (step S98), here, it is determined whether a pseudo flame signal is detected (inspection flag is on) or a flame signal due to fire occurrence is detected (inspection flag is off). Then, in the case of detecting the pseudo flame signal, both the flame signal and the inspection signal are set as the transmission information (step S9).
9) If the fire flame signal is detected, only the flame signal is set as the transmission information (step S100), and the process returns to step S92.

【0081】センサ制御回路20は、ステップS101
で、受信データが情報要求指令であるかを判別し、情報
要求指令の場合には、火災感知器内にあらかじめセット
された情報、例えば前記ステップS99,S100でセ
ットした火炎検出情報等を送出し(ステップS10
2)、この送出の終了した情報をクリアする(ステップ
S103)。ステップS101で情報要求指令ではない
と判別された場合には、センサ制御回路20は、受信デ
ータが点検開始許可信号であるかを判別し(ステップS
104)、この判別結果がYESの場合には、点検告知
信号受光回路である図1のアンプ19の電源をオンと
し、点検用テスタが自己の火災感知器に対して、点検告
知信号である前記約500Hzの光信号を照射したとき
に、この照射光を検出可能な状態にセットする(ステッ
プS105)。
The sensor control circuit 20 proceeds to step S101.
Then, it is determined whether the received data is an information request command, and in the case of the information request command, the information preset in the fire detector, for example, the flame detection information set in steps S99 and S100 is sent out. (Step S10
2) Then, the information that has been sent is cleared (step S103). If it is determined in step S101 that it is not an information request command, the sensor control circuit 20 determines whether the received data is an inspection start permission signal (step S
104), if this determination result is YES, the power of the amplifier 19 of FIG. 1 which is the inspection notification signal light receiving circuit is turned on, and the inspection tester outputs the inspection notification signal to its own fire detector. When an optical signal of about 500 Hz is emitted, this emitted light is set to a detectable state (step S105).

【0082】保守員が前記点検用テスタを、点検対象と
する火災感知器の受光ガラス7に接近させ作動させる
と、テスタから発光された前記約500Hzの光信号は
点検告知信号受光素子6及びアンプ19を介して検出さ
れ、センサ制御回路20に供給される。センサ制御回路
20は、点検告知信号を供給されると、直ちに図13の
右側上部に示される点検告知信号受信割込ルーチンを起
動し、まず自己の火災感知器がテスタにより点検試験中
であることを受信機に通報できるように、点検告知信号
を送出情報としてセットし(ステップS111)、点検
フラグをオンして(ステップS112)、ステップS9
2へ戻る。
When a maintenance worker operates the inspection tester by bringing the inspection tester close to the light receiving glass 7 of the fire detector to be inspected, the optical signal of about 500 Hz emitted from the tester causes the inspection notification signal light receiving element 6 and the amplifier. It is detected via 19 and supplied to the sensor control circuit 20. Upon being supplied with the inspection notification signal, the sensor control circuit 20 immediately activates the inspection notification signal reception interrupt routine shown in the upper right part of FIG. 13, and first, its own fire detector is under inspection test by the tester. So that the receiver can be notified, an inspection notification signal is set as transmission information (step S111), the inspection flag is turned on (step S112), and step S9
Return to 2.

【0083】ステップS104で点検開始許可信号でな
いと判別された場合には、センサ制御回路20は、図1
3のステップS106で、受信データが自己の火災感知
器への点検終了信号であるかを判別し、この判別結果が
YESの場合には、点検信号受光回路(図1のアンプ1
9)の電源をオフにする(ステップS107)。ステッ
プS106で点検終了信号でないと判別された場合に
は、センサ制御回路20は、図13のステップS108
で、受信データが自己の火災感知器への復旧信号である
かを判別し、この判別結果がYESの場合には、図10
のステップS36で説明した復旧処理と同一の処理を行
ないステップS92へ戻る。また判別結果が復旧信号で
ない場合は、直接ステップS92へ戻る。
If it is determined in step S104 that it is not the inspection start permission signal, the sensor control circuit 20 determines that
In step S106 of 3, it is determined whether the received data is an inspection end signal to the fire detector of its own. If the result of the determination is YES, the inspection signal light receiving circuit (the amplifier 1 in FIG.
The power of 9) is turned off (step S107). When it is determined in step S106 that the signal is not the inspection end signal, the sensor control circuit 20 determines in step S108 of FIG.
Then, it is determined whether or not the received data is a restoration signal to the fire detector of its own, and if the determination result is YES, as shown in FIG.
The same process as the recovery process described in step S36 is performed, and the process returns to step S92. If the determination result is not the restoration signal, the process directly returns to step S92.

【0084】なお、上記実施例における輻射式火災感知
器は、透光性カバーの汚損程度を判別するのに、受光素
子の検出信号レベルの計測値と減光率基準値とから減光
率を算出して判別するようにしているが、受光素子の汚
損程度を判別する基準値として、あらかじめ計測値に対
応する汚損程度の許容範囲を設定して例えばROM5に
格納しておき、受光素子の検出信号レベルの計測値を汚
損程度許容範囲の下限値と比較して判別するようにして
もよい。また、受光素子の劣化程度を判別するのに、受
光素子の検出信号レベルの計測値と受光感度基準値との
比から受光感度を算出して判別するようにしているが、
受光素子の劣化程度を判別する基準値として、あらかじ
め計測値に対応する劣化許容範囲を設定して例えばRO
M2に格納しておき、受光素子の検出信号レベルの計測
値を劣化許容範囲の下限値と比較して判別するようにし
てもよい。
The radiant fire detector in the above-described embodiment determines the extinction rate from the measured value of the detection signal level of the light receiving element and the extinction rate reference value in order to determine the degree of contamination of the translucent cover. Although it is calculated and discriminated, as a reference value for discriminating the degree of contamination of the light receiving element, an allowable range of the degree of contamination corresponding to the measured value is set in advance and stored in, for example, the ROM 5 to detect the light receiving element. The signal level measurement value may be compared with the lower limit value of the contamination degree allowable range for determination. Further, in order to determine the degree of deterioration of the light receiving element, the light receiving sensitivity is calculated and determined from the ratio of the measured value of the detection signal level of the light receiving element and the light receiving sensitivity reference value.
As a reference value for determining the degree of deterioration of the light receiving element, an allowable deterioration range corresponding to the measured value is set in advance, for example, RO
It may be stored in M2, and the measured value of the detection signal level of the light receiving element may be compared with the lower limit value of the allowable deterioration range for determination.

【0085】上記実施例における輻射式火災感知器は、
火炎からの輻射光の2つの波長帯において検出した輻射
エネルギーの大小関係を比較する2波長式の場合の例を
示したが、本発明はこれに限定されるものではなく、例
えば単一の波長帯の輻射エネルギー量を検出する定輻射
式や、火炎特有のちらつきを検出するちらつき式、さら
に3波長またはこれ以上の波長を利用する方式であって
も、透光性カバーの内側に受光素子を設けるすべての輻
射式火災感知器に適用可能であり、同様の効果を奏する
ことができる。
The radiation type fire detector in the above embodiment is
An example of the case of the two-wavelength type in which the magnitude relationship of the radiant energy detected in the two wavelength bands of the radiant light from the flame is compared has been shown, but the present invention is not limited to this and, for example, a single wavelength is used. Even with the constant radiation type that detects the amount of radiant energy in the band, the flicker type that detects flicker peculiar to flames, and the type that uses three or more wavelengths, a light receiving element is placed inside the translucent cover. It can be applied to all the radiant fire detectors provided and can achieve the same effect.

【0086】上記実施例における輻射式火災感知器は、
設置面に対する前方左側と右側の2つの感知領域を有す
る場合の例を示したが、本発明はこれに限定されるもの
ではなく、例えば前方のすべての3次元空間を単一の感
知領域とする場合や、広場の中心に設けられ、前方左側
と右側及び後方左側と右側の4つの感知領域を有する場
合であっても、即ち単数又は複数のいずれの感知領域を
有する輻射式火災感知器の場合にも、本発明を適用して
同様の効果を得ることが可能である。
The radiation type fire detector in the above embodiment is
Although an example in which there are two sensing areas on the front left side and the right side with respect to the installation surface is shown, the present invention is not limited to this, and for example, all three-dimensional space in front is a single sensing area. In some cases, even if it is provided in the center of the plaza and has four sensing areas on the front left and right sides and the rear left and right sides, that is, in the case of a radiant fire detector having one or more sensing areas. Also, it is possible to obtain the same effect by applying the present invention.

【0087】[0087]

【発明の効果】以上のように本発明によれば、火炎から
放射される輻射光を透過させる透光性カバーと、該透光
性カバーの内側に設けられ該透光性カバーからの透過光
を受光する受光素子と、該受光素子の検出信号に基づき
火災を感知する手段とを有する輻射式火災感知器におい
て、前記透光性カバーの外側に設けられた第1の試験用
発光素子から発光された第1の擬似炎信号により前記透
光性カバーを透過して前記受光素子を照射し、前記火災
を感知する手段が正常に動作するか否かの第1の動作試
験を行なうことが可能となったと共に、前記透光性カバ
ーの内側に設けられた第2の試験用発光素子から発光さ
れた第2の擬似炎信号により前記受光素子を照射し、前
記火災を感知する手段が正常に動作するか否かの第2の
動作試験を行なうことも可能となったので、輻射式火災
感知器の動作不良の場合に、前記透光性カバーの汚損に
起因する動作不良と、受光素子を含む受光回路の故障と
を明確に判別できるようになった。
As described above, according to the present invention, a translucent cover for transmitting radiant light emitted from a flame, and a transmitted light from the translucent cover provided inside the translucent cover. A radiation-type fire detector having a light-receiving element for receiving light and a means for detecting a fire based on a detection signal of the light-receiving element, wherein light is emitted from a first test light-emitting element provided outside the translucent cover. It is possible to perform a first operation test as to whether or not the means for detecting the fire operates normally by irradiating the light receiving element through the translucent cover according to the generated first pseudo flame signal. At the same time, the means for illuminating the light receiving element with the second pseudo flame signal emitted from the second test light emitting element provided inside the translucent cover to normally detect the fire. Perform a second operation test whether it operates or not It is now possible to clearly discriminate between the malfunction of the radiation-type fire detector due to the contamination of the translucent cover and the malfunction of the light-receiving circuit including the light-receiving element in the case of malfunction of the radiation-type fire detector. It was

【0088】また本発明によれば、前記第1の動作試験
時に、前記受光素子の検出信号レベルが汚損程度許容範
囲内であるか否かにより、または、前記受光素子の検出
信号レベルから透光性カバーの減光率を算出し、該減光
率算出値が許容範囲内であるか否かにより、透光性カバ
ーの汚損程度の可否を判断できるようになったと共に、
前記第2の動作試験時に、前記受光素子の検出信号レベ
ルが劣化許容範囲内であるか否かにより、または、前記
受光素子の検出信号レベルから受光素子の受光感度を算
出し、該受光感度算出値が許容範囲内であるか否かによ
り、受光素子の感度劣化程度の可否をも判断できるよう
になった。
Further, according to the present invention, at the time of the first operation test, light transmission is performed depending on whether or not the detection signal level of the light receiving element is within the allowable range of the degree of contamination, or from the detection signal level of the light receiving element. It is now possible to determine the degree of stain of the translucent cover by calculating the extinction ratio of the light-transmitting cover and determining whether the calculated extinction ratio is within the allowable range.
At the time of the second operation test, the light receiving sensitivity of the light receiving element is calculated based on whether the detection signal level of the light receiving element is within the deterioration allowable range or from the detection signal level of the light receiving element, and the light receiving sensitivity is calculated. Whether or not the sensitivity of the light receiving element is deteriorated can be determined by whether or not the value is within the allowable range.

【0089】また本発明によれば、あらかじめ複数の感
知領域をそれぞれほぼ独立した3次元空間として設定
し、該設定された複数の各感知領域内の火炎からそれぞ
れ放射される輻射光を、前記各感知領域の方向別にそれ
ぞれ透過させる透光性カバーと、該透光性カバーの内側
に設けられ、該透光性カバーの前記方向別の透過光をそ
れぞれ各感知領域毎に受光する複数の受光素子と、該複
数の各受光素子別の検出信号に基づき、前記複数の各感
知領域別に火災を感知する手段とを有する輻射式火災感
知器において、前記複数の各感知領域毎にそれぞれ前記
透光性カバーの外側に設けられた複数の第1の試験用発
光素子からそれぞれ発光された第1の擬似炎信号によ
り、前記透光性カバーを透過して前記複数の各感知領域
毎の受光素子を別個に照射し、前記複数の各感知領域毎
に火災を感知する手段がそれぞれ正常に動作するか否か
の第1の動作試験を行なうことが可能になったと共に、
前記複数の各感知領域毎にそれぞれ前記透光性カバーの
内側に設けられた複数の第2の試験用発光素子からそれ
ぞれ発光された第2の擬似炎信号により、前記複数の各
感知領域毎の受光素子を別個に照射し、前記複数の各感
知領域毎に火災を感知する手段がそれぞれ正常に動作す
るか否かの第2の動作試験を行なうことも可能になった
ので、輻射式火災感知器の動作不良の場合に、前記複数
の各感知領域毎に、前記透光性カバーの汚損に起因する
動作不良と、受光素子を含む受光回路の故障とを明確に
判別できるようになった。
Further, according to the present invention, a plurality of sensing areas are set in advance as substantially independent three-dimensional spaces, and the radiant light emitted from the flame in each of the set sensing areas is set to the above-mentioned each. A light-transmitting cover for transmitting each direction of the sensing region, and a plurality of light-receiving elements provided inside the light-transmitting cover and receiving the transmitted light of each direction of the light-transmitting cover for each sensing region. And a radiation-type fire detector having means for detecting a fire in each of the plurality of sensing areas based on a detection signal of each of the plurality of light receiving elements, wherein the translucency is provided in each of the plurality of sensing areas. A first pseudo flame signal emitted from each of a plurality of first test light-emitting elements provided outside the cover transmits the light-transmitting cover to separate the light-receiving elements for each of the plurality of sensing regions. To Shines, the means for sensing the fire has become possible to perform the first operation test of whether to operate normally, respectively for each of the plurality of the sensing area,
For each of the plurality of sensing areas, the second pseudo-flame signal emitted from each of the plurality of second test light-emitting elements provided inside the translucent cover causes the plurality of sensing areas to be detected. It is also possible to irradiate the light-receiving elements separately and perform a second operation test whether or not the means for detecting a fire in each of the plurality of detection areas operate normally. In the case of a malfunction of the container, it has become possible to clearly discriminate, for each of the plurality of sensing areas, a malfunction due to the contamination of the translucent cover and a malfunction of the light receiving circuit including the light receiving element.

【0090】また本発明によれば、前記第1の動作試験
時に、前記複数の各感知領域毎に、前記受光素子の検出
信号レベルが汚損程度許容範囲内であるか否かにより、
または、前記受光素子の検出信号レベルから透光性カバ
ーの減光率をそれぞれ算出し、該減光率算出値が許容範
囲内であるか否かにより、透光性カバーの前記各感知領
域方向の汚損程度の可否を判断できるようになったと共
に、前記第2の動作試験時に、前記複数の各感知領域毎
に、前記受光素子の検出信号レベルが劣化許容範囲内で
あるか否かにより、または、前記受光素子の検出信号レ
ベルから受光素子の受光感度をそれぞれ算出し、該受光
感度算出値が許容範囲内であるか否かにより、前記複数
の各感知領域別に受光素子の感度劣化程度の可否を判断
できるようになった。
Further, according to the present invention, during the first operation test, depending on whether or not the detection signal level of the light receiving element is within the contamination degree allowable range for each of the plurality of sensing regions,
Alternatively, the extinction ratio of the translucent cover is calculated from the detection signal level of the light receiving element, and the direction of each of the sensing areas of the translucent cover is determined according to whether the calculated extinction ratio is within an allowable range. In addition to being able to determine whether or not the degree of contamination of the light receiving element is, the detection signal level of the light receiving element is within the deterioration allowable range for each of the plurality of sensing regions during the second operation test. Alternatively, the light receiving sensitivity of the light receiving element is calculated from the detection signal level of the light receiving element, and the degree of sensitivity deterioration of the light receiving element is determined for each of the plurality of sensing regions depending on whether the calculated light receiving sensitivity is within an allowable range. You can now decide whether to accept.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す輻射式火災感知器の構
成ブロック図である。
FIG. 1 is a configuration block diagram of a radiation fire detector showing an embodiment of the present invention.

【図2】図1の輻射式火災感知器の構成図である。2 is a configuration diagram of the radiant fire detector of FIG. 1. FIG.

【図3】図1の輻射式火災感知器の左側と右側の感知領
域を示す図である。
FIG. 3 is a diagram showing left and right sensing areas of the radiant fire detector of FIG.

【図4】図2の受光素子と内部LEDとの位置関係を示
す図である。
FIG. 4 is a diagram showing a positional relationship between the light receiving element of FIG. 2 and an internal LED.

【図5】図1のセンサ制御回路の一例を示す構成ブロッ
ク図である。
5 is a configuration block diagram showing an example of the sensor control circuit of FIG. 1. FIG.

【図6】火災感知器の点検用テスタの外観図である。FIG. 6 is an external view of a tester for inspecting a fire detector.

【図7】点検時の火災感知器と点検用テスタとの位置関
係を示す図である。
FIG. 7 is a diagram showing a positional relationship between a fire sensor and an inspection tester at the time of inspection.

【図8】図1の輻射式火災感知器の制御プログラムのメ
インルーチンを示すフローチャートである。
FIG. 8 is a flowchart showing a main routine of a control program for the radiant fire detector of FIG.

【図9】図1の輻射式火災感知器の受信割込プログラム
のその1を示すフローチャートである。
9 is a flowchart showing a first part of a reception interrupt program of the radiant fire detector of FIG. 1. FIG.

【図10】図1の輻射式火災感知器の受信割込プログラ
ムのその2を示すフローチャートである。
10 is a flowchart showing a second part of the reception interrupt program of the radiant fire detector of FIG. 1. FIG.

【図11】図1の輻射式火災感知器の試験プログラムを
示すフローチャートである。
11 is a flowchart showing a test program for the radiation fire detector of FIG. 1. FIG.

【図12】図1の輻射式火災感知器の炎検出プログラム
のその1を示すフローチャートである。
FIG. 12 is a flowchart showing a first part of the flame detection program for the radiant fire detector of FIG. 1.

【図13】図1の輻射式火災感知器の炎検出プログラム
のその2を示すフローチャートである。
FIG. 13 is a flowchart showing a second part of the flame detection program for the radiant fire detector of FIG. 1.

【図14】トンネル内に設置された複数の火災感知器と
信号伝送線を介して接続される受信機とを示す図であ
る。
FIG. 14 is a diagram showing a plurality of fire detectors installed in a tunnel and a receiver connected via a signal transmission line.

【符号の説明】[Explanation of symbols]

1L,1R 左側、右側フォトダイオード 2L,2R 左側、右側焦電素子 3Lb,3Lr 左側内部LED 3Rb,3Rr 右側内部LED 4L,4R 左側、右側外部LED 5L,5R 左側、右側動作・火災表示灯 6 点検告知信号受光素子 7 受光ガラス 8L,8R 左側、右側透明ガラス 9A ケースA 9B ケースB 11L,12L 左側プリアンプ 11R,12R 右側プリアンプ 13L,14L 左側アンプ 13R,14R 右側アンプ 15L〜18L 左側平滑回路 15R〜18R 右側平滑回路 19 アンプ 20 センサ制御回路 21 伝送制御回路 22 信号送受信部 23L,24L 左側点灯回路 23R,24R 右側点灯回路 25L,25R 左側、右側点灯制御回路 26,27 クロック回路 28,29 リセット回路 1L, 1R left side, right side photodiode 2L, 2R left side, right side pyroelectric element 3Lb, 3Lr left side inside LED 3Rb, 3Rr right side inside LED 4L, 4R left side, right side outside LED 5L, 5R left side, right side operation / fire indicator light 6 inspection Notification signal light receiving element 7 light receiving glass 8L, 8R left side, right side transparent glass 9A case A 9B case B 11L, 12L left side preamplifier 11R, 12R right side preamplifier 13L, 14L left side amplifier 13R, 14R right side amplifier 15L-18L left side smoothing circuit 15R-18R Right side smoothing circuit 19 Amplifier 20 Sensor control circuit 21 Transmission control circuit 22 Signal transmitting / receiving section 23L, 24L Left side lighting circuit 23R, 24R Right side lighting circuit 25L, 25R Left side, right side lighting control circuit 26, 27 Clock circuit 28, 29 Reset circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 火炎から放射される輻射光を透過させる
透光性カバーと、該透光性カバーの内側に設けられ該透
光性カバーからの透過光を受光する受光素子と、該受光
素子の検出信号に基づき火災を感知する手段とを有する
輻射式火災感知器において、 前記透光性カバーの外側に設けられ、第1の動作試験手
段の駆動により第1の擬似炎信号を発光し、前記透光性
カバーを透過して前記受光素子を照射する第1の試験用
発光素子と、 前記第1の試験用発光素子を駆動して第1の擬似炎信号
を発光させて前記受光素子を照射し、該受光素子の検出
信号に基づき前記火災を感知する手段が正常に動作する
か否かを試験する第1の動作試験手段と、 前記透光性カバーの内側に設けられ、第2の動作試験手
段の駆動により第2の擬似炎信号を発光し、直接又は間
接的に前記受光素子を照射する第2の試験用発光素子
と、 前記第2の試験用発光素子を駆動して第2の擬似炎信号
を発光させて前記受光素子を照射し、該受光素子の検出
信号に基づき前記火災を感知する手段が正常に動作する
か否かを試験する第2の動作試験手段とを備えたことを
特徴とする輻射式火災感知器。
1. A light-transmitting cover that transmits radiant light emitted from a flame, a light-receiving element that is provided inside the light-transmitting cover and receives light transmitted from the light-transmitting cover, and the light-receiving element. In the radiation-type fire detector having a means for detecting a fire based on the detection signal of, a first pseudo-flame signal is emitted by the driving of the first operation test means, which is provided outside the translucent cover. A first test light-emitting element that transmits the light-transmitting cover and illuminates the light-receiving element; and a first pseudo-light-emitting element that drives the first test light-emitting element to emit a first pseudo-flame signal. A first operation test means for irradiating and testing whether or not the fire sensing means operates normally based on the detection signal of the light receiving element; and a second operation test means provided inside the translucent cover, A second pseudo flame signal is emitted by driving the operation test means, A second test light emitting element that directly or indirectly irradiates the light receiving element; and a second pseudo light emitting element that drives the second test light emitting element to emit a second pseudo flame signal to irradiate the light receiving element. A radiation type fire detector, comprising: a second operation test means for testing whether or not the means for detecting a fire operates normally based on a detection signal of a light receiving element.
【請求項2】 前記第1の動作試験手段の試験時に、前
記受光素子の検出信号レベルを計測し、該計測値が、あ
らかじめ設定された汚損程度許容範囲の下限値以上であ
るか否かを判別し、該判別結果により前記透光性カバー
の汚損程度の可又は否を示す信号を出力する汚損程度判
別手段を含む汚損程度試験手段と、 前記第2の動作試験手段の試験時に、前記受光素子の検
出信号レベルを計測し、該計測値が、あらかじめ設定さ
れた劣化許容範囲の下限値以上であるか否かを判別し、
該判別結果により前記受光素子の劣化程度の可又は否を
示す信号を出力する劣化程度判別手段を含む受光感度試
験手段とを付加したことを特徴とする請求項1記載の輻
射式火災感知器。
2. The detection signal level of the light receiving element is measured during the test of the first operation test means, and it is determined whether or not the measured value is equal to or more than a lower limit value of a preset allowable contamination degree range. A stain degree determining means including a stain degree determining means for outputting a signal indicating whether or not the degree of stain on the translucent cover is determined according to the determination result; and the light receiving during the test of the second operation test means. The detection signal level of the element is measured, and the measured value is determined whether it is equal to or more than the lower limit value of the deterioration allowable range set in advance,
2. The radiant fire detector according to claim 1, further comprising a light receiving sensitivity testing means including a deterioration degree determining means for outputting a signal indicating whether or not the light receiving element is deteriorated according to the determination result.
【請求項3】 前記第1の動作試験手段の試験時に、前
記受光素子の検出信号レベルを計測し、該計測値と減光
率基準値との比を前記透光性カバーの減光率として算出
する減光率算出手段と、前記減光率の算出値が、あらか
じめ設定された減光率許容範囲の下限値以上であるか否
かを判別し、該判別結果により前記透光性カバーの汚損
程度の可又は否を示す信号を出力する汚損程度判別手段
とを含む汚損程度試験手段と、 前記第2の動作試験手段の試験時に、前記受光素子の検
出信号レベルを計測し、該計測値と受光感度基準値との
比を前記受光素子の受光感度として算出する受光感度算
出手段と、前記受光感度の算出値が、あらかじめ設定さ
れた受光感度許容範囲の下限値以上であるか否かを判別
し、該判別結果により前記受光素子の劣化程度の可又は
否を示す信号を出力する受光感度判別手段とを含む受光
感度試験手段とを付加したことを特徴とする請求項1記
載の輻射式火災感知器。
3. The detection signal level of the light receiving element is measured during the test of the first operation test means, and the ratio between the measured value and the reference value of the dimming rate is used as the dimming rate of the translucent cover. A light extinction ratio calculating means for calculating, and a calculated value of the light extinction ratio is determined whether or not it is equal to or more than a lower limit value of a preset light extinction ratio allowable range. A pollution level test unit including a pollution level determination unit that outputs a signal indicating whether or not the pollution level is possible, and a detection signal level of the light receiving element is measured during the test of the second operation test unit, and the measured value is obtained. And a reference value of light receiving sensitivity as a light receiving sensitivity of the light receiving element, and whether or not the calculated value of the light receiving sensitivity is equal to or more than a lower limit value of a preset light receiving sensitivity allowable range. Judgment and deterioration of the light receiving element according to the judgment result Radiant fire detector according to claim 1, characterized in that added to the light-receiving sensitivity testing means including a light-receiving sensitivity discriminating means for outputting a signal indicative of the variable or not degrees.
【請求項4】 あらかじめ複数の感知領域をそれぞれほ
ぼ独立した3次元空間として設定し、該設定された複数
の各感知領域内の火炎からそれぞれ放射される輻射光
を、前記各感知領域の方向別にそれぞれ透過させる透光
性カバーと、該透光性カバーの内側に設けられ、該透光
性カバーの前記方向別の透過光をそれぞれ各感知領域毎
に受光する複数の受光素子と、該複数の各受光素子別の
検出信号に基づき、前記複数の各感知領域別に火災を感
知する手段とを有する輻射式火災感知器において、 前記複数の各感知領域毎にそれぞれ前記透光性カバーの
外側に設けられ、第1の動作試験手段による前記各感知
領域毎の駆動によりそれぞれ第1の擬似炎信号を発光
し、前記透光性カバーを透過して前記各感知領域毎の受
光素子をそれぞれ照射する複数の第1の試験用発光素子
と、 前記複数の第1の試験用発光素子を個別に駆動して第1
の擬似炎信号を発光させ、前記複数の各感知領域毎の受
光素子を個別に照射し、該各受光素子毎の検出信号に基
づき前記複数の各感知領域毎に火災を感知する手段が正
常に動作するか否かをそれぞれ試験する第1の動作試験
手段と、 前記複数の各感知領域毎にそれぞれ前記透光性カバーの
内側に設けられ、第2の動作試験手段による前記各感知
領域毎の駆動によりそれぞれ第2の擬似炎信号を発光
し、直接又は間接的に前記各感知領域毎の受光素子をそ
れぞれ照射する複数の第2の試験用発光素子と、 前記複数の第2の試験用発光素子を個別に駆動して第2
の擬似炎信号を発光させ、前記複数の各感知領域毎の受
光素子を個別に照射し、該各受光素子毎の検出信号に基
づき前記複数の各感知領域毎に火災を感知する手段が正
常に動作するか否かをそれぞれ試験する第2の動作試験
手段とを備えたことを特徴とする輻射式火災感知器。
4. A plurality of sensing areas are set in advance as substantially independent three-dimensional spaces, and radiant light emitted from flames in each of the plurality of sensing areas set is divided by the direction of each sensing area. A light-transmitting cover that transmits the light, a plurality of light-receiving elements that are provided inside the light-transmitting cover, and that receive the light transmitted by the direction of the light-transmitting cover for each sensing region, and the plurality of light-receiving elements. A radiation fire detector having means for detecting a fire in each of the plurality of sensing areas based on a detection signal of each light receiving element, wherein each of the plurality of sensing areas is provided outside the translucent cover. The first operation test means drives each of the sensing areas to emit a first pseudo-flame signal, which is transmitted through the light-transmitting cover to irradiate the light-receiving element of each of the sensing areas. A first test light emitting element having, first and the plurality of first test light emitting element is driven individually 1
The pseudo-flame signal is emitted to individually illuminate the light receiving elements of each of the plurality of sensing areas, and the means for detecting a fire in each of the plurality of sensing areas is normally operated based on the detection signal of each of the light receiving elements. First operation test means for testing whether or not each of the plurality of sensing areas operates, and each of the plurality of sensing areas is provided inside the light-transmitting cover, and each of the sensing areas is detected by the second operation testing means. A plurality of second test light-emitting elements that emit second pseudo-flame signals when driven, and directly or indirectly irradiate the light-receiving elements of each of the sensing regions; and a plurality of second test light-emitting elements. The elements are individually driven to the second
The pseudo-flame signal is emitted to individually illuminate the light receiving elements of each of the plurality of sensing areas, and the means for detecting a fire in each of the plurality of sensing areas is normally operated based on the detection signal of each of the light receiving elements. A radiation-type fire detector, comprising: a second operation test means for testing whether or not the operation is performed.
【請求項5】 前記第1の動作試験手段の試験時に、前
記複数の各感知領域毎に照射される受光素子の検出信号
レベルをそれぞれ計測し、該各計測値が、あらかじめ設
定された汚損程度許容範囲の下限値以上であるか否かを
それぞれ判別し、該判別結果により前記透光性カバーの
複数の各感知領域方向毎の汚損程度の可又は否を示す信
号をそれぞれ出力する汚損程度判別手段を含む汚損程度
試験手段と、 前記第2の動作試験手段の試験時に、前記複数の各感知
領域毎に照射される受光素子の検出信号レベルをそれぞ
れ計測し、該各計測値が、あらかじめ設定された劣化許
容範囲の下限値以上であるか否かをそれぞれ判別し、該
判別結果により前記各感知領域毎の受光素子の劣化程度
の可又は否を示す信号をそれぞれ出力する劣化程度判別
手段を含む受光感度試験手段とを付加したことを特徴と
する請求項4記載の輻射式火災感知器。
5. The detection signal level of the light receiving element irradiated to each of the plurality of sensing regions is measured during the test of the first operation test means, and each measured value is a preset contamination level. It is determined whether or not each is equal to or more than the lower limit value of the allowable range, and the degree of contamination is output based on the result of the determination, which outputs a signal indicating whether or not the degree of contamination is in each direction of the plurality of sensing areas of the translucent cover. During the test of the pollution degree test means including means and the second operation test means, the detection signal level of the light receiving element irradiated to each of the plurality of sensing regions is measured, and each measured value is set in advance. Deterioration degree determining means for determining whether each is equal to or more than the lower limit value of the allowable deterioration range, and outputting a signal indicating whether or not the degree of deterioration of the light receiving element for each sensing region is possible or not according to the determination result. Radiant fire detector according to claim 4, characterized in that added to the light-receiving sensitivity testing means including.
【請求項6】 前記第1の動作試験手段の試験時に、前
記複数の各感知領域毎に照射される受光素子の検出信号
レベルをそれぞれ計測し、該各計測値と減光率基準値と
の比を前記透光性カバーの複数の各感知領域方向毎の減
光率としてそれぞれ算出する減光率算出手段と、前記各
方向毎の減光率の算出値が、あらかじめ設定された減光
率許容範囲の下限値以上であるか否かをそれぞれ判別
し、該判別結果により前記透光性カバーの複数の各感知
領域方向毎の汚損程度の可又は否を示す信号をそれぞれ
出力する汚損程度判別手段とを含む汚損程度試験手段
と、 前記第2の動作試験手段の試験時に、前記複数の各感知
領域毎に照射される受光素子の検出信号レベルをそれぞ
れ計測し、該各計測値と受光感度基準値との比を前記各
感知領域毎の受光素子の受光感度としてそれぞれ算出す
る受光感度算出手段と、前記各感知領域毎の受光感度の
算出値があらかじめ設定された受光感度許容範囲の下限
値以上であるか否かをそれぞれ判別し、該判別結果によ
り前記各感知領域毎の受光素子の劣化程度の可又は否を
示す信号をそれぞれ出力する受光感度判別手段とを含む
受光感度試験手段とを付加したことを特徴とする請求項
4記載の輻射式火災感知器。
6. The test signal level of the light receiving element irradiated to each of the plurality of sensing areas is measured during the test of the first operation test means, and the measured value and the extinction rate reference value are compared with each other. A light extinction ratio calculating means for calculating a ratio as a light extinction ratio for each of a plurality of sensing regions of the translucent cover, and a calculated value of the light extinction ratio for each direction is a preset light extinction ratio. It is determined whether or not each is equal to or more than the lower limit value of the allowable range, and the degree of contamination is output based on the result of the determination, which outputs a signal indicating whether or not the degree of contamination is in each direction of the plurality of sensing areas of the translucent cover. And a detection signal level of the light receiving element irradiated to each of the plurality of sensing areas during the test of the second operation testing means, and the measured value and the light receiving sensitivity. The ratio with the reference value is received for each sensing area. Light receiving sensitivity calculating means for calculating the light receiving sensitivity of each child and whether or not the calculated value of the light receiving sensitivity for each sensing area is equal to or more than a lower limit value of a preset light receiving sensitivity allowable range, and the determination is made. 5. The radiation according to claim 4, further comprising a light-reception sensitivity test means including a light-reception sensitivity determination means for outputting a signal indicating whether or not the degree of deterioration of the light-reception element in each of the sensing areas is determined. Fire detector.
JP06697093A 1993-03-25 1993-03-25 Radiation fire detector Expired - Lifetime JP3248114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06697093A JP3248114B2 (en) 1993-03-25 1993-03-25 Radiation fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06697093A JP3248114B2 (en) 1993-03-25 1993-03-25 Radiation fire detector

Publications (2)

Publication Number Publication Date
JPH06282774A true JPH06282774A (en) 1994-10-07
JP3248114B2 JP3248114B2 (en) 2002-01-21

Family

ID=13331396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06697093A Expired - Lifetime JP3248114B2 (en) 1993-03-25 1993-03-25 Radiation fire detector

Country Status (1)

Country Link
JP (1) JP3248114B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243568A (en) * 2000-02-29 2001-09-07 Nohmi Bosai Ltd Flame detector
JP2002133566A (en) * 2000-10-26 2002-05-10 Hochiki Corp Receiving board for disaster
GB2426578A (en) * 2005-05-27 2006-11-29 Thorn Security A flame detector having a pulsing optical test source that simulates the frequency of a flame
EP1894177A1 (en) 2005-05-27 2008-03-05 Thorn Security Limited Detector
JP2011187005A (en) * 2010-03-11 2011-09-22 Nohmi Bosai Ltd Fire detector
JP5859705B1 (en) * 2015-08-11 2016-02-10 株式会社リアライズ Fire detection device
JP2020187401A (en) * 2019-05-10 2020-11-19 ホーチキ株式会社 Monitoring system and detector
EP4290490A1 (en) * 2022-06-08 2023-12-13 The Boeing Company Optical-based fire detection systems and methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243568A (en) * 2000-02-29 2001-09-07 Nohmi Bosai Ltd Flame detector
JP2002133566A (en) * 2000-10-26 2002-05-10 Hochiki Corp Receiving board for disaster
GB2426578A (en) * 2005-05-27 2006-11-29 Thorn Security A flame detector having a pulsing optical test source that simulates the frequency of a flame
EP1894177A1 (en) 2005-05-27 2008-03-05 Thorn Security Limited Detector
US7948628B2 (en) 2005-05-27 2011-05-24 Thorn Security Limited Window cleanliness detection system
US7956329B2 (en) 2005-05-27 2011-06-07 Thorn Security Limited Flame detector and a method
JP2011187005A (en) * 2010-03-11 2011-09-22 Nohmi Bosai Ltd Fire detector
JP5859705B1 (en) * 2015-08-11 2016-02-10 株式会社リアライズ Fire detection device
JP2020187401A (en) * 2019-05-10 2020-11-19 ホーチキ株式会社 Monitoring system and detector
EP4290490A1 (en) * 2022-06-08 2023-12-13 The Boeing Company Optical-based fire detection systems and methods

Also Published As

Publication number Publication date
JP3248114B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
US7978087B2 (en) Fire detector
US6967582B2 (en) Detector with ambient photon sensor and other sensors
JP3277406B2 (en) Radiation fire detector
US7956329B2 (en) Flame detector and a method
US8346500B2 (en) Self check-type flame detector
JP7506793B2 (en) Chamberless Smoke Detector with Indoor Air Quality Detection and Monitoring
JP3248114B2 (en) Radiation fire detector
US7948628B2 (en) Window cleanliness detection system
JP3240586B2 (en) Radiant fire detector
KR101021058B1 (en) Self-Diagnostic Flame Detector
JP3277405B2 (en) Radiation fire detector
US11062586B2 (en) Method of monitoring health of protective cover of detection device
JPH04205400A (en) Smoke sensor
JP3980816B2 (en) Fire detector
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
JP2002042263A (en) Fire detector
TW202104872A (en) Particle sensor
JP3765559B2 (en) Fire detector
JP7397934B2 (en) photoelectric smoke detector
JPH03245296A (en) Testing method for smoke sensor and smoke sensor
JP2004334715A (en) Fire detector and method for measuring pollution rate of its test window
JP2005167017A (en) Laser oscillator diagnosis device and laser beam machine equipped therewith
EP3460428A1 (en) Dual wavelength detector
JP2002157657A (en) Disaster-preventive reception board
JPH05342483A (en) Photoelectric separation type smoke sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131109