JP2017049799A - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP2017049799A
JP2017049799A JP2015172484A JP2015172484A JP2017049799A JP 2017049799 A JP2017049799 A JP 2017049799A JP 2015172484 A JP2015172484 A JP 2015172484A JP 2015172484 A JP2015172484 A JP 2015172484A JP 2017049799 A JP2017049799 A JP 2017049799A
Authority
JP
Japan
Prior art keywords
dirt
level
threshold
contamination
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015172484A
Other languages
Japanese (ja)
Other versions
JP6605885B2 (en
Inventor
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2015172484A priority Critical patent/JP6605885B2/en
Publication of JP2017049799A publication Critical patent/JP2017049799A/en
Application granted granted Critical
Publication of JP6605885B2 publication Critical patent/JP6605885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To substantially match the timing to issue a dirt previous notice alarm as a whole by automatically changing a dirt previous notice threshold in accordance with a progress situation of a dirt degree at a side of a fire detector without requiring operation or processing on a fire prevention reception board.SOLUTION: A fire detector 16 in a tunnel comprises: fire detection parts 16a and 16b for detecting a fire via translucent windows 36; and a test light source 42, a dirt light-receiving part 44 and an amplification part 46 as a dirt detection part for the translucent window. In the case when a dirt level exceeds a predetermined dirt threshold, a control part 32 transmits a dirt alarm signal to a fire prevention reception board. In the case when the dirt level exceeds a predetermined dirt previous notice threshold smaller than the dirt threshold and is smaller than the dirt threshold, the control part transmits a dirt previous notice alarm signal to the fire prevention reception board. A dirt prediction part 48 detects a change of the detected dirt level and predicts a dirt level at a scheduled time point such as preset cleaning timing based on the change of the dirt level. A threshold change part 50 changes the dirt previous notice threshold in accordance with the dirt level that is predicted by the dirt prediction part.SELECTED DRAWING: Figure 3

Description

本発明は、防災受信盤から引き出された信号線に接続されてトンネル内の火災を監視する火災検出器に関する。   The present invention relates to a fire detector that is connected to a signal line drawn from a disaster prevention receiving board and monitors a fire in a tunnel.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検出器が設置され、防災受信盤から引き出された信号線に接続している。   Conventionally, in order to protect people and vehicles from fire accidents that occur in tunnels for exclusive use of automobile roads, fire detectors that monitor fires have been installed and connected to signal lines drawn from disaster prevention reception boards. ing.

火災検出器は左右の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検出器との検出エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置している。   The fire detector has detection areas in both the left and right directions, and, for example, at intervals of 25 m or 50 m so that detection areas with adjacent fire detectors overlap each other along the longitudinal direction of the tunnel. Arranged continuously at intervals.

また、火災検出器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、透光性窓の汚れを監視している。透光性窓の汚れ監視は、検出器に設けた試験光源から定期的に試験光を、検知器外部の検出エリア側空間を経由し透光性窓に入射し受光素子で受光して、このときの受光レベルを初期無汚損時のそれと比較するなどして汚れの度合を示す減光率を求め、減光率が所定の汚れ閾値を超えたら汚れ警報を出力している。また、汚れ閾値に対しそれより低い予告汚れ閾値を設定し、減光率が汚れ予告閾値を超えた場合に汚れ予告警報を出すようにしている。   In addition, the fire detector monitors the radiation from the fire flame generated in the tunnel through the translucent window, such as infrared rays, and monitors the contamination of the translucent window to maintain the flame monitoring function. doing. The contamination of the translucent window is monitored by periodically receiving test light from a test light source provided in the detector, entering the translucent window via the detection area side space outside the detector, and receiving it with a light receiving element. The light reception level at that time is compared with that at the time of initial non-fouling, for example, to obtain a dimming rate indicating the degree of contamination, and when the dimming rate exceeds a predetermined contamination threshold, a contamination warning is output. Further, a lower notice dirt threshold value is set for the dirt threshold value, and a dirt notice warning is issued when the light reduction rate exceeds the dirt notice threshold value.

また、トンネル内に設置している火災検出器は環境内を浮遊する汚損物質付着などにより時間の経過と共に透光性窓の汚れが増加することから、一定の期間毎に透光性窓の清掃を行っている。   In addition, the fire detectors installed in the tunnel increase the contamination of the translucent windows over time due to adhesion of fouling substances floating in the environment, so the translucent windows must be cleaned at regular intervals. It is carried out.

しかしながら、透光性窓の汚れ進行度合は火災検出器の設置場所や風向きなどにより様々であり、清掃を行うまでの一定期間にどの程度汚れが進行するかは、システム内の検出器や、検出器に設けられた透光性窓の左右によってもまちまちである。検出器は汚れ予告警報を出力しても、汚れ警報を出力するまでの間は火災監視動作を継続できるよう、感度補償機能を備えている。ここで、たとえば、ある検出器が予告汚れ警報を出力した場合に、当該検出器が汚れ警報レベルに至るまでの時間も、設置場所等により一定でない。同様に、検出器毎に、予告汚れ警報を出力するまでの期間が大きく異なることもある。このため、透光性窓の汚れ進行度合が小さい火災検出器については、不要な臨時清掃を行うことになる場合があった。   However, the degree of contamination of the translucent window varies depending on the location of the fire detector and the direction of the wind, and the extent of contamination that progresses during a certain period until cleaning is performed. Depending on the right and left of the translucent window provided in the vessel. The detector has a sensitivity compensation function so that the fire monitoring operation can be continued until the contamination warning is output even if the contamination warning is output. Here, for example, when a certain detector outputs a warning contamination warning, the time until the detector reaches the contamination warning level is not constant depending on the installation location. Similarly, the period until the warning notice warning is output may differ greatly for each detector. For this reason, there was a case where unnecessary temporary cleaning was performed for the fire detector having a small degree of stain progress of the translucent window.

このような課題を解決するため、ある火災検出器の汚れ予告警報が他の火災検出器より早めに出るような場合には、防災受信盤に対する入力操作により、汚れ予告閾値をそれまでよりも高い値に変更し、汚れ予告警報がゆっくり出されるようにし、汚れがトンネル内に設置している火災検出器に全体的に広がった段階で予告警報を出して清掃を効率良く行うようにしたトンネル防災システムが提案されている(特許文献1)。   In order to solve such problems, when the warning notice of a certain fire detector is issued earlier than the other fire detectors, the threshold value for the notice of dirt is higher than before by an input operation to the disaster prevention receiver. Change the value so that the dirt warning warning is issued slowly, and when the dirt spreads to the fire detectors installed in the tunnel as a whole, the warning warning is issued so that cleaning is performed efficiently. A system has been proposed (Patent Document 1).

特開2000−315285号公報JP 2000-315285 A

しかしながら、このような従来のトンネル防災システムにおける汚れ予告閾値の変更にあっては、防災受信盤で全ての火災検出器で検出した汚れ度合を収集し、火災検出器毎に汚れ予告閾値を個別に設定し、必要に応じて特定の火災検出器の汚れ予告閾値を変更する処理を必要としており、火災検出器毎の汚れ予告閾値を記憶して管理することから、その制御処理が煩雑で、変更にも手間がかかるといった問題がある。   However, in changing the contamination warning threshold in such a conventional tunnel disaster prevention system, the degree of contamination detected by all fire detectors in the disaster prevention reception panel is collected, and the contamination warning threshold is individually set for each fire detector. It is necessary to set and change the contamination warning threshold value of a specific fire detector as necessary. Since the contamination warning threshold value for each fire detector is stored and managed, the control processing is complicated and changes are required. There is also a problem that takes time.

また、火災検出器側に汚れ予告閾値を設定して汚れ予告警報を判断している場合には、たとえば防災受信盤で特定の火災検出器のアドレスを指定して汚れ予告閾値の変更を指示するコマンドを送信する必要があり、同様に、防災受信盤側で各火災検出器に設定している汚れ警報閾値の状況を管理する処理が必要であり、その運用に手間と時間がかかる問題がある。   In addition, when a dirt notice threshold is set on the fire detector side and a dirt notice warning is judged, for example, the change of the dirt notice threshold is instructed by specifying the address of a specific fire detector in the disaster prevention receiver. It is necessary to send a command, and similarly, it is necessary to manage the situation of the dirt alarm threshold set for each fire detector on the disaster prevention reception board side, and there is a problem that it takes time and effort to operate it .

本発明は、防災受信盤での操作や処理を必要とすることなく、火災検出器側で汚れ度合の進行状況に応じて自動的に汚れ予告閾値を変更して全体的に汚れ予告警報が出される時期を概ね揃えることを可能とするトンネル内に設置する火災検出器を提供することを目的とする。   The present invention automatically changes the dirt notice threshold according to the progress of the degree of dirt on the fire detector side and does not require any operation or processing at the disaster prevention reception board, and a dirt notice warning is issued as a whole. The purpose is to provide a fire detector that can be installed in a tunnel that can be arranged in almost the same time.

(火災検出器)
本発明は、
防災受信盤に信号線接続された伝送部と、
透光性窓を介して火災からの放射線を検出する火災検出部と、
透光性窓の汚れ度合を示す汚れレベルを検出する汚れ検出部と、
汚れ検出部で検出した汚れレベルが所定の汚れ閾値を超えた場合に、汚れ警報信号を防災受信盤に送信する汚れ警報部と、
汚れ検出部で検出した汚れレベルが汚れ閾値より小さい所定の汚れ予告閾値を超え且つ汚れ閾値未満の場合に、汚れ予告警報信号を防災受信盤に送信する汚れ予告警報部と、
を備えた火災検出器に於いて、
所定の予測周期毎に、汚れ検出部で検出した汚れレベルの変化を検出し、当該汚れレベルの変化に基づいて予め設定した予定時点の汚れレベルを予測する汚れ予測部と、
汚れ予測部で予測した汚れレベルに応じて汚れ予告閾値を変更する閾値変更部と、
を設けたことを特徴とする。
(Fire detector)
The present invention
A transmission unit connected to a signal line to the disaster prevention receiver,
A fire detection unit for detecting radiation from the fire through the translucent window;
A dirt detector for detecting a dirt level indicating the degree of dirt on the translucent window;
When the dirt level detected by the dirt detector exceeds a predetermined dirt threshold, a dirt alarm part that transmits a dirt alarm signal to the disaster prevention receiver,
When the dirt level detected by the dirt detector exceeds a predetermined dirt notice threshold smaller than the dirt threshold and less than the dirt threshold, a dirt notice warning section that transmits a dirt notice warning signal to the disaster prevention receiving board;
In a fire detector with
A stain prediction unit that detects a change in the stain level detected by the stain detection unit for each predetermined prediction cycle, and predicts a stain level at a preset time point based on the change in the stain level;
A threshold value changing unit for changing the dirt notice threshold value according to the dirt level predicted by the dirt prediction unit;
Is provided.

(汚れレベル予測)
ここで、汚れ予測部は、予定時点までの予定周期をTc、汚れ予測周期をTs、汚れ予測周期Tsで検出した汚れレベルをD、汚れ予測周期Tsの汚れレベル変化率をΔD、汚れ予測回数をn回とした場合、定期清掃予定時点の汚れレベル予測値Deを
De=D+ΔD(Tc−n・Ts)
として算出する。
(Dirt level prediction)
Here, the dirt prediction unit Tc is the scheduled period up to the scheduled time, Ts is the dirt prediction period, D is the dirt level detected in the dirt prediction period Ts, ΔD is the dirt level change rate of the dirt prediction period Ts, and the number of dirt predictions Is n times, the estimated dirt level De at the scheduled scheduled cleaning is De = D + ΔD (Tc−n · Ts)
Calculate as

(汚れ予告閾値の上限)
また、閾値変更部は、汚れ予告閾値の上限閾値を設定し、汚れ予測部で予測した汚れレベルが所定の上限閾値を超えた場合、汚れ予告閾値を上限閾値に変更する。
(Upper limit of dirt notice threshold)
Further, the threshold value changing unit sets an upper limit threshold value of the dirt notice threshold value, and changes the dirt notice threshold value to the upper threshold value when the dirt level predicted by the dirt prediction unit exceeds a predetermined upper limit threshold value.

(減光率)
また、汚れ検出部は、
透光性窓に、外部空間を経由して試験光を周期的に照射する試験光源部と、
透光性窓を介して入射した試験光を受光して試験受光信号を出力する試験受光部と、
汚れ監視を開始したとき又は再開したときの試験受光信号のレベルを基準として、試験受光部から試験受光信号が得られる毎に汚れレベルとして基準に対する減光率を検出する。
(Dimming rate)
In addition, the dirt detector
A test light source unit that periodically irradiates the translucent window with test light via an external space;
A test light receiving unit that receives the test light incident through the translucent window and outputs a test light reception signal;
Using the level of the test light reception signal when the dirt monitoring is started or restarted as a reference, the dimming rate relative to the reference is detected as the dirt level every time the test light reception signal is obtained from the test light receiving unit.

(基本的な効果)
本発明は、防災受信盤から引き出された信号線に接続された伝送部と、透光性窓を介して火災からの放射線を検出する火災検出部と、透光性窓の汚れ度合を示す汚れレベルを検出する汚れ検出部と、汚れ検出部で検出した汚れレベルが所定の汚れ閾値を超えた場合に、汚れ警報信号を防災受信盤に送信する汚れ警報部と、汚れ検出部で検出した汚れレベルが汚れ閾値より小さい所定の汚れ予告閾値を超え且つ汚れ閾値未満の場合に、汚れ予告警報信号を防災受信盤に送信する汚れ予告警報部とを備えた火災検出器に於いて、所定の予測周期毎に汚れ検出部で検出した汚れレベルの変化を検出し、当該汚れレベルの変化に基づいて予め設定した予定時点の汚れレベルを予測する汚れ予測部と、汚れ予測部で予測した汚れレベルに応じて汚れ予告閾値を変更する閾値変更部とを設けるようにしたため、透光性窓の汚れ度合に応じて清掃時期等、予定周期到来時点(予定日)の汚れレベルを予想し、例えば予想した汚れレベルとなるように汚れ予告閾値を変更することで、システム内に設置している火災検出器に設けた透光性窓の汚れ度合の進み方が異なっていても、次の定期メンテナンスの予定日までの間、システム内の、たとえば汚れ警報の局所的な早期発生を抑えることができ、汚れ予告警報に対する不要な対応を少なくすることができる。このため、汚れ予告警報に対応して清掃作業を適切に行うことができるようになる。
(Basic effect)
The present invention relates to a transmission unit connected to a signal line drawn from a disaster prevention receiver, a fire detection unit for detecting radiation from a fire through a translucent window, and a stain indicating the degree of contamination of the translucent window. The contamination detection unit that detects the level, the contamination detection unit that transmits a contamination alarm signal to the disaster prevention receiver when the contamination level detected by the contamination detection unit exceeds a predetermined contamination threshold, and the contamination detected by the contamination detection unit In a fire detector provided with a dirt notice warning unit for sending a dirt notice warning signal to a disaster prevention receiving panel when the level exceeds a predetermined dirt notice threshold smaller than the dirt threshold and less than the dirt threshold, a predetermined prediction is made. A change in the dirt level detected by the dirt detection unit is detected for each cycle, and a dirt prediction unit that predicts a dirt level at a preset scheduled time based on the change in the dirt level, and a dirt level predicted by the dirt prediction unit Dirty notice according to Since the threshold value changing unit for changing the value is provided, the dirt level at the scheduled cycle arrival time (scheduled date) such as the cleaning time is predicted according to the degree of dirt of the translucent window, for example, the expected dirt level is obtained. By changing the dirt notice threshold in this way, even if the progress of the degree of dirt on the translucent window provided in the fire detector installed in the system is different, the period until the next scheduled scheduled maintenance For example, local early occurrence of a dirt warning in the system can be suppressed, and unnecessary response to the dirt warning warning can be reduced. For this reason, it becomes possible to appropriately perform the cleaning work in response to the dirt notice warning.

また、汚れ予告閾値の変更は火災検出器側で自動的に行っており、防災受信盤側で汚れ予告閾値を変更したり、火災検出器に変更を指示する作業や処理を不要とし、防災受信盤側の処理負担や管理面の負担を低減可能とする。   In addition, the change of the dirt notice threshold is automatically performed on the fire detector side, so it is not necessary to change the dirt notice threshold on the disaster prevention reception board or to instruct the fire detector to change the process and processing. It is possible to reduce the processing burden on the panel side and the burden on the management side.

(汚れレベルの予測による効果)
また、汚れ予測部は、予定時点までの予定周期をTc、汚れ予測周期をTs、汚れ予測周期Tsで検出した汚れレベルをD、汚れ予測周期Tsの汚れレベル変化率をΔD、汚れ予測回数をn回、とした場合、定期清掃予定時点の汚れレベル予測値Deを
De=D+ΔD(Tc−n・Ts)
として算出するようにしたため、実際の汚れレベルの変化に基づく直線予測でたとえば定期清掃時期等、予定周期到来時点の汚れレベルを求めて汚れ予告閾値を変更することができ、また、汚れ予測周期毎に汚れレベルを予測することから、汚れレベルが非線形的に変化しても、そのとき以降定期清掃時点の汚れレベルをより正確に予測して、適切な汚れ予告閾値に変更可能とする。
(Effect by predicting the dirt level)
In addition, the dirt prediction unit Tc is the scheduled period up to the scheduled time, Ts is the dirt prediction period, D is the dirt level detected at the dirt prediction period Ts, ΔD is the dirt level change rate of the dirt prediction period Ts, and In the case of n times, the predicted dirt level De at the scheduled scheduled cleaning is De = D + ΔD (Tc−n · Ts).
As a result, it is possible to change the dirt notice threshold by obtaining the dirt level at the scheduled cycle arrival, such as the regular cleaning time, by linear prediction based on the actual dirt level change. Therefore, even if the dirt level changes nonlinearly, the dirt level at the time of regular cleaning can be predicted more accurately and changed to an appropriate dirt notice threshold.

(汚れ予告閾値の上限による効果)
また、閾値変更部は、汚れ予告閾値の上限閾値を設定し、汚れ予測部で予測した汚れレベルが上限閾値を超えた場合、汚れ予告閾値を上限閾値に変更するようにしたため、透光性窓の汚れ度合が速い場合、必要以上に汚れ予告閾値を高い値に変更してしまうことを防止する。
(Effect of upper limit of dirt notice threshold)
In addition, the threshold changing unit sets the upper limit threshold of the dirt notice threshold, and when the dirt level predicted by the dirt prediction unit exceeds the upper threshold, the dirt notice threshold is changed to the upper threshold. When the degree of dirt is high, it is possible to prevent the dirt notice threshold value from being changed to a higher value than necessary.

(減光率による効果)
また、汚れ検出部は、透光性窓に外部から試験光を周期的に照射する試験光源部と、透光性窓を介して入射した試験光を受光して試験受光信号を出力する試験受光部と、汚れ監視を開始したとき又は再開したとき、すなわち透光性窓が汚れていないときの試験受光信号のレベルを基準として、試験受光部から試験受光信号が得られる毎に基準に対する汚れレベルとして試験受光信号の減衰度合いを減光率として検出するようにしたため、汚れ度合に増加に応じて増加する減光率を汚れレベルとすることで、汚れ予告閾値の設定や比較、更には定期清掃予定日の汚れレベルを予測する処理を適切に行うことを可能とする。
(Effects due to dimming rate)
In addition, the dirt detection unit includes a test light source unit that periodically irradiates the translucent window with test light from the outside, and a test light receiving unit that receives the test light incident through the translucent window and outputs a test light reception signal. Level when the test light receiving signal is obtained from the test light receiving unit, with reference to the level of the test light receiving signal when the monitor and the dirt monitoring are started or restarted, that is, when the transparent window is not dirty. As a result, the attenuation level of the test light reception signal is detected as the dimming rate. It is possible to appropriately perform the process of predicting the dirt level on the scheduled date.

トンネル防災システムの概要を示した説明図Explanatory diagram showing an overview of the tunnel disaster prevention system 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention reception board 火災検出器の機能構成の概略を示したブロック図Block diagram showing outline of functional configuration of fire detector 火災検出器の外観を示した説明図Explanatory drawing showing the appearance of the fire detector 汚れ予測に基づく汚れ予告閾値の変更を示したタイムチャートTime chart showing change of dirt notice threshold based on dirt prediction 火災検出器による汚れ閾値変更制御を示したフローチャートFlow chart showing dirt threshold change control by fire detector

[トンネル防災システムの概要]
図1は本発明の火災検出器を適用した所謂R型伝送方式のトンネル防災システム概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。
[Outline of tunnel disaster prevention system]
FIG. 1 is an explanatory diagram showing an outline of a so-called R-type transmission disaster prevention system to which a fire detector of the present invention is applied. As shown in FIG. 1, an upstream tunnel 1a and a downstream tunnel 1b are constructed as tunnels for an automobile road.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル間隔で火災検出器16を設置している。火災検出器16は2組の火災検出部を備えることでトンネル長手方向上り側および下り側の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検出器との検出エリアが相互補完的に重なるように連続的に配置し、検出エリア内で起きた火災による炎からの放射線、例えば赤外線を観測して火災を検出する。   Fire detectors 16 are installed, for example, at intervals of 25 meters along the walls in the tunnel longitudinal direction inside the upstream tunnel 1a and the downstream tunnel 1b. The fire detector 16 includes two sets of fire detectors, so that the fire detector 16 has detection areas in both the upward and downward directions in the longitudinal direction of the tunnel, and is adjacent to the fire detectors disposed along the longitudinal direction of the tunnel. It arrange | positions continuously so that a detection area may mutually overlap, and a fire is detected by observing the radiation from the flame by the fire which occurred in the detection area, for example, infrared rays.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源および伝送回線12a,12bを引き出して火災検出器16を接続しており、火災検出器16には回線単位に固有のアドレスを設定している。   The fire detector 16 is connected to the fire detector 16 by connecting the power and transmission lines 12a and 12b to the upstream tunnel 1a and the downstream tunnel 1b from the disaster prevention receiving board 10, and the fire detector 16 has a unique address for each line. It is set.

[防災受信盤]
図2は防災受信盤の機能構成の概略を示したブロック図である。図2に示すように、防災受信盤10は制御部18を備え、制御部18は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention reception board]
FIG. 2 is a block diagram showing an outline of the functional configuration of the disaster prevention reception board. As shown in FIG. 2, the disaster prevention receiving board 10 includes a control unit 18, and the control unit 18 is a function realized by executing a program, for example, and includes a CPU, a memory, various input / output ports and the like as hardware. Use computer circuit etc.

制御部18に対しては伝送部20a,20bを設け、伝送部20a,20bから引き出した伝送回線12a,12bに上り線トンネル1aと下り線トンネル1bに設置した火災検出器16をそれぞれ複数台接続している。   For the control unit 18, transmission units 20a and 20b are provided, and a plurality of fire detectors 16 installed in the upstream tunnel 1a and the downstream tunnel 1b are connected to the transmission lines 12a and 12b drawn from the transmission units 20a and 20b, respectively. doing.

また、制御部18に対しスピーカ、警報表示灯等を備えた警報部22、液晶ディスプレイ、プリンタ等を備えた表示部24、各種スイッチ等を備えた操作部26、外部監視設備と通信するIG子局設備を接続するモデム28を設け、更に、換気設備、警報表示板設備、ラジオ再放送設備、カメラ監視設備、照明設備及び消火ポンプ設備を接続したIO部30を設けている。   Further, an alarm unit 22 having a speaker, an alarm indicator lamp, etc., a control unit 18, a display unit 24 having a liquid crystal display, a printer, etc., an operation unit 26 having various switches, etc., an IG child communicating with an external monitoring facility A modem 28 for connecting station equipment is provided, and an IO unit 30 to which ventilation equipment, alarm display board equipment, radio rebroadcast equipment, camera monitoring equipment, lighting equipment, and fire pump equipment are connected is provided.

防災受信盤10の制御部18は、伝送部20a,20bに指示して火災検出器16のアドレスを順次指定したポーリングコマンドを含む呼出電文を繰り返し送信しており、火災検出器16は自己アドレスに一致する呼出電文を受信すると、火災、汚れ警報、汚れ予告警報を含む自己の検出状態を示す応答電文を返信する。   The control unit 18 of the disaster prevention receiving board 10 repeatedly transmits a call message including a polling command instructing the transmission units 20a and 20b and sequentially specifying the addresses of the fire detector 16, and the fire detector 16 sets the self-address. When a matching call message is received, a response message indicating its own detection state including a fire, a dirt alarm, and a dirt notice alarm is returned.

防災受信盤10の制御部18は、火災検出器16からの応答電文の受信により火災を検出した場合は火災警報を出力すると共にIO部30を介し他設備の連動制御を行い、汚れ警報や汚れ予告警報を検出した場合は、火災検出器16のアドレスを特定して、対応する汚れ警報や汚れ予告警報の出力処理を行う。   The control unit 18 of the disaster prevention receiving board 10 outputs a fire alarm when a fire is detected by receiving a response message from the fire detector 16 and performs interlocking control of other facilities via the IO unit 30 to detect a contamination alarm or a contamination. If a warning warning is detected, the address of the fire detector 16 is specified, and a corresponding dirt warning or dirt warning warning is output.

[火災検出器]
図3は火災検出器の機能構成の概略を示したブロック図、図4は火災検出器の外観を示した説明図である。
[Fire detector]
FIG. 3 is a block diagram showing an outline of the functional configuration of the fire detector, and FIG. 4 is an explanatory diagram showing the appearance of the fire detector.

図3に示すように、火災検出器16は2組の火災検出部16a,16bを備えており、火災検出部16aに代表して示すように、センサ部38a,38b、これら各々に対応する増幅処理部40a,40b、制御部32及び伝送部34を備える。センサ部38a,38bの前面には検出器カバーに設けた透光性窓36を配置しており、透光性窓36を介して外部の検出エリアからの光エネルギーをセンサ部38a,38bに入射している。   As shown in FIG. 3, the fire detector 16 includes two sets of fire detection units 16a and 16b. As representatively shown by the fire detection unit 16a, the sensor units 38a and 38b, and amplifications corresponding to each of them. The processing units 40a and 40b, the control unit 32, and the transmission unit 34 are provided. A translucent window 36 provided on the detector cover is disposed in front of the sensor units 38a and 38b, and light energy from an external detection area is incident on the sensor units 38a and 38b via the translucent window 36. doing.

また、透光性窓36の汚れを監視するため、試験光源部42、汚れ受光部44及び増幅部46で構成する汚れ検出部を設けている。   Further, in order to monitor the contamination of the translucent window 36, a contamination detection unit including a test light source unit 42, a contamination light receiving unit 44, and an amplification unit 46 is provided.

ここで、図4に示すように、火災検出器16は、筐体52の上部に設けられたセンサ収納部54に2組の透光性窓36を設け、透光性窓36内の各々に、図3に示した火災検出部16a,16bのセンサ部を配置している。また、透光性窓36の近傍の、センサ部を見通せる位置に、個別の試験光源42を収納した2組の試験光源用透光窓56を設けている。   Here, as shown in FIG. 4, the fire detector 16 is provided with two sets of translucent windows 36 in the sensor housing portion 54 provided at the top of the housing 52, and each of the translucent windows 36 is provided with each of them. The sensor parts of the fire detection parts 16a and 16b shown in FIG. 3 are arranged. In addition, two sets of light-transmitting windows for test light sources 56 containing individual test light sources 42 are provided in positions near the light-transmitting window 36 where the sensor unit can be seen.

再び図3を参照するに、火災検出部16bも火災検出部16aと同じ構成であるが、制御部32は両者に共通するユニットとして設け、例えばハードウェアとしてCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。   Referring to FIG. 3 again, the fire detection unit 16b has the same configuration as the fire detection unit 16a, but the control unit 32 is provided as a unit common to both, for example, a CPU, memory, various input / output ports as hardware, etc. Use a computer circuit equipped with

火災検出部16aは例えば2波長式の炎検知により火災を監視している。センサ部38aは、透光性窓36を介して入射した光エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.4〜4.5μmの放射線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線のエネルギーを検出して光電変換したうえで、増幅処理部40aにより増幅等所定の加工を施してエネルギー量に対応する受光信号にして制御部32へ出力する。 The fire detector 16a monitors the fire by, for example, two-wavelength flame detection. The sensor unit 38a selects from the optical energy incident through the translucent window 36, 4.4 to 4.5 μm radiation, which is a resonance emission band of CO 2 specific to flame, by an optical wavelength bandpass filter. The light is transmitted (passed), the energy of the radiation is detected by the light receiving sensor and subjected to photoelectric conversion, and then subjected to predetermined processing such as amplification by the amplification processing unit 40a to obtain a light receiving signal corresponding to the amount of energy to the control unit 32. Output.

センサ部38bは、透光性窓36を介して入射した光エネルギーの中から、5〜6μmの放射エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線のエネルギーを検出して光電変換したうえで、増幅処理部40bにより増幅等所定の加工を施してエネルギー量に対応する受光信号にして制御部32へ出力する。   The sensor unit 38b selectively transmits (passes) radiant energy of 5 to 6 μm from the light energy incident through the translucent window 36 by the optical wavelength bandpass filter, and the energy of the radiation is received by the light receiving sensor. After detection and photoelectric conversion, the amplification processing unit 40b performs predetermined processing such as amplification, and outputs the received light signal corresponding to the amount of energy to the control unit 32.

制御部32は増幅処理部40a,40bから出力された受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定し、炎有りの判定により火災を検出した場合には、伝送部34に指示して、自己アドレスに一致する呼出電文に対する応答電文に火災検出情報を設定して防災受信盤10へ送信する制御を行う。   The control unit 32 determines the presence or absence of flame by taking the relative ratio of the received light signal levels output from the amplification processing units 40a and 40b and comparing it with a predetermined threshold value. Then, the transmission unit 34 is instructed to set fire detection information in a response message to the call message that matches the self-address, and control to transmit to the disaster prevention receiving board 10.

試験光源部42、汚れ受光部44及び増幅部46で構成した汚れ検出部は、制御部32からの指示により所定周期、例えば1日に1回の周期で試験光源42を点灯して試験光を透光性窓36を介して汚れ受光部44に入射しており、この試験光を汚れ受光部44に設けた受光センサで電気信号に変換し、増幅部46で増幅して制御部32に汚れ検出信号を出力する。   The stain detection unit composed of the test light source unit 42, the stain light receiving unit 44, and the amplification unit 46 turns on the test light source 42 at a predetermined cycle, for example, once a day, according to an instruction from the control unit 32, and emits test light. The test light is incident on the dirt light receiving unit 44 through the translucent window 36, and the test light is converted into an electric signal by the light receiving sensor provided in the dirt light receiving unit 44, amplified by the amplifying unit 46, and stained in the control unit 32. A detection signal is output.

制御部32は汚れ警報部としての機能を備え、増幅部46からの汚れ検出信号に基づく汚れレベルが所定の汚れ閾値を超えた場合に、伝送部34を介して、自己アドレスに一致する呼出電文に対する応答電文に汚れ警報情報を設定して防災受信盤10にへ送信する制御を行う。   The control unit 32 has a function as a contamination alarm unit, and when the contamination level based on the contamination detection signal from the amplification unit 46 exceeds a predetermined contamination threshold, a call message that matches the self-address via the transmission unit 34. Control is performed to set the dirt alarm information in the response message to and send it to the disaster prevention receiving board 10.

また、制御部32は汚れ予告警報部としての機能を備え、増幅部46からの汚れ検出信号に基づく汚れレベルが汚れ閾値より小さい所定の汚れ予告閾値を超えた場合に、伝送部34を介して、自己アドレスに一致する呼出電文に対する応答電文に汚れ予告警報情報を設定して防災受信盤10へ送信する制御を行う。   Further, the control unit 32 has a function as a dirt notice warning unit, and when the dirt level based on the dirt detection signal from the amplification unit 46 exceeds a predetermined dirt notice threshold value which is smaller than the dirt threshold value, the control unit 32 is connected via the transmission unit 34. Then, control is performed to set the dirt notice warning information in the response message to the call message that matches the self address and to transmit it to the disaster prevention receiving board 10.

ここで、制御部32は増幅部46からの汚れ検出信号に基づき汚れ度合を示す透光性窓36の減光率を求め、この減光率を汚れレベルとして汚れ予告警報及び汚れ警報の判定処理を行う。制御部32による透光性窓36の減光率の算出は、透光性窓36に汚れがない火災監視開始時又は透光性窓36の清掃終了時の汚れ検出信号のレベルを基準レベルErとして記憶し、増幅部46から検出レベルEの汚れ検出信号が得られる毎に、減光率Dを
D=1−(E/Er)
として算出する。
Here, the control unit 32 obtains the light attenuation rate of the translucent window 36 indicating the degree of contamination based on the contamination detection signal from the amplification unit 46, and uses this light attenuation rate as the contamination level to determine the contamination warning warning and the contamination alarm determination processing. I do. The calculation of the light reduction rate of the translucent window 36 by the control unit 32 is based on the level of the dirt detection signal at the start of fire monitoring when the translucent window 36 is not soiled or at the end of cleaning of the translucent window 36 as the reference level Er. Each time a dirt detection signal of detection level E is obtained from the amplifying unit 46, the light attenuation rate D is set to D = 1− (E / Er)
Calculate as

このようにして算出される減光率Dは、透光性窓36の汚れ度合の増加に比例して増加する値であり、以下の説明では、減光率Dを汚れレベルDとして説明する。   The light attenuation rate D calculated in this way is a value that increases in proportion to the increase in the degree of contamination of the translucent window 36. In the following description, the light attenuation rate D will be described as the contamination level D.

[火災検出器の汚れ予告閾値の変更制御]
図3に示した火災検出器16の制御部32には、更に、汚れ予測部48と閾値変更部50の機能が設けられる。
[Change control of threshold value for fire detector contamination]
The control unit 32 of the fire detector 16 shown in FIG. 3 is further provided with functions of a dirt prediction unit 48 and a threshold value changing unit 50.

汚れ予測部48は、所定の予測周期Ts毎に、増幅部46の汚れ検出信号に基づく汚れレベルDの変化率ΔDを検出し、汚れレベルの変化率ΔDに基づいて、予め設定した定期清掃の予定時点(予定期日)の汚れレベルDeを予測する。また、閾値変更部50は、汚れ予測部48で予測した汚れレベルDeに応じて汚れ予告閾値Dthを変更する。   The dirt prediction unit 48 detects the change rate ΔD of the dirt level D based on the dirt detection signal of the amplification unit 46 every predetermined prediction cycle Ts, and based on the change rate ΔD of the dirt level, a predetermined periodic cleaning is performed. The dirt level De at the scheduled time (scheduled date) is predicted. Further, the threshold value changing unit 50 changes the dirt notice threshold value Dth according to the dirt level De predicted by the dirt prediction unit 48.

図5は汚れ予測に基づく汚れ予告閾値の変更を示したタイムチャートである。図5は横軸に日数をとり、縦軸に汚れレベルDをとっており、透光性窓36に汚れのない監視開始日を1日目とし、目安としての定期清掃周期に相当する予定周期Tcを6ケ月に相当する180日とし、これにより定期清掃予定日を監視開始日から180日目としている。また、予測周期TsとしてTs=30日を設定しており、180日目の定期清掃予定日までの予測回数nはn=6回となる。なお、定期清掃周期Tc及び予測周期Tsは一例であり、必要に応じて適宜の日数又は期間、或いは回数等を設定することができる。   FIG. 5 is a time chart showing the change of the dirt notice threshold based on the dirt prediction. In FIG. 5, the horizontal axis represents the number of days, the vertical axis represents the dirt level D, and the monitoring start date when the light-transmitting window 36 is free of dirt is defined as the first day, and a scheduled period corresponding to a regular cleaning period as a guideline. Tc is set to 180 days corresponding to 6 months, and the scheduled scheduled cleaning date is set to the 180th day from the monitoring start date. In addition, Ts = 30 days is set as the prediction cycle Ts, and the predicted number n until the scheduled scheduled cleaning date of the 180th day is n = 6. Note that the regular cleaning cycle Tc and the prediction cycle Ts are examples, and an appropriate number of days, a period, or the number of times can be set as necessary.

また、図5の例にあっては、経験的な汚れ度合の変化から直線60の変化を想定し、直線60の想定による180日後の清掃予定日の汚れレベルを汚れ予告閾値Dthとして初期設定している。   In the example of FIG. 5, assuming a change in the straight line 60 based on an empirical change in the degree of dirt, the dirt level on the scheduled cleaning day 180 days after the assumption of the straight line 60 is initially set as the dirt notice threshold Dth. ing.

このため直線60で想定した推移に沿って汚れレベルの変化が起きると、定期清掃予定日で汚れレベルDが汚れ予告閾値Dthに達して汚れ予告警報を行うことができるが、実際の汚れレベルの変化は火災検出器16の設置場所等により様々であり、汚れレベルDが必ずしも定期清掃予定日に汚れ予告閾値Dthに到達するとは言えない。   Therefore, when the dirt level changes along the transition assumed by the straight line 60, the dirt level D reaches the dirt notice threshold Dth on the scheduled scheduled cleaning date, and a dirt notice alarm can be issued. The change varies depending on the installation location of the fire detector 16 and the like, and it cannot be said that the dirt level D necessarily reaches the dirt notice threshold Dth on the scheduled scheduled cleaning date.

そこで本実施形態にあっては、予測周期Ts毎に、定期清掃予定日での汚れレベルDeを予測して汚れ予告閾値Dthを変更する。   Therefore, in the present embodiment, the dirt notice threshold value Dth is changed by predicting the dirt level De on the scheduled scheduled cleaning date every prediction cycle Ts.

例えば図5に示すように、最初の予測周期Tsが経過した30日目の汚れレベルが直線60で想定した汚れレベルを超える汚れレベルD1であったとすると、開始日の汚れレベルD=0と30日目の汚れレベルD1を結んだ直線62の延長線により150日後(180日目)の定期清掃予定日の汚れレベルDe1を予測し、予測した汚れレベルDe1を新たな汚れ予告閾値Dth1に設定する。即ち、初期設定した汚れ予告閾値Dthを汚れ予測に基づき汚れ予告閾値Dth1に変更する。   For example, as shown in FIG. 5, if the dirt level on the 30th day after the first prediction cycle Ts has passed is a dirt level D1 exceeding the dirt level assumed by the straight line 60, the dirt level D = 0 and 30 on the start date. The dirt level De1 of the scheduled scheduled cleaning date 150 days later (180th day) is predicted by an extension of the straight line 62 connecting the day dirt level D1, and the predicted dirt level De1 is set as a new dirt notice threshold Dth1. . That is, the initially set dirt notice threshold Dth is changed to the dirt notice threshold Dth1 based on the dirt prediction.

続いて次の予測周期Tsが経過した60日目の汚れレベルが直線60で想定した汚れレベルを超える汚れレベルD2であったとすると、前回の汚れレベルD1と今回の汚れレベルD2を結んだ直線64の延長線による120日後(180日目)の定期清掃予定日の汚れレベルDe2を求め、予測した汚れレベルDe2を新たな汚れ予告閾値Dth2に設定する。即ち、前回設定した汚れ予告閾値Dth1を新たな汚れ予測に基づき汚れ予告閾値Dth2に変更する。   Subsequently, assuming that the dirt level on the 60th day when the next prediction cycle Ts has passed is a dirt level D2 that exceeds the dirt level assumed on the straight line 60, a straight line 64 connecting the previous dirt level D1 and the current dirt level D2. The dirt level De2 is obtained 120 days after the extension line (180th day), and the estimated dirt level De2 is set as a new dirt notice threshold Dth2. That is, the previously set dirt notice threshold value Dth1 is changed to the dirt notice threshold value Dth2 based on the new dirt prediction.

以下同様に、予測周期Ts=30日が経過するごとに、定期清掃予定日の汚れレベルを予測して汚れ予告閾値を変更する制御を繰り返す。   Similarly, every time the prediction cycle Ts = 30 days elapses, the control for predicting the dirt level on the scheduled scheduled cleaning date and changing the dirt notice threshold value is repeated.

本実施形態の汚れ予測部48は、図5に示した汚れ予測を実現するため、目安とする定期清掃周期に相当する予定周期をTc、汚れ予測周期をTs、汚れ予測回数をn回、(n・Ts)時点で検出した汚れレベルをD、(n・Ts)時点における汚れレベル変化率をΔDとした場合、定期清掃予定時点の汚れレベル予測値Deを次式で算出する。
De=D+ΔD(Tc−n・Ts) (式1)
ここで、汚れ予測周期Tsの汚れレベル変化率ΔDは、前回の汚れレベルをDn-1、今回の汚れレベルをDnとすると
ΔD=(Dn−Dn-1)/Ts (式2)
で与えられる。
In order to realize the dirt prediction shown in FIG. 5, the dirt prediction unit 48 of the present embodiment has a scheduled period corresponding to a regular cleaning cycle as a guide, Tc, a dirt prediction period Ts, and a dirt prediction count n times ( When the contamination level detected at time (n · Ts) is D, and the contamination level change rate at time (n · Ts) is ΔD, the estimated contamination level De at the scheduled scheduled cleaning is calculated by the following equation.
De = D + ΔD (Tc−n · Ts) (Formula 1)
Here, the contamination level change rate ΔD of the contamination prediction period Ts is expressed as follows: ΔD = (D n −D n−1 ) / Ts (formula 2) where D n−1 is the previous contamination level and D n is the current contamination level. )
Given in.

また図5は汚れレベルが想定した直線60を上回る場合を例にとっているが、予測した汚れレベルに基づく汚れ予告閾値が上限閾値以上になる場合には、上限閾値を設定する。また、予測した汚れレベルに基づき算出した予告閾値が初期のDthを以下になる場合にはDth(初期の閾値=下限閾値)を設定する。   FIG. 5 shows an example in which the dirt level exceeds the assumed straight line 60. However, when the dirt notice threshold based on the predicted dirt level is equal to or higher than the upper limit threshold, an upper limit threshold is set. Further, when the notice threshold calculated based on the predicted dirt level is less than or equal to the initial Dth, Dth (initial threshold = lower threshold) is set.

目安とした定期清掃予定日である180日目以降も、これを繰り返す。この際、次の180日を予定周期Tcとし、予測回数nもリセットする。汚れレベルDeはリセットしない。   This is repeated after the 180th day, which is the scheduled scheduled cleaning date. At this time, the next 180 days is set as the scheduled cycle Tc, and the predicted number n is also reset. The dirt level De is not reset.

本実施形態によれば、トンネル内に設置している火災検出器16の汚れ度合は設置場所や風向き等により異なるが、汚れレベルの予測に基づく汚れ予告閾値の変更により、予告汚れ警報が出力される時期が比較的均一化され不定期の不要な清掃作業を削減し、作業計画が立てやすくなる。   According to the present embodiment, the degree of contamination of the fire detector 16 installed in the tunnel varies depending on the installation location, the wind direction, etc., but a warning contamination warning is output by changing the contamination warning threshold based on the prediction of the contamination level. The time is relatively uniform, and unnecessary cleaning work is reduced, making it easier to plan work.

また、閾値変更部50は、前述したとおり汚れ予告閾値Dthの上限閾値(Dth)maxを設定しており、汚れ予測部48で予測した汚れレベルが上限閾値(Dth)max以上となった場合、汚れ予告閾値を上限閾値(Dth)maxに固定する。この汚れ予告の上限閾値(Dth)maxは、汚れ警報を判定する汚れ閾値を超えない値とする。これにより透光性窓36の汚れ進行度合が速い場合でも、不必要に汚れ予告閾値を高い値に変更してしまうことを防止する。このため、汚れ予告警報は必ず汚れ警報以前に出される。   Further, the threshold value changing unit 50 sets the upper limit threshold value (Dth) max of the dirt notice threshold value Dth as described above, and when the dirt level predicted by the dirt prediction unit 48 is equal to or higher than the upper limit threshold value (Dth) max, The dirt notice threshold is fixed to the upper limit threshold (Dth) max. The upper limit threshold value (Dth) max for the dirt notice is set to a value that does not exceed the dirt threshold value for judging the dirt alarm. Thereby, even when the degree of dirt progress of the translucent window 36 is fast, it is possible to prevent the dirt notice threshold value from being unnecessarily changed to a high value. For this reason, the dirt notice warning is always issued before the dirt alarm.

図6は火災検出器による汚れ閾値変更制御を示したフローチャートである。図6に示すように、火災検出器16の制御部32はステップS1で定期清掃周期(予定周期)Tc、汚れ予測周期Ts、予測回数n=0、予測回数上限を設定する。この定期清掃周期Tcと汚れ予測周期Tsの設定は、例えば防災受信盤10から全ての火災検出器16に一括設定電文を送信して行うことによっても可能であり、このようにすれば、必要に応じて定期清掃周期Tcと汚れ予測周期Tsを任意に変更することも可能である。   FIG. 6 is a flowchart showing the contamination threshold value change control by the fire detector. As shown in FIG. 6, the control unit 32 of the fire detector 16 sets a regular cleaning cycle (scheduled cycle) Tc, a predicted contamination cycle Ts, a predicted number n = 0, and a predicted number upper limit in step S1. The setting of the periodic cleaning cycle Tc and the predicted contamination cycle Ts can be performed by, for example, transmitting a batch setting message from the disaster prevention receiving board 10 to all the fire detectors 16. Accordingly, it is possible to arbitrarily change the regular cleaning cycle Tc and the dirt prediction cycle Ts.

続いて制御部32は防災受信盤10からの監視開始電文等によりステップS2で監視開始を判別すると火災監視動作を開始しステップS3に進む。ステップS3では予測周期Tcの経過による汚れ予測タイミングへの到達を判別するとステップS4に進んで予測回数nを1回増加し、続いてステップS5に進んで前記(式2)により汚れ予測周期(n・Ts)時点の汚れ変化率ΔDを算出し、続いてステップS6で前記(式1)により定期清掃予定日の汚れレベルDeを予測する。   Then, if the control part 32 discriminate | determines the monitoring start by step S2 by the monitoring start message from the disaster prevention receiving board 10, etc., a fire monitoring operation | movement will be started and it will progress to step S3. In step S3, when it is determined that the predicted dirt timing has been reached due to the elapse of the predicted period Tc, the process proceeds to step S4, where the number of times of prediction n is increased by 1. Then, the process proceeds to step S5 and the predicted dirt period (n Ts) The dirt change rate ΔD at the time point is calculated, and then the dirt level De on the scheduled scheduled cleaning date is predicted by (Formula 1) in step S6.

続いてステップS7に進み、予測した汚れレベルDeが上限閾値(Dth)max未満であることを判別すると、ステップS8で予測した汚れレベルに現在設定している汚れ予告閾値Dthを変更する。一方、ステップS7で、予測した汚れレベルDeが上限閾値(Dth)max以上であることを判別すると、ステップS9で現在設定している汚れ予告閾値Dthを上限閾値(Dth)maxに変更する。   Subsequently, the process proceeds to step S7, and when it is determined that the predicted dirt level De is less than the upper threshold (Dth) max, the dirt notice threshold Dth currently set to the dirt level predicted in step S8 is changed. On the other hand, if it is determined in step S7 that the predicted dirt level De is equal to or higher than the upper limit threshold (Dth) max, the dirt notice threshold Dth currently set in step S9 is changed to the upper limit threshold (Dth) max.

続いてステップS10で予測回数nの上限到達を判別するまではステップS3からの処理を繰り返しており、予測回数nの上限に達するとステップS11で予測回数nをn=0にリセットしたうえでステップS3からの処理を同様に継続する。   Subsequently, the processing from step S3 is repeated until the upper limit of the number of predictions n is determined in step S10, and when the upper limit of the number of predictions n is reached, the number of predictions n is reset to n = 0 in step S11. The processing from S3 is similarly continued.

なお、定期メンテナンス等により清掃を行った場合には、防災受信盤10は所定のコマンドにより再開を指示してくることから、火災検出器16は再開指示のコマンド受信を検出すると、ステップS1からの処理を再開する。   In addition, when cleaning is performed by regular maintenance or the like, the disaster prevention reception panel 10 instructs resumption by a predetermined command. Therefore, when the fire detector 16 detects reception of a resumption instruction command, the process starts from step S1. Resume processing.

[本発明の変形例]
(汚れ予測による汚れ予告閾値の変更)
上記の汚れ予測による汚れ予告閾値の変更は、前記(式1)により汚れレベルの変化率に基づく直線近似で求めているが、他の実施形態として、予測周期毎に汚れレベルが想定した汚れレベルを上回った場合は、所定値だけ汚れ予告閾値を増加し、また、想定した汚れレベルを下回った場合は、所定値だけ汚れ予告閾値を減少させるように制御しても良い。
[Modification of the present invention]
(Change of dirt notice threshold by dirt prediction)
The change of the dirt notice threshold by the dirt prediction is obtained by linear approximation based on the change rate of the dirt level according to (Equation 1), but as another embodiment, the dirt level assumed for the dirt level for each prediction cycle is as follows. If the value is higher than, the dirt notice threshold value is increased by a predetermined value, and if it is below the assumed dirt level, the dirt notice threshold value may be decreased by a predetermined value.

(汚れ予告閾値の変更)
上記の実施形態は、汚れレベルの変化率から予測した定期清掃予定日の汚れレベルを新たな汚れ予告閾値に変更しているが、予測した汚れレベルより所定値だけ低くした汚れレベルを汚れ予告閾値に変更しても良い。このように予測した汚れレベルより低い汚れ予告閾値に変更することで、定期清掃予定日の前に汚れ予告警報が出るようにすることを可能とする。
(Change of dirt notice threshold)
In the above-described embodiment, the dirt level predicted on the scheduled cleaning date based on the change rate of the dirt level is changed to the new dirt notice threshold, but the dirt level that is lower than the predicted dirt level by a predetermined value is set to the dirt notice threshold. You may change to By changing to a dirt notice threshold value lower than the predicted dirt level in this way, it becomes possible to issue a dirt notice warning before the scheduled scheduled cleaning date.

(火災検出器)
上記の実施形態は2波長方式の火災検出器を例にとっているが、他の方式でも良く、例えば、前述した2波長に加え、CO2の共鳴放射帯である4.4〜4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出器としても良い。
(Fire detector)
In the above embodiment, a two-wavelength type fire detector is taken as an example, but other methods may be used. For example, in addition to the above-described two wavelengths, the resonance emission band of CO 2 is in the 4.4 to 4.5 μm band. On the other hand, radiation energy in a wavelength band on the short wavelength side, for example, in the vicinity of 3.8 μm, is detected by a method similar to the two-wavelength method, and the presence or absence of flame is determined by the relative ratio of each received light signal in these three wavelength bands. A wavelength flame detector may be used.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
The present invention includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12a,12b:伝送回線
16:火災検出器
16a,16b:火災検出部
18,32:制御部
20a,20b,34:伝送部
36:透光性窓
38a,38b:センサ部
40a,40b:増幅処理部
42:試験光源部
44:汚れ受光部
46:増幅部
48:汚れ予測部
50:閾値変更部
DESCRIPTION OF SYMBOLS 1a: Uplink tunnel 1b: Downlink tunnel 10: Disaster prevention receiving board 12a, 12b: Transmission line 16: Fire detector 16a, 16b: Fire detection part 18, 32: Control part 20a, 20b, 34: Transmission part 36: Transparent Optical windows 38a, 38b: Sensor units 40a, 40b: Amplification processing unit 42: Test light source unit 44: Dirt light receiving unit 46: Amplification unit 48: Dirt prediction unit 50: Threshold change unit

Claims (4)

防災受信盤に信号線接続された伝送部と、
透光性窓を介して火災からの放射線を検出する火災検出部と、
前記透光性窓の汚れ度合を示す汚れレベルを検出する汚れ検出部と、
前記汚れ検出部で検出した汚れレベルが所定の汚れ閾値を超えた場合に、汚れ警報信号を前記防災受信盤に送信する汚れ警報部と、
前記汚れ検出部で検出した汚れレベルが前記汚れ閾値より小さい所定の汚れ予告閾値を超え且つ前記汚れ閾値未満の場合に、汚れ予告警報信号を前記防災受信盤に送信する汚れ予告警報部と、
を備えた火災検出器に於いて、
所定の予測周期毎に、前記汚れ検出部で検出した汚れレベルの変化を検出し、当該汚れレベルの変化に基づいて予め設定した予定時点の汚れレベルを予測する汚れ予測部と、
前記汚れ予測部で予測した汚れレベルに応じて前記汚れ予告閾値を変更する閾値変更部と、
を設けたことを特徴とする火災検出器。
A transmission unit connected to a signal line to the disaster prevention receiver,
A fire detection unit for detecting radiation from the fire through the translucent window;
A dirt detecting unit for detecting a dirt level indicating a degree of dirt of the translucent window;
When the contamination level detected by the contamination detection unit exceeds a predetermined contamination threshold, a contamination alarm unit that transmits a contamination alarm signal to the disaster prevention receiver,
When the dirt level detected by the dirt detector exceeds a predetermined dirt notice threshold smaller than the dirt threshold and less than the dirt threshold, a dirt notice warning part transmits a dirt notice warning signal to the disaster prevention receiving board;
In a fire detector with
A stain prediction unit that detects a change in the stain level detected by the stain detection unit for each predetermined prediction cycle, and predicts a stain level at a preset time point based on the change in the stain level;
A threshold changing unit for changing the dirt notice threshold according to the dirt level predicted by the dirt predicting unit;
A fire detector characterized by the provision of
請求項1記載の火災検出器に於いて、前記汚れ予測部は、前記予定時点までの予定周期をTc、汚れ予測周期をTs、汚れ予測周期Tsで検出した汚れレベルをD、汚れ予測周期Tsの汚れレベル変化率をΔD、汚れ予測回数をn回、とした場合、定期清掃予定時点の汚れレベル予測値Deを
De=D+ΔD(Tc−n・Ts)
として算出することを特徴とする火災検出器。
2. The fire detector according to claim 1, wherein the contamination predicting unit is configured such that a predetermined cycle up to the scheduled time is Tc, a contamination prediction cycle is Ts, a contamination level detected by the contamination prediction cycle Ts is D, and a contamination prediction cycle Ts. When the dirt level change rate is ΔD and the estimated number of times of dirt is n, the predicted dirt level De at the scheduled scheduled cleaning is De = D + ΔD (Tc−n · Ts).
Fire detector characterized by calculating as:
請求項1記載の火災検出器に於いて、前記閾値変更部は、前記汚れ予告閾値の上限閾値を設定し、前記汚れ予測部で予測した汚れレベルが前記上限閾値を超えた場合、前記汚れ予告閾値を前記上限閾値に変更することを特徴とする火災検出器。
2. The fire detector according to claim 1, wherein the threshold value changing unit sets an upper limit threshold value of the dirt notice threshold value, and the dirt notice value when the dirt level predicted by the dirt predicting unit exceeds the upper limit threshold value. A fire detector, wherein a threshold value is changed to the upper threshold value.
請求項1記載の火災検出器に於いて、
前記汚れ検出部は、
前記透光性窓に外部空間を経由して試験光を周期的に照射する試験光源部と、
前記透光性窓を介して入射した前記試験光を受光して試験受光信号を出力する試験受光部と、
汚れ監視を開始したとき又は再開したときの前記試験受光信号のレベルを基準として、前記点検受光部から試験受光信号が得られる毎に前記汚れレベルとして前記基準に対する減光率を検出することを特徴とする火災検出器。


The fire detector according to claim 1, wherein
The dirt detector
A test light source unit that periodically irradiates the translucent window with test light via an external space;
A test light receiving unit that receives the test light incident through the translucent window and outputs a test light reception signal;
A light attenuation rate with respect to the reference is detected as the contamination level every time a test light reception signal is obtained from the inspection light receiving unit with reference to the level of the test light reception signal when the contamination monitoring is started or restarted. And fire detector.


JP2015172484A 2015-09-02 2015-09-02 Fire detector Active JP6605885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172484A JP6605885B2 (en) 2015-09-02 2015-09-02 Fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172484A JP6605885B2 (en) 2015-09-02 2015-09-02 Fire detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019116157A Division JP6811512B2 (en) 2019-06-24 2019-06-24 Fire detector

Publications (2)

Publication Number Publication Date
JP2017049799A true JP2017049799A (en) 2017-03-09
JP6605885B2 JP6605885B2 (en) 2019-11-13

Family

ID=58279450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172484A Active JP6605885B2 (en) 2015-09-02 2015-09-02 Fire detector

Country Status (1)

Country Link
JP (1) JP6605885B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168624A1 (en) 2017-03-15 2018-09-20 グローリー株式会社 Paper sheet handling device and paper sheet handling method
CN108922129A (en) * 2018-06-25 2018-11-30 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value
JP2018197990A (en) * 2017-05-24 2018-12-13 ホーチキ株式会社 Disaster prevention system
CN109382766A (en) * 2017-08-10 2019-02-26 株式会社迪思科 Processing unit (plant)
JP2019067246A (en) * 2017-10-03 2019-04-25 深田工業株式会社 Optical monitoring system
JP2019185694A (en) * 2018-04-18 2019-10-24 ホーチキ株式会社 Flame detection device
JP2019185466A (en) * 2018-04-12 2019-10-24 ホーチキ株式会社 Management system
JP2019194826A (en) * 2018-04-26 2019-11-07 ホーチキ株式会社 Flame detector
JP2020187401A (en) * 2019-05-10 2020-11-19 ホーチキ株式会社 Monitoring system and detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315285A (en) * 1999-04-30 2000-11-14 Nohmi Bosai Ltd Fire alarm and disaster prevention system
JP2001101541A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Fire sensor
JP2003016546A (en) * 2001-06-29 2003-01-17 Nittan Co Ltd Photoelectric separation type smoke detector and disaster prevention system
JP2003067861A (en) * 2001-08-24 2003-03-07 Hochiki Corp Disaster prevention receiving panel for tunnel
JP2006309514A (en) * 2005-04-28 2006-11-09 New Cosmos Electric Corp Fire alarm and arithmetic method for exchange period of smoke sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315285A (en) * 1999-04-30 2000-11-14 Nohmi Bosai Ltd Fire alarm and disaster prevention system
JP2001101541A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Fire sensor
JP2003016546A (en) * 2001-06-29 2003-01-17 Nittan Co Ltd Photoelectric separation type smoke detector and disaster prevention system
JP2003067861A (en) * 2001-08-24 2003-03-07 Hochiki Corp Disaster prevention receiving panel for tunnel
JP2006309514A (en) * 2005-04-28 2006-11-09 New Cosmos Electric Corp Fire alarm and arithmetic method for exchange period of smoke sensor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168624A1 (en) 2017-03-15 2018-09-20 グローリー株式会社 Paper sheet handling device and paper sheet handling method
JP2021119539A (en) * 2017-05-24 2021-08-12 ホーチキ株式会社 Disaster prevention system
JP7431284B2 (en) 2017-05-24 2024-02-14 ホーチキ株式会社 disaster prevention system
JP2018197990A (en) * 2017-05-24 2018-12-13 ホーチキ株式会社 Disaster prevention system
JP2022121650A (en) * 2017-05-24 2022-08-19 ホーチキ株式会社 disaster prevention system
JP7100743B2 (en) 2017-05-24 2022-07-13 ホーチキ株式会社 Disaster prevention system
CN109382766A (en) * 2017-08-10 2019-02-26 株式会社迪思科 Processing unit (plant)
JP2019034347A (en) * 2017-08-10 2019-03-07 株式会社ディスコ Processing device
JP2019067246A (en) * 2017-10-03 2019-04-25 深田工業株式会社 Optical monitoring system
JP2019185466A (en) * 2018-04-12 2019-10-24 ホーチキ株式会社 Management system
JP7066493B2 (en) 2018-04-12 2022-05-13 ホーチキ株式会社 Management system
JP7032982B2 (en) 2018-04-18 2022-03-09 ホーチキ株式会社 Flame detector
JP2019185694A (en) * 2018-04-18 2019-10-24 ホーチキ株式会社 Flame detection device
JP2019194826A (en) * 2018-04-26 2019-11-07 ホーチキ株式会社 Flame detector
JP7057228B2 (en) 2018-04-26 2022-04-19 ホーチキ株式会社 Flame detector
CN108922129B (en) * 2018-06-25 2019-06-14 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value
CN108922129A (en) * 2018-06-25 2018-11-30 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value
JP2020187401A (en) * 2019-05-10 2020-11-19 ホーチキ株式会社 Monitoring system and detector
JP7358071B2 (en) 2019-05-10 2023-10-10 ホーチキ株式会社 Monitoring system

Also Published As

Publication number Publication date
JP6605885B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6605885B2 (en) Fire detector
JP7432658B2 (en) disaster prevention system
JP6856427B2 (en) Tunnel disaster prevention system
US9520041B2 (en) Monitoring intrusion in an area using WIFI-enabled devices
JP4353989B2 (en) Intrusion detection system
JP2018169893A5 (en)
CN102708647A (en) Image and multi-band infrared-ultraviolet compound fire disaster detection system and method
JP2021152937A (en) Disaster prevention system
JP2018136726A5 (en)
JP6811512B2 (en) Fire detector
JP2024032930A (en) disaster prevention system
JP2023134692A (en) Disaster prevention system and fire detector
JP5530227B2 (en) Fire detector
US20220148403A1 (en) Smoke detector sensitivity for building health monitoring
JP2008077612A (en) Crime prevention system
KR101393238B1 (en) Method for detecting smoke or fire by using infra-red laser in a wide space
KR20210104390A (en) The alarm system of toxic gas
JP3912738B2 (en) Tunnel disaster prevention system and flame detector
JP7358071B2 (en) Monitoring system
JP2024059213A (en) Fire detector and system therewith
CN118537986A (en) Environment detection device
JP2831655B2 (en) Differential fire alarm
JP2023133740A (en) fire alarm system
JP2023092215A (en) Alarm unit, setting method, and program
JP2020187400A (en) Monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6605885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150