JP2006309514A - Fire alarm and arithmetic method for exchange period of smoke sensor - Google Patents

Fire alarm and arithmetic method for exchange period of smoke sensor Download PDF

Info

Publication number
JP2006309514A
JP2006309514A JP2005131424A JP2005131424A JP2006309514A JP 2006309514 A JP2006309514 A JP 2006309514A JP 2005131424 A JP2005131424 A JP 2005131424A JP 2005131424 A JP2005131424 A JP 2005131424A JP 2006309514 A JP2006309514 A JP 2006309514A
Authority
JP
Japan
Prior art keywords
sensitivity
sensor
smoke
smoke sensor
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131424A
Other languages
Japanese (ja)
Other versions
JP4679225B2 (en
Inventor
Yoshinori Nishigami
佳典 西上
Kenichi Kato
健一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
New Cosmos Electric Co Ltd
Original Assignee
Nohmi Bosai Ltd
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd, New Cosmos Electric Co Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2005131424A priority Critical patent/JP4679225B2/en
Publication of JP2006309514A publication Critical patent/JP2006309514A/en
Application granted granted Critical
Publication of JP4679225B2 publication Critical patent/JP4679225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire alarm for clarifying the exchange period of a smoke sensor, and for reducing maintenance costs or labors, and the arithmetic method of the exchange period of the smoke sensor. <P>SOLUTION: The fire alarm X is provided with a scattered light type smoke sensor S having a smoke sensing function, an alarm means 10 for emitting alarm when smoke with a predetermined value or more is detected by the scattered light type smoke sensor S, an exchangeable power source part 20 for supplying a driving power to the scattered light type sensor S, a sensitivity checking means 30 for checking the sensor sensitivity of the scattered light type smoke sensor S when any smoke does not exist, a sensitivity history storing means 40 for storing the sensor sensitivity acquired by the sensitivity checking means 30 and a means 50 for performing the arithmetic operation of the exchange period of the scattered light type smoke sensor S based on the sensor sensitivity stored in the sensitivity history storing means 40. This method for performing the arithmetic operation of the exchange period of the scattered light type smoke sensor S is executed when exchanging the power source part 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、煙感知機能を有する煙センサと、前記煙センサが所定値以上の煙を検知したときに警報を発する警報手段と、前記煙センサに駆動電力を供給すると共に交換可能な電源部とを備えた火災警報器、および、前記煙センサの交換時期の演算方法に関する。   The present invention includes a smoke sensor having a smoke detection function, alarm means for issuing an alarm when the smoke sensor detects smoke of a predetermined value or more, a power supply unit that supplies drive power to the smoke sensor and is replaceable And a method for calculating the replacement time of the smoke sensor.

火災警報器は、例えば屋内の火災等に起因する煙の発生を煙センサにより検知し、警報を発するように構成してある。このように警報を発することで、火災の初期消火が可能となり、被害を最小限に抑えることができる。
この火災警報器には、煙センサを駆動する電源が必要である。電源は、外部電源式および電池式がある。
外部電源式の火災警報器は、ケーブル配線やコンセント設置等の電源供給工事が必要となる場合があり、このときには、火災警報器自身の設置以外に、電源供給工事のコストや労力を費やすことになる。そのため、火災警報器の普及促進の観点から、簡便に設置できる電池式の火災警報器が好ましい。
The fire alarm is configured to detect an occurrence of smoke due to, for example, an indoor fire using a smoke sensor and issue an alarm. By issuing an alarm in this way, it is possible to extinguish the initial fire and minimize damage.
This fire alarm requires a power source for driving the smoke sensor. The power source includes an external power source type and a battery type.
External power fire alarms may require power supply work such as cable wiring and outlet installation. In this case, in addition to installing the fire alarm itself, the power supply work cost and labor may be spent. Become. Therefore, from the viewpoint of promoting the spread of fire alarms, battery-type fire alarms that can be easily installed are preferred.

また、煙センサは、センサ素子表面の汚れやセンサ素子の劣化等によりセンサ感度が経年変化する。このため、煙が存在しない状況下において定期的なセンサ感度点検作業を行い、煙センサが正常に稼動するかを検査する必要がある。これにより、センサ感度の正常な煙センサを使用して、確実に火災を検知できる火災警報器となる。   In addition, the sensor sensitivity of the smoke sensor changes over time due to dirt on the sensor element surface, deterioration of the sensor element, and the like. For this reason, it is necessary to perform periodic sensor sensitivity check work in a situation where no smoke is present, and to check whether the smoke sensor is operating normally. Thereby, it becomes a fire alarm which can detect a fire reliably using a smoke sensor with a normal sensor sensitivity.

尚、上記火災警報器は一般的な装置構成を有するため、特許文献は示さない。   In addition, since the said fire alarm has a general apparatus structure, a patent document is not shown.

上述した電池式の火災警報器において、できるだけ設置場所を選ばないようにするため、火災警報器の小型化が望まれる。そのため、使用できる電池の本数をできるだけ制限する必要がある。この場合、長期に亘って火災警報器を継続使用するためには電池交換が必要となる。
また、煙センサは、定期的な感度点検作業を行い、ある一定のセンサ感度を保持しなくなると、センサ寿命が尽きたと判断し、煙センサは交換することになる。
ここで、電池式の火災警報器においては、煙センサおよび電池の交換は、通常、業者が行う。
In the above-described battery-type fire alarm device, it is desired to reduce the size of the fire alarm device so that the installation location is selected as little as possible. Therefore, it is necessary to limit the number of batteries that can be used as much as possible. In this case, it is necessary to replace the battery in order to continuously use the fire alarm for a long time.
In addition, the smoke sensor periodically performs a sensitivity check operation. When the smoke sensor does not maintain a certain sensor sensitivity, it is determined that the sensor life has expired, and the smoke sensor is replaced.
Here, in the battery-type fire alarm device, the smoke sensor and the battery are normally replaced by a trader.

一般に、電池寿命と煙センサ寿命とは一致しない。例えば、業者が電池交換を行う際に、同時に煙センサの感度点検を行うことがある。この点検の結果、正常なセンサ感度を有していると判断された場合には、次回の電池交換時までセンサ寿命を有するケースと、次回の電池交換時までにセンサ寿命が尽きるケースがある。つまり、煙センサの交換時期はセンサ感度点検作業時には不明である。
後者のケースでは、センサ寿命が尽きたときにセンサ感度異常の報知により煙センサの交換を行うことになる。このとき、煙センサ交換と電池交換とが異なったタイミングで行われる。そのため、これらの交換作業が別途発生するため、その都度、メンテナンスコストや労力を費やすことになるという問題点があった。
In general, battery life and smoke sensor life do not match. For example, when a supplier replaces a battery, the smoke sensor may be checked for sensitivity at the same time. If it is determined that the sensor sensitivity is normal as a result of the inspection, there are cases where the sensor life is reached until the next battery replacement and cases where the sensor life is exhausted until the next battery replacement. That is, the replacement time of the smoke sensor is unknown during the sensor sensitivity check work.
In the latter case, when the sensor lifetime is exhausted, the smoke sensor is replaced by notifying the sensor sensitivity abnormality. At this time, the smoke sensor replacement and the battery replacement are performed at different timings. Therefore, since these replacement operations are separately generated, there is a problem that maintenance costs and labor are consumed each time.

従って、本発明の目的は、煙センサの交換時期を明確にし、メンテナンスコストや労力を削減できる火災警報器、および、煙センサの交換時期演算方法を提供することにある。   Accordingly, an object of the present invention is to provide a fire alarm and a smoke sensor replacement time calculation method that can clarify the replacement time of the smoke sensor and reduce maintenance costs and labor.

上記目的を達成するための本発明に係る火災警報器は、煙感知機能を有する煙センサと、前記煙センサが所定値以上の煙を検知したときに警報を発する警報手段と、前記煙センサに駆動電力を供給すると共に交換可能な電源部とを備えた火災警報器であって、その特徴構成は、煙が存在しない時の前記煙センサのセンサ感度を点検する感度点検手段と、前記感度点検手段により得られたセンサ感度を記憶する感度履歴記憶手段と、前記感度履歴記憶手段に記憶されたセンサ感度を基に前記煙センサの交換時期を演算する交換時期演算手段とを備えた点にある。   In order to achieve the above object, a fire alarm according to the present invention includes a smoke sensor having a smoke detection function, alarm means for issuing an alarm when the smoke sensor detects smoke of a predetermined value or more, and the smoke sensor. A fire alarm provided with a replaceable power supply unit for supplying driving power, the characteristic configuration of which is a sensitivity check means for checking the sensor sensitivity of the smoke sensor when no smoke is present, and the sensitivity check Sensitivity history storage means for storing the sensor sensitivity obtained by the means, and replacement time calculation means for calculating the replacement time of the smoke sensor based on the sensor sensitivity stored in the sensitivity history storage means. .

上記第一特徴構成によれば、感度点検手段により得られたセンサ感度を記憶する感度履歴記憶手段を備えているため、煙センサ設置直後のセンサ感度や、感度点検手段により得られたセンサ感度点検時のセンサ感度といったセンサ感度履歴が常に感度履歴記憶手段に保持できる。そのため、電池交換後に電池交換以前のセンサ感度、例えば煙センサ設置直後のセンサ感度がクリアされてしまうことなく、電池交換後においても電池交換以前のセンサ感度の履歴が保持される。これにより、例えば煙センサ設置直後のセンサ感度と現在のセンサ感度とを比較し、煙センサの交換時期を交換時期演算手段により正確に演算することができる。   According to said 1st characteristic structure, since it has the sensitivity history memory | storage means which memorize | stores the sensor sensitivity obtained by the sensitivity inspection means, the sensor sensitivity immediately after installation of a smoke sensor and the sensor sensitivity inspection obtained by the sensitivity inspection means Sensor sensitivity history such as sensor sensitivity at the time can always be held in the sensitivity history storage means. Therefore, the sensor sensitivity before the battery replacement after the battery replacement, for example, the sensor sensitivity immediately after the installation of the smoke sensor is not cleared, and the sensor sensitivity history before the battery replacement is maintained even after the battery replacement. Accordingly, for example, the sensor sensitivity immediately after the installation of the smoke sensor is compared with the current sensor sensitivity, and the replacement time of the smoke sensor can be accurately calculated by the replacement time calculation means.

従って、本発明の火災警報器であれば、煙センサの交換時期が明確に判断できるようになり、計画的に煙センサの交換作業が行えるため、メンテナンスコストや労力を削減できる。   Therefore, with the fire alarm device of the present invention, it becomes possible to clearly determine the replacement time of the smoke sensor, and the replacement work of the smoke sensor can be performed systematically, so that maintenance costs and labor can be reduced.

上記目的を達成するための本発明に係る煙センサの交換時期演算方法の第一特徴構成は、上述の火災警報器における前記煙センサの交換時期の演算を、前記電源部の交換時に行う点にある。   In order to achieve the above object, the first characteristic configuration of the smoke sensor replacement timing calculation method according to the present invention is that the calculation of the smoke sensor replacement timing in the fire alarm is performed when the power supply unit is replaced. is there.

電池式の火災警報器を長期に亘って継続使用するためには電池交換が必要となる。そのため、電源部である電池の交換は、定期的に必要となる火災警報器のメンテナンス作業である。
そのため、電池交換作業時に煙センサの交換時期の演算も同時に行うと、電池交換時に煙センサの寿命の予測ができることとなって煙センサの交換時期を明確にできる。そして、このときに煙センサの交換時期が、例えば次回の電池交換時期より以前であることが判明すれば、現電池交換時に煙センサの交換も合わせて行うようにできる。
従って、本発明の煙センサの交換時期演算方法であれば、業者が煙センサの交換時期の演算のみを行うために火災警報器の設置現場に出向く手間が省ける。そのため、煙センサ交換と電池交換とが異なったタイミングで行われるために発生していた別途のメンテナンスコストや労力を削減できる。
In order to continue using the battery-type fire alarm for a long time, it is necessary to replace the battery. Therefore, replacement of the battery serving as the power supply unit is a maintenance work for the fire alarm that is required periodically.
Therefore, if the calculation of the replacement time of the smoke sensor is also performed at the time of battery replacement work, the lifetime of the smoke sensor can be predicted at the time of battery replacement, and the replacement time of the smoke sensor can be clarified. At this time, if it is found that the smoke sensor replacement time is before, for example, the next battery replacement time, the smoke sensor can also be replaced when the current battery is replaced.
Therefore, according to the smoke sensor replacement time calculation method of the present invention, it is possible to save the trouble of having to go to the site where the fire alarm is installed in order to perform only the calculation of the smoke sensor replacement time. Therefore, it is possible to reduce separate maintenance costs and labor that have occurred because the smoke sensor replacement and the battery replacement are performed at different timings.

本発明に係る煙センサの交換時期演算方法の第二特徴構成は、前記感度履歴記憶手段に記憶してあるセンサ感度の変化に基づき感度変化定数を算出し、当該感度変化定数を用いて、所定期間後における煙が存在しない時の前記煙センサのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、前記煙センサの交換時期の演算を行う点にある。   The second characteristic configuration of the smoke sensor replacement time calculation method according to the present invention calculates a sensitivity change constant based on a change in sensor sensitivity stored in the sensitivity history storage means, and uses the sensitivity change constant to determine a predetermined value. By calculating the sensor sensitivity of the smoke sensor when no smoke is present after the period, and determining whether the sensor sensitivity is within a predetermined sensitivity range that is normal sensor sensitivity, the calculation of the replacement time of the smoke sensor is performed. There is in point to do.

本構成では、感度履歴記憶手段に記憶してあるセンサ感度の変化に基づき感度変化定数を算出する。例えば、煙センサ設置直後のセンサ感度と、電池交換時のセンサ感度が感度履歴記憶手段に記憶してある場合、これらセンサ感度をグラフ化することによりセンサ感度の変化が傾きとして算出される。つまり、この傾きを感度変化定数とすることができる。   In this configuration, a sensitivity change constant is calculated based on a change in sensor sensitivity stored in the sensitivity history storage unit. For example, when the sensor sensitivity immediately after installation of the smoke sensor and the sensor sensitivity at the time of battery replacement are stored in the sensitivity history storage means, the change in sensor sensitivity is calculated as a slope by graphing these sensor sensitivities. That is, this slope can be used as a sensitivity change constant.

そして、この感度変化定数を用いて、所定期間後(例えば次回電池交換時)における煙が存在しない時の煙センサのセンサ感度を演算する。つまり、当該感度変化定数を用いて、将来のある時期のセンサ感度の予測値を算出する。   Then, using this sensitivity change constant, the sensor sensitivity of the smoke sensor when there is no smoke after a predetermined period (for example, at the next battery replacement) is calculated. That is, a predicted value of sensor sensitivity at a certain time in the future is calculated using the sensitivity change constant.

このとき、次回電池交換時における予測センサ感度が、正常センサ感度の許容範囲外となった場合、現在の電池交換時のセンサ感度が、正常センサ感度の許容範囲内であっても、煙センサの異常と判断する。つまり、当該煙センサは長期の寿命を有していないと判断し、現在の電池交換時に当該煙センサを交換する。   At this time, if the predicted sensor sensitivity at the next battery replacement is outside the allowable range for normal sensor sensitivity, even if the current sensor sensitivity is within the allowable range for normal sensor sensitivity, Judge as abnormal. That is, it is determined that the smoke sensor does not have a long life, and the smoke sensor is replaced when the current battery is replaced.

これにより、将来のある時期において、センサ感度が異常となることを事前の演算によって予測することができるため、この予測ができた時点で煙センサを交換できる。
従って、本構成であれば、感度履歴記憶手段に記憶してあるセンサ感度を基に感度変化定数を算出し、この感度変化定数を用いて煙センサの交換時期の演算を行うことができるため、簡便な方法で煙センサの寿命を予測できる。さらに、煙センサのセンサ感度が異常な状態で火災警報器を使用することがなくなり、確実な火災の警報を行うことができる。
As a result, it is possible to predict by a prior calculation that the sensor sensitivity will be abnormal at a certain time in the future, so that the smoke sensor can be replaced when this prediction is made.
Therefore, with this configuration, the sensitivity change constant can be calculated based on the sensor sensitivity stored in the sensitivity history storage means, and the smoke sensor replacement time can be calculated using this sensitivity change constant. The life of the smoke sensor can be predicted by a simple method. Furthermore, the fire alarm is not used when the sensor sensitivity of the smoke sensor is abnormal, and a reliable fire alarm can be performed.

本発明に係る煙センサの交換時期演算方法の第三特徴構成は、前記電源部の交換に至る前に、複数の感度変化定数を算出すると共に、これらの定数を基に複合感度変化定数を算出し、当該複合感度変化定数を用いて、所定期間後における煙が存在しない時の前記煙センサのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、前記煙センサの交換時期の演算を行う点にある。   The third characteristic configuration of the smoke sensor replacement timing calculation method according to the present invention is to calculate a plurality of sensitivity change constants before the power supply unit is replaced, and to calculate a composite sensitivity change constant based on these constants. The sensor sensitivity of the smoke sensor when no smoke is present after a predetermined period is calculated using the composite sensitivity change constant, and it is determined whether the sensor sensitivity falls within a predetermined sensitivity range that is a normal sensor sensitivity. Thus, the replacement time of the smoke sensor is calculated.

本構成では、煙センサが設置の途中からセンサ感度変化の割合が変化する場合を想定している。
即ち、本構成は、電源部の交換に至る前に、複数の感度変化定数を算出する。例えば、煙センサ設置直後のセンサ感度と、ある一定期間経過後のセンサ感度と、電池交換時のセンサ感度が感度履歴記憶手段に記憶してある場合、これらセンサ感度をグラフ化することにより二つの傾き(感度変化定数)を算出できる。
ここで、煙センサは設置の途中からセンサ感度が変化しているため、これら二つの定数は異なる値となる。つまり、これら二つの定数に存在する変化割合を用いて現時点から所定期間後までの間の傾きと予測される複合感度変化定数を算出する。
そして、この複合感度変化定数を用いて所定期間後、例えば次回電池交換時における煙が存在しない時の煙センサのセンサ感度を算出する。つまり、当該複合感度変化定数を用いて、将来のある時期のセンサ感度の予測値を算出する。
In this configuration, it is assumed that the rate of change in sensor sensitivity changes from the middle of installation of the smoke sensor.
That is, this configuration calculates a plurality of sensitivity change constants before the power supply unit is replaced. For example, if the sensor sensitivity immediately after installation of the smoke sensor, the sensor sensitivity after a certain period of time, and the sensor sensitivity at the time of battery replacement are stored in the sensitivity history storage means, these two sensor sensitivities can be graphed. The slope (sensitivity change constant) can be calculated.
Here, since the sensor sensitivity of the smoke sensor has changed from the middle of installation, these two constants have different values. That is, a composite sensitivity change constant that is predicted to be a slope between the present time and after a predetermined period is calculated using the change ratios existing in these two constants.
Then, the sensor sensitivity of the smoke sensor when there is no smoke at the next battery replacement, for example, is calculated after a predetermined period using this composite sensitivity change constant. That is, a predicted value of sensor sensitivity at a certain time in the future is calculated using the composite sensitivity change constant.

従って、本構成であれば、複数のパラメータ(感度変化定数)を基に算出された複合感度変化定数を用いて煙センサの交換時期の演算を行えるため、より確実に煙センサの感度変化を捉えることができるため、確実な交換時期を演算により予測できる。   Therefore, with this configuration, the smoke sensor replacement time can be calculated using a composite sensitivity change constant calculated based on a plurality of parameters (sensitivity change constants), so the sensitivity change of the smoke sensor can be captured more reliably. Therefore, a reliable replacement time can be predicted by calculation.

以下、本発明の実施例を図面に基づいて説明する。
火災警報器は、例えば屋内の火災等に起因する煙やガスの発生をセンサにより検知し、警報を発するように構成してある。このセンサは、煙を検知する煙センサや、火災時に発生するCOガス等を検知する公知のガスセンサ等が適用できる。本実施例では、煙センサを適用した火災警報器について説明する。
この火災警報器は、例えば屋内であれば、壁掛け型あるいは天井設置型等の態様により配設される。
Embodiments of the present invention will be described below with reference to the drawings.
The fire alarm is configured to generate an alarm by detecting, for example, smoke or gas generated due to an indoor fire or the like using a sensor. As this sensor, a smoke sensor that detects smoke, a known gas sensor that detects CO gas generated in the event of a fire, or the like can be applied. In this embodiment, a fire alarm using a smoke sensor will be described.
If this fire alarm is indoors, for example, it is arranged in a wall-mounted or ceiling-mounted manner.

図1に示したように、火災警報器Xは、煙感知機能を有する煙センサSと、煙センサSが所定値以上の煙を検知したときに警報を発する警報手段10と、煙センサSに駆動電力を供給すると共に交換可能な電源部20とを備えている。
そして、本発明の火災警報器Xは、煙が存在しない時の煙センサSのセンサ感度を点検する感度点検手段30と、感度点検手段30により得られたセンサ感度を記憶する感度履歴記憶手段40と、感度履歴記憶手段40に記憶されたセンサ感度を基に煙センサSの交換時期を演算する交換時期演算手段50とを備えている。
As shown in FIG. 1, the fire alarm device X includes a smoke sensor S having a smoke detection function, an alarm unit 10 that issues an alarm when the smoke sensor S detects smoke exceeding a predetermined value, and the smoke sensor S. A power supply unit 20 that supplies drive power and is replaceable is provided.
The fire alarm device X of the present invention includes a sensitivity checking means 30 for checking the sensor sensitivity of the smoke sensor S when no smoke is present, and a sensitivity history storage means 40 for storing the sensor sensitivity obtained by the sensitivity checking means 30. And a replacement time calculating means 50 for calculating the replacement time of the smoke sensor S based on the sensor sensitivity stored in the sensitivity history storage means 40.

煙センサSは、煙感知機能を有する例えば散乱光式煙センサSを適用できる。散乱光式煙センサSは、発光部S1と受光部S2とからなり、発光部S1からの光が煙粒子にあたると生じる散乱現象を利用し、受光部S2の受光素子が散乱光を受けて生じる光電流の変化を煙濃度に換算するように構成してある。   As the smoke sensor S, for example, a scattered light type smoke sensor S having a smoke sensing function can be applied. The scattered light type smoke sensor S includes a light emitting unit S1 and a light receiving unit S2, and uses a scattering phenomenon that occurs when light from the light emitting unit S1 strikes smoke particles, and is generated when the light receiving element of the light receiving unit S2 receives scattered light. A change in the photocurrent is converted into a smoke density.

警報手段10は、散乱光式煙センサSが所定値以上の煙を検知したときに火災による煙と判断し、警報信号を出力するように制御されたマイコン等で構成される。警報手段10は、スピーカ・警報ランプ等の報知手段11と接続してある。つまり、警報手段10から報知手段11に警報信号が出力されると、警報音により聴覚的に、或いは、ランプの点滅等により視覚的に火災による煙の発生を報知できる。   The alarm means 10 is configured by a microcomputer or the like that is controlled to output a warning signal by determining that the smoke is due to fire when the scattered light smoke sensor S detects smoke of a predetermined value or more. The alarm unit 10 is connected to a notification unit 11 such as a speaker / alarm lamp. That is, when a warning signal is output from the warning means 10 to the notification means 11, the generation of smoke due to fire can be notified visually by an alarm sound or visually by flashing of a lamp or the like.

電源部20は、交換可能な電池を収容すると共に散乱光式煙センサSに駆動電力を供給する。電池は、アルカリ電池やリチウム電池等、公知の電池が適用できる。また、電源部20は、散乱光式煙センサSのみに駆動電力を供給するだけでなく、火災警報器X内の部材のうち、駆動電力を必要とする全ての部材に電力を供給するように構成する。   The power supply unit 20 accommodates a replaceable battery and supplies driving power to the scattered light smoke sensor S. As the battery, a known battery such as an alkaline battery or a lithium battery can be applied. The power supply unit 20 not only supplies driving power only to the scattered light smoke sensor S, but also supplies power to all members of the fire alarm X that require driving power. Constitute.

感度点検手段30は、散乱光式煙センサSのセンサ感度を点検するように構成する。例えば、あるタイミングで煙が存在しない通常の雰囲気において散乱光式煙センサSのセンサ出力を測定する。あるタイミングとは、未使用の散乱光式煙センサSを火災警報器Xに設置した直後、電池交換時、或いは、設定された所定間隔等、種々のタイミングを設定できる。設定された所定間隔で感度点検を行うため、火災警報器X内に時計機能を有するリアルタイムクロックを設けることが可能である。
そして、所望のタイミングで自動的に、或いは、作業者が手動で点検スイッチ(図示せず)を入力して、散乱光式煙センサSのセンサ感度を点検する。
The sensitivity checking means 30 is configured to check the sensor sensitivity of the scattered light smoke sensor S. For example, the sensor output of the scattered light smoke sensor S is measured in a normal atmosphere where smoke does not exist at a certain timing. With a certain timing, various timings, such as immediately after installing the unused scattered light type smoke sensor S in the fire alarm device X, at the time of battery replacement, or a set predetermined interval, can be set. In order to check the sensitivity at predetermined intervals, a real-time clock having a clock function can be provided in the fire alarm device X.
Then, the sensor sensitivity of the scattered light type smoke sensor S is checked by inputting an inspection switch (not shown) automatically at a desired timing or manually by an operator.

感度履歴記憶手段40は、感度点検手段30により得られたセンサ感度を記憶する、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等の電源を切っても記憶したデータは消えないメモリ等が適用できるが、これらに限られるものではなく、公知のメモリであれば適用可能である。   The sensitivity history storage means 40 stores the sensor sensitivity obtained by the sensitivity check means 30, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory), a memory that does not erase the stored data even if the flash memory is turned off, etc. However, the present invention is not limited to these, and any known memory can be used.

交換時期演算手段50は、感度履歴記憶手段40に記憶されたセンサ感度のデータを基に、散乱光式煙センサSの交換時期を演算するマイコン等で構成される。散乱光式煙センサSの交換時期の演算は後述する。
交換時期演算手段50は、スピーカ・警報ランプ等のセンサ異常報知手段51と接続してある。つまり、交換時期演算手段50により、散乱光式煙センサSが感度異常であると判断されるとセンサ異常信号をセンサ異常報知手段51に出力し、警報音により聴覚的に、或いは、ランプの点滅等により視覚的にセンサの感度異常を報知できる。
The replacement time calculation means 50 is configured by a microcomputer or the like that calculates the replacement time of the scattered light type smoke sensor S based on the sensor sensitivity data stored in the sensitivity history storage means 40. The calculation of the replacement time of the scattered light type smoke sensor S will be described later.
The replacement time calculation means 50 is connected to sensor abnormality notification means 51 such as a speaker / alarm lamp. That is, when the scattered light type smoke sensor S is determined to be abnormal in sensitivity by the replacement time calculation means 50, a sensor abnormality signal is output to the sensor abnormality notification means 51 and aurally or by flashing the lamp. Thus, it is possible to visually notify the sensor sensitivity abnormality.

本発明の火災警報器Xによれば、感度点検手段30により得られたセンサ感度を記憶する感度履歴記憶手段40を備えているため、散乱光式煙センサS設置直後のセンサ感度や、感度点検手段30により得られたセンサ感度点検時のセンサ感度といったセンサ感度履歴が常に感度履歴記憶手段40に保持できる。そのため、電池交換後に、電池交換以前のセンサ感度、例えば散乱光式煙センサS設置直後のセンサ感度がクリアされてしまうことなく、電池交換後においても電池交換以前のセンサ感度の履歴が保持される。これにより、例えば散乱光式煙センサS設置直後のセンサ感度と現在のセンサ感度とを比較し、散乱光式煙センサSの交換時期を交換時期演算手段50により正確に演算することができる。   According to the fire alarm device X of the present invention, since the sensitivity history storage means 40 for storing the sensor sensitivity obtained by the sensitivity inspection means 30 is provided, the sensor sensitivity immediately after the installation of the scattered light smoke sensor S and the sensitivity inspection are provided. The sensor sensitivity history such as the sensor sensitivity at the time of the sensor sensitivity check obtained by the means 30 can always be held in the sensitivity history storage means 40. Therefore, after the battery replacement, the sensor sensitivity before the battery replacement, for example, the sensor sensitivity immediately after the installation of the scattered light smoke sensor S is not cleared, and the sensor sensitivity history before the battery replacement is maintained even after the battery replacement. . Thereby, for example, the sensor sensitivity immediately after the installation of the scattered light type smoke sensor S is compared with the current sensor sensitivity, and the replacement time calculating means 50 can accurately calculate the replacement time of the scattered light type smoke sensor S.

従って、本発明の火災警報器Xであれば、散乱光式煙センサSの交換時期が明確に判断できるようになり、計画的に煙センサの交換作業が行えるため、メンテナンスコストや労力を削減できる。   Therefore, with the fire alarm device X of the present invention, it becomes possible to clearly determine the replacement time of the scattered light type smoke sensor S, and the replacement work of the smoke sensor can be performed in a planned manner, so that maintenance costs and labor can be reduced. .

以下に、本発明の火災警報器Xの警報レベル、および、散乱光式煙センサSの交換時期の演算方法について詳述する。   Below, the calculation method of the alarm level of the fire alarm device X of this invention and the replacement time of the scattered light type smoke sensor S is explained in full detail.

<火災警報器におけるセンサの感度変化に伴う警報レベルの設定方法>
上述したように、散乱光式煙センサSは、発光部S1からの光が煙粒子にあたると生じる散乱現象を利用し、受光部S2の受光素子が散乱光を受けて生じる光電流の変化を煙濃度に換算するように構成してある。
<Alarm level setting method with sensor sensitivity change in fire alarm>
As described above, the scattered light type smoke sensor S uses the scattering phenomenon that occurs when the light from the light emitting unit S1 hits the smoke particles, and changes the photocurrent that occurs when the light receiving element of the light receiving unit S2 receives the scattered light. It is configured to convert to a concentration.

一方、煙が存在しない雰囲気においても、発光部S1からの光の散乱は生じているため、初期状態における散乱光式煙センサSの出力電圧値はゼロではない(図2、Na)。そのため、煙濃度と受光部S2の出力電圧値との関係は関数Aで表される。これは、散乱光式煙センサSの感度劣化が生じていない初期特性の関数である。
ここで、散乱光式煙センサSは、センサ素子表面の汚れやセンサ素子の劣化等によりセンサ感度が経年変化する。当該散乱光式煙センサSの感度変化は、高感度化と低感度化とがある。
On the other hand, since the light from the light emitting part S1 is scattered even in an atmosphere where no smoke exists, the output voltage value of the scattered light type smoke sensor S in the initial state is not zero (FIG. 2, Na). Therefore, the relationship between the smoke density and the output voltage value of the light receiving unit S2 is expressed by a function A. This is a function of the initial characteristics in which the sensitivity degradation of the scattered light smoke sensor S does not occur.
Here, the sensor sensitivity of the scattered light type smoke sensor S changes over time due to dirt on the surface of the sensor element, deterioration of the sensor element, and the like. The sensitivity change of the scattered light type smoke sensor S includes high sensitivity and low sensitivity.

高感度化は、散乱光式煙センサSの汚れ等により、光の散乱が増加して受光部S2が受ける光量が増加し、その結果、信号値が上昇することにより発生する。
この変化は、初期特性の関数Aに対して平行移動した関数Bにより表される。
The increase in sensitivity is caused by an increase in the amount of light received by the light receiving unit S2 due to an increase in light scattering due to dirt or the like of the scattered light type smoke sensor S, resulting in an increase in signal value.
This change is represented by a function B that is translated with respect to the function A of the initial characteristic.

一方、低感度化は、発光部S1の発光素子、或いは、受光部S2の受光素子の劣化により、発光量あるいは受光量が減少することにより発生する。
この変化は、初期特性の関数Aの傾きを減少させた関数Cにより表される。
On the other hand, the reduction in sensitivity occurs when the light emission amount or the light reception amount decreases due to the deterioration of the light emitting element of the light emitting unit S1 or the light receiving element of the light receiving unit S2.
This change is represented by a function C obtained by reducing the slope of the function A of the initial characteristics.

散乱光式煙センサSの感度変化を考慮すると、当該散乱光式煙センサSにおける正常と判断できるセンサ感度の範囲を定義する必要がある。これは、煙の存在しない(煙濃度0(%/m))、例えば点検時の出力電圧値(ベース電圧値)における、感度変化によりベース電圧値が変動する範囲により定義する。つまり、ベース電圧値において上限値と下限値とを設定し、実際の点検時のベース電圧値が、これら上下限値のレベルから外れたときに、当該散乱光式煙センサSが感度異常であると判断する。   Considering the sensitivity change of the scattered light smoke sensor S, it is necessary to define a range of sensor sensitivity that can be determined to be normal in the scattered light smoke sensor S. This is defined by the range in which the base voltage value fluctuates due to sensitivity change in the absence of smoke (smoke density 0 (% / m)), for example, the output voltage value (base voltage value) at the time of inspection. That is, when the upper limit value and the lower limit value are set in the base voltage value, and the base voltage value at the time of actual inspection deviates from the level of these upper and lower limit values, the scattered light type smoke sensor S is abnormal in sensitivity. Judge.

ここで、実際の点検時の出力電圧値、上限値および下限値の関係について、図2により詳述する。
火災時において、散乱光式煙センサSは、ある特定の警報レベルYa以上の出力電圧値によって、ある特定の煙濃度Xa以上の煙を検知したと判断するように設定される。ここで、散乱光式煙センサSの感度変化を考慮した場合、特定の煙濃度Xaにある程度の幅を持たせ、その範囲内の煙濃度を検知した場合に火災であると判断するのが望ましい。この煙濃度の範囲を警報範囲とする。これにより確実な火災警報を発することができる。
Here, the relationship between the output voltage value, the upper limit value, and the lower limit value during actual inspection will be described in detail with reference to FIG.
In the event of a fire, the scattered light type smoke sensor S is set so as to determine that smoke having a specific smoke density Xa or more has been detected based on an output voltage value of a specific alarm level Ya or higher. Here, in consideration of the sensitivity change of the scattered light type smoke sensor S, it is desirable to give a certain range to the specific smoke density Xa and to determine that it is a fire when the smoke density within the range is detected. . This smoke density range is the alarm range. As a result, a reliable fire alarm can be issued.

即ち、図2に示したように、正常な散乱光式煙センサSの感度特性を関数Aで表すと、煙濃度Xaが警報レベルYaであり、このとき、当該散乱光式煙センサSにおけるベース電圧値はNaとなる。
一方、散乱光式煙センサSが高感度化したとき(関数B)、警報レベルYaは煙濃度Xbとなる。さらに、散乱光式煙センサSが低感度化したとき(関数C)、警報レベルYaは煙濃度Xcとなる。つまり、散乱光式煙センサSの感度変化を考慮して、警報範囲は煙濃度Xb〜Xcとなっており、各煙濃度の警報範囲における関係は、Xb<Xa<Xcとなる。
That is, as shown in FIG. 2, when the sensitivity characteristic of the normal scattered light type smoke sensor S is expressed by the function A, the smoke density Xa is the alarm level Ya. At this time, the base in the scattered light type smoke sensor S is concerned. The voltage value is Na.
On the other hand, when the scattered light type smoke sensor S becomes highly sensitive (function B), the alarm level Ya becomes the smoke density Xb. Further, when the sensitivity of the scattered light smoke sensor S is lowered (function C), the alarm level Ya becomes the smoke concentration Xc. That is, considering the sensitivity change of the scattered light type smoke sensor S, the alarm range is smoke concentrations Xb to Xc, and the relationship of each smoke concentration in the alarm range is Xb <Xa <Xc.

ここで、散乱光式煙センサSの感度が上昇したときには、高感度化した散乱光式煙センサSであっても、煙濃度がXbに到達するまでは警報を発しない。そして、高感度化した散乱光式煙センサSの特性は、初期特性の関数Aに対して同じ傾きを持つ関数Bで表される。この関数Bにおいてベース電圧値はNbとなり、このベース電圧値を上限値Nbとする。   Here, when the sensitivity of the scattered light smoke sensor S increases, even if the sensitivity of the scattered light smoke sensor S is increased, an alarm is not issued until the smoke concentration reaches Xb. The characteristic of the scattered light smoke sensor S with high sensitivity is represented by a function B having the same slope as the function A of the initial characteristic. In this function B, the base voltage value is Nb, and this base voltage value is the upper limit value Nb.

一方、散乱光式煙センサSの感度が低下したときには、低感度化した散乱光式煙センサSであっても、煙濃度がXcにまで高まれば警報を発する。そして、低感度化した散乱光式煙センサSの特性は、初期特性の関数Aに対して傾きを減少させた関数Cで表される。この関数Cにおいてベース電圧値はNcとなり、このベース電圧値を下限値Ncとする。尚、関数Aおよび関数Cにおいては、出力電圧値のゼロ点Mは共通である。   On the other hand, when the sensitivity of the scattered light type smoke sensor S is lowered, even if the scattered light type smoke sensor S has a reduced sensitivity, an alarm is issued if the smoke concentration increases to Xc. The characteristic of the scattered light type smoke sensor S having a reduced sensitivity is represented by a function C in which the slope is reduced with respect to the function A of the initial characteristic. In this function C, the base voltage value is Nc, and this base voltage value is the lower limit value Nc. In the functions A and C, the zero point M of the output voltage value is common.

従って、上述した警報範囲の特性変化は、煙のない状態での出力電圧値によって判断できる。このような各ベース電圧値の関係は、Nc<Na<Nbとなる。   Therefore, the above-described change in the characteristics of the alarm range can be determined based on the output voltage value in the absence of smoke. Such a relationship between the base voltage values is Nc <Na <Nb.

このように、散乱光式煙センサSの初期特性の関数Aにおいて、煙濃度Xa(例えば10%/m)を基準とし、高感度化および低感度化したときの警報レベルYaである煙濃度XbおよびXc(例えば5%/mおよび15%/m)を想定して特性変化した散乱光式煙センサSの関数BおよびCをそれぞれ導く。そして、ベース電圧値において、散乱光式煙センサSの正常センサ感度を定義する上下限値XbおよびXcを設定する。即ち、実際の点検時のベース電圧値が、これら上下限値のレベルから外れたときに、当該散乱光式煙センサSが感度異常であると判断する。
これにより、散乱光式煙センサSの感度が変化している場合であっても、ベース電圧値の許容範囲を設けることができるため、高感度化による誤報の多発や低感度化による遅報の発生を防止し、信頼性の高い火災警報を発することができる。
As described above, in the function A of the initial characteristics of the scattered light type smoke sensor S, the smoke density Xb which is the alarm level Ya when the sensitivity is increased and decreased with the smoke density Xa (for example, 10% / m) as a reference. And functions B and C of the scattered light type smoke sensor S whose characteristics are changed assuming Xc (for example, 5% / m and 15% / m), respectively. Then, in the base voltage value, upper and lower limit values Xb and Xc that define the normal sensor sensitivity of the scattered light type smoke sensor S are set. That is, when the base voltage value at the time of actual inspection deviates from the upper and lower limit levels, it is determined that the scattered light smoke sensor S is abnormal in sensitivity.
As a result, even if the sensitivity of the scattered light smoke sensor S is changing, an allowable range of the base voltage value can be provided, so that frequent false alarms due to high sensitivity and delays due to low sensitivity can be avoided. It is possible to prevent the occurrence and provide a reliable fire alarm.

<散乱光式煙センサの交換時期の演算方法>
上述したように設定した上限値Nbと下限値Ncとを基準に、電池交換時において、散乱光式煙センサSを継続して設置できるかを調べるため、当該散乱光式煙センサSの交換時期を演算する方法を以下に示す。当該散乱光式煙センサSの感度異常として低感度化を例示するが、高感度化も同様の方法で交換時期の演算が可能である。
<Calculation method for replacement time of scattered light smoke sensor>
In order to check whether or not the scattered light type smoke sensor S can be continuously installed at the time of battery replacement based on the upper limit value Nb and the lower limit value Nc set as described above, the replacement time of the scattered light type smoke sensor S is examined. The method of calculating is shown below. Although the sensitivity reduction of the scattered light type smoke sensor S is exemplified as the sensitivity reduction, the replacement time can be calculated by the same method for the sensitivity enhancement.

(演算方法1)
本方法では、感度履歴記憶手段40に記憶してあるセンサ感度の変化に基づき感度変化定数を算出し、当該感度変化定数を用いて、所定期間後における煙が存在しない時の散乱光式煙センサSのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、散乱光式煙センサSの交換時期の演算を行う。
(Calculation method 1)
In this method, a sensitivity change constant is calculated based on a change in sensor sensitivity stored in the sensitivity history storage means 40, and the scattered light type smoke sensor when no smoke is present after a predetermined period is calculated using the sensitivity change constant. The sensor sensitivity of S is calculated, and it is determined whether the sensor sensitivity falls within a predetermined sensitivity range that is the normal sensor sensitivity, thereby calculating the replacement time of the scattered light type smoke sensor S.

図3に示したように、初期状態における散乱光式煙センサSの出力電圧値(センサ感度)をN(0)とし、電池交換時の散乱光式煙センサSの出力電圧値をN(x)とし、交換時出力電圧値N(x)は初期状態出力電圧値N(0)に比べて感度が低下しているものとする。これらの出力電圧値は、自動的に或いは作業者による手動操作入力により感度履歴記憶手段40に記憶される。
このとき、散乱光式煙センサSの感度低下の変化を示す傾きG(感度変化定数)を求める。そして、次回電池交換時までに当該センサSの出力電圧値が感度異常となるか否か、つまり、下限値Ncを下回るか否か、を調べるため、前記傾きGに基づき、次回電池交換時における散乱光式煙センサSの予測出力電圧値N(y)を算出する。
図3に示したように、交換時出力電圧値N(x)〜予測出力電圧値N(y)間の傾きG’を、前記傾きGと同様に設定して予測出力電圧値N(y)導き出した場合、予測出力電圧値N(y)は下限値Ncを上回っている。このため、次回電池交換時においても散乱光式煙センサSは感度異常とならない。つまり、当該センサは長期の寿命を有しているものと認められる。従って、散乱光式煙センサSの設置を継続できる。
As shown in FIG. 3, the output voltage value (sensor sensitivity) of the scattered light smoke sensor S in the initial state is N (0), and the output voltage value of the scattered light smoke sensor S at the time of battery replacement is N (x ), And the sensitivity of the output voltage value N (x) at the time of replacement is lower than that of the initial state output voltage value N (0). These output voltage values are stored in the sensitivity history storage means 40 automatically or by manual operation input by an operator.
At this time, an inclination G (sensitivity change constant) indicating a change in sensitivity reduction of the scattered light type smoke sensor S is obtained. Then, in order to check whether the output voltage value of the sensor S becomes abnormal in sensitivity until the next battery replacement, that is, whether the output voltage value is lower than the lower limit value Nc, based on the slope G, The predicted output voltage value N (y) of the scattered light type smoke sensor S is calculated.
As shown in FIG. 3, the gradient G ′ between the output voltage value N (x) at the time of replacement and the predicted output voltage value N (y) is set similarly to the gradient G, and the predicted output voltage value N (y). When derived, the predicted output voltage value N (y) exceeds the lower limit value Nc. For this reason, the scattered light type smoke sensor S does not become abnormal in sensitivity even at the next battery replacement. That is, it is recognized that the sensor has a long life. Therefore, the installation of the scattered light type smoke sensor S can be continued.

一方、電池交換時の散乱光式煙センサSの交換時出力電圧値をN(x1)とした場合を以下に示す。このとき、散乱光式煙センサSの感度低下の変化を示す傾きG1に基づき、交換時出力電圧値N(x1)〜予測出力電圧値N(y1)間の傾きG1’を、前記傾きG1と同様に設定して予測出力電圧値N(y1)導き出す。そして、算出した散乱光式煙センサSの予測出力電圧値N(y1)は下限値Ncを下回ると、次回電池交換時において散乱光式煙センサSは感度異常となる。つまり、当該センサSは長期の寿命を有していないものと認められる。従って、今回の電池交換時に当該センサSを交換する。
これにより、将来のある時期(図3においては、次回電池交換時)において、センサ感度が異常となることを事前の演算によって予測することができるため、この予測ができた時点で煙センサを交換できる。
尚、リセットスイッチを設ける等して、煙センサを交換した場合に感度履歴記憶手段40に記憶してあるセンサ感度をクリアできるように構成するとよい。
On the other hand, a case where the output voltage value at the time of replacement of the scattered light type smoke sensor S at the time of battery replacement is N (x1) is shown below. At this time, based on the gradient G1 indicating the change in the sensitivity of the scattered light smoke sensor S, the gradient G1 ′ between the replacement output voltage value N (x1) and the predicted output voltage value N (y1) is defined as the gradient G1. Similarly, the predicted output voltage value N (y1) is derived. When the calculated predicted output voltage value N (y1) of the scattered light type smoke sensor S falls below the lower limit value Nc, the scattered light type smoke sensor S becomes abnormal in sensitivity at the next battery replacement. That is, it is recognized that the sensor S does not have a long life. Therefore, the sensor S is replaced at the time of battery replacement this time.
As a result, it is possible to predict that the sensor sensitivity will be abnormal at a certain time in the future (at the time of next battery replacement in FIG. 3) by a prior calculation. Therefore, when this prediction is made, the smoke sensor is replaced. it can.
In addition, it is good to comprise so that the sensor sensitivity memorize | stored in the sensitivity log | history memory | storage means 40 may be cleared when a smoke sensor is replaced by providing a reset switch.

尚、交換時出力電圧値N(x)が既に下限値Ncを下回る場合は、散乱光式煙センサSの寿命は尽きているものと判断し、今回の電池交換時に当該センサSを交換する。   If the output voltage value N (x) at the time of replacement is already lower than the lower limit value Nc, it is determined that the life of the scattered light smoke sensor S has expired, and the sensor S is replaced at the time of battery replacement this time.

(演算方法2)
本方法では、電源部20の交換に至る前に、複数の感度変化定数を算出すると共に、これらの定数を基に複合感度変化定数を算出し、当該複合感度変化定数を用いて、所定期間後における煙が存在しない時の散乱光式煙センサSのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、散乱光式煙センサSの交換時期の演算を行う。
本方法では、散乱光式煙センサSが設置の途中からセンサ感度変化の割合が変化する場合を想定している。
(Calculation method 2)
In this method, before the power supply unit 20 is replaced, a plurality of sensitivity change constants are calculated, a composite sensitivity change constant is calculated based on these constants, and the composite sensitivity change constant is used for a predetermined period of time. The sensor sensitivity of the scattered light smoke sensor S when no smoke is present is calculated, and it is determined whether the sensor sensitivity falls within a predetermined sensitivity range that is a normal sensor sensitivity. Calculate the time.
In this method, it is assumed that the sensor sensitivity change rate changes from the middle of the installation of the scattered light smoke sensor S.

上述した演算方法1において、電池交換時の前に点検機会を自動或いは手動で設定し、このときの散乱光式煙センサSの出力電圧値をN(z)とする(図4)。そして、電池交換時の当該散乱光式煙センサSの出力電圧値をN(x1)とする。これらの出力電圧値は、演算方法1と同様の方法で感度履歴記憶手段40に記憶される。尚、前記点検機会は、一定時間毎に、或いは、不定期に行ってもよく、回数においても一回以上設定してもよい。   In the calculation method 1 described above, an inspection opportunity is set automatically or manually before battery replacement, and the output voltage value of the scattered light smoke sensor S at this time is set to N (z) (FIG. 4). And the output voltage value of the said scattered light type smoke sensor S at the time of battery replacement is set to N (x1). These output voltage values are stored in the sensitivity history storage unit 40 in the same manner as the calculation method 1. The inspection opportunity may be performed at regular time intervals or irregularly, and the number of inspections may be set once or more.

それぞれの場合に感度低下の変化を示す傾き(感度変化定数)を算出する。つまり、初期状態出力電圧値N(0)〜点検時出力電圧値N(z)までの感度変化定数である傾きG2、点検時出力電圧値N(z)〜交換時出力電圧値N(x1)までの感度変化定数である傾きG3を算出する。このようにして、電池交換に至る前に、複数の感度変化定数を算出する。   In each case, a slope (sensitivity change constant) indicating a change in sensitivity reduction is calculated. That is, the gradient G2, which is a sensitivity change constant from the initial state output voltage value N (0) to the inspection output voltage value N (z), the inspection output voltage value N (z) to the replacement output voltage value N (x1). A slope G3 that is a sensitivity change constant up to is calculated. In this way, a plurality of sensitivity change constants are calculated before battery replacement.

このような場合において、次回電池交換時までに当該センサSが感度異常となるか否かを調べるとき、感度低下の傾きG2およびG3を用いる。ここで、散乱光式煙センサSは設置の途中からセンサ感度が変化しているため、これら二つの定数は異なる値となる。つまり、これら二つの定数に存在する変化割合に基づき、現時点から次回電池交換時までの予測される傾きG4(複合感度変化定数)を算出し、次回電池交換時の散乱光式煙センサSの予測出力電圧値N(y2)を算出する。   In such a case, when examining whether or not the sensor S is abnormal in sensitivity until the next battery replacement, the sensitivity decrease gradients G2 and G3 are used. Here, since the sensor sensitivity of the scattered light smoke sensor S changes from the middle of installation, these two constants have different values. That is, based on the change rate existing in these two constants, an estimated gradient G4 (composite sensitivity change constant) from the present time to the next battery replacement is calculated, and the scattered light type smoke sensor S is predicted at the next battery replacement. An output voltage value N (y2) is calculated.

図4に示したように、傾きG3は傾きG2に比べて、緩やかな傾きとなっているため、散乱光式煙センサSの感度低下の割合は減少している。これは、例えば、点検時までに散乱光式煙センサSが低感度化して感度低下の傾きがG2となった後、散乱光式煙センサSの汚れ等により当該センサSが高感度化し、その結果、低感度化と高感度化が同時に進行して感度低下の傾きが緩やかなG3になるような場合がある。   As shown in FIG. 4, since the inclination G3 is gentler than the inclination G2, the ratio of the sensitivity reduction of the scattered light smoke sensor S is reduced. This is because, for example, after the scattered light type smoke sensor S is desensitized by the time of inspection and the slope of the decrease in sensitivity becomes G2, the sensor S becomes highly sensitive due to dirt of the scattered light type smoke sensor S, etc. As a result, there may be a case where the lowering of the sensitivity and the increasing of the sensitivity proceed at the same time and the slope of the sensitivity decrease becomes G3.

図4に示したように、予測出力電圧値N(y2)は下限値Ncを上回っているため、次回電池交換時においても散乱光式煙センサSは感度異常とならない。つまり、当該センサは長期の寿命を有しているものと認められる。従って、散乱光式煙センサSの設置を継続できる。   As shown in FIG. 4, since the predicted output voltage value N (y2) exceeds the lower limit value Nc, the scattered light smoke sensor S does not become abnormal in sensitivity even at the next battery replacement. That is, it is recognized that the sensor has a long life. Therefore, the installation of the scattered light type smoke sensor S can be continued.

このように、電池交換時以外にも点検機会を設定し、感度低下の傾きを複数算出することにより、複数のパラメータ(感度変化定数)を基に算出された複合感度変化定数を用いて煙センサの交換時期の演算を行えるため、より確実に散乱光式煙センサSの感度変化を捉えることができるため、正確な交換時期を演算により予測できる。   In this way, by setting inspection opportunities other than at the time of battery replacement and calculating multiple slopes of sensitivity reduction, the smoke sensor uses a composite sensitivity change constant calculated based on multiple parameters (sensitivity change constants). Therefore, the change in sensitivity of the scattered light type smoke sensor S can be captured more reliably, so that the accurate replacement time can be predicted by calculation.

〔別実施の形態1〕
上述したように、感度点検手段30により、電池交換時以外にも点検機会を設定できる。この点検機会において、電源部20の寿命を診断するように構成できる。例えば電池の電圧を測定するように構成する。そして、電源部20の交換が必要であると判断されると、電源部交換警報を報知するように構成することが可能である。
[Another embodiment 1]
As described above, the sensitivity inspection means 30 can set an inspection opportunity other than when the battery is replaced. In this inspection opportunity, it can comprise so that the lifetime of the power supply part 20 may be diagnosed. For example, the battery voltage is measured. When it is determined that the power supply unit 20 needs to be replaced, a power supply unit replacement alarm can be notified.

本発明の火災警報器は、火災の発生、若しくは、煙濃度の異常上昇を初期において検知するために利用される。また、本発明の煙センサの交換時期の演算方法は、煙センサの交換に要するメンテナンスコストや労力を軽減するために利用される。   The fire alarm of the present invention is used to detect the occurrence of a fire or an abnormal increase in smoke concentration at an early stage. Further, the method for calculating the replacement time of the smoke sensor of the present invention is used to reduce maintenance costs and labor required for replacement of the smoke sensor.

本発明の火災警報器の概略図Schematic of the fire alarm of the present invention 正常な煙センサ、高感度化した煙センサおよび低感度化した煙センサの特性変化を基に、ベース電圧値の許容範囲の設定方法を概説した図A diagram outlining how to set the allowable range of the base voltage value based on changes in the characteristics of the normal smoke sensor, the highly sensitive smoke sensor, and the low sensitive smoke sensor 散乱光式煙センサの交換時期の演算方法1を概説した図Figure outlining the calculation method 1 of the replacement time of the scattered light smoke sensor 散乱光式煙センサの交換時期の演算方法2を概説した図Figure outlining the calculation method 2 of the replacement time of the scattered light smoke sensor

符号の説明Explanation of symbols

S 散乱光式煙センサ
X 火災警報器
10 警報手段
20 電源部
30 感度点検手段
40 感度履歴記憶手段
50 交換時期演算手段
S Scattered Smoke Sensor X Fire Alarm 10 Alarm Unit 20 Power Supply Unit 30 Sensitivity Check Unit 40 Sensitivity History Storage Unit 50 Replacement Time Calculation Unit

Claims (4)

煙感知機能を有する煙センサと、前記煙センサが所定値以上の煙を検知したときに警報を発する警報手段と、前記煙センサに駆動電力を供給すると共に交換可能な電源部とを備えた火災警報器において、
煙が存在しない時の前記煙センサのセンサ感度を点検する感度点検手段と、前記感度点検手段により得られたセンサ感度を記憶する感度履歴記憶手段と、前記感度履歴記憶手段に記憶されたセンサ感度を基に前記煙センサの交換時期を演算する交換時期演算手段とを備えた火災警報器。
A fire comprising a smoke sensor having a smoke sensing function, an alarm means for issuing an alarm when the smoke sensor detects smoke of a predetermined value or more, and a power supply unit that supplies drive power to the smoke sensor and can be replaced. In the alarm device,
Sensitivity check means for checking the sensor sensitivity of the smoke sensor when no smoke is present, sensitivity history storage means for storing sensor sensitivity obtained by the sensitivity check means, and sensor sensitivity stored in the sensitivity history storage means A fire alarm device comprising a replacement time calculating means for calculating the replacement time of the smoke sensor based on the above.
請求項1に記載の煙センサの交換時期の演算を、前記電源部の交換時に行う煙センサの交換時期演算方法。   A method for calculating the replacement time of the smoke sensor, wherein the calculation of the replacement time of the smoke sensor according to claim 1 is performed when the power supply unit is replaced. 前記感度履歴記憶手段に記憶してあるセンサ感度の変化に基づき感度変化定数を算出し、当該感度変化定数を用いて、所定期間後における煙が存在しない時の前記煙センサのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、前記煙センサの交換時期の演算を行う請求項2に記載の煙センサの交換時期演算方法。   A sensitivity change constant is calculated based on a change in sensor sensitivity stored in the sensitivity history storage means, and the sensor sensitivity of the smoke sensor when no smoke is present after a predetermined period is calculated using the sensitivity change constant. The smoke sensor replacement timing calculation method according to claim 2, wherein the smoke sensor replacement timing is calculated by determining whether the sensor sensitivity falls within a predetermined sensitivity range which is normal sensor sensitivity. 前記電源部の交換に至る前に、複数の感度変化定数を算出すると共に、これらの定数を基に複合感度変化定数を算出し、当該複合感度変化定数を用いて、所定期間後における煙が存在しない時の前記煙センサのセンサ感度を算出し、このセンサ感度が、正常センサ感度である所定感度範囲に収まるかを判断することにより、前記煙センサの交換時期の演算を行う請求項3に記載の煙センサの交換時期演算方法。   Prior to the replacement of the power supply unit, a plurality of sensitivity change constants are calculated, a composite sensitivity change constant is calculated based on these constants, and smoke is present after a predetermined period using the composite sensitivity change constant. The sensor sensitivity of the smoke sensor when not being calculated is calculated, and the replacement time of the smoke sensor is calculated by determining whether the sensor sensitivity falls within a predetermined sensitivity range that is a normal sensor sensitivity. Method for calculating the replacement time of smoke sensors.
JP2005131424A 2005-04-28 2005-04-28 Fire alarm and smoke sensor replacement time calculation method Expired - Fee Related JP4679225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131424A JP4679225B2 (en) 2005-04-28 2005-04-28 Fire alarm and smoke sensor replacement time calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131424A JP4679225B2 (en) 2005-04-28 2005-04-28 Fire alarm and smoke sensor replacement time calculation method

Publications (2)

Publication Number Publication Date
JP2006309514A true JP2006309514A (en) 2006-11-09
JP4679225B2 JP4679225B2 (en) 2011-04-27

Family

ID=37476323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131424A Expired - Fee Related JP4679225B2 (en) 2005-04-28 2005-04-28 Fire alarm and smoke sensor replacement time calculation method

Country Status (1)

Country Link
JP (1) JP4679225B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504102A (en) * 2009-11-10 2013-02-04 天津市浦海新技▲術▼有限公司 Fire and combustible gas notification system and method
JP2017049799A (en) * 2015-09-02 2017-03-09 ホーチキ株式会社 Fire detector
JP2018063533A (en) * 2016-10-12 2018-04-19 能美防災株式会社 Inspection supporting system
JP2019175398A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Alarm, control method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659644U (en) * 1979-10-15 1981-05-21
JPH11312278A (en) * 1998-04-30 1999-11-09 Matsushita Electric Works Ltd Monitoring system for disaster prevention

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659644U (en) * 1979-10-15 1981-05-21
JPH11312278A (en) * 1998-04-30 1999-11-09 Matsushita Electric Works Ltd Monitoring system for disaster prevention

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504102A (en) * 2009-11-10 2013-02-04 天津市浦海新技▲術▼有限公司 Fire and combustible gas notification system and method
JP2017049799A (en) * 2015-09-02 2017-03-09 ホーチキ株式会社 Fire detector
JP2018063533A (en) * 2016-10-12 2018-04-19 能美防災株式会社 Inspection supporting system
JP2019175398A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Alarm, control method, and program

Also Published As

Publication number Publication date
JP4679225B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
RU2517309C2 (en) Fire and flammable gas alarm method and system
US7333010B2 (en) Method and apparatus for verifying operation of notification appliances during low input voltage condition
US20070115111A1 (en) Method and apparatus for indicating a power condition at a notification appliance
JP4679225B2 (en) Fire alarm and smoke sensor replacement time calculation method
JP2009041333A (en) Water supply system and water supplying method
JP2007263888A (en) Building diagnosis system
US9361785B2 (en) System and method for testing battery backup capacities in alarm systems
JP5148324B2 (en) Alarm device
KR20080081390A (en) Apparatus and method for detecting street lamp fault
JP4208021B2 (en) Lighting device and lighting system
US9223308B2 (en) Method for the computer-assisted monitoring of the functional performance of a technical system
JP2010073045A (en) Fire alarm
KR20000008505A (en) Automatic fire extinguishing system and controlling method thereof
JP2006155200A (en) Load operation status monitoring apparatus
JP2005174611A (en) Lighting system and illumination system
JP4699128B2 (en) Analysis equipment
JP2004119150A (en) Lighting system
JPH08320347A (en) Metering terminal apparatus and meter reading system
JP4487548B2 (en) Lighting device and lighting system
JP6377897B2 (en) Alarm
JP4713097B2 (en) Alarm
JP5038482B2 (en) Alarm
JP4428397B2 (en) Lighting device and lighting system
JP6715889B2 (en) Alarm
JP2006269270A (en) Illumination maintenance system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees