JP2020174416A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2020174416A
JP2020174416A JP2019073313A JP2019073313A JP2020174416A JP 2020174416 A JP2020174416 A JP 2020174416A JP 2019073313 A JP2019073313 A JP 2019073313A JP 2019073313 A JP2019073313 A JP 2019073313A JP 2020174416 A JP2020174416 A JP 2020174416A
Authority
JP
Japan
Prior art keywords
command value
value
command
control device
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019073313A
Other languages
English (en)
Other versions
JP6739577B1 (ja
Inventor
賢太 田中
Kenta Tanaka
賢太 田中
大樹 松浦
Daiki Matsuura
大樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019073313A priority Critical patent/JP6739577B1/ja
Priority to CN202010249477.9A priority patent/CN111817637B/zh
Application granted granted Critical
Publication of JP6739577B1 publication Critical patent/JP6739577B1/ja
Publication of JP2020174416A publication Critical patent/JP2020174416A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking

Abstract

【課題】コンデンサ電圧の指令値と実際のコンデンサ電圧値との差分に対するトルク指令値を線形な関係とすることにより、コンデンサ電圧大きさによらずコンデンサ電圧を安定して制御することができるモータ制御装置を提供することを目的とする。【解決手段】モータに電力を供給するインバータ3と、インバータに並列に接続されたコンデンサ4と、コンデンサの電圧を検出する電圧検出部5と、電圧検出部で検出された電圧検出値とあらかじめ設定された第一の指令値とに基づいて第二の指令値を生成する指令生成部6と、第二の指令値に基づいてインバータを制御するインバータ制御部7とを備えたモータ制御装置1であって、指令生成部は、電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成する。【選択図】図1

Description

本願は、モータ制御装置に関する。
三相交流モータを駆動力源とする電気自動車、ハイブリッド自動車などの電動化車両が知られている。このような電動化車両において、三相交流モータは、走行時に力行運転して走行駆動トルクを発生し、制動時に回生運転して回生制動トルクを発生させている。電動化車両の駆動システムは、リチウムイオンバッテリなどの二次電池からなる直流電源と、この直流電源を入力源とするモータ制御装置と、このモータ制御装置に負荷として接続された三相交流モータとから構成されている。モータ制御装置は、複数の半導体スイッチを備えたインバータとこのインバータに並列接続されたコンデンサとを備えている。
このように構成された駆動システムにおいて、モータが急減速するとモータが発電機として動作し、運動エネルギーが電力に変換される。この電力がモータからモータ制御装置を経由して直流電源に流れ込む。このような電力を回生電力と呼び、この回生電力が大きい場合、モータ制御装置のコンデンサに過電圧が発生したり、直流電源に過充電が発生したりする場合がある。直流電源で過充電が発生すると直流電源が故障する可能性がある。このような問題を回避するために、直流電源とモータ制御装置との間の電路にリレーを設置し、過大な回生電力が発生した場合にはリレーで電路を遮断する方法が考えられる。しかしながら、直流電源とモータ制御装置との間の電路をリレーで遮断すると、モータ制御装置を継続して駆動することができなくなり、駆動システムが停止する。したがって、過大な回生電力を発生させないようにモータを制御するモータ制御装置が必要となる。
そのようなモータ制御装置として、コンデンサ電圧の指令値と実際のコンデンサ電圧値との差分に基づいてトルク指令値を調整してモータを制御するモータ制御装置が開示されている(例えば、特許文献1参照)。このような制御をおこなう従来のモータ制御装置は、コンデンサ電圧が指令値に一致するようにモータのトルクを調整するので、過大な回生電力が発生することを防ぐことができる。
特許第5407752号公報
従来のモータ制御装置ではコンデンサ電圧の指令値と実際のコンデンサ電圧値との差分に基づいてトルク指令値を調整している。しかしながら、差分に対するトルク指令値が非線形であるため、コンデンサ電圧の大きさに対してコンデンサ電圧の制御が不安定になるという問題があった。コンデンサ電圧の制御が不安定になると、コンデンサから電力が供給されるインバータ以外のモータ制御装置内の機器の動作が不安定となる。
本願は、上述の課題を解決するためになされたものであり、コンデンサ電圧の指令値と実際のコンデンサ電圧値との差分に対するトルク指令値を線形な関係とすることにより、コンデンサ電圧の大きさによらずコンデンサ電圧を安定して制御することができるモータ制御装置を提供することを目的とする。
本願に係るモータ制御装置は、モータに電力を供給するインバータと、インバータに並列に接続されたコンデンサと、コンデンサの電圧を検出する電圧検出部と、電圧検出部で検出された電圧検出値とあらかじめ設定された第一の指令値とに基づいて第二の指令値を生成する指令生成部と、第二の指令値に基づいてインバータを制御するインバータ制御部とを備えており、指令生成部は、電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成する。
本願のモータ制御装置は、指令生成部が電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成するので、コンデンサ電圧の大きさによらずコンデンサ電圧を安定して制御することができる
実施の形態1に係るモータ制御装置の構成を示すブロック図である。 実施の形態1の指令生成部の構成を示すブロック図である。 実施の形態1における第二の指令値を示す図である。 実施の形態1における第二の指令値を示す図である。 実施の形態2に係るモータ制御装置の構成を示すブロック図である。 実施の形態2の指令生成部の構成を示すブロック図である。 実施の形態3の指令生成部の構成を示すブロック図である。 実施の形態4の指令生成部の構成を示すブロック図である。 実施の形態5の指令生成部の入出力信号を示す図である。 実施の形態5の指令生成部の構成を示すブロック図である。 実施の形態5の指令生成部の構成を示すブロック図である。 実施の形態6に係るモータ制御装置の構成を示すブロック図である。
以下、本願を実施するための実施の形態に係るモータ制御装置について図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
図1は、実施の形態1に係るモータ制御装置の構成を示すブロック図である。本実施の形態のモータ制御装置1は、制御対象であるモータ2を制御するためにモータ2に電力を供給するインバータ3と、インバータ3と並列に接続されたコンデンサ4と、コンデンサ4の両端の電圧を検出する電圧検出部5と、電圧検出部5が出力する電圧検出値に基づいて第二の指令値を生成する指令生成部6と、第二の指令値に基づいてインバータ3のスイッチング素子を制御するためのゲート信号を生成するインバータ制御部7とを備えている。
モータ2は、例えば電気自動車の駆動源として用いられる三相交流モータなどである。インバータ3は、コンデンサ4から供給される電力に基づいてモータ2を駆動する。インバータ3は複数のスイッチング素子を備えており、このスイッチング素子はインバータ制御部7で生成されるゲート信号で制御される。電圧検出部5は、コンデンサ4の両端の電圧を検出し、この電圧検出値を指令生成部6へ出力する。指令生成部6は、電圧検出部5が出力する電圧検出値に基づいて、トルク指令値である第二の指令値を生成する。インバータ制御部7は、第二の指令値に基づいて、インバータ3のスイッチング素子を制御するゲート信号を生成する。本実施の形態に係るモータ制御装置は、コンデンサ4からモータ2に供給される電力とモータ2からコンデンサ4に回生される電力とを第二の指令値で調整することで、コンデンサ4の電圧を制御している。
次に、指令生成部6の詳細な機能について説明する。
図2は、指令生成部6の構成を示すブロック図である。図2に示すように、指令生成部6は、乗算器8と、減算器9と、フィードバック制御器10とで構成されている。乗算器8は、電圧検出値の二乗の値を出力する。減算器9は、指令生成部6にあらかじめ設定された第一の指令値と乗算器8から出力された電圧検出値の二乗の値との差分を出力する。フィードバック制御器10は、減算器9から出力された第一の指令値と電圧検出値の二乗の値との差分に基づいて第二の指令値を出力する。
モータ制御装置において、コンデンサから電力が供給されるインバータを含めた内部の機器が安定に動作するためには、コンデンサ電圧には適正な範囲がある。コンデンサ電圧がその範囲となるようにコンデンサ電圧を制御するときの目標値をコンデンサ電圧の指定値と定義する。本実施の形態において、第一の指令値は電圧の二乗に比例する値とし、例えばコンデンサ電圧の設置値の二乗にコンデンサ容量と1/2とを乗じたエネルギー値を第一の指令値として設定する。また、第二の指令値は、トルク指令値である。
フィードバック制御器10における第二の指令値の具体的な生成方法として、入力された値に比例ゲインを乗じた比例項と、入力された値を積算した結果に基づく積分項とを加算するPI制御を用いればよい。なお、PI制御に限らず、偏差を抑制する制御であればPID制御など、他の制御方法でもよい。
次に、コンデンサ電圧の制御原理を説明する。
電圧検出値の二乗にコンデンサ4の静電容量Cと1/2とを乗じることでコンデンサ4に貯蔵されたエネルギーが算出できる。また、指令生成部6にあらかじめ設定する第一の指令値は、コンデンサ電圧の指定値をエネルギーに換算したものとする。したがって、指令生成部6は、実際にコンデンサ4に貯蔵されているエネルギーと、コンデンサ電圧の指定値から算出されるエネルギーとの差分に基づいて第二の指令値を生成する。
次に、コンデンサのエネルギーと第二の指令値との関係について説明する。
コンデンサからインバータへ入力されるインバータ入力電力、モータ機械出力およびシステム効率の関係は(1)式となる。

インバータ入力電力 = モータ機械出力×システム効率 (1)

また、インバータ入力電力は(2)式、モータ機械出力は(3)式となる。

インバータ入力電力 = Vdc×Idc (2)

モータ機械出力 = ωm×τ (3)

ここで、Vdcはコンデンサ電圧、Idcはコンデンサからインバータへ流れ込む電流である。また、ωmはモータ機械角速度、τはモータのトルクである。
次に、システム効率をηとおき、(1)式に(2)式および(3)式を代入すると、次式が導出される。

Vdc×Idc = ωm×τ×η (4)
また、コンデンサ4に貯蔵される電荷をQとすると、Qはコンデンサ4の静電容量Cおよびコンデンサ電圧Vdcから(5)式により表される。

Q = C×Vdc (5)

また、Qとコンデンサ4から流出する電流Idcは(6)式となる。

Q = −∫Idc×dt (6)

(6)式を(5)式に代入し、両辺を微分すると次式が導出される。

Idc = C×d/dt×Vdc (7)

(7)式を(4)式に代入すると、次式が導出される。

Vdc×C×d/dt×Vdc = ωm×τ×η (8)

(8)式を変形すると、次式が導出される。

d/dt(1/2×C×Vdc×Vdc) = ωm×τ×η (9)
以上の導出結果より、(9)式に示すように、コンデンサ電圧Vdcとトルクτは非線形な関係となる。
ここで、フィードバック制御器10が、コンデンサ電圧の指定値と電圧検出部5が出力する電圧検出値との差分ΔVに基づいてトルク指令値である第二の指令値を生成したとする。図3は、このΔVと第二の指令値との関係を示したものである。図3は、(9)式を用いてΔVとτとの関係を示したものである。図3に示すように、単にコンデンサ電圧の指定値と電圧検出値との差分ΔVに基づいて第二の指令値を生成した場合、ΔVに対して第二の指令値は線形とならない。その結果、ΔVの大きさに対して第二の指令値が大きく変化するので、コンデンサ電圧の大きさ対してコンデンサ電圧の制御が不安定になる。例えばコンデンサ電圧が急激に減少した場合(ΔVが大きい場合)、コンデンサ電圧の変化が小さい場合(ΔVが小さい場合)に比べて第二の指令値(トルク指令値)が急激に大きくなるので、回生電力が急激に増加する。この現象は、フィードバックゲインが増加することに等しいため、制御が不安定となる可能性がある。
一方、(1/2×C×Vdc)がコンデンサ4に貯蔵されるエネルギーであることを踏まえ、コンデンサのエネルギーをEdcとおくと、(9)式は次式により表される。

d/dt×Edc = ωm×τ×η (10)
(10)式に示すように、コンデンサのエネルギーEdcとトルクτとは線形な関係となる。上述のように、第一の指令値はコンデンサ電圧の指定値の二乗にコンデンサ容量と1/2とを乗じたエネルギー値としている。本実施の形態のモータ制御装置では、この第一の指令値と電圧検出値の二乗の値との差分Δ(V)に基づいて、トルク指令値である第二の指令値を生成している。
図4は、上述の差分Δ(V)と第二の指令値との関係を示したものである。図4に示すように、コンデンサのエネルギーEdcと比例の関係にあるΔ(V)と第二の指令値とは線形の関係にある。その結果、コンデンサ電圧の指定値と実際のコンデンサ電圧値との差分に対して第二の指令値が一定に変化するので、コンデンサ電圧の大きさによらずコンデンサ電圧の制御が安定する。
このように構成されたモータ制御装置は、電圧検出値の2乗の値と第一の指令値との差分に基づいて第二の指令値を生成しているので、コンデンサ電圧の大きさによらずコンデンサ電圧を安定して制御することができる。つまり、本実施の形態のモータ制御装置においては、指令生成部が電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成しているので、コンデンサ電圧の大きさによらずコンデンサ電圧を安定して制御することができる。
なお、本実施の形態では指令生成部で生成する第二の指令値をモータのトルク指令値とする例を示したが、制御する対象が三相交流モータである場合、第二の指令値を三相交流モータに流すq軸電流指令値としてもよい。モータのトルクは、q軸電流に極対数Pnと磁石磁束Φmを乗じた値に略等しい。したがって、トルク指令値を極対数Pnと磁石磁束Φmで除した値をq軸電流指令値として第二の指令値に用いてもよい。
実施の形態2.
実施の形態1のモータ制御装置は、指令生成部にあらかじめ設定された第一の指令値を用いてコンデンサ電圧を制御している。実施の形態2のモータ制御装置は、指令生成部に外部から第一の指令値が入力される。
図5は、本実施の形態に係るモータ制御装置の構成を示すブロック図である。本実施の形態のモータ制御装置1は、実施の形態1と同様な構成であるが、第一の指令値が指令生成部の外部から入力される点が異なっている。なお、第一の指令値は、実施の形態1と同様に、コンデンサ電圧の指定値の二乗にコンデンサ容量と1/2とを乗じたエネルギー値とする。
本実施の形態に係るモータ制御装置は、コンデンサ4からモータ2に供給される電力とモータ2からコンデンサ4に回生される電力とを第二の指令値で調整することで、コンデンサ4の電圧を制御している。モータ2とコンデンサ4との間を出入りする電力は、モータトルクとモータ2の機械角速度との積となるため、同じ電力を回生する場合でも、モータ機械角速度によって必要なトルクが変化する。したがって、モータ機械角速度の変化に対応させてコンデンサ電圧の指定値を変化させて第一の指令値を設定することが好ましい。
本実施の形態においては、モータ機械角速度の変化に対応させて設定される第一の指令値を外部から入力しているので、モータ機械角速度の変化に応じてコンデンサ電圧の指定値を変化させることができる。その結果、トルク指令値である第二の指令値が過大となることを防止できる。
また、外部からコンデンサ電圧の指定値を変更することも可能となるので、コンデンサ電圧の指定値を高くすることもできる。コンデンサ4に蓄積されるエネルギーは、コンデンサ電圧の二乗に比例する。したがって、コンデンサ4の電圧を高く設定することにより、コンデンサ4から電力が供給されるインバータ以外の負荷への供給電力を増加させることができる。
図6は、本実施の形態に係る別のモータ制御装置における指令生成部の構成を示すブロック図である。図6に示すように、本実施の形態の別のモータ制御装置の指令生成部6は、外部から入力される第一の指令値が入力されるフィードフォワード制御器11と、フィードフォワード制御器11の出力をフィードバック制御器10の出力に加算する加算器12とを備えている。
フィードフォワード制御器11は、外部から入力される第一の指令値の変化に対する指令補正値を生成する。加算器12は、フィードバック制御器10で生成された第二の指令値に指令補正値を加算して新たな第二の指令値を生成する。
モータ制御装置内の負荷の消費電力変動、モータ機械角速度の変動などに起因するコンデンサ電圧の変動は、フィードバック制御器10で生成される第二の指令値で制御される。コンデンサ電圧の変動抑制と第一の指令値に対するオーバーシュートとはトレードオフの関係であるため、制御応答性を向上させるために指令生成部のフィードバックゲインを上げるとオーバーシュートが悪化する傾向となる。図6に示す本実施の形態の別のモータ制御装置においては、第一の指令値に対する応答性をフィードフォワード制御器11で、モータ制御装置内の負荷の消費電力変動、モータ機械角速度の変動などに対する応答性をフィードバック制御器10でそれぞれ独立に設定できる。
このように構成されたモータ制御装置は、第一の指令値に対するオーバーシュートを低減することができる。
実施の形態3.
図7は、実施の形態3に係るモータ制御装置における指令生成部の構成を示すブロック図である。本実施の形態のモータ制御装置は、図7に示す指令生成部以外は、実施の形態1と同様な構成である。
図7に示すように、本実施の形態の指令生成部6は、減算器9と、フィードバック制御器10と、ゲイン生成部13と、乗算器14と、加算器15とで構成されている。減算器9は、指令生成部6にあらかじめ設定された第一の指令値と電圧検出値との差分を出力する。加算器15は、指令生成部6にあらかじめ設定された第一の指令値と電圧検出値との和を出力する。ゲイン生成部13は、加算器15から出力された第一の指令値と電圧検出値との和にゲインを乗じた値を生成する。乗算器14は、減算器9から出力された値にゲイン生成部13で生成された値を乗算して出力する。つまり、乗算器14から出力される値は、電圧の二乗の値である。フィードバック制御器10は、乗算器14から出力された値に基づいて第二の指令値を生成する。
本実施の形態において、第一の指令値は電圧の値とし、例えばコンデンサ電圧の指定値を第一の指令値として設定する。また、第二の指令値は、トルク指令値である。
このように構成されたモータ制御装置は、実施の形態1と同様に、指令生成部6のフィードバック制御器10がコンデンサのエネルギーEdcと比例の関係にある電圧の二乗の値に基づいて第二の指令値を生成している。つまり、本実施の形態のモータ制御装置においては、指令生成部が電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成している。その結果、コンデンサ電圧の指定値と実際のコンデンサ電圧値との差分に対して第二の指令値が一定に変化するので、コンデンサ電圧の大きさによらずコンデンサ電圧の制御が安定する。
実施の形態4.
図8は、実施の形態4に係るモータ制御装置における指令生成部の構成を示すブロック図である。図8に示すように、本実施の形態のモータ制御装置の指令生成部6は、フィードフォワード制御器11と、加算器12と、減算器9と、フィードバック制御器10と、ゲイン生成部13と、乗算器14と、加算器15とで構成されている。フィードフォワード制御器11および加算器12の動作は、実施の形態2の図6に示したものと同様であるので説明を省略する。また、減算器9、フィードバック制御器10、ゲイン生成部13、乗算器14および加算器15の動作は、実施の形態3と同様であるので説明を省略する。
本実施の形態において、第一の指令値は外部から入力される。また、第一の指令値は電圧の値とし、例えばコンデンサ電圧の指定値を第一の指令値として設定する。また、第二の指令値は、トルク指令値である。
このように構成されたモータ制御装置は、実施の形態1と同様に、指令生成部6のフィードバック制御器10がコンデンサのエネルギーEdcと比例の関係にある電圧の二乗の値に基づいて第二の指令値を生成している。つまり、本実施の形態のモータ制御装置においては、指令生成部が電圧検出値および第一の指令値から得られる電圧検出値に対する非線形な値に基づいて第二の指令値を生成している。その結果、コンデンサ電圧の指定値と実際のコンデンサ電圧値との差分に対して第二の指令値が一定に変化するので、コンデンサ電圧の大きさによらずコンデンサ電圧の制御が安定する。
また、第一の指令値を外部から入力しているので、モータ機械角速度の変化に応じて第一の指令値を設定することができる。その結果、トルク指令値である第二の指令値が過大となることを防止できる。
さらに、第一の指令値に対する応答性をフィードフォワード制御器11で、モータ制御装置内の負荷の消費電力変動、モータ機械角速度の変動などに対する応答性をフィードバック制御器10でそれぞれ独立に設定できるので、第一の指令値に対するオーバーシュートを低減することができる。
実施の形態5.
図9は、実施の形態5に係るモータ制御装置における指令生成部の入出力信号を示す図である。図9に示すように、本実施の形態のモータ制御装置の指令生成部6は、第一の指令値、電圧検出値およびモータ機械角速度を入力とし、トルク指令値である第二の指令値を出力する。
コンデンサ4に貯蔵されるエネルギーは、コンデンサ4からモータ2に供給される電力とモータ2からコンデンサ4に回生される電力とを積算した結果であり、回生電力はモータトルクとモータ機械角速度の積であるため、モータ機械角速度の増加に伴い、モータトルクの変化に対して回生電力が増加する。したがって、モータ機械角速度の変化に対してモータ制御装置の応答が一定の場合、モータトルクに対するエネルギー偏差の応答が変化し、制御が不安定となる可能性がある。本実施の形態のモータ制御装置は、モータ機械角速度の変化に対してモータ制御装置の応答を可変にしたものである。
図10は、本実施の形態に係るモータ制御装置における指令生成部の構成を示すブロック図である。図10に示すように、本実施の形態の指令生成部6は、図2に示した指令生成部の構成に除算器16を加えたものである。除算器16は、フィードバック制御器10からの出力を外部から入力されたモータ機械角速度で除した値を新たな第二の指令値として生成する。なお、本実施の形態において、第一の指令値はコンデンサ電圧の指定値の二乗にコンデンサ容量と1/2とを乗じたエネルギー値としている。また、フィードバック制御器10からの出力を電力指令値としている。
このように構成されたモータ制御装置は、第一の指令値と電圧検出値とで決まる電力指令値はモータ機械角速度によらず一定であるが、電力指令値をモータ機械角速度で除算して第二の指令値を生成することにより、モータ機械角速度の変化に対して一定の制御応答を実現できる。
なお、実施の形態3の図7に示した指令生成部において、フィードバック制御器の出力側に除算器を配置し、この除算器を用いてフィードバック制御器からの出力に対して外部から入力されたモータ機械角速度で除した値を新たな第二の指令値として生成してもよい。このとき第一の指令値はコンデンサ電圧の指定値、フィードバック制御器からの出力は電力指令値とする。
このように構成されたモータ制御装置でも、電力指令値をモータ機械角速度で除算してトルク指令値を生成することにより、モータ機械角速度の変化に対して一定の制御応答を実現できる。
図11は、本実施の形態に係る別のモータ制御装置における指令生成部の構成を示すブロック図である。図11に示すように、本実施の形態の別のモータ制御装置の指令生成部6は、フィードバック制御器10で得られる比例ゲイン17および積分ゲイン18に対して、外部から入力されるモータ機械角速度を用いて調整している。この場合、モータ機械角速度の増加に対して、比例ゲイン17および積分ゲイン18が低下するように調整する。
このように構成されたモータ制御装置でも、電力指令値をモータ機械角速度で除算して第二の指令値を生成することにより、モータ機械角速度の変化に対して一定の制御応答を実現できる。
本実施の形態のモータ制御装置は、第一の指令値と電圧検出値に基づく値と外部から入力されるモータ機械角速度とに基づいて第二の指令値を生成する構成としたので、モータ機械角速度の変化に対して電圧の応答を一定とし、制御を安定にすることができる。
実施の形態6.
図12は、実施の形態6に係るモータ制御装置の構成を示すブロック図である。図12に示すように、本実施の形態のモータ制御装置1には、コンデンサ4に充放電が可能なバッテリ19がリレー20を介して並列に接続されている。モータ制御装置1の構成は実施の形態1の図1に示したモータ制御装置と同様であるが、指令生成部6に外部からトルク指令値と、リレー20が開放されているか否かを示すリレー状態信号とが入力される点が異なっている。
電気自動車、ハイブリッド自動車などの電動化車両では、図12に示すように、モータ制御装置1のコンデンサ4とリチウムイオン二次電池などのバッテリ19とがリレー20を介して並列に接続されている。通常の駆動状態ではリレー20は閉じられており、モータ制御装置は、バッテリ19から供給される電力でモータ2を駆動する。一方、バッテリ19の充放電が禁止される状態、リレー20が故障した状態などでリレー20が開放された場合、バッテリ19からモータ制御装置1への電力供給が遮断される。この状態では、モータ制御装置はコンデンサ4に蓄積されたエネルギーのみでモータを駆動する。しかしながら、コンデンサ4に蓄積されるエネルギーはバッテリ19に蓄積されたエネルギーと比較して非常に小さいため、コンデンサ電圧が制御されていない場合は長時間継続してモータを駆動することが困難である。
本実施の形態のモータ制御装置1において、指令生成部6はリレー20が開放しているか否かを示すリレー状態信号に基づいて第二の指令値を決定している。指令生成部6は、リレー20が開放されていないことを示すリレー状態信号が入力されたときは外部から入力されたトルク指令値を第二の指令値として出力する。また、指令生成部6は、リレー20が開放されていることを示すリレー状態信号が入力されたときは実施の形態1で説明したように、指令生成部6の内部にあらかじめ設定された第一の指令値を用いて第二の指令値を生成して出力する。したがって、本実施の形態のモータ制御装置は、バッテリから電力が供給されているときは外部から入力されるトルク指令値に基づいてモータを駆動する。また、このモータ制御装置は、バッテリから電力が供給されていないときは指令生成部にあらかじめ設定された第一の指令値を用いてトルク指令値である第二の指令値を生成し、この第二の指令値に基づいてモータを駆動する。
このように構成されたモータ制御装置は、バッテリから電力が供給されていないときは、コンデンサ電圧を制御しながらモータを駆動しているので、長時間継続してモータを駆動させることができる。
なお、本実施の形態のモータ制御装置は、バッテリから電力が供給されていないときに、指令生成部にあらかじめ設定された第一の指令値を用いてトルク指令値である第二の指令値を生成しているが、実施の形態2で説明したように、外部から入力される第一の指令値を用いて第二の指令値を生成してもよい。また、このときの第二の指令値の生成方法は、実施の形態3および4で説明した方法であってもよい。
また、本実施の形態のモータ制御装置は、外部からトルク指令値が入力される構成であるが、モータ制御装置内でトルク指令値を生成してもよい。モータ機械角速度、コンデンサ電圧値などを検出し、コンデンサ電圧が指定値となるようにトルク指令値を生成するフィードバック制御器をモータ制御装置内に追加し、このフィードバック制御器で生成されたトルク指令値を用いてもよい。例えば、電圧検出値をコンデンサ電圧の指定値に制御するため、電圧検出値とコンデンサ電圧の指定値との偏差に基づくPI制御部をモータ制御装置内に追加し、バッテリから電力が供給されているときは、このPI制御部の出力をトルク指令値としてもよい。
このように構成されたモータ制御装置も、バッテリから電力が供給されていないときは、コンデンサ電圧を制御しながらモータを駆動しているので、長時間継続してモータを駆動させることができる。
本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 モータ制御装置、 2 モータ、 3 インバータ、 4 コンデンサ、 5 電圧検出部、 6 指令生成部、 7 インバータ制御部、 8 乗算器、 9 減算器、 10 フィードバック制御器、 11 フィードフォワード制御器、 12 加算器、 13 ゲイン生成部、 14 乗算器、 15 加算器、 16 除算器、 17 比例ゲイン、 18 積分ゲイン、 19 バッテリ、 20 リレー。
本願に係るモータ制御装置は、モータに電力を供給するインバータと、インバータに並列に接続されたコンデンサと、コンデンサの電圧を検出する電圧検出部と、電圧検出部で検出された電圧検出値とあらかじめ設定された第一の指令値とに基づいてモータの回生電力の指令値である第二の指令値を生成する指令生成部と、第二の指令値に基づいてインバータを制御するインバータ制御部とを備えており、指令生成部は、電圧検出値の2乗の値と第一の指令値との差分に基づいて第二の指令値を生成するフィードバック制御器を備えており、指令生成部は、外部から与えられるモータ機械角速度を受け取り、フィードバック制御器で生成された第二の指令値をモータ機械角速度で除算して新たな第二の指令値とする
本願のモータ制御装置は、指令生成部が電圧検出値の2乗の値と第一の指令値との差分に基づいて第二の指令値を生成するフィードバック制御器を備えており、指令生成部は、外部から与えられるモータ機械角速度を受け取り、フィードバック制御器で生成された第二の指令値をモータ機械角速度で除算して新たな第二の指令値とするので、コンデンサ電圧の大きさによらずコンデンサ電圧を安定して制御することができる

Claims (7)

  1. モータに電力を供給するインバータと、
    前記インバータに並列に接続されたコンデンサと、
    前記コンデンサの電圧を検出する電圧検出部と、
    前記電圧検出部で検出された電圧検出値とあらかじめ設定された第一の指令値とに基づいて第二の指令値を生成する指令生成部と、
    前記第二の指令値に基づいて前記インバータを制御するインバータ制御部と
    を備えたモータ制御装置であって、
    前記指令生成部は、前記電圧検出値および前記第一の指令値から得られる前記電圧検出値に対する非線形な値に基づいて前記第二の指令値を生成する
    ことを特徴とするモータ制御装置。
  2. 前記指令生成部は、前記電圧検出値の2乗の値と前記第一の指令値との差分に基づいて前記第二の指令値を生成するフィードバック制御器を備えた
    ことを特徴とする請求項1に記載のモータ制御装置。
  3. 前記指令生成部は、
    前記電圧検出値と前記第一の指令値との和に基づいてゲインを生成するゲイン生成部と、
    前記電圧検出値と前記第一の指令値との差分に前記ゲインを乗じた値に基づいて前記第二の指令値を生成するフィードバック制御器とを備えた
    ことを特徴とする請求項1に記載のモータ制御装置。
  4. 前記指令生成部は、
    前記第一の指令値の変化に対する指令補正値を生成するフィードフォワード制御器を備え、
    前記フィードバック制御器で生成された前記第二の指令値に前記指令補正値を加算して新たな第二の指令値とする
    ことを特徴とする請求項2または3に記載のモータ制御装置。
  5. 前記指令生成部は、
    外部から与えられるモータ機械角速度を受け取り、
    前記フィードバック制御器で生成された前記第二の指令値に前記モータ機械角速度を除算して新たな第二の指令値とする
    ことを特徴とする請求項2または3に記載のモータ制御装置。
  6. 前記第一の指令値は、
    前記指令生成部の外部から与えられることを特徴とする請求項1から5のいずれか1項に記載のモータ制御装置。
  7. 前記指令生成部は、
    前記コンデンサに外部から電力が供給されているか否かを示す信号、およびトルク指令値を受け取り、
    外部から電力が供給されている場合は、前記トルク指令値を第二の指令値とする
    ことを特徴とする請求項1から6のいずれか1項に記載のモータ制御装置。
JP2019073313A 2019-04-08 2019-04-08 モータ制御装置 Active JP6739577B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019073313A JP6739577B1 (ja) 2019-04-08 2019-04-08 モータ制御装置
CN202010249477.9A CN111817637B (zh) 2019-04-08 2020-04-01 电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073313A JP6739577B1 (ja) 2019-04-08 2019-04-08 モータ制御装置

Publications (2)

Publication Number Publication Date
JP6739577B1 JP6739577B1 (ja) 2020-08-12
JP2020174416A true JP2020174416A (ja) 2020-10-22

Family

ID=71949366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073313A Active JP6739577B1 (ja) 2019-04-08 2019-04-08 モータ制御装置

Country Status (2)

Country Link
JP (1) JP6739577B1 (ja)
CN (1) CN111817637B (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065375B2 (ja) * 2001-11-20 2008-03-26 松下電器産業株式会社 モータ駆動装置及びモータ駆動方法
JP3933537B2 (ja) * 2002-07-09 2007-06-20 中部電力株式会社 交流電源装置
JP2016165165A (ja) * 2013-07-05 2016-09-08 日立オートモティブシステムズ株式会社 電動車両の制動制御装置
JP2017123702A (ja) * 2016-01-05 2017-07-13 日立オートモティブシステムズ株式会社 インバータ制御装置およびそれを搭載したモータ駆動装置及び電動パワーステアリング装置

Also Published As

Publication number Publication date
JP6739577B1 (ja) 2020-08-12
CN111817637A (zh) 2020-10-23
CN111817637B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP5246508B2 (ja) 電動機駆動装置の制御装置
Bae et al. New field weakening technique for high saliency interior permanent magnet motor
JP5652659B2 (ja) 電動機制御装置
CN101345511B (zh) 用于以连续电流模式运行z源变换器电感器的系统和方法
WO2021014961A1 (ja) 電動車両
JP5099876B2 (ja) 直列ハイブリッド式電気自動車
JP5534323B2 (ja) 電動機制御装置
JP6739577B1 (ja) モータ制御装置
EP1124322A2 (en) Induction motor power/torque clamping for electric vehicle performance
JP5352326B2 (ja) モータ駆動制御装置
KR20130034633A (ko) 액티브 스위칭 주파수 변조
JP2020124034A (ja) 電力変換制御装置
Faizy et al. DC motor control using chopper
JPWO2020137567A1 (ja) モータ制御装置
Mencou et al. Three different relative degrees sliding mode control for robust dtc control of induction motor drives
Akrami et al. Flatness-Based Trajectory Planning/Replanning for a Permanent Magnet Synchronous Machine Control
JP2009077606A (ja) 発電機と電動機の関連制御装置
JP2021111986A (ja) モータ制御装置
CN113085552A (zh) 车辆电机的母线电压控制方法、系统
KR20210068192A (ko) 주파수 자동 조정기능이 구비된 인버터 제어장치
Elsayed et al. Modeling and Analysis of PMSM under Regenerative Braking Operations with Fault-Tolerant for EV/HEV Applications
JPH06225458A (ja) 電力変換装置及び制御方法
Murthy et al. Comparison of regenerative braking controllers for permanent magnet synchronous machines
CN111193444B (zh) 混合动力汽车用开关磁阻发电机无源控制器的构造方法
KR102633710B1 (ko) 고효율 충전기 및 이를 구동하는 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R151 Written notification of patent or utility model registration

Ref document number: 6739577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250