JP2020165215A - 作業機械および作業機械の制御方法 - Google Patents

作業機械および作業機械の制御方法 Download PDF

Info

Publication number
JP2020165215A
JP2020165215A JP2019067317A JP2019067317A JP2020165215A JP 2020165215 A JP2020165215 A JP 2020165215A JP 2019067317 A JP2019067317 A JP 2019067317A JP 2019067317 A JP2019067317 A JP 2019067317A JP 2020165215 A JP2020165215 A JP 2020165215A
Authority
JP
Japan
Prior art keywords
cylinder
bucket
boom
drive command
work machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019067317A
Other languages
English (en)
Other versions
JP7232691B2 (ja
Inventor
翔太 山脇
Shota Yamawaki
翔太 山脇
彰吾 宮▲崎▼
Shogo Miyazaki
彰吾 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2019067317A priority Critical patent/JP7232691B2/ja
Priority to PCT/JP2020/012075 priority patent/WO2020203315A1/ja
Priority to CN202080012824.4A priority patent/CN113396256B/zh
Priority to US17/426,399 priority patent/US20220106763A1/en
Priority to EP20782694.2A priority patent/EP3907334A4/en
Publication of JP2020165215A publication Critical patent/JP2020165215A/ja
Application granted granted Critical
Publication of JP7232691B2 publication Critical patent/JP7232691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/283Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a single arm pivoted directly on the chassis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • E02F3/3405Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines and comprising an additional linkage mechanism
    • E02F3/3411Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines and comprising an additional linkage mechanism of the Z-type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/422Drive systems for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2214Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing the shock generated at the stroke end
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

【課題】ブーム角度を考慮せずにチルトエンドまたはダンプエンドにおける衝撃を緩和可能な作業機械を提供すること。【解決手段】本実施の形態のホイールローダ1は、ブーム14と、バケット15と、バケットシリンダ17と、ベルクランク18と、制御装置27と、を備える。バケット15は、ブーム14に対して駆動する。ベルクランク18は、ブーム14に取り付けられ、バケットシリンダ17の駆動力をバケット15へ伝達する。制御装置27は、ブーム14に対するベルクランク18の角度に基づいてバケットシリンダ17を制御する。【選択図】図2

Description

本発明は、作業機械および作業機械の制御方法に関する。
作業機械の一例としてのホイールローダは、ブームの先端にバケットが設けられた作業機を有する。ホイールローダの車両本体とブームの間には、ブーム用油圧シリンダが設けられており、油圧シリンダの伸縮によってブームが上下方向に回動する。
また、ブームにはベルクランクが取り付けられており、ベルクランクの一端と車両本体の間には、バケット用油圧シリンダが設けられている。ベルクランクの他端とバケットの間は、ロッドによって取り付けられている。バケット用油圧シリンダが伸長するとバケットはチルト方向に回動し、バケット用油圧シリンダが縮退するとバケットはダンプ方向に回動する(例えば、特許文献1参照。)。
このようなホイールローダでは、ブーム角度によっては、バケット用シリンダのストロークが最大値または最小値に達するまえに、作業機のリンク機構の構造によってバケットがチルトエンドまたはダンプエンドに達するので、ブーム角度の全体にわたって、バケット用シリンダのストロークの最大値がチルトエンドに対応し、最小値がダンプエンドに対応していない。
このため、チルトエンドまたはダンプエンドにおける衝撃の緩和制御は、バケット形状を考慮したシリンダ長のストロークエンドをブーム角度に対して規定したマップに基づいて行われていた。
特許第5717923号明細書
しかしながら、ブーム角度を考慮せずに緩和制御を行うことが要望されている。
本発明は、ブーム角度を考慮せずにチルトエンドまたはダンプエンドにおける衝撃を緩和可能な作業機械および作業機械の制御方法を提供することを目的とする。
発明の作業機械は、ブームと、作業具と、アクチュエータと、サブリンクと、制御部と、を備える。作業部は、ブームに対して駆動する。アクチュエータは、作業具を駆動する。サブリンクは、ブームに取り付けられ、アクチュエータの駆動力を作業具へ伝達する。制御部は、ブームに対するサブリンクの姿勢に基づいてアクチュエータを制御する。
発明の作業機械の制御方法は、制御ステップを備える。制御ステップは、ブームに対して駆動する作業具へアクチュエータの駆動力を伝達するサブリンクのブームに対する姿勢に基づいて前記アクチュエータを制御する。
本発明によれば、ブーム角度を考慮せずにチルトエンドまたはダンプエンドにおける衝撃を緩和可能な作業機械および作業機械の制御方法を提供することができる。
本発明にかかる実施の形態のホイールローダの側面図。 図1の作業機の側面図。 図1の制御系統を示すブロック図。 ブーム角度に対するチルトエンドの時のバケットシリンダ長の変化と、ブーム角度に対するダンプエンドの時のバケットシリンダ長の変化を示す図。 図4のP1における作業機の状態の一例を示す図。 図4のP2における作業機の状態の一例を示す図。 図4のP3における作業機の状態の一例を示す図。 図5のグラフに、バケットシリンダ長の最小値、バケットシリンダ長の最大値、ベルクランク角度の最小値、およびベルクランク角度の最大値のブーム角度に対する変化を加えた図。 図8のグラフの縦軸をベルクランク角度に変換したグラフを示す図。 図3の処理部の構成を示すブロック図。 本発明にかかる実施の形態の作業機械の制御方法を示すフロー図。 ベルクランク角度の最大値を校正する方法を示すフロー図。
以下、本発明にかかる実施の形態のホイールローダ1(作業機械の一例)について図面を参照しながら説明する。
<構成>
(ホイールローダ1の構成の概要)
図1は、本実施の形態のホイールローダ1の構成を示す模式図である。
本実施の形態のホイールローダ1は、車体2(車両本体の一例)と、作業機3と、を備える。車体2は、車体フレーム10と、一対のフロントタイヤ4と、キャブ5と、エンジンルーム6と、一対のリアタイヤ7と、制御系統8(図3参照)と、を備えている。
ホイールローダ1は、作業機3を用いて土砂積み込み作業などを行う。
車体フレーム10は、いわゆるアーティキュレート式であり、フロントフレーム11とリアフレーム12と、連結軸部13と、を有している。フロントフレーム11は、リアフレーム12の前方に配置されている。連結軸部13は、車幅方向の中央に設けられており、フロントフレーム11とリアフレーム12を互いに揺動可能に連結する。
キャブ5には、リアフレーム12に設けられ、運転席が配置される。キャブ5には、後述する入出力装置50、ブーム操作レバー61、およびバケット操作レバー62等が設けられる。
一対のフロントタイヤ4は、フロントフレーム11の左右に取り付けられている。また、一対のリアタイヤ7は、リアフレーム12の左右に取り付けられている。
作業機3は、作業機ポンプからの作動油によって駆動される。図2は、作業機3の拡大側面図である。
作業機3は、ブーム14と、バケット15(作業具の一例)と、ブームシリンダ16と、バケットシリンダ17(アクチュエータの一例)と、ベルクランク18(サブリンクの一例)と、を有する。
ブーム14の一方の取付部14aはフロントフレーム11の前部に回動可能に取り付けられている。ブーム14の他方の取付部14bは、バケット15の後部に回動可能に取り付けられている。ブーム14の取付部14aと取付部14bの間に設けられた取付部14cには、ブームシリンダ16のシリンダロッド16aの先端が回動可能に取り付けられている。ブームシリンダ16のシリンダ本体は、取付部16bにおいてフロントフレーム11に回動可能に取り付けられている。
ベルクランク18は、ベルクランク本体18eと、ロッド18fと、を有する。ベルクランク本体18eの一方の端部に設けられた取付部18aは、バケットシリンダ17のシリンダロッド17aの先端に回動可能に取り付けられている。ロッド18fの一端は、ベルクランク本体18eの他方の端部に設けられた取付部18bに回動可能に取り付けられている。ロッド18fの他端は、取付部18gにおいてバケット15の後部に回動可能に取り付けられている。ベルクランク本体18eは、取付部18a(第2取付部の一例)と取付部18b(第3取付部の一例)の間に設けられた取付部18c(第4取付部の一例)においてブーム14の中央近傍のベルクランクサポート14dに回動可能に支持されている。バケットシリンダ17のシリンダ本体は、取付部17b(第1取付部の一例)においてフロントフレーム11に回動可能に取り付けられている。バケットシリンダ17の伸縮力は、ベルクランクによって回転運動に変換されてバケット15に伝達される。なお、サブリンクは、ベルクランク18に加えてクイックカプラ等を含んでもよい。
バケットシリンダ17の伸縮によって、バケット15はブーム14に対して回動し、チルト動作(矢印J参照)およびダンプ動作(矢印K参照)を行う。ここで、バケット15のチルト動作とは、バケット15の開口部15bおよび爪15cがキャブ5に向かって回動することにより傾く動作である。バケット15のダンプ動作とは、チルト動作とは反対であって、バケット15の開口部15bおよび爪15cがキャブ5から遠ざかるように回動することにより傾く動作である。
ブーム角度センサ54がブーム14の取付部14aに設けられている。ブーム角度センサ54は、ブーム14の中心線L1と水平線Hとの間のブーム角度(図においてθaで示す)を検出し、検出信号を出力する。ブーム14の中心線L1は、ブーム14の取付部14aと取付部14bを結ぶ線である。ブーム角度は、中心線L1が水平線Hよりも路面R(図1参照)側に傾斜している場合には、負の値となる。
ベルクランク角度センサ55が、ベルクランク18の取付部18cに設けられている。ベルクランク角度センサ55は、ベルクランク18の取付部18aと取付部18cを結ぶ線L2と、ブーム14の中心線L1との間のベルクランク角度(図においてθbで示す)を検出し、検出信号を出力する。ベルクランク角度は、ベルクランク18の姿勢の一例である。
(制御系統)
図3は、作業機3の動作を制御する制御系統8を示す図である。
制御系統8は、作業機3の動作を制御する。制御系統8は、作業機油圧ポンプ21と、ブーム操作弁22と、バケット操作弁23と、パイロットポンプ24と、吐出回路25と、電磁比例制御弁26と、制御装置27と、EG(エンジン)制御装置29と、を有する。
(作業機油圧ポンプ)
作業機油圧ポンプ21は、エンジンルーム6に搭載されるエンジン30によって駆動される。エンジン30は、内燃機関であり、例えばディーゼルエンジンが用いられる。エンジン30の出力はPTO(power Take Off)31に入力された後、作業機油圧ポンプ21と、トランスミッション34に出力される。作業機油圧ポンプ21は、PTO31を介してエンジン30に駆動されて、作動油を吐出する。クラッチ32の入力側はエンジン30に取り付けられている。クラッチ32の出力側は、トルクコンバータ(TC)33に取り付けられている。エンジン30の出力は、PTO31を介してトランスミッション34に伝達される。トランスミッション34は、PTO31を介して伝達されたエンジン30の出力をフロントタイヤ4及びリアタイヤ7に伝達し、フロントタイヤ4およびリアタイヤ7が駆動する。なお、トランスミッション34は、HST(Hydro Static Transmission)、電動駆動等、適宜用いることができる。
(吐出回路、ブーム操作弁、バケット操作弁)
吐出回路25は、作動油が通過する油路であり、作業機油圧ポンプ21が作動油を吐出する吐出口に取り付けられている。吐出回路25は、ブーム操作弁22とバケット操作弁23に取り付けられている。ブーム操作弁22およびバケット操作弁23は、油圧パイロット式の操作弁である。ブーム操作弁22およびバケット操作弁23は、車体2に取り付けられている。作業機油圧ポンプ21と、ブーム操作弁22と、バケット操作弁23と、吐出回路25は、パラレル式の油圧回路を形成している。
ブーム操作弁22は、A位置、B位置、C位置およびD位置の間で切り替え可能な4位置切換弁である。ブーム操作弁22は、A位置になるとブーム14が上昇し、B位置になると中立で位置を保持し、C位置になるとブーム14が下降し、D位置は浮きとなる。
バケット操作弁23は、E位置、F位置、およびG位置の間で切換可能な3位置切換弁である。バケット操作弁23は、E位置になるとバケット15をチルト動作(図2の矢印J参照)し、F位置になると中立で位置を保持し、G位置になるとバケット15がダンプ動作(図2の矢印K参照)する。
(パイロットポンプ)
パイロットポンプ24は、ブーム操作弁22のパイロット受圧部とバケット操作弁23のパイロット受圧部に電磁比例制御弁26を介して取り付けられている。パイロットポンプ24は、PTO31に接続されており、エンジン30によって駆動される。パイロットポンプ24は、電磁比例制御弁26を介して、ブーム操作弁22のパイロット受圧部22Rおよびバケット操作弁23のパイロット受圧部23Rにパイロット圧力の作動油を供給する。
(電磁比例制御弁)
電磁比例制御弁26は、ブーム下げ電磁比例制御弁41と、ブーム上げ電磁比例制御弁42と、バケットダンプ電磁比例制御弁43と、バケットチルト電磁比例制御弁44と、を有している。
ブーム下げ電磁比例制御弁41およびブーム上げ電磁比例制御弁42は、ブーム操作弁22の各パイロット受圧部22Rに取り付けられている。バケットダンプ電磁比例制御弁43とバケットチルト電磁比例制御弁44は、バケット操作弁23の各パイロット受圧部23Rに取り付けられている。
ブーム下げ電磁比例制御弁41のソレノイド指令部41S、ブーム上げ電磁比例制御弁42のソレノイド指令部42S、バケットダンプ電磁比例制御弁43のソレノイド指令部43S,およびバケットチルト電磁比例制御弁44のソレノイド指令部44Sには、制御装置27からのそれぞれの電磁比例制御弁への指令信号が入力される。
ブーム下げ電磁比例制御弁41、ブーム上げ電磁比例制御弁42、ブーム操作弁22およびブームシリンダ16の動作によってブーム14の上方または下方への回動が行われる。
バケットダンプ電磁比例制御弁43とバケットチルト電磁比例制御弁44、バケット操作弁23およびバケットシリンダ17の動作によってバケット15のチルト動作およびダンプ動作が行われる。
(ブーム操作レバー、バケット操作レバー)
制御系統8には、オペレータによって操作されるブーム操作レバー61とバケット操作レバー62が設けられている。ブーム操作レバー61は、ブーム14を操作するためのレバーである。ブーム操作レバー61には、ブーム操作レバー61の操作量を検出する第1ポテンショメータ63が取り付けられている。
バケット操作レバー62は、バケット15を操作するためのレバーである。バケット操作レバー62には、バケット操作レバー62の操作量を検出するための第2ポテンショメータ64が取り付けられている。
第1ポテンショメータ63および第2ポテンショメータ64の検出信号は、制御装置27の入力部47に入力される。
なお、ブーム操作レバー61およびバケット操作レバー62は、シリンダを操作する操作弁をパイロット圧で直接駆動するPPCレバーであってもよい。
(制御装置)
制御装置27は、例えば、CPU(Central Processing Unit)等の処理部45と、ROM(Read Only Memory)等の記憶部46と、入力部47と、出力部48と、を有する。
処理部45は、コンピュータプログラムを実行することによって作業機3の動作を制御する。処理部45は、記憶部46、入力部47および出力部48と電気的に接続されている。処理部45は、記憶部46からの情報を読み出し、記憶部46への情報の書き込みを行う。処理部45は、入力部47から情報を受けとる。処理部45は、出力部48から情報を出力する。
記憶部46は、作業機3の動作を制御するコンピュータプログラムおよび作業機3の制御に用いる情報を記憶する。記憶部46は、作業機械の制御方法を実現するためのコンピュータプログラムを記憶しており、処理部45が、このプログラムを読み出して実行する。
記憶部46は、バケットシリンダ17のシリンダ長(ストロークの一例)の最大値と最小値と、ベルクランク角度の最大値と最小値を記憶する。ベルクランク角度の最大値と最小値は、限界姿勢の一例に対応する。シリンダ長の最大値と最小値は、終端位置の一例に対応する。
また、記憶部46は、4つのテーブルを記憶している。第1テーブルは、ベルクランク角度センサ55より取得したベルクランク角度とベルクランク角度の最大値との差分に対して設定されたバケットシリンダ17への作動油の制限量を示すテーブルである。第2テーブルは、ベルクランク角度センサ55より取得したベルクランク角度とベルクランク角度の最小値との差分に対して設定されたバケットシリンダ17への作動油の制限量を示すテーブルである。第3テーブルは、ブーム角度センサ54とベルクランク角度センサ55より取得したバケットシリンダ17のシリンダ長とシリンダ長の最大値との差分に対して設定されたバケットシリンダ17への作動油の制限量のテーブルである。第4テーブルは、ブーム角度センサ54とベルクランク角度センサ55より取得したバケットシリンダ17のシリンダ長とシリンダ長の最小値との差分に対して設定されたバケットシリンダ17への作動油の制限量のテーブルである。
入力部47には、ブーム角度センサ54と、ベルクランク角度センサ55と、第1ポテンショメータ63と、第2ポテンショメータ64から検出信号が入力される。処理部45は、これらの検出信号を取得して作業機3の動作を制御する。
また、バケットシリンダ17のシリンダ長(図2にLaで示す)は、ブーム角度センサ54によって検出されたブーム角度と、ベルクランク角度センサ55によって検出されたベルクランク角度から求められる。
制御装置27は、ブーム角度センサ54及びベルクランク角度センサ55の少なくとも一方の検出値を用いてブームシリンダ16のシリンダ長およびバケットシリンダ17のシリンダ長を求め、ブーム14およびバケット15の動作を制御する。
出力部48は、ブーム下げ電磁比例制御弁41のソレノイド指令部41Sと、ブーム上げ電磁比例制御弁42のソレノイド指令部42Sと、バケットダンプ電磁比例制御弁43のソレノイド指令部43Sと、バケットチルト電磁比例制御弁44のソレノイド指令部44Sと、入出力装置50に駆動指令を出力する。
処理部45は、ブーム下げ電磁比例制御弁41のソレノイド指令部41Sまたはブーム上げ電磁比例制御弁42のソレノイド指令部42Sにブームシリンダ16を動作させるための指令値を与えて、ブームシリンダ16を伸縮させ、ブーム14を昇降させる。
処理部45は、バケットダンプ電磁比例制御弁43のソレノイド指令部43Sまたはバケットチルト電磁比例制御弁44のソレノイド指令部44Sにバケットシリンダ17を動作させるための指令値を与えて、バケットシリンダ17を伸縮させ、バケット15をチルト動作またはダンプ動作させる。
入出力装置50は、キャブ5の内部に設けられている。入出力装置50は、入力部47および出力部48の双方に取り付けられている。入出力装置50は、入力装置51と、表示装置52と、を有する。オペレータは、入力装置51から制御装置27に指令値を入力できる。表示装置52は、作業機3の状態または制御に関する情報を表示する。入力装置51は、タッチパネルや、押しボタン式のスイッチを用いることができる。後述するが、入力装置51が操作されることによって、チルトエンドにおけるベルクランク角度の最大値を校正するための校正モードを表示することができる。
(緩停止制御)
本実施の形態のホイールローダ1では、チルトエンドおよびダンプエンドにおける衝撃を緩和するために、チルトエンドおよびダンプエンドにおいて緩停止制御が行われる。
本実施の形態の制御装置27は、ベルクランク角度と、バケットシリンダ17のストローク長に基づいて緩停止制御を行う。
緩停止制御を行うための処理部45の構成について説明を行う前に、ベルクランク角度と、バケットシリンダ17のストローク長でチルトエンドおよびダンプエンドに達することを検出する点について説明を行う。
図4は、ブーム角度に対するチルトエンドの時のバケットシリンダ長の変化(G1)と、ブーム角度に対するダンプエンドの時のバケットシリンダ長の変化(G2)を示す図である。縦軸がバケットシリンダ長を示し、横軸がブーム角度を示している。
G1に示すように、ブーム角度が最大値からA1度までの間では、バケットシリンダ17のシリンダ長の最大値でチルトエンドに達している。
図5は、バケットシリンダ17の最大値でチルトエンドに達した状態を示す図であり、図4のP1における作業機の状態の一例を示す図である。図5は、ブーム角度が最大値であり、バケットシリンダ17が伸びきってバケット15がチルトエンドに達した状態を示す。
一方、ブーム角度がA1度から最小値までの間では、バケットシリンダ17のシリンダ長が最大値に達する前にチルトエンドに達する。
これは、バケットシリンダ17のシリンダ長が最大値に達する前に作業機3のリンク機構の機構限界に達し、それ以上バケットシリンダ17を伸ばすことができないためである。図6は、図4のP2における作業機3の一例を示す図である。図6に示す状態では、バケット15がベルクランク18に接触しているため、これ以上バケットシリンダ17を伸ばすことができない。図6では、接触箇所がC1として示されているが、作業機3のリンクの構造によっては、機構限界において接触する位置は変化する。
このように、最小値から角度A1までは作業機3のリンク機の機構限界によってバケット15はチルトエンドに達し、角度A1から最大値まではバケットシリンダ17のシリンダ長の最大値においてバケット15はチルトエンドに達する。
一方、G2に示すように、ブーム角度が最小値からA2度までの間では、バケットシリンダ17の最小値でダンプエンドに達するが、ブーム角度がA2度から最大値までの間では、バケットシリンダ17のシリンダ長が最小値に達する前にダンプエンドに達する。
これは、バケットシリンダ17のシリンダ長が最小値に達する前に作業機3のリンク機構の機構限界に達し、それ以上バケットシリンダ17を縮めることができないためである。図7は、図4のP3における作業機3の一例を示す図である。図7に示す状態では、ベルクランク18が左右方向に沿って配置されたブーム14のフレーム部分に接触しているため、これ以上バケットシリンダ17を縮めることができない(点C2参照)。
このように、ブーム角度が最小値からA2度まではバケットシリンダ17のシリンダ長の最小値でバケットシリンダ17はチルトエンドに達し、ブーム角度が所定値から最大値までの間では、作業機3のリンク機構の機構限界によってバケット15はダンプエンドに達する。
上述のように、機構限界によってチルトエンドおよびダンプエンドに達している領域では、バケットシリンダ17のストローク長は、ブーム角度に依存するが、機構限界に達しているためベルクランク角度は一定となる。
図8は、図5のグラフに、バケットシリンダ長の最小値(G3)、バケットシリンダ長の最大値(G4)、ベルクランク角度の最小値(G5)、およびベルクランク角度の最大値(G6)を加えた図である。縦軸がバケットシリンダ長を示し、横軸がブーム角度を示している。
チルトエンドにおけるバケットシリンダ長のG1とバケットシリンダ長の最大値のG4に示すように、バケットシリンダ17のストローク長さが最大値に達していない領域では、ベルクランク角度の最大値G6がG1に一致する。
一方、ダンプエンドにおけるバケットシリンダ長のG2とバケットシリンダ長の最小値のG3に示すように、バケットシリンダ長が最小値に達していない領域では、ベルクランク角度の最小値G5がG2に一致する。
図9は、図8のグラフの縦軸をベルクランク角度に変換したグラフを示す図である。図9に示すように、図8のG1に対応するグラフがG1´と示され、チルトエンドにおけるベルクランク角度のブーム角度に対する変化を示す。また、図8のG2に対応するグラフがG2´と示され、ダンプエンドにおけるベルクランク角度のブーム角度に対する変化を示す。また、A3度にブーム下げの場合のエンドラインG7が引かれ、A4度にブーム上げの場合のエンドラインG8が引かれている。
図9に示すように、チルトエンドにおいて、バケットシリンダ17のストローク長が最大値に達していない領域では、ベルクランク角度の最大値G6でバケット15はチルトエンドに達している。また、ダンプエンドにおいて、バケットシリンダのストローク長が最小値に達していない領域では、ベルクランク角度の最小値G5でバケット15がダンプエンドに達している。
図8および図9に示すように、バケットシリンダ長の最大値とベルクランク角度の最大値を組み合わせることによって、バケット15がチルトエンドに達することを検出することができる。
なお、図4中の点線で示すG11は、バケット15を他のものに付け替えた際のチルトエンドにおけるバケットシリンダ長を示すグラフである。図4のG11に対応するグラフが図9においてG11´として示されている。G11、G11´では、G1、G1´と異なり、ブーム角度が最大値からA5度までの間では、バケットシリンダ17のシリンダ長の最大値でチルトエンドに達し、ブーム角度がA5度から最小値までの間では、バケットシリンダ17のシリンダ長が最大値に達する前にチルトエンドに達する。
バケット15は、オペレータによって大きさの異なるものに付け替えられる場合があり、その場合には、機構限界も変化しベルクランク角度の最大値も変化するが、上述したように機構限界におけるベルクランク角度は一定である。そのため、バケットを付け替えた場合には、機構限界におけるベルクランク角度の最大値を校正によって取得し、その最大値とバケットシリンダ長を用いることによって、バケット15がチルトエンドに達することを検出することができる。バケットを付け替えた際のベルクランク角度の最大値の校正については後述する。
また、バケットシリンダ長の最小値とベルクランク角度の最小値を組み合わせることによって、バケット15がダンプエンドに達することを検出することができる。
なお、本実施の形態では、ダンプエンドは、バケット15によらずブーム14とベルクランク18の形状によって決定されるため校正を行う必要がなく設計値によって決められる。
(処理部)
図10は、本実施の形態の処理部45の構成を示すブロック図である。処理部45は、駆動指令作成部70と、ベルクランク制限量算出部71と、シリンダ制限量算出部72と、制限量決定部73と、駆動指令決定部74と、チルト/ダンプ判定部75と、を有する。
駆動指令作成部70は、オペレータによるブーム操作レバー61およびバケット操作レバー62の操作に基づいて駆動指令を作成する。オペレータによってブーム操作レバー61およびバケット操作レバー62が操作されると、駆動指令作成部70は、入力部47を介して第1ポテンショメータ63および第2ポテンショメータ64からブーム操作レバー61およびバケット操作レバー62の操作量の信号を取得する。そして、駆動指令作成部70は、操作量の信号に対応する駆動指令(目標シリンダ駆動指令の一例)を作成する。
この駆動指令は、操作量の信号に対応するように、ブームシリンダ16またはバケットシリンダ17を駆動する指令であり、ブームシリンダ16またはバケットシリンダ17に供給する作動油の流量を規定する。具体的には、駆動指令は、ブーム下げ電磁比例制御弁41、ブーム上げ電磁比例制御弁42、バケットダンプ電磁比例制御弁43、またはバケットチルト電磁比例制御弁44に対して、操作量に対応する流量の作動油を流すような開度にする指令である。
駆動指令が、ブーム下げ電磁比例制御弁41、ブーム上げ電磁比例制御弁42、バケットダンプ電磁比例制御弁43、またはバケットチルト電磁比例制御弁44に出力されると、駆動指令の開度情報に応じて、ブーム下げ電磁比例制御弁41、ブーム上げ電磁比例制御弁42、バケットダンプ電磁比例制御弁43、またはバケットチルト電磁比例制御弁44が駆動する。これによって、駆動指令に応じたパイロット圧力がブーム下げ電磁比例制御弁41、ブーム上げ電磁比例制御弁42、バケットダンプ電磁比例制御弁43、またはバケットチルト電磁比例制御弁44から、ブーム操作弁22またはバケット操作弁23のパイロット受圧部に出力される。そして、ブームシリンダ16またはバケットシリンダ17は、それぞれのパイロット油圧に応じた速度で、対応する方向に作動する。
チルト/ダンプ判定部75は、バケット操作レバー62の操作量を検出する第2ポテンショメータ64からの検出信号に基づいて、バケット15のチルト側への操作かダンプ側への操作かの判定を行う。チルト/ダンプ判定部75は、判定結果をベルクランク制限量算出部71とシリンダ制限量算出部72に送信する。
ベルクランク制限量算出部71は、入力部47を介してベルクランク角度センサ55から取得したベルクランク角度に基づいて、バケットシリンダ17を駆動するときの流量の制限量を算出する。
ベルクランク制限量算出部71は、第1チルト側制限量算出部81と、第1ダンプ側制限量算出部82と、有する。
第1チルト側制限量算出部81は、バケット15のチルト側への操作と判定された場合に、記憶部46に記憶されているベルクランク角度の最大値と、ベルクランク角度センサ55より取得したベルクランク角度の差分を演算し、記憶部46に記憶されている第1テーブルより第1チルト側制限量(第1シリンダ駆動指令の一例)を取得する。第1テーブルでは、差分が小さいほど(ベルクランク角度が最大値に近いほど)、バケットシリンダ17に供給する作動油の流量の制限量が大きくなるように設定されている。制限量を大きくすることによって、バケットシリンダ17のシリンダロッド17aの移動速度が制限される。すなわち、ベルクランク角度の最大値に達する前にベルクランク18の移動速度を制限することにより、機構限界によるチルトエンドに達する際に緩やかに停止することができる。
第1ダンプ側制限量算出部82は、バケット15のダンプ側への操作と判定された場合に、記憶部46に記憶されているベルクランク角度の最小値と、ベルクランク角度センサ55より取得したベルクランク角度の差分を演算し、記憶部46に記憶されている第2テーブルより第1ダンプ側制限量(第1シリンダ駆動指令の一例)を取得する。第2テーブルでは、差分が小さいほど(ベルクランク角度が最小値に近いほど)、バケットシリンダ17に供給する作動油の流量の制限量が大きくなるように設定されている。
シリンダ制限量算出部72は、シリンダ長算出部85と、第2チルト側制限量算出部83と、第2ダンプ側制限量算出部84と、を有する。
シリンダ長算出部85は、ブーム角度センサ54から取得したブーム角度とベルクランク角度センサ55から取得したベルクランク角度に基づいて、バケットシリンダ17のシリンダ長を算出する。
第2チルト側制限量算出部83は、バケット15のチルト側への操作と判定された場合に、記憶部46に記憶されているバケットシリンダ長の最大値と、シリンダ長算出部85で算出されたシリンダ長の差分を演算し、記憶部46に記憶されている第3テーブルより第2チルト側制限量(第2シリンダ駆動指令の一例)を取得する。第3テーブルでは、差分が小さいほど(シリンダ長が最大値に近いほど)、バケットシリンダ17に供給する作動油の流量の制限量が大きくなるように設定されている。
第2ダンプ側制限量算出部84は、バケット15のダンプ側への操作と判定された場合に、記憶部46に記憶されているバケットシリンダ長の最小値と、シリンダ長算出部85で算出されたシリンダ長の差分を演算し、記憶部46に記憶されている第4テーブルより第2ダンプ側制限量(第2シリンダ駆動指令の一例)を取得する。第4テーブルでは、差分が小さいほど(シリンダ長が最小値に近いほど)、バケットシリンダ17に供給する作動油の流量の制限量が大きくなるように設定されている。
制限量決定部73は、バケット15のチルト側への操作と判定された場合には、第1チルト側制限量と第2チルト側制限量のうち大きいほうの制限量をバケットシリンダ17の駆動指令に対する制限量として決定する。また、制限量決定部73は、バケット15のダンプ側への操作と判定された場合には、第1ダンプ側制限量と第2ダンプ側制限量のうち大きいほうの制限量をバケットシリンダ17の駆動指令に対する制限量として決定する。
このように、バケット15のチルト側への操作の場合、ベルクランク角の最大値とバケットシリンダ長の最大値のうち接近しているほうに対する制限量が採用されることになる。また、バケット15のダンプ側への操作の場合、ベルクランク角の最小値とバケットシリンダ長の最小値のうち接近しているほうに対する制限量が採用されることになる。
なお、大きいほうの制限量とは、制限される流量が大きいことを意味する。例えば、最大の流量を100%とした場合に制限量を40%としたときには60%の流量で作動油がバケットシリンダ17に供給される。すなわち、制限量が大きいほうが、バケットシリンダ17に供給される作動油の流量は少なくなる。
これによって、バケット15のチルト側への操作の場合、ベルクランク角の最大値またはバケットシリンダ長の最大値に近づくにつれて制限量が大きくなるため、バケット15の移動速度が遅くなり、チルトエンドにおける衝撃を緩和することができる。また、バケット15のダンプ側への操作の場合、ベルクランク角の最小値またはバケットシリンダ長の最小値に近づくにつれて制限量が大きくなるため、バケット15の移動速度が遅くなり、ダンプエンドにおける衝撃を緩和することができる。
駆動指令決定部74は、駆動指令作成部70によって作成された駆動指令によってバケットシリンダ17に供給される作動油の流量が、制限量を超えている場合には、制限量を守るような最大流量の駆動指令を作成する。すなわち、制限量が40%の場合には流量は60%まで供給可能となるが、駆動指令作成部70で作成された駆動指令のバケットシリンダ17に供給される作動油の流量が80%に設定されているときには、駆動指令決定部74は流量が60%となるように駆動指令を決定する。すなわち、制限量は駆動指令が可能な流量の上限値となる。駆動指令決定部74は、駆動指令作成部70によって作成された駆動指令によってバケットシリンダ17に供給される作動油の流量が、制限量を超えていない場合には、作成された駆動指令(シリンダ駆動指令の一例)でバケットシリンダ17の制御を行う。
なお、バケット15のチルト側への操作と判定された場合に作動油の流量の制限量を大きくするためには、バケットチルト電磁比例制御弁44の開度が絞られる。これにより、パイロット圧力が低くできるため、バケットシリンダ17への作動油の流量を制限することができる。
また、バケット15のダンプ側への操作と判定された場合に作動油の流量の制限量を大きくするためには、バケットダンプ電磁比例制御弁43の開度が絞られる。これにより、パイロット圧力が低くできるため、バケットシリンダ17への作動油の流量を制限することができる。
<動作>
次に、本発明にかかる実施の形態の動作について説明する。
(制御方法)
図11は、本実施の形態の作業機械の制御方法を示すフロー図である。
はじめに、ステップS10において、オペレータによってバケット操作レバー62が操作されると、第2ポテンショメータ64がバケット操作レバー62の操作量を検出し、検出信号が制御装置27の入力部47に入力される。
次に、ステップS11において、チルト/ダンプ判定部75が、第2ポテンショメータ64の検出信号に基づいて、バケット15のチルト側への操作かダンプ側への操作かの判定を行う。
ステップS11において、チルト側の操作と判定された場合、制御はステップS12に進む。
次に、ステップS12において、駆動指令作成部70は、第2ポテンショメータ64による検出信号に基づいた作動油の流量がバケットシリンダ17に供給されるようにバケットチルト電磁比例制御弁44のソレノイド指令部44Sに送信する駆動指令を作成する。
次に、ステップS13において、第1チルト側制限量算出部81が、記憶部46に記憶されているベルクランク角度の最大値と、ベルクランク角度センサ55より取得したベルクランク角度の差分を演算し、記憶部46に記憶されている第1テーブルより第1チルト側制限量を算出する。
次に、ステップS14において、シリンダ長算出部85が、ブーム角度センサ54から取得したブーム角度とベルクランク角度センサ55から取得したベルクランク角度に基づいて、バケットシリンダ17のシリンダ長を算出する。
次に、ステップS15において、第2チルト側制限量算出部83が、記憶部46に記憶されているバケットシリンダ長の最大値と、シリンダ長算出部85で算出されたシリンダ長の差分を演算し、記憶部46に記憶されている第3テーブルより第2チルト側制限量を取得する。
次に、ステップS16において、制限量決定部73が、算出された第1チルト側制限量と第2チルト側制限量のうち、大きい方の制限量をバケットシリンダ17の駆動指令に対する制限量として決定する。
次に、ステップS17において、駆動指令決定部74は、駆動指令作成部70で作成された駆動指令によってバケットシリンダ17に供給される作動油の流量が、制限量を超えているか否かを判定する。
ステップS17において、供給される作動油の流量が制限量を超えていないと判定された場合には、制御はステップS18に進み、ステップS18において、ステップS12で作成された駆動指令が、出力部48からバケットチルト電磁比例制御弁44のソレノイド指令部44Sに出力される。
一方、ステップS17において、供給される作動油の流量が制限量を超えていると判定された場合には、制御はステップS19に進み、ステップS19において駆動指令決定部74は、制限量を超えない最大流量になるように駆動指令を変更する。続いて、ステップS18において、変更された駆動指令が出力部48からバケットチルト電磁比例制御弁44のソレノイド指令部44Sに出力される。
一方、ステップS11において、チルト/ダンプ判定部75が、第2ポテンショメータ64の検出信号に基づいて、バケット15のダンプ側への操作と判定した場合、制御は、ステップS20に進む。
ステップS20において、駆動指令作成部70は、第2ポテンショメータ64による検出信号に基づいた作動油の流量がブームシリンダ16およびバケットシリンダ17に供給されるようにバケットダンプ電磁比例制御弁43のソレノイド指令部43Sに送信する駆動指令を作成する。
ステップS21において、第1ダンプ側制限量算出部82が、記憶部46に記憶されているベルクランク角度の最小値と、ベルクランク角度センサ55より取得したベルクランク角度の差分を演算し、記憶部46に記憶されている第2テーブルより第1ダンプ側制限量を取得する。
次に、ステップS22において、シリンダ長算出部85が、ブーム角度センサ54から取得したブーム角度とベルクランク角度センサ55から取得したベルクランク角度に基づいて、バケットシリンダ17のシリンダ長を算出する。
次に、ステップS23において、第2ダンプ側制限量算出部84が、記憶部46に記憶されているバケットシリンダ長の最小値と、シリンダ長算出部85で算出されたシリンダ長の差分を演算し、記憶部46に記憶されている第4テーブルより第2ダンプ側制限量を取得する。
次に、ステップS24において、制限量決定部73が、算出された第1ダンプ側制限量と第2ダンプ側制限量のうち、大きい方の制限量をバケットシリンダ17の駆動指令に対する制限量として決定する。
次に、ステップS25において、駆動指令決定部74は、駆動指令作成部70で作成された駆動指令によってバケットシリンダ17に供給される作動油の流量が、制限量を超えているか否かを判定する。
ステップS25において、供給される作動油の流量が制限量を超えていないと判定された場合には、制御はステップS26に進み、ステップS26において、ステップS20で作成された駆動指令が、出力部48からバケットダンプ電磁比例制御弁43のソレノイド指令部43Sに出力される。
一方、ステップS25において、供給される作動油の流量が制限量を超えていると判定された場合には、制御はステップS27に進み、ステップS27において駆動指令決定部74は、制限量を超えない最大流量になるように駆動指令を変更する。続いて、ステップS26において、変更された駆動指令が出力部48からバケットダンプ電磁比例制御弁43のソレノイド指令部43Sに出力される。
(校正方法)
次に、バケット15を付け替えた際にベルクランク角度の最大値を校正する方法について説明する。図12は、ベルクランク角度の最大値を校正する方法を示すフロー図である。
バケット15を付け替えた際に、ステップS30において、オペレータは入出力装置50の入力装置51を操作してベルクランク角度の最大値の校正モード画面に切り換える。
ステップS31において、入出力装置50の表示装置52に表示される指示に従って、オペレータが、バケットシリンダ長が最大値に達しない機構限界の範囲内においてバケット15をチルトエンド(バケット15をブーム14が当接する位置)まで操作する。例えば、図4のG11のグラフの場合、ブーム角度が−15度よりも低い値にしてバケット15をチルトエンドまで操作させればよい。実際には、機構限界に達するブーム角度がわからないため、ブーム角度を出来るだけ下げた状態でバケット15をチルトさせればよい。
次に、ステップS32において、チルトエンドにおけるベルクランク角度をベルクランク角度の最大値として記憶する。
この記憶したベルクランク角度の最大値は、上述した制御方法において用いられる。
<特徴>
(1)
本実施の形態のホイールローダ1(作業機械の一例)は、ブーム14と、バケット15(作業具の一例)と、バケットシリンダ17(アクチュエータの一例)と、ベルクランク18(サブリンクの一例)と、制御装置27(制御部の一例)と、を備える。バケット15は、ブーム14に対して駆動する。ベルクランク18は、ブーム14に取り付けられ、バケットシリンダ17の駆動力をバケット15へ伝達する。制御装置27は、ブーム14に対するベルクランク18の角度(姿勢の一例)に基づいてバケットシリンダ17を制御する。
これにより、ベルクランク18の角度に基づいて、作業機3のリンク機構の機構限界に達したときのチルトエンドおよびダンプエンドを検出することができるため、機構限界に達するときの衝撃を緩和する制御を行うことが可能となる。
(2)
本実施の形態のホイールローダ1(作業機械の一例)では、バケットシリンダ17の一端は、車体2(車両本体の一例)に取付部17b(第1取付部の一例)において回動可能に取り付けられている。ベルクランク18は、バケットシリンダ17の他端に取付部18a(第2取付部の一例)において回動可能に取り付けられている。ベルクランク18は、バケット15に取付部18b(第3取付部の一例)において回動可能に取り付けられている。ベルクランク18は、取付部18aと取付部18bの間の取付部18c(第4取付部の一例)において、ブーム14に回動可能に取り付けられている。
これにより、バケットシリンダ17の伸縮によって、バケット15がチルト側およびダンプ側に回動することができる。
(3)
本実施の形態のホイールローダ1(作業機械の一例)では、バケット15は、取付部14b(第5取付部の一例)においてブーム14に回動可能に取り付けられ、ブーム14は、取付部14a(第6取付部の一例)において車体2に回動可能に取り付けられている。ベルクランク18の姿勢は、取付部18aと取付部18cを結ぶ線と、取付部14aと取付部14bを結ぶ線によって形成される角度を含む。
この角度によって、ベルクランク18の姿勢を規定することができる。
(4)
本実施の形態のホイールローダ1(作業機械の一例)では、バケットシリンダ17のストロークを検出するブーム角度センサ54およびベルクランク角度センサ55(検出部の一例)を備える。制御装置27は、ベルクランク18のベルクランク角度(姿勢の一例)とベルクランク18のベルクランク角度の最大値および最小値(限界姿勢の一例)との差分に基づく第1チルト制限量および第1ダンプ制限量(第1シリンダ駆動の一例)と、シリンダ長とバケットシリンダ17のシリンダ長の最大値および最小値(終端位置の一例)との差分に基づく第2チルト制限量および第2ダンプ制限量(第2シリンダ駆動指令の一例)との一方に基づき駆動指令(目標シリンダ駆動指令の一例)を行う。
このように、ベルクランク角度の最大値および最小値に基づいて制限量を設定することにより、作業機3のリンク機構の機構限界によるチルトエンドおよびダンプエンドにバケット15が達する際の緩和制御を行うことができる。
また、バケットシリンダ17のシリンダ長の最大値および最小値に基づいて制限量を設定することにより、作業機3のシリンダ長によるチルトエンドおよびダンプエンドにバケット15が達する際の緩和制御を行うことができる。
(5)
本実施の形態のホイールローダ1(作業機械の一例)は、バケット15を操作するバケット操作レバー62(操作部材の一例)を更に備えている。駆動指令(目標シリンダ駆動指令の一例)は、バケットシリンダ17への作動油の供給量に関する情報を含む。第1チルト制限量および第1ダンプ制限量と第2チルト制限量および第2ダンプ制限量の各々は、バケット操作レバー62の操作によるバケットシリンダ17への作動油の供給量に対する制限量の情報を含む。制御装置27は、第1チルト制限量および第1ダンプ制限量と第2チルト制限量および第2ダンプ制限量のうち最も大きい制限量を用いて目標シリンダ駆動指令を行う。
これにより、作業機3のリンク機構の機構限界によるチルトエンドおよびダンプエンドと、作業機3のシリンダ長によるチルトエンドおよびダンプエンドのいずれかに、バケット15が達することに対して緩和制御を行うことができる。
(6)
本実施の形態のホイールローダ1(作業機械の一例)は、制御装置27は、バケット操作レバー62の操作に基づく作動油の供給量が、制限量を超えている場合には、目標シリンダ駆動指令における作動油の供給量を、制限量を超えない値に設定する。バケット操作レバー62の操作に基づく作動油の供給量が、制限量を超えていない場合には、目標シリンダ駆動指令における作動油の供給量を、バケット操作レバー62の操作に基づく作動油の供給量に設定する。
これにより、チルトエンドおよびダンプエンドに達する場合に、衝撃を緩和するように制御を行うことができる。
(7)
本実施の形態のホイールローダ1(作業機械の一例)の制御方法は、ステップS11〜S20(制御ステップの一例)を備える。ステップS11〜S20(制御ステップの一例)は、ブーム14に対して駆動するバケット15へバケットシリンダ17の駆動力を伝達するベルクランク18のブーム14に対する姿勢に基づいてバケットシリンダ17を制御する。
これにより、ベルクランク18の角度に基づいて、作業機3のリンク機構の機構限界に達したときのチルトエンドおよびダンプエンドを検出することができるため、機構限界に達するときの衝撃を緩和する制御を行うことが可能となる。
(8)
本実施の形態のホイールローダ1(作業機械の一例)の制御方法は、ステップS31(移動ステップの一例)と、ステップS32(記憶ステップの一例)と、を備える。ステップS31(移動ステップの一例)では、バケット15をチルトエンドまで移動させる。ステップS32では、ベルクランク18のチルトエンドにおけるベルクランク角度(姿勢の一例)を記憶する。ステップS11〜S20(制御ステップの一例)は、チルトエンドにおけるベルクランク18の角度(姿勢の一例)に基づいてバケットシリンダ17を制御する。
これにより、バケット15を交換した際にバケット15の最大値を簡単に取得し、チルトを検出することができる。
(9)
本実施の形態のホイールローダ1(作業機械の一例)の制御方法では、ステップS11〜S26(制御ステップの一例)は、ベルクランク18のベルクランク角度(姿勢の一例)とベルクランク18のベルクランク角度の最大値または最小値(限界姿勢の一例)との差分に基づく第1チルト制限量または第1ダンプ制限量(第1シリンダ駆動の一例)と、シリンダ長とバケットシリンダ17のシリンダ長の最大値または最小値(終端位置の一例)との差分に基づく第2チルト制限量または第2ダンプ制限量(第2シリンダ駆動指令の一例)との一方に基づき駆動指令(目標シリンダ駆動指令の一例)を行う。
このように、ベルクランク角度の最大値および最小値に基づいて制限量を設定することにより、作業機3のリンク機構の機構限界によるチルトエンドおよびダンプエンドにバケット15が達する際の緩和制御を行うことができる。
また、バケットシリンダ17のシリンダ長の最大値および最小値に基づいて制限量を設定することにより、作業機3のシリンダ長によるチルトエンドおよびダンプエンドにバケット15が達する際の緩和制御を行うことができる。
<他の実施形態>
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施の形態の作業機3では、ベルクランク18のバケットシリンダ17との取付部18aが、バケット15のロッド15aとの取付部18bよりも回動方向においてキャブ5側に配置されているが、これに限らなくても良く、ベルクランク18のバケット15のロッド15aとの取付部が、バケットシリンダ17との取付部よりもキャブ5側に配置されていてもよい。
(B)
上記実施の形態の作業機3では、バケットシリンダ17が伸長した際にバケット15がチルト側に回動し、収縮した際にバケット15がダンプ側に回動しているが、これに限らなくても良く、バケットシリンダ17が伸長した際にバケット15がダンプ側に回動し、収縮した際にバケット15がチルト側に回動してもよい。
(C)
上記実施の形態では、ベルクランク18の角度を用いてチルトエンドおよびダンプエンドの双方を検出しているが、たとえばチルトエンドのみを検出してもよい。ダンプエンドに関しては、バケットシリンダ17のストローク長だけでダンプエンドを検出してもよい。これは、ダンプエンドに関してはバケット15を交換しても変化しないため、一度設定すればよく、バケットを付け替えるたびに上述した校正を行う必要がないためである。
(D)
上記実施の形態では、チルト/ダンプ判定部75によってバケット15のチルト側への移動かダンプ側への移動かを判定して、ベルクランク制限量算出部71は、第1チルト側制限量と第1ダンプ側制限量の一方を求め、シリンダ制限量算出部72は、第2チルト側制限量と第2ダンプ側制限量の一方を求めているが、これに限られるものではない。例えば、ベルクランク制限量算出部71は、ベルクランク角度センサ55によって検出されたベルクランク角度が最大値と最小値のうち近い方との差分を検出し、その差分に基づいてベルクランク角度に基づいた制限量を算出してもよい。シリンダ制限量算出部72も同様に、算出されたストロークが最大値と最小値のうち近い方との差分を検出し、その差分に基づいてシリンダ長に基づいた制限量を一つ算出してもよい。
さらに、例えば、バケット15のチルト側への移動かダンプ側への移動かを判定を行わずに、第1チルト側制限量と第1ダンプ側制限量と第2チルト側制限量と第2ダンプ側制限量の全てを求め、制限量が最も大きいものを採用しても良い。
(E)
上記実施の形態では、作業機3の機構限界によるチルトエンドとダンプエンドをベルクランク18の角度に基づいて検出し、バケットシリンダ17のシリンダ長によるチルトエンドとダンプエンドをストローク長に基づいて検出しているが、一般的に衝撃が強い機構限界によるチルトエンドとダンプエンドのみを検出してもよい。
(F)
上記実施の形態では、ベルクランク角度センサ55は、例えば、ポテンショメータが用いられているが、これに限らなくても良く、IMU(Inertial measurement unit)等であってもよい。
(G)
上記実施の形態では、バケットシリンダ17のストロークをブーム角度センサ54とベルクランク角度センサ55の検出値に基づいて求めているが、これに限らなくても良く、シリンダ長を直接計測してもよい。
(H)
上記実施の形態では、ブーム14に対するベルクランク18の姿勢の一例として図2に示すベルクランクの角度が用いられているが、ブーム14に対するベルクランク18の姿勢が一義的に決まれば図2のθbに限られるものでなく、複数の角度の組み合わせであってもよい。
本発明によれば、ブーム角度を考慮せずにチルトエンドまたはダンプエンドにおける衝撃を緩和可能な作業機械および作業機械の制御方法を提供することができる。
1 :ホイールローダ
14 :ブーム
15 :バケット
17 :バケットシリンダ
18 :ベルクランク
27 :制御装置

Claims (11)

  1. ブームと、
    前記ブームに対して駆動する作業具と、
    前記作業具を駆動するアクチュエータと、
    前記ブームに取り付けられ、前記アクチュエータの駆動力を前記作業具へ伝達するサブリンクと、
    前記ブームに対する前記サブリンクの姿勢に基づいて前記アクチュエータを制御する制御部と、を備えた、
    作業機械。
  2. 前記アクチュエータは、シリンダであり、
    前記シリンダの一端は、車両本体に第1取付部において回動可能に取り付けられ、
    前記サブリンクは、前記シリンダの他端に第2取付部において回動可能に取り付けられ、
    前記サブリンクは、前記作業具に第3取付部において回動可能に取り付けられ、
    前記サブリンクは、前記第2取付部と前記第3取付部の間の第4取付部において、前記ブームに回動可能に取り付けられている、
    請求項1に記載の作業機械。
  3. 前記作業具は、第5取付部において前記ブームに回動可能に取り付けられ、
    前記ブームは、第6取付部において前記車両本体に回動可能に取り付けられ、
    前記サブリンクの姿勢は、前記第2取付部と前記第4取付部を結ぶ線と、前記第5取付部と前記第6取付部を結ぶ線によって形成される角度を含む、
    請求項2に記載の作業機械。
  4. 前記アクチュエータは、シリンダであり、
    前記シリンダのストロークを検出する検出部を備え、
    前記制御部は、
    前記サブリンクの姿勢と前記サブリンクの限界姿勢との差分に基づく第1シリンダ駆動指令と、前記ストロークと前記シリンダの終端位置との差分に基づく第2シリンダ駆動指令との一方に基づき目標シリンダ駆動指令を行う、
    請求項1に記載の作業機械。
  5. 前記作業具を操作する操作部材を更に備え、
    前記目標シリンダ駆動指令は、前記シリンダへの作動油の供給量に関する情報を含み、
    前記第1シリンダ駆動指令と前記第2シリンダ駆動指令の各々は、前記操作部材の操作による前記シリンダへの作動油の供給量に対する制限量の情報を含み、
    前記制御部は、前記第1シリンダ駆動指令と前記第2シリンダ駆動指令の双方のうち大きい制限量を用いて前記目標シリンダ駆動指令を行う、
    請求項4に記載の作業機械。
  6. 前記制御部は、
    前記操作部材の操作に基づく作動油の供給量が、前記制限量を超えている場合には、前記目標シリンダ駆動指令における前記作動油の供給量を、前記制限量を超えない値に設定し、
    前記操作部材の操作に基づく作動油の供給量が、前記制限量を超えていない場合には、前記目標シリンダ駆動指令における前記作動油の供給量を、前記操作部材の操作に基づく作動油の供給量に設定する、
    請求項5に記載の作業機械。
  7. 前記シリンダの終端位置は、前記シリンダの前記ストロークの最大値および最小値であり、
    前記サブリンクの限界姿勢は、前記作業具のチルトエンドおよびダンプエンドにおける前記サブリンクの姿勢である、
    請求項4に記載の作業機械。
  8. 前記作業機械は、フロントフレームとリアフレームが連結されたアーティキュレート式のホイールローダである、
    請求項1〜7のいずれか1項に記載の作業機械。
  9. ブームに対して駆動する作業具へアクチュエータの駆動力を伝達するサブリンクの前記ブームに対する姿勢に基づいて前記アクチュエータを制御する制御ステップを備えた、
    作業機械の制御方法。
  10. 前記作業具をチルトエンドまで移動させる移動ステップと、
    前記サブリンクの前記チルトエンドにおける姿勢を記憶する記憶ステップと、を更に備え、
    前記制御ステップは、前記チルトエンドにおける前記サブリンクの姿勢に基づいて前記アクチュエータを制御する、
    請求項9に記載の作業機械の制御方法。
  11. 前記アクチュエータは、シリンダであり、
    前記制御ステップは、
    前記サブリンクの姿勢と前記サブリンクの限界姿勢との差分に基づく第1シリンダ駆動指令と、前記シリンダのストロークと前記シリンダの終端位置との差分に基づく第2シリンダ駆動指令との一方に基づき目標シリンダ駆動指令を行う、
    請求項9に記載の作業機械の制御方法。
JP2019067317A 2019-03-29 2019-03-29 作業機械および作業機械の制御方法 Active JP7232691B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019067317A JP7232691B2 (ja) 2019-03-29 2019-03-29 作業機械および作業機械の制御方法
PCT/JP2020/012075 WO2020203315A1 (ja) 2019-03-29 2020-03-18 作業機械および作業機械の制御方法
CN202080012824.4A CN113396256B (zh) 2019-03-29 2020-03-18 作业机械以及作业机械的控制方法
US17/426,399 US20220106763A1 (en) 2019-03-29 2020-03-18 Work machine and method for controling work machine
EP20782694.2A EP3907334A4 (en) 2019-03-29 2020-03-18 CONSTRUCTION MACHINE AND METHOD FOR CONTROLLING CONSTRUCTION MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067317A JP7232691B2 (ja) 2019-03-29 2019-03-29 作業機械および作業機械の制御方法

Publications (2)

Publication Number Publication Date
JP2020165215A true JP2020165215A (ja) 2020-10-08
JP7232691B2 JP7232691B2 (ja) 2023-03-03

Family

ID=72668805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067317A Active JP7232691B2 (ja) 2019-03-29 2019-03-29 作業機械および作業機械の制御方法

Country Status (5)

Country Link
US (1) US20220106763A1 (ja)
EP (1) EP3907334A4 (ja)
JP (1) JP7232691B2 (ja)
CN (1) CN113396256B (ja)
WO (1) WO2020203315A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1020926S1 (en) * 2018-12-12 2024-04-02 Bruder Spielwaren Gmbh + Co. Kg Toy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203109A (ja) * 2009-03-02 2010-09-16 Komatsu Ltd 建設機械
WO2010110386A1 (ja) * 2009-03-26 2010-09-30 株式会社小松製作所 作業車両の制御方法および制御装置
JP2014055439A (ja) * 2012-09-12 2014-03-27 Komatsu Ltd ホイールローダ
JP5717923B1 (ja) * 2014-05-30 2015-05-13 株式会社小松製作所 作業車両の制御方法、作業車両の制御装置及び作業車両
WO2015083753A1 (ja) * 2013-12-03 2015-06-11 株式会社小松製作所 作業車両
WO2016006716A1 (ja) * 2015-08-07 2016-01-14 株式会社小松製作所 作業車両
WO2017126182A1 (ja) * 2016-10-28 2017-07-27 株式会社小松製作所 積込機械の制御システム及び積込機械の制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119118A (en) 1979-03-09 1980-09-12 Nisshin Steel Co Ltd Denitrification method for iron alloy containing chromium
JPH05196004A (ja) * 1992-01-20 1993-08-06 Komatsu Ltd 作業機シリンダの自動クッション制御装置
JP2001132009A (ja) * 1999-11-08 2001-05-15 Hitachi Constr Mach Co Ltd 作業車両の姿勢制御装置、および作業車両
EP2505722B1 (en) * 2010-03-15 2014-05-14 Komatsu, Ltd. Control device for work machine on construction vehicle and control method
US8899143B2 (en) * 2011-06-28 2014-12-02 Caterpillar Inc. Hydraulic control system having variable pressure relief
JP5717924B1 (ja) * 2014-05-30 2015-05-13 株式会社小松製作所 作業車両の制御方法、作業車両の制御装置及び作業車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203109A (ja) * 2009-03-02 2010-09-16 Komatsu Ltd 建設機械
WO2010110386A1 (ja) * 2009-03-26 2010-09-30 株式会社小松製作所 作業車両の制御方法および制御装置
JP2014055439A (ja) * 2012-09-12 2014-03-27 Komatsu Ltd ホイールローダ
WO2015083753A1 (ja) * 2013-12-03 2015-06-11 株式会社小松製作所 作業車両
JP5717923B1 (ja) * 2014-05-30 2015-05-13 株式会社小松製作所 作業車両の制御方法、作業車両の制御装置及び作業車両
WO2016006716A1 (ja) * 2015-08-07 2016-01-14 株式会社小松製作所 作業車両
WO2017126182A1 (ja) * 2016-10-28 2017-07-27 株式会社小松製作所 積込機械の制御システム及び積込機械の制御方法

Also Published As

Publication number Publication date
WO2020203315A1 (ja) 2020-10-08
CN113396256B (zh) 2023-03-24
EP3907334A4 (en) 2022-11-30
US20220106763A1 (en) 2022-04-07
JP7232691B2 (ja) 2023-03-03
CN113396256A (zh) 2021-09-14
EP3907334A1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6072993B1 (ja) 作業車両の制御システム、制御方法、及び作業車両
EP2924176B1 (en) Front loader
JP5037561B2 (ja) 作業車両
JP6407132B2 (ja) 作業機械の操作支援装置
US10590623B2 (en) Construction machine
CN110462137B (zh) 作业车辆
WO2020044711A1 (ja) 作業機械
WO2020203315A1 (ja) 作業機械および作業機械の制御方法
JP2017186875A (ja) 作業車両の制御システム、制御方法、及び作業車両
JP2017186875A5 (ja)
US20230129066A1 (en) Work machine and control method for work machine
JP7245099B2 (ja) 作業機械の校正方法、作業機械のコントローラ、および作業機械
JP5315443B2 (ja) ホイールローダ
JP5320003B2 (ja) 作業機械の油圧制御装置
WO2023127436A1 (ja) 作業機の油圧システム、及び作業機の油圧システムの制御方法
JP7381768B2 (ja) 建設機械
WO2023067943A1 (ja) 作業機械の制御システムおよび制御方法
JP2023049997A (ja) 油圧ショベル
JP5073330B2 (ja) 作業機
JP2022099992A (ja) 作業機
CN118265829A (en) Hydraulic system for working machine and method for controlling hydraulic system for working machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7232691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150