JP2020160162A - 撮像装置及びその制御方法、プログラム - Google Patents

撮像装置及びその制御方法、プログラム Download PDF

Info

Publication number
JP2020160162A
JP2020160162A JP2019057087A JP2019057087A JP2020160162A JP 2020160162 A JP2020160162 A JP 2020160162A JP 2019057087 A JP2019057087 A JP 2019057087A JP 2019057087 A JP2019057087 A JP 2019057087A JP 2020160162 A JP2020160162 A JP 2020160162A
Authority
JP
Japan
Prior art keywords
runout
correction amount
axis
output signal
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019057087A
Other languages
English (en)
Other versions
JP2020160162A5 (ja
JP7280728B2 (ja
Inventor
友美 上杉
Tomomi Uesugi
友美 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019057087A priority Critical patent/JP7280728B2/ja
Priority to US16/828,341 priority patent/US11233942B2/en
Publication of JP2020160162A publication Critical patent/JP2020160162A/ja
Publication of JP2020160162A5 publication Critical patent/JP2020160162A5/ja
Application granted granted Critical
Publication of JP7280728B2 publication Critical patent/JP7280728B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6815Motion detection by distinguishing pan or tilt from motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Abstract

【課題】撮像装置において、平行振れの検出精度を向上させる。【解決手段】第1の軸方向の振れの並進成分を検出する第1の振れ検出部と、第1の軸と直交する第2の軸回りの振れの回転成分を検出する第2の振れ検出部と、第1の軸及び第2の軸のそれぞれに直交する第3の軸回りの振れの回転成分を検出する第3の振れ検出部と、第1の振れ検出部の出力信号と、第2の振れ検出部の出力信号とのうち、第1の周波数帯域の信号に基づく第1の振れ補正量を算出するとともに、第1の振れ検出部の出力信号と、第3の振れ検出部の出力信号とのうち、第2の周波数帯域の信号に基づく第2の振れ補正量を取得する第1の取得部と、第1の振れ補正量と第2の振れ補正量とを用いて、第1の軸方向の平行振れ量を算出する第2の取得部と、を備える。【選択図】 図3

Description

本発明は、撮像装置において、手振れ等に起因する画像ブレを補正して画像劣化を抑制する技術に関するものである。
現在のカメラは、露出決定やピント合わせといった、撮影上の重要な作業が全自動化され、操作に習熟していないユーザーでも撮影に失敗する可能性は非常に少なくなっている。また、手振れ等による画像ブレを防ぐために、振れ検出部、振れ補正部等から成る像ブレ補正装置を備えたカメラでは、ユーザーの撮影ミスを誘発する要因はほとんどなくなっている。
ここで、像ブレ補正装置について簡単に説明する。シャッタのレリーズ時点で手振れが起きても像ブレの無い撮影を可能にするには、手振れによるカメラの角度振れと平行振れを検出し、検出値に応じて振れ補正用レンズを動かす必要がある。
一般的な撮影シーンにおいては角度振れの影響が支配的であり、角度振れの影響を低減させる技術が進歩してきた。特に、近年では角速度センサの性能向上によって従来よりも広い帯域、特に低周波数帯域の角度振れを検出できるようになってきている。これを活用することにより、カメラの角度振れの補正性能が向上し、より長い秒時での撮影が可能となった。一方で、より長い秒時での撮影では従来はあまり問題にならなかった平行振れの影響が目立つ場合が出てきた。
平行振れを補正する方法として、特許文献1には、加速度計の出力と角速度計の出力の比から平行振れを求め、振れ補正部を駆動する技術が開示されている。
特開2012−88466号公報
特許文献1では、平行振れの演算において、カメラが一つの回転軸回りに回転しているという仮定を基本としている。これは、人体の運動をカメラの露光時間という限られた時間内で観測した場合には、1つの回転中心回りに一定の周波数帯域 (1〜10Hz)で運動するという仮定である。
しかし、前述したように、より長い露光時間での撮影を行った場合、より低周波(ゆっくり)で大きな平行振れが画像に影響を与える。また、カメラの回転軸ごとに支配的である周波数帯域が異なるという性質がある。支配的でない周波数を除去しない場合、本来の平行振れではない成分も検出してしまう可能性があるという問題がある。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、撮像装置において、平行振れの検出精度を向上させることである。
本発明に係わる撮像装置は、第1の軸方向の振れの並進成分を検出する第1の振れ検出手段と、前記第1の軸と直交する第2の軸回りの振れの回転成分を検出する第2の振れ検出手段と、前記第1の軸及び前記第2の軸のそれぞれに直交する第3の軸回りの振れの回転成分を検出する第3の振れ検出手段と、前記第1の振れ検出手段の出力信号と、前記第2の振れ検出手段の出力信号とのうち、第1の周波数帯域の信号に基づく第1の振れ補正量を算出するとともに、前記第1の振れ検出手段の出力信号と、前記第3の振れ検出手段の出力信号とのうち、第2の周波数帯域の信号に基づく第2の振れ補正量を取得する第1の取得手段と、前記第1の振れ補正量と前記第2の振れ補正量とを用いて、前記第1の軸方向の平行振れ量を算出する第2の取得手段と、を備えることを特徴とする。
本発明によれば、撮像装置において、平行振れの検出精度を向上させることが可能となる。
本発明の撮像装置の一実施形態であるレンズ交換式の一眼レフタイプのデジタルカメラ100の構成を示す図。 デジタルカメラ100を各軸方向から見た図。 振れ補正量算出部の構成を示すブロック図。 デジタルカメラ100における振れ補正処理の動作を示すフローチャート。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
図1は、本発明の撮像装置の一実施形態であるレンズ交換式の一眼レフタイプのデジタルカメラ100の構成を示す図である。図1(a)は一実施形態におけるデジタルカメラ100の中央断面図であり、図1(b)はデジタルカメラ100の電気的構成を示すブロック図である。
図1(a)において、デジタルカメラ100はカメラ本体1と、カメラ本体1に着脱可能に装着されるレンズ2とを備える。レンズ2は、光軸4を軸とする複数のレンズからなる撮影光学系3を備える。レンズ2は、レンズ2を透過した被写体からの光束がカメラ本体1の撮像素子6に良好に結像されるようにするために、レンズ駆動部13を備える。レンズ駆動部13は、レンズシステム制御部12からの制御信号を受けて撮影光学系3を駆動する。撮影光学系3は、焦点調節部、絞り駆動部、像振れ補正レンズ9などを備えている。
また、カメラ本体1において、シャッタ機構17はユーザーが設定した、あるいはカメラシステム制御部5が判断した撮影秒時で露光がなされるよう、シャッタ駆動部18により駆動制御される。カメラシステム制御部5は、レリーズ検出部7、操作検出部8、加速度検出部16、角速度検出部15から出力された信号に基づいて振れの影響を低減するための振れ補正量を算出し、振れ補正量を振れ補正部14とレンズシステム制御部12に出力する。操作検出部8は、シャッタ速度、F値、身長の設定(撮影条件)などのユーザーの操作を検出する。
振れ補正部14は、カメラシステム制御部5から受け取った振れ補正量に基づいて撮像素子6の位置を光軸4に垂直な平面内で移動させるように駆動する。カメラ本体1にはレリーズ検出部7が設けられ、レリーズ検出部7は不図示のレリーズスイッチの開閉信号を検出し、検出した開閉信号をカメラシステム制御部5に送る。レリーズ検出部7が検出する開閉信号は2種類ある。具体的には、レリーズ検出部7は、レリーズボタンを半押しすることによりONするスイッチSW1とレリーズボタンを全押しすることによりONするスイッチSW2の二段階のスイッチを検出できる。姿勢検出部19は、デジタルカメラ100の姿勢を検出する。
図1(a)において、z軸は光軸4と平行な軸である。x軸とy軸はz軸と直交しており、撮像素子6の各辺と平行である。また、分かりやすくするために図1及び図2では原点をデジタルカメラ100の外に記載しているが、実際は、原点はデジタルカメラ100の中心に位置する。
レンズシステム制御部12は振れ補正量に基づく指令をレンズ駆動部13に出力する。レンズ駆動部13は、像振れ補正レンズ9を図1(a)のx方向とy方向に駆動し、角度振れと平行振れの両方を加味した振れ補正を行う。振れ補正部14は、撮像素子6を図1のx方向とy方向に駆動し、角度振れと平行振れの両方を加味した振れ補正を行う。振れ補正部14は、撮像素子6をz軸回りにも回転駆動させることにより、z軸回りの回転運動によって起こる角度振れと平行振れの両方を加味した振れ補正を行う。カメラシステム制御部5から受け取った振れ補正量に基づく補正方法はこの方法に限らず、他の形態でも構わない。例えば、撮像素子6が生成する各撮影フレームの切り出し位置を変更することにより振れの影響を低減させる、いわいる電子像ブレ補正を用いる方法がある。また、それらを適宜組み合わせた補正方法を用いてもよい。
ここで、デジタルカメラ100を持つユーザーの手振れの特徴について図2を用いて説明する。
デジタルカメラ100を構えている時には、人体はある一つの回転軸回りに回転運動をしているとみなすことができる。デジタルカメラ100は人が持っているため、人体の回転運動に影響を受け、人体と一緒に回転運動をしている。このときのデジタルカメラ100の運動を考える。デジタルカメラ100の運動を撮像素子6の中心を基準にして考えると、撮像素子6を中心とする回転運動(回転成分)と並進運動(並進成分)の組み合わせと捉えることができる。このデジタルカメラ100の撮像素子6を中心とする回転運動と並進運動の関係性を利用してデジタルカメラ100の平行振れの補正を行う。
人体の関節などを中心とした回転運動に起因するデジタルカメラ100の平行振れについて考える。前述の通り、デジタルカメラ100を構えている時には、人体はある一つの回転軸まわりに回転運動をしているとみなすことができる。そしてこの回転運動がデジタルカメラ100の並進運動の主な要因であると考えることができる。そのため、平行振れを求める際には、人体がある一つの回転軸まわりに回転運動をしているという仮定を利用して演算を行う。人体の回転運動では、主に関節などが回転軸になりうる。また、関節が回転軸となることが多いが、体の外部を回転軸として回転運動をすることもある。これは、人体の各部位がパラレルリンクのように動くためである
図2(a)は、デジタルカメラ100をy軸+方向から見た図である。軸51はデジタルカメラ100のy軸と平行な軸であり、デジタルカメラ100のy軸回りの回転軸の一例である。デジタルカメラ100の運動を軸51回りの回転運動に代表させている。軸51は人体の中心であることもあれば、人体の腕部であることもある。また、その他の関節なども軸となりうる。例えば、人体の前方や後方などである。軸51回りの回転運動によってデジタルカメラ100に起こる振れから撮像素子6の平行振れを算出する。
図2(b)は、デジタルカメラ100をz軸+方向から見た図である。軸52はデジタルカメラ100のz軸と平行な軸であり、デジタルカメラ100のz軸回りの回転軸の一例である。
デジタルカメラ100の運動を軸52回りの回転運動に代表させている。軸52は人体の腰部であることもあれば、人体の足部であることもある。前述の通り、その他の関節なども軸となりうる。例えば軸52は人体の足部よりも下の外部であったり、人体の腕部であったりもする。軸52回りの回転運動によってデジタルカメラ100に起こる振れから撮像素子6の平行振れを算出する。
図2(c)はデジタルカメラ100をx軸+方向から見た図である。軸53はデジタルカメラ100のx軸と平行な軸であり、デジタルカメラ100のx軸回りの回転軸の一例である。
デジタルカメラ100の運動を軸53回りの回転運動に代表させている。軸53は人体の腰部であることもあれば、人体の足部であることもある。前述の通り、その他の関節なども軸となりうる。例えば軸53は人体の足部よりも下の外部であったり、人体の腕部であったりもする。軸53回りの回転運動によってデジタルカメラ100に起こる振れから撮像素子6の平行振れを算出する。
デジタルカメラ100の軸51乃至53回りの回転運動は、y軸回り、z軸回り、x軸回りの回転運動とx、y、z方向の並進運動に分解することができる。デジタルカメラ100の軸51回りの回転運動は、撮像装置のy軸まわりの回転運動と、デジタルカメラ100のx軸方向の並進運動、z軸方向の並進運動に分解できる。デジタルカメラ100の軸52回りの回転運動は、撮像装置のz軸まわりの回転運動と、デジタルカメラ100のx軸方向の並進運動、y軸方向の並進運動に分解できる。デジタルカメラ100の軸53回りの回転運動は、撮像装置のx軸まわりの回転運動と、デジタルカメラ100のy軸方向の並進運動、z軸方向の並進運度に分解できる。
デジタルカメラ100のx軸方向の平行振れは、デジタルカメラ100の軸51回りの回転運動に起因するx軸方向の並進運動による振れと、デジタルカメラ100の軸52回りの回転運動に起因するx軸方向の並進運動による振れを加算したものである。
また、デジタルカメラ100のy軸方向の平行振れは、デジタルカメラ100の軸52回りの回転運動に起因するy軸方向の並進運動による振れと、デジタルカメラ100の軸53回りの回転運動に起因するy軸方向の並進運動による振れを加算したものである。
さらに、デジタルカメラ100のz軸方向の平行振れは、デジタルカメラ100の軸51回りの回転運動に起因するz軸方向の並進運動による振れと、デジタルカメラ100の軸53回りの回転運動に起因するz軸方向の並進運動による振れを加算したものである。
軸51回りの回転運動と、軸52回りの回転運動と、軸53回りの回転運動とでは、平行振れに影響を与える支配的な周波数帯域が異なるという性質がある。例えば、軸52、軸53回りの回転運動では、足元を基準とした倒立振り子、のような運動であるため、周波数の低い回転運動が主に平行振れに影響を与える。軸51回りの回転運動では、人体をねじるような運動であるため、軸52、軸53回りの回転運動と異なり、足元を基準とした運動よりは周波数の高い回転運動が主に平行振れに影響を与える。
図3は、振れ補正量を算出するカメラシステム制御部5内における第1の振れ補正量算出部5aの構成を示すブロック図である。図3の加速度検出部16は、図1(b)に示した加速度検出部16であり、図1のx軸方向、y軸方向、z軸方向における並進成分である、加速度を検出する。また、図3の角速度検出部15は、図1(b)に示した角速度検出部15であり、x軸回りの角速度、y軸回りの角速度、z軸回りの回転成分である、角速度を検出する。なお、図3では、デジタルカメラ100のx軸方向に生じる振れについての構成だけを示している。y軸、z軸方向に生じる振れについての構成は省略するが、x軸方向に生じる振れについての構成と同じである。
図3において、角速度センサ15yaはy軸回りの角速度を検出する。加速度センサ16xはx軸方向の加速度を検出する。角速度センサ15roはz軸回りの角速度を検出する。第1の振れ補正量算出部5aは、角速度センサ15ya、加速度センサ16x、角速度センサ15roからの出力信号を入力信号として受け取る。第1の振れ補正量701と第2の振れ補正量x702をそれぞれ算出し、出力する。第1の振れ補正量算出部5aは、BPF部401乃至403、積分器501乃至503、比較部601及び602、乗算部701及び702を備えて構成される。
BPF部401乃至403は特定の帯域のみを通過させるバンドパスフィルタである。BPF部401乃至403は、それぞれ角速度センサ15ya、加速度センサ16x、角速度センサ15roからの出力信号を入力信号として受け取る。BPF部401乃至403は、入力信号から特定の帯域のみを抽出し、出力する。BPF部401乃至403では、手振れの帯域である0.01Hz〜10Hzの信号を抽出する。これらのBPF部は、ノイズ成分を除去する目的で設けられている。ノイズ成分が少ない、もしくはないのであれば、BPF部401乃至403は不要である。
積分器501はBPF部を通過した信号を入力信号として受け取る。積分器501は入力信号を積分し、出力する。ここでは、加速度を積分して速度信号を出力する。比較部601は、BFP部401の出力信号と積分器501の出力信号を入力信号として受け取り、積分器501の出力信号をBPF部401の出力信号で除算することにより、第1の係数を算出する。比較部602は、BPF部403の出力信号と積分器501の出力信号を入力信号として受け取り、積分器501の出力信号をBPF部403の出力信号で除算することにより、第2の係数を算出する。
第1の係数と第2の係数は、デジタルカメラ100が回転運動をすると仮定したときの、回転軸から撮像素子6までの距離、すなわち回転半径に相当するものである。比較部601と比較部602で行われる演算の式は以下の通りである。
601=v402/ω401 …(1)
602=v402/ω403 …(2)
ここで、v402は速度であり、積分器501の出力である。ω401、ω403は角速度であり、それぞれBPF部401、BPF403の出力である。r601、r602は、それぞれ比較部601と比較部602で算出される第1の係数と第2の係数(回転半径)である。
乗算部701は、積分器502の出力信号と比較部601の出力信号を入力信号として受け取る。入力信号同士を乗算することにより、第1の振れ補正量を算出する。乗算部702は、積分器503の出力信号と比較部602の出力信号を入力信号として受け取る。入力信号同士を乗算することにより第2の振れ補正量を算出する。第1の振れ補正量は、デジタルカメラ100のy軸まわりの回転運動を起因とするx軸方向の平行振れ量である。第2の振れ補正量は、デジタルカメラ100のz軸まわりの回転運動を起因とするx軸方向の平行振れ量である。乗算部701と乗算部702で行われる演算の式は以下の通りである。
701=r601×θ502 …(3)
702=r602×θ503 …(4)
ここで、x701は第1の振れ補正量であり、x702は第2の振れ補正量である。r601、r602は、それぞれ比較部601と比較部602で算出される第1の係数と第2の係数(回転半径)である。θ502、θ503は角度であり、それぞれ積分器502と積分器503の出力である。
HPF部801は、乗算部701の出力信号である第1の振れ補正量x701を入力信号として受け取る。HPF部801はハイパスフィルタにより入力信号から特定の信号を抽出し、出力する。具体的には、HPF部801は、カットオフ周波数を1Hzにもつハイパスフィルタ(フィルタ特性)により1Hzより早い周波数帯域の信号を抽出する。
LPF部802は、乗算部702の出力信号である第2の振れ補正量x702を入力信号として受け取る。LPF部802はローパスフィルタにより入力信号から特定の信号を抽出し、出力する。具体的には、LPF部802は、カットオフ周波数を1Hzにもつローパスフィルタ(フィルタ特性)により1Hzより遅い周波数帯域の信号を抽出する。
前述の通りy軸回りの回転運動では周波数の高い振れが平行振れの支配的な要因であることが多く、z軸回りの回転運動では、周波数の低い振れが平行振れの支配的な要因であることが多いという特徴がある。HPF部801とLPF部802では、それぞれの特徴に合うフィルタを用いることにより、振れ演算の誤差要因を減らすことができ、振れ量の算出の精度が改善される。
第2の振れ補正量算出部5bは、HPF部801の出力信号とLPF部802の出力信号を入力信号として受け取る。第2の振れ補正量算出部5bは入力信号同士を加算することにより、x軸方向の振れ補正量を算出する。
なお、図3では、角速度検出部として角速度計、加速度検出部として加速度計を用いる例について示したが、別の検出方法でもよい。例えば、加速度検出方法としては、デジタルカメラ100の画像信号から得られるベクトル情報に基づいて加速度を検出する方法や、GPSによって加速度を検出する方法などがある。角速度検出方法としては、撮像装置の画像信号から角速度を検出する方法などがある。また、特定の帯域の信号を取り出すためにフィルタを使用したが、フーリエ変換などを用いて取り出してもよい。
比較部601と比較部602の演算では、入力される信号の次元がそろっている必要がある。すなわち、角度と位置、角加速度と加速度、角速度と速度の組み合わせになっている必要がある。そのため、加速度検出部16xに加速度ではなく速度を検出するセンサを使用する場合には、積分器501は不要となる。次元が同じになるよう、積分器や微分器を用いて調整してもよい。
図4は、デジタルカメラ100における振れ補正処理の動作を示すフローチャートであり、フィルタの帯域決定を行う場合の例を示している。図4のフローチャートは、デジタルカメラ100の電源のONとともに開始される。フローの開始とともに、振れ補正部14とレンズ駆動部13は撮像素子6と像振れ補正レンズ9の駆動を開始する。
S101では、第1の振れ補正量演算が行われる。第1の振れ補正量演算は、図3の乗算部701、702までのブロックで振れ補正量を算出し、得られた値を半分にする演算である。第1の振れ補正量演算で得られた値を目標移動量として、振れ補正部14とレンズ駆動部13に信号が送られ、撮像素子6と像振れ補正レンズ9が駆動される(露光前駆動)。振れ補正量を半分にするのは、露光時の振れ補正のストロークを確保するためである。
S102では、帯域決定のON/OFFを判定する。S102で帯域決定がOFFの場合は、S103には進まずに次のステップS106へ進む。S102で帯域決定がONの場合は、S103のフィルタの帯域決定の処理を行う。
カメラシステム制御部5がS103におけるフィルタの帯域決定を行う。ここで決定したフィルタの帯域は図3のHPF部801とLPF部802に適用される。
前述の通り、デジタルカメラ100の回転運動の回転軸は、軸ごとに特徴があるため、これを利用する方法を図3に示した。しかし、デジタルカメラ100の姿勢変化やユーザーの姿勢変化によっては、軸の関係性はいつもこの通りであるとも限らない。デジタルカメラ100の姿勢に応じてフィルタの帯域を決定する方法について説明する。
図1の姿勢検出部19によりデジタルカメラ100の姿勢を検出し、デジタルカメラ100の姿勢に応じてフィルタの帯域を変更する。姿勢検出部19には加速度計や距離センサなどを使用する。なお、加速度検出部16として使用している加速度計を姿勢検出部として使用してもよい。
図2ではデジタルカメラ100が、x軸がほぼ水平となる姿勢(正位置)の場合の例について説明した。x軸が地面に対してほぼ垂直となる姿勢(縦位置)の場合には、人体とデジタルカメラ100の位置関係が変わるため、x軸と平行な軸回りの回転運動と、y軸と平行な軸回りの回転運動とで、平行振れに影響を与える支配的な周波数が入れ替わる。z軸と平行な軸回りの回転運動の平行振れに与える支配的な周波数は、縦位置でも正位置でも同様である。y軸と平行な軸まわりの回転運動では、足元を基準とした倒立振り子のような運動の影響を受けるため、周波数の低い回転運動が主に平行振れに影響を与える。x軸と平行な軸回りの回転運動は、縦位置では人体をねじるような運動の影響をうけるため、足元を基準とした運動よりは周波数の高い回転運動が主に平行振れに影響を与える。デジタルカメラ100の姿勢が縦位置の際には、y軸回りの回転運動とx軸回りの回転運動に使用するフィルタを入れ替える。
次に、ユーザーの姿勢変化に応じてフィルタの帯域を決定する方法について説明する。これまでの説明では、回転運動の回転軸ごとの特性を考える際には、ユーザーが立っていることを想定しているが、ユーザーがしゃがんでいる場合や座っている場合なども考えられる。ユーザーがしゃがんでいる場合には、ユーザーが立っている場合に比べて高い帯域の回転運動が主に平行振れに影響を与える。そのため、フィルタの帯域を高めに設定する。ユーザーの姿勢は、姿勢検出部19を用いて検出する。姿勢検出部19には、前述の通り加速度センサや距離センサなどを用いることができる。デジタルカメラ100から地面までの距離を距離センサによって測定することによりユーザーの姿勢を推定する。また、操作検出部8を用いて、ユーザーが撮影姿勢を入力してもよい。また、第1の係数や第2の係数からおおよその姿勢を推定することもできる。
次に、デジタルカメラ100の撮影条件や撮影モードに応じてフィルタの帯域を決定する方法について説明する。
まずシャッタ速度に応じてフィルタを変更する場合について説明する。シャッタ速度が速い場合には振れの低周波成分の影響は小さくなるため、フィルタの帯域を高くする。逆に、シャッタ速度が遅い場合には振れの低周波数成分の影響が大きくなり、相対的に高周波数成分の影響は小さくなる。そのため、シャッタ速度が遅い場合にはフィルタの帯域を低くする。
撮影モードに応じてもフィルタの帯域を変更する。例えば、撮影モードが星空を撮影するモードの際には、シャッタ速度が遅くなるため、フィルタの帯域を低くする。フィルタの帯域変更はカメラシステム制御部5が行う。
図4の説明に戻って、S106では、スイッチSW2のONが検出されたか否かが判定される。スイッチSW2のONが検出されなかった場合には、S101まで戻る。S106でスイッチSW2のONが検出された場合には、S107において第2の振れ補正量演算が行われる。スイッチSW2のONが検出されると同時に、撮像素子6と像振れ補正レンズ9の駆動を第2の振れ補正量演算の結果に基づいて行う、露光中駆動に切り替える。露光前駆動では算出した振れ補正量を半分にした値を使用していたが、露光中駆動では算出した振れ補正量そのものを使用する。第2の振れ補正量演算での算出結果は、図3の第2の振れ補正量算出部5bの算出結果である。
S108で露光終了が確認されるまでS107が繰り返される、S108で露光終了が確認されたらS109でスイッチSW1のON/OFFが判定される。S109でスイッチSW1のONが確認された場合、まだ撮影が行われる可能性があるため、S101まで戻る。S109でスイッチSW1のONが確認されなかった場合には、S110へ進む。
S110では、電源のON/OFFを判断し、電源のONが確認された場合には、S101まで戻る。S110で電源のOFFが確認された場合には、フローを終了する。
なお、S103のフィルタの帯域の決定は、S107の第2の振れ補正演算の際にリアルタイムに行ってもよい。
以上説明したように、上記の実施形態によれば、平行振れの検出軸ごとに支配的な周波数帯域を考慮した補正を行うことにより、高精度な振れ補正を行うことが可能となる。
なお、上記の実施形態では、第1の振れ補正量演算部5aにより第1の振れ補正量x701及び第2の振れ補正量x702を取得したのち、HPF部801、LPF部802により特定の周波数の信号を抽出してx軸方向の振れ補正量を算出した。しかしながら、本発明は、それぞれの振れ補正量を取得してから、特定の周波数の信号を抽出して手振れ補正に用いる補正量(x軸方向の補正量)を取得するものに限定されない。第1、第2の振れ検出手段で検出した振れ成分のうち、特定の周波数信号に基づく振れ補正量と、第1、第3の振れ検出手段で検出した振れ成分のうち、別の特定の周波数成分に基づく振れ補正量とに基づいて手振れ補正に用いる振れ補正量を取得できればよい。
例えば、加速度計16xと角速度計15yaとの出力のそれぞれにBPF、LPFをかけた信号に基づいて第1の振れ補正量を、加速度計16xと角速度計15roとの出力のそれぞれにBPF、HPFをかけた信号に基づいて第2の振れ補正量を取得し、第1、第2の振れ補正量を加算してもよい。本発明及び本明細書では、実施形態のように振れ補正量を取得してから特定の周波数帯域の信号を抽出して得られた振れ補正量も、特定の周波数帯域の信号を抽出した振れ検出信号から取得された補正量も、振れ検出手段の出力信号のうち、特定の周波数帯域の信号に基づく振れ補正量と呼ぶ。
なお、上記の説明では、デジタルカメラ100を所謂ミラーレス一眼カメラとして説明したが、本発明は、コンパクトデジタルカメラや、デジタル一眼レフカメラ、デジタルビデオカメラ、アクションカメラ、携帯電話などの各種光学装置に適用可能である。
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
1:カメラ本体、2:レンズ、5:カメラシステム制御部、7:レリーズ検出部、8:操作検出部、9:像振れ補正レンズ、12:レンズシステム制御部、13:レンズ駆動部、14:振れ補正部、15:角速度検出部、16:加速度検出部、19:姿勢検出部、100:デジタルカメラ

Claims (18)

  1. 第1の軸方向の振れの並進成分を検出する第1の振れ検出手段と、
    前記第1の軸と直交する第2の軸回りの振れの回転成分を検出する第2の振れ検出手段と、
    前記第1の軸及び前記第2の軸のそれぞれに直交する第3の軸回りの振れの回転成分を検出する第3の振れ検出手段と、
    前記第1の振れ検出手段の出力信号と、前記第2の振れ検出手段の出力信号とのうち、第1の周波数帯域の信号に基づく第1の振れ補正量を算出するとともに、前記第1の振れ検出手段の出力信号と、前記第3の振れ検出手段の出力信号とのうち、第2の周波数帯域の信号に基づく第2の振れ補正量を取得する第1の取得手段と、
    前記第1の振れ補正量と前記第2の振れ補正量とを用いて、前記第1の軸方向の平行振れ量を算出する第2の取得手段と、
    を備えることを特徴とする撮像装置。
  2. 前記第1の取得手段は、前記第1の振れ検出手段の出力信号を積分した信号を、前記第2の振れ検出手段の出力信号で除算することにより、第1の振れの回転半径を求め、前記第1の振れ検出手段の出力信号を積分した信号を、前記第3の振れ検出手段の出力信号で除算することにより、第2の振れの回転半径を求めることを特徴とする請求項1に記載の撮像装置。
  3. 前記第1の取得手段は、前記第1の振れの回転半径に、前記第2の検出手段の出力信号を積分した信号を乗算することにより、前記第1の振れ補正量を取得することを特徴とする請求項2に記載の撮像装置。
  4. 前記第1の取得手段は、前記第2の振れの回転半径に、前記第3の検出手段の出力信号を積分した信号を乗算することにより、前記第2の振れ補正量を取得することを特徴とする請求項2に記載の撮像装置。
  5. 前記第2の取得手段は、前記第1の振れ補正量と前記第2の振れ補正量とを加算することにより、前記第1の軸方向の平行振れ量を取得することを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
  6. 前記第2及び第3の振れ検出手段は角速度計であることを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
  7. 前記第1の振れ検出手段は加速度計であることを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。
  8. 画像信号を生成する撮像手段をさらに備え、前記第1の振れ検出手段は前記画像信号から前記第1の軸方向の振れの並進成分を検出することを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  9. 前記第1の抽出手段と前記第2の抽出手段は、フィルタであることを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  10. 前記第1の抽出手段と前記第2の抽出手段は、前記第2及び第3の振れ検出手段の信号の特性に応じたフィルタ特性を有することを特徴とする請求項9に記載の撮像装置。
  11. 前記第1及び第2の抽出手段のフィルタ特性を変更する制御手段をさらに備えることを特徴とする請求項10に記載の撮像装置。
  12. 画像信号を生成する撮像手段をさらに備え、前記制御手段は、前記撮像手段の撮影条件に応じてフィルタ特性を変更することを特徴とする請求項11に記載の撮像装置。
  13. 前記撮影条件は、シャッタ速度であることを特徴とする請求項12に記載の撮像装置。
  14. 前記撮像装置の姿勢を検出する姿勢検出手段をさらに備え、前記撮影条件は、前記撮像装置の姿勢であることを特徴とする請求項12に記載の撮像装置。
  15. 前記撮影条件は、星空を撮影するモードであるか否かの条件であることを特徴とする請求項12記載の撮像装置。
  16. 前記第1の取得手段は、第1の抽出手段と第2の抽出手段とを有し、
    前記第1の抽出手段は、前記第1の振れ検出手段の出力信号と、前記第2の振れ検出手段の出力信号とを用いて取得された補正量から前記第1の周波数帯域の信号を抽出することで前記第1の振れ補正量を取得し、
    前記第2の抽出手段は、前記第1の振れ検出手段の出力信号と、前記第3の振れ検出手段の出力信号とを用いて取得された補正量から前記第2の周波数帯域の信号を抽出することで前記第2の振れ補正量を取得することを特徴とする請求項1乃至15のいずれか1項に記載の撮像装置。
  17. 第1の軸方向の振れの並進成分を検出する第1の振れ検出工程と、
    前記第1の軸と直交する第2の軸回りの振れの回転成分を検出する第2の振れ検出工程と、
    前記第1の軸及び前記第2の軸のそれぞれに直交する第3の軸回りの振れの回転成分を検出する第3の振れ検出工程と、
    前記第1の振れ検出工程の出力信号と、前記第2の振れ検出工程の出力信号とのうち、第1の周波数帯域の信号に基づく第1の振れ補正量を算出するとともに、前記第1の振れ検出手段の出力信号と、前記第3の振れ検出手段の出力信号とのうち、第2の周波数帯域の信号に基づく第2の振れ補正量を取得する第1の取得工程と、
    前記第1の振れ補正量と前記第2の振れ補正量とを用いて、前記第1の軸方向の平行振れ量を算出する第2の取得工程と、
    を有することを特徴とする撮像装置の制御方法。
  18. 請求項17に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。
JP2019057087A 2019-03-25 2019-03-25 撮像装置及びその制御方法、プログラム Active JP7280728B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019057087A JP7280728B2 (ja) 2019-03-25 2019-03-25 撮像装置及びその制御方法、プログラム
US16/828,341 US11233942B2 (en) 2019-03-25 2020-03-24 Image capturing apparatus, method of controlling the same and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057087A JP7280728B2 (ja) 2019-03-25 2019-03-25 撮像装置及びその制御方法、プログラム

Publications (3)

Publication Number Publication Date
JP2020160162A true JP2020160162A (ja) 2020-10-01
JP2020160162A5 JP2020160162A5 (ja) 2022-04-01
JP7280728B2 JP7280728B2 (ja) 2023-05-24

Family

ID=72605191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057087A Active JP7280728B2 (ja) 2019-03-25 2019-03-25 撮像装置及びその制御方法、プログラム

Country Status (2)

Country Link
US (1) US11233942B2 (ja)
JP (1) JP7280728B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233260B2 (ja) * 2019-03-13 2023-03-06 キヤノン株式会社 像ブレ補正制御装置及びその制御方法、プログラム、記憶媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088466A (ja) * 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2012088465A (ja) * 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2013033185A (ja) * 2011-07-01 2013-02-14 Nikon Corp レンズ鏡筒、カメラシステム及びカメラボディ
JP2013080092A (ja) * 2011-10-04 2013-05-02 Canon Inc 振れ補正装置
JP2013148717A (ja) * 2012-01-19 2013-08-01 Olympus Corp ブレ量検出装置、撮像装置、ブレ量検出方法
CN104967785A (zh) * 2015-07-07 2015-10-07 小米科技有限责任公司 控制光学防抖的方法及装置
US20180278821A1 (en) * 2017-03-22 2018-09-27 Htc Corporation Camera device and method for camera device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088466A (ja) * 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2012088465A (ja) * 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2013033185A (ja) * 2011-07-01 2013-02-14 Nikon Corp レンズ鏡筒、カメラシステム及びカメラボディ
JP2013080092A (ja) * 2011-10-04 2013-05-02 Canon Inc 振れ補正装置
JP2013148717A (ja) * 2012-01-19 2013-08-01 Olympus Corp ブレ量検出装置、撮像装置、ブレ量検出方法
CN104967785A (zh) * 2015-07-07 2015-10-07 小米科技有限责任公司 控制光学防抖的方法及装置
US20180278821A1 (en) * 2017-03-22 2018-09-27 Htc Corporation Camera device and method for camera device

Also Published As

Publication number Publication date
US20200314339A1 (en) 2020-10-01
US11233942B2 (en) 2022-01-25
JP7280728B2 (ja) 2023-05-24

Similar Documents

Publication Publication Date Title
JP4789614B2 (ja) 防振制御装置およびその制御方法
JP5094606B2 (ja) 像振れ補正装置およびそれを備えた光学機器、撮像装置、像振れ補正装置の制御方法
JP5031690B2 (ja) 防振制御装置及び撮像装置並びに防振制御装置の制御方法
JP2010025961A (ja) 防振制御装置及び撮像装置
TWI705707B (zh) 攝影裝置及攝影裝置的操作方法
JP2014056057A (ja) 撮像装置およびその制御方法
US7791643B2 (en) Sequenced response image stabilization
JP2020160162A (ja) 撮像装置及びその制御方法、プログラム
JP5235542B2 (ja) 像振れ補正装置またはそれを備えたレンズ装置、撮像装置並びに像振れ補正装置の制御方法
JP6024031B2 (ja) ブレ補正装置及び光学機器
JP2020148905A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2013015571A (ja) 撮像装置、プログラム及び手振れ補正方法
JP2012163852A (ja) ブレ補正装置及び光学機器
JP2012237884A (ja) ブレ補正装置及び光学機器
JP5207861B2 (ja) 像振れ補正装置およびそれを具備する撮像装置、光学機器、ならびに像振れ補正装置の制御方法
US11871112B2 (en) Image stabilization apparatus and method and image capturing apparatus
JP5693656B2 (ja) 像振れ補正装置およびそれを備えた光学機器、撮像装置、像振れ補正装置の制御方法
JP2020201451A (ja) 撮像装置および撮像装置の制御方法
JP2021026180A (ja) 像振れ補正装置及び撮像装置
JP5496268B2 (ja) 光学機器又は撮像装置並びに光学機器の制御方法
JP2014215358A (ja) 像ブレ補正装置及び光学機器
JP6728640B2 (ja) 撮像装置
JP2022187800A (ja) 撮像装置及びその制御方法、並びにプログラム
JP2012123261A (ja) 防振制御装置
JP2021012260A (ja) 像ブレ情報取得装置及び方法、像ブレ補正装置、プログラム、記憶媒体

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R151 Written notification of patent or utility model registration

Ref document number: 7280728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151