JP2020112181A - Vacuum heat insulating material and its manufacturing method - Google Patents

Vacuum heat insulating material and its manufacturing method Download PDF

Info

Publication number
JP2020112181A
JP2020112181A JP2019001555A JP2019001555A JP2020112181A JP 2020112181 A JP2020112181 A JP 2020112181A JP 2019001555 A JP2019001555 A JP 2019001555A JP 2019001555 A JP2019001555 A JP 2019001555A JP 2020112181 A JP2020112181 A JP 2020112181A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
core material
mats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019001555A
Other languages
Japanese (ja)
Inventor
祐志 新井
Yushi Arai
祐志 新井
千喜憲 中小原
Yukinori Nakakohara
千喜憲 中小原
隆之 川野邉
Takayuki Kawanobe
隆之 川野邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019001555A priority Critical patent/JP2020112181A/en
Publication of JP2020112181A publication Critical patent/JP2020112181A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

To provide a vacuum heat insulating material with high heat insulating performance and excellent dimension accuracy, which uses glass fiber fabricated by a continuous filament method or the like.SOLUTION: A vacuum heat insulating material has a core material formed by stacking less than 40 pieces of glass long fiber mats each having a thickness of 0.5 mm or more before evacuation.SELECTED DRAWING: Figure 6

Description

本発明は、真空断熱材及びこの製造方法に関する。 The present invention relates to a vacuum heat insulating material and a manufacturing method thereof.

ガラス繊維等を主成分とする芯材を含んだ真空断熱材が知られている。ガラス繊維としては、連続フィラメント法やチョップドストランド法で製造される長繊維と、遠心法やバーナー法で製造される短繊維に分類できるが、安全性の観点等から長繊維を採用する動きが活発になってきている。 A vacuum heat insulating material including a core material containing glass fiber or the like as a main component is known. Glass fibers can be classified into continuous fibers manufactured by the continuous filament method or chopped strand method and short fibers manufactured by the centrifugal method or burner method, but there is an active movement to adopt long fibers from the viewpoint of safety. Is becoming.

長繊維を利用すると、短繊維に比して、いわゆる乾式による製造時でも薄いウェブ(マット)を形成することが容易となる。ウェブを用いて芯材を形成すると重なり枚数を多くできるため、厚み方向に延在する、いわゆる縦繊維を抑制できる。 When long fibers are used, it becomes easier to form a thin web (mat) than so-called short fibers even during so-called dry production. When the core material is formed using the web, the number of overlapping sheets can be increased, so that so-called longitudinal fibers extending in the thickness direction can be suppressed.

特許文献1は、連続フィラメント法で製造されたガラス繊維にニードルパンチ加工をしないウェブを40枚以上重ねた芯材を利用した真空断熱材を開示する。また、ウェブの成形後に、300℃〜750℃に加熱して収束材を除去している(0022)。 Patent Document 1 discloses a vacuum heat insulating material that uses a core material in which 40 or more webs that are not needle punched are stacked on glass fibers manufactured by a continuous filament method. Further, after forming the web, the bundling material is removed by heating at 300° C. to 750° C. (0022).

特許文献2は、連続フィラメント法で製造されたガラス繊維をニードルパンチ加工したニードルマットを少なくとも6枚以上積層した真空断熱材を開示する(0016)。 Patent Document 2 discloses a vacuum heat insulating material in which at least 6 or more needle mats obtained by needle punching glass fibers manufactured by a continuous filament method are laminated (0016).

特開2015−137689号公報JP, 2005-137689, A 特開2015−137688号公報JP, 2005-137688, A

特許文献1,2とも、重なり枚数を多くしようとするものである。しかし、重なり枚数が増加すると、積層時や圧縮熱成形加工時、真空引き時の位置ずれが生じやすくなる。 Both Patent Documents 1 and 2 attempt to increase the number of overlapping sheets. However, if the number of overlapped sheets increases, positional deviation easily occurs during stacking, compression thermoforming, and vacuuming.

特許文献1はウェブを加熱しているが、本発明者らの検討の結果、加熱する際にはウェブの厚みに留意する必要があり、具体的には後述するように、薄いウェブを加熱すると熱溶着が生じてしまうという課題が見出された。 In Patent Document 1, the web is heated, but as a result of studies by the present inventors, it is necessary to pay attention to the thickness of the web when heating, and specifically, as described later, when a thin web is heated. A problem has been found that heat welding occurs.

特許文献1は、連続フィラメント法で製造されたガラス繊維をニードルパンチ加工を用いず、また、バインダも含まずに芯材としていることから、芯材はやわらかく取扱いが困難である。そのため、積層枚数を多くするほどに、芯材を外被材に挿入する時に層ずれや収縮が発生し、真空断熱材としたときに寸法精度に課題がある。 In Patent Document 1, since the glass fiber manufactured by the continuous filament method is used as a core material without using needle punching and does not contain a binder, the core material is soft and difficult to handle. Therefore, as the number of laminated layers increases, layer displacement and shrinkage occur when the core material is inserted into the jacket material, and there is a problem in dimensional accuracy when the vacuum heat insulating material is used.

特許文献2は、6枚以上積層することで縦繊維が連続しにくくなるとしている(0014)。しかし、ニードルマットの積層枚数が増すと積層ずれが生じやすいところ、積層枚数を減少させると性能が急激に悪化するとしている。 Patent Document 2 states that it becomes difficult for the longitudinal fibers to be continuous by laminating six or more sheets (0014). However, it is said that when the number of laminated needle mats increases, stacking deviation tends to occur, but when the number of laminated needles decreases, the performance deteriorates sharply.

上記事情に鑑みてなされた第1の本発明は、
真空引き前の厚みがそれぞれ0.5mm以上のガラス長繊維のマットが40枚未満重ねられて形成された芯材を有する真空断熱材である。
The first present invention made in view of the above circumstances,
It is a vacuum heat insulating material having a core material formed by stacking less than 40 mats of long glass fibers each having a thickness of 0.5 mm or more before evacuation.

上記事情に鑑みてなされた第2の本発明は、
ガラス長繊維のマットを複数枚ニードルパンチ加工してまとめたニードルマットを5層以下積層した芯材を有する真空断熱材である。
The second invention made in view of the above circumstances,
It is a vacuum heat insulating material having a core material in which 5 or less layers of needle mats obtained by needle punching a plurality of long glass fiber mats are laminated.

実施形態における冷蔵庫の正面図Front view of the refrigerator in the embodiment 実施形態における冷蔵庫の縦断面図(図1のA−A断面)The longitudinal cross-sectional view of the refrigerator in the embodiment (A-A cross section of FIG. 1) 実施形態における冷蔵庫の庫内矢視図(図2のB−B矢視)FIG. 2 is a view of the refrigerator in the embodiment as viewed from the inside of the refrigerator (viewed from the arrow BB in FIG. 2). 実施形態における真空断熱材の説明図Explanatory drawing of the vacuum heat insulating material in embodiment 本発明の実施例1の真空断熱材の断面図Sectional drawing of the vacuum heat insulating material of Example 1 of this invention. 本発明の実施例2の真空断熱材の断面図Sectional drawing of the vacuum heat insulating material of Example 2 of this invention

本発明の実施形態に係る真空断熱材を備えた冷蔵庫について、図面を参照しながら以下詳細に説明する。 A refrigerator including a vacuum heat insulating material according to an embodiment of the present invention will be described in detail below with reference to the drawings.

(実施形態)
図1は本発明の実施形態に係る真空断熱材を備えた冷蔵庫の外観を示す正面図である。図2は実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図1のA−A線の切断図である。図3は実施形態1に係る真空断熱材を備えた冷蔵庫のB−B野視図である。
(Embodiment)
FIG. 1 is a front view showing the appearance of a refrigerator provided with a vacuum heat insulating material according to an embodiment of the present invention. FIG. 2 is a vertical cross-sectional view of the refrigerator including the vacuum heat insulating material according to the embodiment, and is a cross-sectional view taken along line AA of FIG. 1. FIG. 3 is a BB perspective view of the refrigerator including the vacuum heat insulating material according to the first embodiment.

冷蔵庫1は、上から冷蔵室2、貯氷室3aと上段冷凍室3b、冷凍室4、野菜室5を有している。ヒンジ10等を中心に回動する冷蔵室扉6a、6b、冷蔵室扉6a、6b以外は全て引き出し式の扉であり、貯氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を配置する。 The refrigerator 1 has a refrigerating compartment 2, an ice storage compartment 3a, an upper freezing compartment 3b, a freezing compartment 4 and a vegetable compartment 5 from the top. Except for the refrigerator compartment doors 6a and 6b and the refrigerator compartment doors 6a and 6b which rotate around the hinge 10 and the like, all are drawer type doors, and the ice storage compartment door 7a, the upper stage freezer compartment door 7b, the lower stage freezer compartment door 8 and the vegetables. The room door 9 is arranged.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(ウレタンフォーム)、真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。 Further, a partitioning heat wall 12 is arranged to partition and insulate the refrigerating compartment 2 from the ice making compartment 3a and the upper freezing compartment 3b. The partitioning hot wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of styrofoam, foamed heat insulating material (urethane foam), vacuum heat insulating material, etc., either alone or in combination of a plurality of heat insulating materials.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21側または内箱22側のいずれかに真空断熱材150を配置し、真空断熱材150以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材150の説明については後述する。 The box body 20 includes an outer box 21 and an inner box 22, and a heat insulating portion is provided in a space formed by the outer box 21 and the inner box 22 to insulate the storage chambers inside the box body 20 from the outside. There is. A vacuum heat insulating material 150 is arranged on either the outer box 21 side or the inner box 22 side, and a space other than the vacuum heat insulating material 150 is filled with a foam heat insulating material 23 such as hard urethane foam. The vacuum heat insulating material 150 will be described later.

本実施形態においては凹部40の裏面に真空断熱材150を配置して断熱性能を確保している。実施例1では、真空断熱材150を前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材150とした。 In this embodiment, the vacuum heat insulating material 150 is arranged on the back surface of the recess 40 to ensure heat insulating performance. In the first embodiment, the vacuum heat insulating material 150 is one vacuum heat insulating material 150 formed in a substantially Z shape so as to straddle the case 45a of the interior lamp 45 and the electric component 41.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材150を配置している。 Further, since the compressor 30 and the condenser 31 arranged in the lower rear portion of the box body 20 are parts that generate a large amount of heat, in order to prevent heat from entering the inside of the box, vacuum projection is performed on the projection surface toward the inner box 22 side. The material 150 is arranged.

また、野菜室5の底面部の内箱22外面(断熱材23側)にも真空断熱材150を配置している。天井部は前述の通り真空断熱材150を、両側面部については外箱23の内面に、冷蔵室2と冷凍室3a、3b、4及び野菜室5に跨って真空断熱材150が配置し、冷蔵室扉6a、6b、冷凍室扉8、野菜室扉9についても外箱22(本実施例ではガラス板)内面に真空断熱材150を配置している。その他、各仕切り断熱12と14にも真空断熱材150を配置している。尚、真空断熱材150の配置や使用数については特に限定するものではない。 Further, the vacuum heat insulating material 150 is also arranged on the outer surface (on the heat insulating material 23 side) of the inner box 22 at the bottom surface of the vegetable compartment 5. As described above, the ceiling is provided with the vacuum heat insulating material 150, and the both sides are provided with the vacuum heat insulating material 150 on the inner surface of the outer box 23 so as to extend over the refrigerating compartment 2, the freezing compartments 3a, 3b, 4 and the vegetable compartment 5. As for the chamber doors 6a and 6b, the freezing chamber door 8 and the vegetable chamber door 9, the vacuum heat insulating material 150 is arranged on the inner surface of the outer box 22 (glass plate in this embodiment). In addition, a vacuum heat insulating material 150 is also arranged on each of the partition heat insulating layers 12 and 14. The arrangement and number of the vacuum heat insulating materials 150 are not particularly limited.

次に真空断熱材について説明する。図4は真空断熱材50の一例を示したものであり、芯材51と該芯材51を一時的に圧縮状態に保持するための内包材52、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53及び吸着剤54とから構成してある。外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムを向い合せ、各辺の端部から一定の幅部分を熱溶着した袋状で構成されている。 Next, the vacuum heat insulating material will be described. FIG. 4 shows an example of the vacuum heat insulating material 50. A core material 51, an inner packaging material 52 for temporarily retaining the core material 51 in a compressed state, and a core material retained in a compressed state by the inner packaging material 52. It is composed of an outer covering material 53 having a gas barrier layer covering 51 and an adsorbent 54. The outer covering material 53 is arranged on both surfaces of the vacuum heat insulating material 50, and is formed into a bag shape in which laminated films of the same size are faced to each other and a certain width portion is heat-welded from the end portion of each side.

芯材51については、無機系繊維材料の積層体を使用するとアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えば無機系繊維を加熱成形したものやバインダ成形したもの、或いはセラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維、及び有機繊維を用いてもよく、特に限定するものではない。芯材51の種類によっては内包材52は使用しない場合もある。 Regarding the core material 51, the use of a laminate of inorganic fiber materials reduces outgas, which is advantageous in terms of heat insulation performance, but is not particularly limited to this. Binder-molded ones, inorganic fibers such as ceramic fibers, rock wool, glass fibers other than glass wool, and organic fibers may be used, and there is no particular limitation. The inner packaging material 52 may not be used depending on the type of the core material 51.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、表面層、第一のガスバリヤ層、第二のガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとし、表面層は吸湿性の低い樹脂フィルム、第一のガスバリヤ層は金属蒸着層を設けた樹脂フィルム、第二のガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、第一と第二のガスバリヤ層については金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。具体的には、表面層を二軸延伸ポリプロピレン、第一のガスバリヤ層をアルミニウム蒸着付きのポリエチレンテレフタレート、第二のガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルムとし、熱溶着層を直鎖状低密度ポリエチレンフィルムとした。外被材53については特にこの構成に限定するものではない。表面層はポリアミド(ナイロン)やポリエチレンテレフタレート等でもよく、第一及び第二のガスバリヤ層についても金属箔や樹脂系フィルムに無機層状化合物や樹脂系ガスバリヤコート材等のガスバリヤ膜を設けたものでもよい。熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルムや、汎用性の高いポリプロピレンフィルム、高密度、中密度、低密度等のポリエチレンフィルムを用いても良い。また、真空断熱材50のそれぞれの外箱側と内箱側の面でフィルム構成が違っていてもよい。例えば、第二のガスバリヤ層として、一方の面がアルミ蒸着フィルム、別の面がアルミ箔という組み合わせであっても何ら問題ない。尚、各層は二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせられるが、接着剤、貼り合わせ方法には特にこれに限定するものではない。 The laminate structure of the outer covering material 53 is not particularly limited as long as it has gas barrier properties and can be heat-welded, but four layers of a surface layer, a first gas barrier layer, a second gas barrier layer, and a heat-welding layer. The laminated film consisting of the composition, the surface layer is a resin film having low hygroscopicity, the first gas barrier layer is a resin film provided with a metal vapor deposition layer, and the second gas barrier layer is a resin film having a high oxygen barrier property and a metal vapor deposition layer. The first and second gas barrier layers are provided so that the metal vapor deposition layers face each other. As for the heat-welding layer, a film having a low hygroscopic property was used similarly to the surface layer. Specifically, the surface layer is biaxially oriented polypropylene, the first gas barrier layer is a polyethylene terephthalate with aluminum vapor deposition, the second gas barrier layer is a biaxially oriented ethylene vinyl alcohol copolymer resin film with aluminum vapor deposition, The welding layer was a linear low-density polyethylene film. The jacket material 53 is not particularly limited to this configuration. The surface layer may be polyamide (nylon), polyethylene terephthalate or the like, and the first and second gas barrier layers may be those in which a metal foil or a resin film is provided with a gas barrier film such as an inorganic layered compound or a resin gas barrier coating material. .. For the heat-welding layer, for example, a polybutylene terephthalate film having a high oxygen barrier property, a highly versatile polypropylene film, or a polyethylene film having a high density, a medium density, a low density or the like may be used. Further, the film configuration may be different between the outer box side and the inner box side of the vacuum heat insulating material 50. For example, the second gas barrier layer may be a combination of an aluminum vapor-deposited film on one surface and an aluminum foil on the other surface without any problem. Although each layer is bonded by a dry lamination method via a two-component curing type urethane adhesive, the adhesive and the bonding method are not particularly limited thereto.

表面層と熱溶着層に吸湿性の低い樹脂を配置する目的は、酸素バリヤ性の高い上記のガスバリヤ層フィルムは吸湿によりガスバリヤ性が悪化するため、表面層と熱溶着層で挟むことで、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量が小さいため、真空排気効率が大幅に向上し、高性能化につながっている。 The purpose of disposing a resin having low hygroscopicity in the surface layer and the heat-welding layer is that the gas barrier layer film having a high oxygen barrier property deteriorates in gas barrier property due to moisture absorption. The amount of moisture absorption of the entire film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50, the amount of water brought into the jacket material 53 is small, so that the vacuum evacuation efficiency is significantly improved, leading to higher performance.

また、内包材52については熱溶着可能なポリエチレンフィルム、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分(水や水蒸気)を吸着するもので、物理吸着、化学反応型吸着のどちらでも良い。 Although the heat-weldable polyethylene film is used for the encapsulating material 52 and the physical adsorption type synthetic zeolite is used for the adsorbent 54, the materials are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like as long as it has low hygroscopicity and can be heat-welded and has a small outgas, and the adsorbent 54 adsorbs water (water or water vapor). Therefore, either physical adsorption or chemical reaction type adsorption may be used.

(実施例1)
図5に示す実施例1の真空断熱材150は、芯材となるガラス繊維に連続フィラメント法又はチョップドストランド法により得られる長繊維を用いている。公知の長繊維製造法で製造されたガラス繊維に集束剤を利用して集束させつつ、例えば50mm程度ごとに切断する。集束剤としては、例えばウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂、エポキシ樹脂、ポリエーテル系高分子、界面活性剤、カップリング剤、潤滑剤、帯電防止剤等のうちいずれか1つ又は複数を含んだものが用いられる。
(Example 1)
In the vacuum heat insulating material 150 of Example 1 shown in FIG. 5, long fibers obtained by a continuous filament method or a chopped strand method are used as glass fibers serving as a core material. The glass fiber produced by a known long fiber production method is cut using, for example, about 50 mm while being bundled using a sizing agent. As the sizing agent, for example, any one or more of urethane resin, vinyl acetate resin, acrylic resin, epoxy resin, polyether polymer, surfactant, coupling agent, lubricant, antistatic agent and the like are included. The one used is.

次に、この切断されたガラス繊維を開繊してマット状に成型する。本実施例では、平均繊維径7〜9μmの長繊維が薄く集束されたマット(ウェブ)を作成する。 Next, the cut glass fibers are opened and molded into a mat. In this embodiment, a mat (web) in which long fibers having an average fiber diameter of 7 to 9 μm are thinly bundled is prepared.

マットを複数枚重ねてからニードルパンチ加工を行い、ニードルマットとしてまとめる。これによりマット数を多くしつつも芯材嵩を小さくすることができる。そのため、内包材52を用いる必要性を低減でき、外被材53に挿入しやすくすることができる。この際、マットそれぞれの厚みは特に制限されないが、ニードルマット1層の真空引き前の厚みは、真空引き時や芯材の規定寸法へのカット時の位置ずれの抑制の観点から、1mm以上、好ましくは3mm以上が好ましい。ただし、芯材の厚みが厚くなるほどニードルパンチ加工時の針抵抗が大きくなり、加工がしにくくなることから30mm以下が好ましい。また、芯材1層の厚みが厚いほど、ニードルパンチ加工により繊維が断熱方向に向き繊維による固体熱伝導が高くなってしまうことからも、芯材1層の厚みは小さいことが好ましい。 After stacking multiple mats, perform needle punching and combine them into a needle mat. This makes it possible to reduce the bulk of the core material while increasing the number of mats. Therefore, it is possible to reduce the necessity of using the inner packaging material 52 and facilitate insertion into the outer covering material 53. At this time, the thickness of each mat is not particularly limited, but the thickness of the needle mat 1 layer before evacuation is 1 mm or more from the viewpoint of suppressing displacement during evacuation or when cutting the core material to a specified dimension, It is preferably 3 mm or more. However, the thicker the core material, the higher the needle resistance during needle punching, and the more difficult it becomes to process, so the thickness is preferably 30 mm or less. Further, as the thickness of the core material 1 layer is thicker, the fibers are oriented in the heat insulating direction by the needle punching process and the solid heat conduction by the fibers is increased. Therefore, the thickness of the core material 1 layer is preferably small.

また、積層ずれを低減するには、ニードルマット51の積層数が5層以下であることが好ましい。本実施例の芯材は幅600mm、長さ600mmのニードルマット1層の厚み5mm、ニードルマット51の積層数5層とした。真空引きして真空断熱材を作製したときに厚み18mmとなり、また、真空断熱材としたときの寸法ずれを3mm以下とすることができた。 Further, in order to reduce the stacking deviation, it is preferable that the number of stacked needle mats 51 is 5 or less. In the core material of this embodiment, one layer of a needle mat having a width of 600 mm and a length of 600 mm has a thickness of 5 mm and the number of laminated layers of the needle mat 51 is 5 layers. When the vacuum heat insulating material was produced by vacuuming, the thickness was 18 mm, and the dimensional deviation when using the vacuum heat insulating material could be 3 mm or less.

また、芯材を550℃〜750℃で圧縮熱成形加工をすることで長繊維の歪が除去され、また、集束剤を揮発させることができる。なお、ニードルパンチ加工を行うためバインダの必要性を低減できるとともに、仮に使用しても圧縮熱成形加工で揮発する。 Further, by subjecting the core material to compression thermoforming at 550° C. to 750° C., the strain of the long fibers can be removed, and the sizing agent can be volatilized. Since needle punching is performed, the need for a binder can be reduced, and even if used, it will volatilize by compression thermoforming.

(実施例2)
ニードルパンチ加工を行うと、柔らかく取り扱いが比較的困難なマットをまとめることができるものの、縦方向(厚み方向)に連続する繊維が発生するため、好ましくはニードルパンチ加工せずに芯材を形成したい。
(Example 2)
When needle punching is performed, mats that are soft and relatively difficult to handle can be put together, but continuous fibers are generated in the longitudinal direction (thickness direction), so it is preferable to form the core without needle punching. ..

図6に示す実施例2の真空断熱材250は、実施例1と同様の長繊維を用いている。本実施例では、マット510の厚みそれぞれを0.5mm以上とし、これを複数枚(後述するが40枚未満。)重ねて圧縮熱成形したものを、芯材とした。 The vacuum heat insulating material 250 of the second embodiment shown in FIG. 6 uses the same long fibers as in the first embodiment. In this embodiment, the mat 510 has a thickness of 0.5 mm or more, and a plurality of the mats 510 (which will be described later, but less than 40) are stacked and compression-thermoformed to form a core material.

繊維の積層方向に延在する、いわゆる縦繊維を抑制するには、同じガラス繊維の使用量だとマット数が多い方が好ましいが、検討の結果、単にマット数を増すだけだと却って性能が低下することが判明した。原因を追究したところ、薄いマットが混入すると圧縮熱成形時に繊維同士が溶着してしまうということが判明した。 In order to suppress so-called longitudinal fibers extending in the laminating direction of the fibers, it is preferable that the number of mats is large when the amount of glass fibers is the same, but as a result of examination, the performance is rather rather increased simply by increasing the number of mats. It turned out to fall. Upon investigating the cause, it was found that when a thin mat was mixed, the fibers were fused together during compression thermoforming.

詳細には、ニードルパンチ加工がされていない、厚みが0.5mm未満のマットに圧縮熱成形加工を行うと、圧縮熱成形加工時の熱が伝わりやすく、小さい熱量で軟化してしまい、広く繊維が溶けやすいことが判明した。 Specifically, when compression thermoforming is performed on a mat having a thickness of less than 0.5 mm that is not needle punched, heat during the compression thermoforming is easily transferred, and the mat is softened with a small amount of heat, so that it can be widely used in fibers. Was found to melt easily.

一方で、マットの重なり枚数が40以上となると積層ずれや加熱圧縮時の位置ずれが顕著になってきてしまうとの知見を得た。 On the other hand, it was found that when the number of overlapping mats is 40 or more, the stacking deviation and the positional deviation during heating and compression become remarkable.

ここで、マットの管理としては目付量(単位面積当たりのガラス繊維質量。)によるものが知られているが、目付量による管理はマット毎のばらつきが大きくなりがちである。また、目付量はその定義通り、マットの質量(ガラス繊維密度)を管理するものの厚みについては何ら管理しない。本発明者らは、薄いマットが混入すると、圧縮熱成形時の温度を低くしたり乾燥時間を短くしても溶着部と未溶着部が発生しやすいことを見出した。溶着部が大きくなるほど芯材の固体熱伝導が大きくなってしまうことから、真空断熱材としたときの性能低下が発生してしまう。 Here, the management of the mat is based on the basis weight (mass of glass fiber per unit area), but the management based on the basis weight tends to cause large variations among the mats. Further, the weight per unit area controls the mass (glass fiber density) of the mat as defined, but does not control the thickness. The present inventors have found that when a thin mat is mixed, a welded portion and an unwelded portion are likely to occur even if the temperature during compression thermoforming is lowered or the drying time is shortened. Since the solid heat conduction of the core material increases as the size of the welded portion increases, the performance of the vacuum heat insulating material deteriorates.

このため本実施例では、それぞれ0.5mm以上の厚みのマット510を40枚未満重ねて芯材にした。そうすることで、長繊維の集束剤を揮発させるべく550℃〜750℃で積層マット(芯材)を圧縮熱成形加工して乾燥させても、熱溶着の発生を抑制できた。 Therefore, in this example, less than 40 mats 510 each having a thickness of 0.5 mm or more were stacked to form a core material. By doing so, even if the laminated mat (core material) was compression-thermoformed and dried at 550°C to 750°C to volatilize the sizing agent for the long fibers, the occurrence of thermal welding could be suppressed.

本実施例においては幅600mm、長さ600mmのマット1枚の厚み0.7mmとし、これを39枚積層した。真空断熱材を作製したときに厚み18mmとなった。真空断熱材としたときの寸法ずれを2mm以下とすることができた。 In this embodiment, one mat having a width of 600 mm and a length of 600 mm has a thickness of 0.7 mm, and 39 mats are laminated. When the vacuum heat insulating material was produced, the thickness became 18 mm. The dimensional deviation of the vacuum heat insulating material could be 2 mm or less.

なお、真空断熱材は、冷蔵庫、自動販売機、給湯機器等、断熱を必要とする製品分野での活用が期待できる。 It should be noted that the vacuum heat insulating material can be expected to be used in a product field requiring heat insulation such as a refrigerator, a vending machine, and a water heater.

1 冷蔵庫、2 冷蔵室、3a 貯氷室、3b 上段冷凍室、
4 下段冷凍室、5 野菜室、6a 冷蔵室扉、6b 冷蔵室扉、
7a 貯氷室扉、7b 上段冷凍室扉、8 下段冷凍室扉、
9 野菜室扉、10 扉用ヒンジ、11 パッキン、
12,14 断熱仕切り、13 仕切り部材、
20 箱体、21 外箱、22 内箱、23 発泡断熱材、
27 送風機、28 冷却器、30 圧縮機、31 凝縮機、
33 発泡ポリスチレン、40 凹部、41 電気部品、
42 カバー、45 庫内灯、45a ケース、
50 真空断熱材、
51 ニードルマット、
510 マット、
52 内袋、
53 外被材、
150,250 真空断熱材。
1 refrigerator, 2 refrigerating room, 3a ice storage room, 3b upper freezing room,
4 Lower Freezer, 5 Vegetable Room, 6a Refrigerator Door, 6b Refrigerator Door,
7a ice storage compartment door, 7b upper freezing compartment door, 8 lower freezing compartment door,
9 vegetable compartment door, 10 door hinge, 11 packing,
12, 14 Adiabatic partition, 13 Partition member,
20 box, 21 outer box, 22 inner box, 23 foam insulation,
27 blower, 28 cooler, 30 compressor, 31 condenser,
33 expanded polystyrene, 40 recesses, 41 electrical parts,
42 cover, 45 interior light, 45a case,
50 vacuum insulation,
51 needle mat,
510 mat,
52 inner bag,
53 outer covering,
150,250 Vacuum insulation.

Claims (5)

真空引き前の厚みがそれぞれ0.5mm以上のガラス長繊維のマットが40枚未満重ねられて形成された芯材を有する真空断熱材。 A vacuum heat insulating material having a core material formed by stacking less than 40 mats of long glass fibers each having a thickness of 0.5 mm or more before evacuation. 請求項1に記載の真空断熱材の製造方法であって、
前記芯材は、550℃〜750℃で加熱圧縮されたことを特徴とする製造方法。
It is a manufacturing method of the vacuum heat insulating material of Claim 1, Comprising:
The said core material was heat-compressed at 550 degreeC-750 degreeC, The manufacturing method characterized by the above-mentioned.
ガラス長繊維のマットを複数枚ニードルパンチ加工してまとめたニードルマットを5層以下積層した芯材を有する真空断熱材。 A vacuum heat insulating material having a core material in which 5 or less needle mats obtained by needle-punching a plurality of glass long fiber mats are laminated. 前記ニードルマットそれぞれの厚みは、真空引き前の状態で1mm以上であることを特徴とした請求項3に記載の真空断熱材。 The vacuum heat insulating material according to claim 3, wherein each of the needle mats has a thickness of 1 mm or more before being vacuumed. 請求項3又は4に記載の真空断熱材の製造方法であって、
前記芯材を550℃〜750℃で加熱圧縮されたことを特徴とする製造方法。
It is a manufacturing method of the vacuum heat insulating material of Claim 3 or 4, Comprising:
A manufacturing method, wherein the core material is heated and compressed at 550°C to 750°C.
JP2019001555A 2019-01-09 2019-01-09 Vacuum heat insulating material and its manufacturing method Pending JP2020112181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001555A JP2020112181A (en) 2019-01-09 2019-01-09 Vacuum heat insulating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001555A JP2020112181A (en) 2019-01-09 2019-01-09 Vacuum heat insulating material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2020112181A true JP2020112181A (en) 2020-07-27

Family

ID=71668210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001555A Pending JP2020112181A (en) 2019-01-09 2019-01-09 Vacuum heat insulating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2020112181A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363847A (en) * 2001-06-06 2002-12-18 Nippon Glass Fiber Kogyo Kk Glass fiber molded product and method for producing the same
JP2006194297A (en) * 2005-01-12 2006-07-27 Nisshinbo Ind Inc Vacuum heat insulation material
WO2011145481A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Beam welding method, vacuum packaging method, and vacuum heat-insulation material produced by vacuum packaging method
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture
WO2015159646A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Vacuum heat-insulating material and heat-retaining body with same
JP2018115755A (en) * 2017-01-20 2018-07-26 日立アプライアンス株式会社 Vacuum heat-insulating material, method of manufacturing vacuum heat-insulating material, and refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363847A (en) * 2001-06-06 2002-12-18 Nippon Glass Fiber Kogyo Kk Glass fiber molded product and method for producing the same
JP2006194297A (en) * 2005-01-12 2006-07-27 Nisshinbo Ind Inc Vacuum heat insulation material
WO2011145481A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Beam welding method, vacuum packaging method, and vacuum heat-insulation material produced by vacuum packaging method
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture
WO2015159646A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Vacuum heat-insulating material and heat-retaining body with same
JP2018115755A (en) * 2017-01-20 2018-07-26 日立アプライアンス株式会社 Vacuum heat-insulating material, method of manufacturing vacuum heat-insulating material, and refrigerator

Similar Documents

Publication Publication Date Title
JP3478780B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2005345025A (en) Refrigerator, vacuum heat insulating material, and its manufacturing method
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2001165557A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2008185220A (en) Vacuum heat insulation material
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP3549453B2 (en) refrigerator
JP2020112181A (en) Vacuum heat insulating material and its manufacturing method
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2003293256A (en) Method of producing core material for vacuum heat insulation material
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP2013024440A (en) Refrigerator
JP6811374B2 (en) Vacuum heat insulating material and refrigerator
JP2019113078A (en) Vacuum heat insulation material and refrigerator disposed with the same
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2018115755A (en) Vacuum heat-insulating material, method of manufacturing vacuum heat-insulating material, and refrigerator
JP2005076725A (en) Core material for vacuum heat insulating material and vacuum heat insulating panel
JP2019138531A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523