JP2020106612A - 液晶表示素子の製造方法及び液晶表示素子 - Google Patents

液晶表示素子の製造方法及び液晶表示素子 Download PDF

Info

Publication number
JP2020106612A
JP2020106612A JP2018243459A JP2018243459A JP2020106612A JP 2020106612 A JP2020106612 A JP 2020106612A JP 2018243459 A JP2018243459 A JP 2018243459A JP 2018243459 A JP2018243459 A JP 2018243459A JP 2020106612 A JP2020106612 A JP 2020106612A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
mass
crystal display
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018243459A
Other languages
English (en)
Other versions
JP7331361B2 (ja
Inventor
正臣 木村
Masaomi Kimura
正臣 木村
純一 間宮
Junichi Mamiya
純一 間宮
雄一 井ノ上
Yuichi Inoue
雄一 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2018243459A priority Critical patent/JP7331361B2/ja
Priority to TW108145484A priority patent/TWI811501B/zh
Priority to CN201911271058.9A priority patent/CN111381401A/zh
Publication of JP2020106612A publication Critical patent/JP2020106612A/ja
Application granted granted Critical
Publication of JP7331361B2 publication Critical patent/JP7331361B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

【課題】液晶分子の変質や劣化を防止しつつ、高い電圧保持率を有する液晶表示素子を比較的短時間で製造し得る液晶表示素子の製造方法、および高い電圧保持率を有する液晶表示素子を提供する。【解決手段】本発明の液晶表示素子の製造方法は、液晶分子と、少なくとも1種の重合性モノマとを含有する液晶組成物を介して、一対の基板が対向するように配置する工程と、前記液晶組成物に紫外線を照射することにより、前記少なくとも1種の重合性モノマを重合させる工程と、を有し、前記紫外線は、波長313nmにおける強度X1に対する波長365nmにおける強度X2の比(X2/X1)が5〜70であることを特徴とする。【選択図】なし

Description

本発明は、液晶表示素子の製造方法及び液晶表示素子に関する。
液晶表示素子には、その特性を改善することを目的として、液晶層を構成する液晶組成物中に、PSA(Polymer Sustained Alignment)等の重合性モノマを混合して、液晶分子の配向状態を制御することがある。
従来、重合性モノマの重合は、液晶組成物に印加する電圧を0Vから所定の値に連続的又は段階的に上昇させ、上昇させた電圧に保持した状態で、紫外線を照射することにより行われる(例えば、特許文献1及び2参照)。
電圧保持率(VHR)を高める観点からは、比較的長波長の紫外線を用いることが好ましいが、重合性モノマを十分に重合させるために長時間を要する。これを解消すべく、重合性モノマの重合速度を高めるためには、より短波長の紫外線を用いればよいが、短波長の紫外線を用いると、液晶分子に変質や劣化が生じ易い。
特開2003−177408号公報 特開2011−221505号公報
本発明の目的は、液晶分子の変質や劣化を防止しつつ、高い電圧保持率を有する液晶表示素子を比較的短時間で製造し得る液晶表示素子の製造方法、および高い電圧保持率を有することで良好な表示品質を示す液晶表示素子を提供することにある。
このような目的は、下記の(1)〜(11)の本発明により達成される。
(1) 液晶分子と、少なくとも1種の重合性モノマとを含有する液晶組成物を介して、一対の基板が対向するように配置する工程と、
前記液晶組成物に紫外線を照射することにより、前記少なくとも1種の重合性モノマを重合させる工程と、を有し、
前記紫外線は、波長313nmにおける強度X1に対する波長365nmにおける強度X2の比(X2/X1)が5〜70であることを特徴とする液晶表示素子の製造方法。
(2) 前記強度X1が0.05〜50mW/cmである上記(1)に記載の液晶表示素子の製造方法。
(3) 前記紫外線を照射する工程は、前記少なくとも1種の重合性モノマを重合させて液晶層を形成する液晶層形成工程である上記(1)又は(2)に記載の液晶表示素子の製造方法。
(4) 前記液晶層形成工程において、前記液晶組成物に電圧を印加しつつ、前記紫外線を照射する上記(3)に記載の液晶表示素子の製造方法。
(5) 前記液晶層形成工程において、前記液晶層の温度が0.1〜5℃上昇するまで、前記紫外線を照射する上記(3)又は(4)に記載の液晶表示素子の製造方法。
(6) 前記紫外線を照射する工程は、前記少なくとも1種の重合性モノマを重合させて形成された液晶層に紫外線を照射するモノマ消費工程である上記(1)又は(2)に記載の液晶表示素子の製造方法。
(7) 前記モノマ消費工程において、前記液晶層の温度が1〜20℃上昇するまで、前記紫外線を照射する上記(6)に記載の液晶表示素子の製造方法。
(8) 前記一対の基板を対向して配置する工程において、少なくとも一方の前記基板は、配向層を介すことなく、前記液晶組成物に直接接触するように配置され、
前記少なくとも1種の重合性モノマは、少なくとも1つの吸着基を有する重合性モノマを含む上記(1)〜(7)のいずれか1つに記載の液晶表示素子の製造方法。
(9) 前記少なくとも1種の重合性モノマは、吸着基を有さない重合性モノマを含有する上記(1)〜(8)のいずれか1つに記載の液晶表示素子の製造方法。
(9) 前記吸着基を有さない重合性モノマは、下記一般式(P)で表される上記(9)に記載の液晶表示素子の製造方法。
Figure 2020106612
(式(P)中、Rp1は、水素原子、フッ素原子、シアノ基、炭素原子数1〜15のアルキル基又は−Spp2−Pp2を表し、前記アルキル基中に存在する1個又は2個以上の−CH−は、それぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよいが、隣接する2個以上の−CH−が同時に−O−で置換されることはなく、前記アルキル基中に存在する1個又は2個以上の水素原子は、それぞれ独立して、シアノ基、フッ素原子又は塩素原子で置換されてもよく、
p1及びPp2は、それぞれ独立して、下記一般式(Pp1−1)〜式(Pp1−9)のいずれかを表し、
Figure 2020106612
[式中、Rp11及びRp12は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のハロゲン化アルキル基を表し、Wp11は、単結合、−O−、−COO−又は−CH−を表し、tp11は、0、1又は2を表すが、分子内にRp11、Rp12、Wp11及び/又はtp11が複数存在する場合、それらは同一であっても異なってもよい。]
Spp1及びSpp2は、それぞれ独立して、単結合又はスペーサ基を表し、
p1及びZp2は、それぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRZP1−、−NRZP1−CO−、−SCH−、−CHS−、−CH=CRZP1−COO−、−CH=CRZP1−OCO−、−COO−CRZP1=CH−、−OCO−CRZP1=CH−、−COO−CRZP1=CH−COO−、−COO−CRZP1=CH−OCO−、−OCO−CRZP1=CH−COO−、−OCO−CRZP1=CH−OCO−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−(C=O)−O−(CH−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−又は−C≡C−[式中、RZP1は、それぞれ独立して、水素原子又は炭素原子数1〜4のアルキル基を表すが、分子内にRZP1が複数存在する場合、それらは同一であっても異なってもよい。]を表し、
p1、Ap2及びAp3は、それぞれ独立して、
(a) 1,4−シクロヘキシレン基[この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は、−O−で置換されてもよい。]
(b) 1,4−フェニレン基[この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。]及び
(c) ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基、フェナントレン−2,7−ジイル基又はアントラセン−2,6−ジイル基[これらの基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。]
からなる群より選ばれる基[前記基(a)、基(b)及び基(c)は、それぞれ独立して、この基中に存在する水素原子が、ハロゲン原子、炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルケニル基、シアノ基又は−Spp2−Pp2で置換されてもよい。]を表し、
p1は、0、1、2又は3を表し、分子内にZp1、Ap2、Spp2及び/又はPp2が複数存在する場合、それらは同一であっても異なってもよいが、Ap3は、mp1が0で、Ap1が前記基(c)である場合、単結合であってもよい。)
(11) 一対の基板と、該一対の基板間に配置され、少なくとも1種の重合性モノマの紫外線照射による重合物を含む液晶層とを備え、
前記紫外線は、波長313nmにおける強度X1に対する波長365nmにおける強度X2の比(X2/X1)が5〜70であることを特徴とする液晶表示素子。
本発明によれば、所定の強度比で313nmおよび365nmの波長にピークを有する紫外線を用いることにより、液晶分子の変質や劣化を防止しつつ、高い電圧保持率を有することで良好な表示品質を示す液晶表示素子を比較的短時間で製造することができる。
図1は、液晶表示素子の一実施形態に模式的に示す分解斜視図である。 図1におけるI線で囲まれた領域を拡大した平面図である。
以下、本発明の液晶表示素子の製造方法について、好適実施形態に基づいて詳細に説明する。まず、本発明の液晶表示素子の製造方法により製造される液晶表示素子について説明する。
図1は、液晶表示素子の一実施形態に模式的に示す分解斜視図、図2は、図1におけるI線で囲まれた領域を拡大した平面図である。
なお、図1及び図2では、便宜上、各部の寸法及びそれらの比率を誇張して示し、実際とは異なる場合がある。また、以下に示す材料、寸法等は一例であって、本発明は、それらに限定されず、その要旨を変更しない範囲で適宜変更することが可能である。
図1に示す液晶表示素子1は、対向するように配置されたアクティブマトリクス基板AM及びカラーフィルタ基板CFと、アクティブマトリクス基板AMとカラーフィルタ基板CFとの間に挟持された液晶層4とを備えている。
アクティブマトリクス基板AMは、第1の基板2と、第1の基板2の液晶層4側の面に設けられた画素電極層5と、第1の基板2の液晶層4と反対側の面に設けられた第1の偏光板7とを有している。
一方、カラーフィルタ基板CFは、第2の基板3と、第2の基板3の液晶層4側に設けられた共通電極層6と、第2の基板3の液晶層4と反対側の面に設けられた第2の偏光板8と、第2の基板3と共通電極層6との間に設けられたカラーフィルタ9とを有している。
液晶層4は負の誘電率異方性を用いた垂直配向型であり、液晶層4中では、電極層5、6間に電圧を印加しない状態で、液晶分子は基板AM、CFに対してほぼ垂直に配向する。
すなわち、本実施形態に係る液晶表示素子1は、第1の偏光板7と、第1の基板2と、画素電極層5と、液晶層4と、共通電極層6と、カラーフィルタ9と、第2の基板3と、第2の偏光板8と、がこの順で積層された構成を有している。
第1の基板2及び第2の基板3は、それぞれ、例えばガラス材料、又はプラスチック材料のような柔軟性(可撓性)を有する材料で形成されている。
第1の基板2及び第2の基板3は、双方が透光性を有していても、一方のみが透光性を有していてもよい。後者の場合は、他方の基板は、例えば金属材料、シリコン材料のような不透明な材料で構成することができる。
画素電極層5は、図2に示すように、走査信号を供給するための複数のゲートバスライン11と、表示信号を供給するための複数のデータバスライン12と、複数の画素電極13とを有している。なお、図2には、一対のゲートバスライン11、11及び一対のデータバスライン12、12が示されている。
複数のゲートバスライン11と複数のデータバスライン12とは、互いに交差してマトリクス状に配置され、これらで囲まれた領域により、液晶表示素子1の単位画素が形成されている。各単位画素内には、1つの画素電極13が形成されている。なお、各画素は複数のサブ画素から構成されていても良い。
画素電極13は、互いに直交して十字形状をなす2つの幹部と、各幹部から分岐するとともに、各幹部に対して約45°の角度で傾斜する複数の枝部とを備える構造(いわゆるフィッシュボーン構造)を有している。換言すれば、画素電極13は、枝部同士の間に形成されたスリットを有する構造を有する電極とも捉えることができる。
かかる構造の画素電極13によれば、液晶分子が幹部に対して枝部が傾斜する4方向に一致して傾斜配向するようになる。このため、1つの画素内に4分割されたドメインが形成され、液晶表示素子1の視野角を広げることができる。
各枝部の幅は、1〜5μm程度であることが好ましく、2〜4μm程度であることがより好ましい。また、隣り合う枝部の離間距離Sは、1〜5μm程度であることが好ましく、2〜4μm程度であることがより好ましい。このような構成により、液晶分子をより確実に所定の方向に傾斜配向させ得る。
一対のゲートバスライン11、11の間には、ゲートバスライン11とほぼ平行にCs電極14が設けられている。また、ゲートバスライン11とデータバスライン12とが互いに交差する交差部近傍には、ソース電極15及びドレイン電極16を含む薄膜トランジスタが設けられている。ドレイン電極16には、コンタクトホール17が設けられている。
ゲートバスライン11及びデータバスライン12は、それぞれ、例えばAl、Cu、Au、Ag、Cr、Ta、Ti、Mo、W、Ni又はこれらを含有する合金で形成することが好ましく、Mo、Al又はこれらを含有する合金で形成することがより好ましい。
画素電極13は、例えば、光の透過率を向上させるために透明電極で構成されている。透明電極は、ZnO、InGaZnO、SiGe、GaAs、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、SnO、TiO、AZTO(AlZnSnO)のような化合物をスパッタリング等することにより形成される。
透明電極の平均厚さは、10〜200nm程度であることが好ましい。また、電気的抵抗を低減するために、アモルファスのITO膜を焼成することにより多結晶のITO膜として透明電極を形成することもできる。
一方、共通電極層6は、例えば、併設された複数のストライプ状の共通電極(透明電極)を有している。この共通電極も、画素電極13と同様に形成することができる。
カラーフィルタ9は、例えば、顔料分散法、印刷法、電着法又は染色法等によって作成することができる。
顔料分散法では、カラーフィルタ用の硬化性着色組成物を、第2の基板3上に所定のパターンとなるように供給した後、加熱又は光照射することにより硬化させる。この操作を、赤、緑、青の3色について行うことにより、カラーフィルタ9を得ることができる。
なお、カラーフィルタ9は、第1の基板2側に配置してもよい。
また、液晶表示素子1は、光の漏れを防止する観点から、ブラックマトリクス(図示せず)を設けるようにしてもよい。このブラックマトリクスは、薄膜トランジスタに対応する部分に形成することが好ましい。
なお、ブラックマトリクスは、第2の基板3側にカラーフィルタ9とともに配置してもよく、第1の基板2側にカラーフィルタ9とともに配置してもよく、ブラックマトリクスを第1の基板2側にカラーフィルタ9を第2の基板3側にそれぞれ個別に配置してもよい。また、ブラックマトリクスは、カラーフィルタ9の各色を重ね合わせ、透過率を低下させた部分で構成することもできる。
アクティブマトリックス基板AMとカラーフィルタ基板CFとは、それらの周縁領域において、エポキシ系熱硬化性組成物やアクリル系UV硬化性組成物等で構成されるシール材(封止材)によって互いに貼り合わされている。
なお、アクティブマトリックス基板AMとカラーフィルタ基板CFとの間には、それらの離間距離を保持するスペーサを配置してもよい。スペーサとしては、例えばガラス粒子、プラスチック粒子、アルミナ粒子のような粒状スペーサ、フォトリソグラフィー法により形成された樹脂製のスペーサ柱等が挙げられる。
アクティブマトリックス基板AMとカラーフィルタ基板CFとの平均離間距離(すなわち、液晶層4の平均厚さ)は、1〜100μm程度であることが好ましい。
第1の偏光板7及び第2の偏光板8は、それらの透過軸の位置関係を調整することにより、視野角やコントラストが良好になるように設計することができる。具体的には、第1の偏光板7及び第2の偏光板8は、それらの透過軸がノーマリブラックモードで作動するように、互いに直交するように配置することが好ましい。特に、第1の偏光板7及び第2の偏光板8のうちのいずれか一方は、その透過軸が電圧印加時の液晶分子の配向方向とほぼ45°となるように配置されることが好ましい。
また、第1の偏光板7及び第2の偏光板8を使用する場合は、コントラストが最大になるように液晶層4の屈折率異方性(Δn)と液晶層4の平均厚さとの積を調整することが好ましい。さらに、液晶表示素子1は、視野角を広げるための位相差フィルムを備えてもよい。
なお、液晶表示素子1では、アクティブマトリックス基板AM及びカラーフィルタ基板CFのうちの少なくとも一方の液晶層4側に、液晶層4に接触するようにして、ポリイミド配向膜等の配向膜を設けることができる。換言すれば、本発明では、後述するような液晶組成物を用いることにより、アクティブマトリックス基板AM及びカラーフィルタ基板CFのうちの少なくとも一方の基板は、配向膜を有さなくてもよい。
(液晶表示素子の製造方法)
次に、このような液晶表示素子1の製造方法について説明する。
本実施形態の液晶表示素子の製造方法は、基板AM、CF及び液晶組成物を準備する準備工程[1]と、各部を組み立てる組立工程[2]と、液晶組成物に電圧を印加した状態で、紫外線の照射により重合性モノマを重合させて液晶層4を形成する液晶層形成工程[3]と、液晶層4に電圧を印加することなく、液晶層4に紫外線を照射することにより、残存する重合性モノマを重合させて消費するモノマ消費工程[4]とを有している。
液晶層形成工程[3]とモノマ消費工程[4]とはこの順が好ましいが、順番を入れ替えてもよいし、液晶表示素子1としての性能が十分であれば、液晶層形成工程[3]及びモノマ消費工程[4]のいずれか一方を省略することもできる。
[1] 準備工程
まず、アクティブマトリックス基板AMと、カラーフィルタ基板CFと、液晶分子及び少なくとも1種の重合性モノマを含有する液晶組成物とを用意する。
[2] 組立工程
次に、アクティブマトリクス基板AM及びカラーフィルタ基板CFの少なくとも一方の縁部に沿って、ディスペンサーを用いてシール材を閉ループ土手状に描画する。
その後、所定量の液晶組成物をシール材の内側に滴下した後、減圧下に液晶組成物に接触するように、アクティブマトリクス基板AMとカラーフィルタ基板CFとを対向させて配置する。すなわち、一対の基板AM、CFを、液晶組成物を介して電極層5、6(電極)同士が対向するように配置する。
このような滴下注入(ODF:One Drop Fill)法では、液晶表示素子1のサイズに応じて最適な注入量を滴下する必要がある。後述する液晶組成物は、例えば、滴下時に生じる滴下装置内の急激な圧力変化や衝撃に対する影響が少なく、長時間にわたって安定的に滴下し続けることが可能である。このため、液晶表示素子1の歩留まりを高く維持することができる。
特に、スマートフォンに多用される小型の液晶表示素子は、液晶組成物の最適な注入量が少ないため、そのズレ量を一定範囲内に制御すること自体が難しい。しかしながら、前述したような液晶組成物を用いることにより、小型の液晶表示素子においても安定かつ最適な注入量を正確に滴下することができる。
その後、紫外線(活性エネルギー線)照射および加熱により、シール材を硬化させる。なお、シール材の種類によっては、シール材の硬化を紫外線照射および加熱のいずれか一方のみで行うようにしてもよい。
[3] 液晶層形成工程(第1の紫外線照射工程)
次に、液晶組成物に電圧を印加しつつ、紫外線を照射する。これにより、液晶組成物の電極層5、6との界面において、重合性モノマの重合物を含むポリマ層が形成され、液晶層4が得られる。重合物の生成により、液晶分子が垂直配向するか、さらには液晶分子にプレチルト角が付与される。
電圧は、画素電極13と共通電極(対向電極)との間に印加してもよいし、CS電極14と共通電極との間に印加してもよい。
本工程[3]において液晶組成物に印加する電圧は、3V以上であることが好ましく、5〜15V程度であることがより好ましい。このような値の電圧を液晶組成物に印加すれば、液晶分子に十分なプレチルト角を付与することができる。なお、上記上限値を超えた電圧を液晶組成物に印加しても、それ以上の効果の増大は見込めない。
本工程[3]において照射する紫外線は、313nmの波長(UVB領域の波長)にピークA1と365nmの波長(UVA領域の波長)にピークA2とを有している。そして、ピークA1の強度X1に対するピークA2の強度X2の比(X2/X1)が5〜70である。
液晶表示素子1の電圧保持率を高める観点からは、比較的長波長である365nmの波長の紫外線を液晶組成物に時間をかけて照射して、重合性モノマを適度な重合速度で重合させることが好ましい。しかしながら、紫外線の照射時間が長くなると、液晶表示素子1の製造効率が低下する。そこで、本発明では、365nmより短波長である313nmの波長の紫外線を併せて照射することにより、重合性モノマの重合速度を高めている。ただし、313nmの波長の紫外線は、液晶分子の変質や劣化を引き起こし易い。そこで、本発明者らは、鋭意検討を重ね、波長313nmのピークA1と波長365nmのピークA2との間に、適度な強度比が存在すること(X2/X1=5〜70)を見出し、本発明を完成するに至った。
X2/X1が上記下限値未満であると、313nmの波長の紫外線の量が多くなり過ぎ、液晶分子に変質や劣化が生じ、液晶表示素子1の電圧保持率が低下する。一方、X2/X1が上記上限値を上回ると、313nmの波長の紫外線の量が少なくなり過ぎ、重合性モノマの重合速度を十分に高めることができず、よって液晶表示素子1の製造効率が低下するとともに、重合性モノマの残存量が多くなり、表示不良が発生する。
X2/X1は、5〜70であればよいが、5.3〜60程度であることが好ましく、5.7〜50程度であることがより好ましく、5.7〜40程度であることが特に好ましく、5.7〜30程度であることがさらに好ましく、6.5〜15程度であることがとりわけ好ましい。X2/X1を上記範囲とすることにより、液晶分子の変質や劣化を防止しつつ、高い電圧保持率を有する液晶表示素子を比較的短時間で製造することができる。
具体的には、ピーク強度X1は、0.05〜50mW/cm程度であることが好ましく、0.05〜30mW/cm程度であることがより好ましい。残存する重合性モノマの量を低減し、高い電圧保持率を有する液晶表示素子1を製造するためには、X1が0.1〜20mW/cmであることが好ましい。また、プレチルト角付与を良好に行うためには、X1が5〜30mW/cmであることが好ましい。一方、ピーク強度X2は、0.1〜100mW/cm程度であることが好ましく、2〜50mW/cm程度であることがより好ましい。これにより、上記効果をより向上させることができる。
なお、液晶分子の変質や劣化をより確実に防止する観点から、紫外線は、313nm未満の領域の波長(特に、UVC領域の波長)にピークを有さないか、仮にピークを有していても、その強度が極めて小さいことが好ましい。
本工程[3]における紫外線の照射時間を、液晶層4の温度との関係で規定することができる。すなわち、本工程[3]では、紫外線の照射を、液晶層4の温度が0.1〜5℃上昇するまで行うことが好ましく、0.5〜5℃上昇するまで行うことがより好ましく、1〜5℃上昇するまで行うことがさらに好ましい。かかる範囲での液晶層4の温度上昇は、重合性モノマが十分に重合したことを示している。
具体的な照射時間は、用いる紫外線の種類にもよるが、10〜7200秒間程度であることが好ましく、20〜3600秒間程度であることがより好ましい。残存する重合性モノマの量を低減し、高い電圧保持率を有する液晶表示素子1を製造するためには、600〜7200秒間程度であることが好ましい。また、プレチルト角付与を良好に行うためには、10〜1200秒間程度であることが好ましく、30〜600秒間程度であることがより好ましい。なお、紫外線の照射時間は、電圧の印加時間と一致するように設定してもよく、電圧の印加時間より短くなるように設定してもよい。
上記の照射条件により照射される、313nmの波長の紫外線の照射量は、1mJ/cm〜50J/cmであることが好ましく、10mJ/cm〜20J/cmであることがより好ましい。プレチルト角付与を良好に行うためには、1mJ/cm〜10J/cmであることが好ましく、10mJ/cm〜3J/cmであることがより好ましい。残存する重合性モノマの量を低減し、高い電圧保持率を有する液晶表示素子1を製造するためには、1mJ/cm〜10J/cmであることが好ましく、10mJ/cm〜10J/cmであることがさらに好ましい。
また、365nmの波長の紫外線の照射量は、10mJ/cm〜500J/cmであることが好ましく、100mJ/cm〜200J/cmであることがより好ましい。上記の照射量は、目的の特性により適宜調整することができる。また、紫外線を照射する際に、強度を変化させてもよい。
なお、本実施形態のように、液晶組成物に接触させるように、2つの基板を対向させた状態で重合を行う場合は、少なくとも照射面側に位置する基板は、紫外線に対して適当な透過性を有する必要がある。
また、印加する電圧は、直流及び交流のいずれでもよいが、交流であることが好ましい。交流で電圧を印加するようにすれば、液晶分子の配向状態が良好な液晶層4を得易い。
印加する交流の周波数は、10Hz〜10kHz程度であることが好ましく、60Hz〜10kHz程度であることがより好ましい。
紫外線を照射する際の温度は、液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。具体的な温度は、10〜50℃程度であることが好ましく、15〜45℃程度であることが好ましい。かかる温度範囲内では、液晶組成物中で重合性モノマが適度に拡散しながら重合が進行するため、重合が良好に進行し、かつ重合後のプレチルト角形成が良好となる。
紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ、蛍光管等を用いることができる。
また、照射する紫外線は、必要に応じて所定の波長をカットして使用してもよい。
なお、液晶分子に付与されるプレチルト角は、85〜89.5°程度であることが好ましく、87.5〜89°程度であることがより好ましい。かかる範囲に液晶分子のプレチルト角を調整することにより、液晶表示素子1の応答速度を十分に高めつつ、コントラストの低下を防止することができる。
[4] モノマ消費工程(第2の紫外線照射工程)
次に、液晶組成物に電圧を印加することなく、液晶層4に紫外線を照射する。これにより、液晶層4中に残存する重合性モノマを重合させて消費する。
本工程[4]において照射する紫外線は、313nmの波長(UVB領域の波長)にピークB1と365nmの波長(UVA領域の波長)にピークB2とを有している。そして、ピークB1の強度Y1に対するピークB2の強度Y2の比(Y2/Y1)が0.5〜40であることが好ましく、0.5〜35程度であることがより好ましく、0.5〜32程度であることがさらに好ましい。Y2/Y1を上記範囲とすることにより、313nmの波長の紫外線が適度になり、液晶分子の変質や劣化を防止しつつ、残存する重合性モノマをより確実かつ短時間に減少させることができる。その結果、液晶表示素子1の製造効率の低下を阻止しつつ、液晶表示素子1の表示不良(焼き付き)の発生を防止または抑制することができる。
具体的には、ピーク強度Y1は、0.05〜50mW/cm程度であることが好ましく、0.05〜30mW/cm程度であることがより好ましい。残存する重合性モノマの量を低減し、高い電圧保持率を有する液晶表示素子1を製造するためには、Y1が1〜20mW/cmであることが好ましい。一方、ピーク強度Y2は、0.1〜100mW/cm程度であることが好ましく、2〜50mW/cm程度であることがより好ましい。これにより、上記効果をより向上させることができる。
なお、液晶分子の変質や劣化をより確実に防止する観点から、紫外線は、313nm未満の領域の波長(特に、UVC領域の波長)にピークを有さないか、仮にピークを有していても、その強度が極めて小さいことが好ましい。
本工程[4]における紫外線の照射時間も、液晶層4の温度との関係で規定することができる。すなわち、本工程[4]では、紫外線の照射を、液晶層4の温度が1〜20℃上昇するまで行うことが好ましく、2〜15℃上昇するまで行うことがより好ましく、3〜10℃上昇するまで行うことがさらに好ましい。かかる範囲での液晶層4の温度上昇は、残存する重合性モノマが十分に消費されたことを示している。
紫外線の具体的な照射時間は、用いる紫外線の種類にもよるが、1〜150秒間程度であることが好ましく、30〜100秒間程度であることがより好ましい。
紫外線を照射する際の温度は、液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。具体的な温度は、10〜50℃程度であることが好ましく、15〜45℃程度であることが好ましい。かかる温度範囲内では、液晶組成物中で重合性モノマが適度に拡散しながら重合が進行するため、重合が良好に進行し、残存する重合性モノマを十分に消費することができる。
紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ、蛍光管等を用いることができる。
また、照射する紫外線は、液必要に応じて所定の波長をカットして使用してもよい。
以上のような工程を経て、液晶表示素子1が得られる。
なお、[2]組立工程では、滴下注入(ODF)法に代えて、真空注入法を用いるようにしてもよい。例えば、真空注入法では、まず、アクティブマトリクス基板AM及びカラーフィルタ基板CFの少なくとも一方の縁部に沿って、注入口を残すようにしてシール材をスクリーン印刷する。その後、2つの基板AM、CFを貼り合わせ、加熱および紫外線照射のうちの少なくとも一方によりシール材を硬化させる。次に、液晶組成物を真空下で注入口を介して、2つの基板AM、CFの間のシール材で区画された空間内に注入した後、注入口を封止する。その後、[3]液晶層形成工程及び[4]モノマ消費工程に移行する。
また、他の構成例では、液晶層形成工程における波長313nmのピークと波長365nmのピークとの強度比を上記モノマ消費工程における関係とし、一方、モノマ消費工程における波長313nmのピークと波長365nmのピークとの強度比を上記液晶層形成工程における関係としてもよい。この場合、得られる液晶表示素子1に対して、目的とする電圧保持率やプレチルト角を付与し得るように、各ピークの具体的な強度の値や紫外線の照射時間が設定される。かかる構成においても、上記と同様の作用・効果が得られる。
また、上記工程[3]又は工程[4]のいずれか一方において本願発明の強度比での紫外線照射を行う場合、残る一方の工程においては波長313nmのピーク強度、波長365nmのピーク強度及びこれらの強度比が本願発明の範囲外となる紫外線を照射してもよい。あるいは、上記[3]及び[4]の工程に加えて、さらに追加の工程において波長313nmのピーク強度、波長365nmのピーク強度及びこれらの強度比が本願発明の範囲外となる紫外線を照射してもよい。
(液晶組成物)
液晶層4を形成するのに用いる液晶組成物は、液晶分子と、少なくとも1種の重合性モノマとを含有している。
上述したように、アクティブマトリックス基板AM及びカラーフィルタ基板CFのうちの少なくとも一方の基板を配向膜を介することなく、液晶層4(液晶組成物)に直接接触するように配置する場合、少なくとも1種の重合性モノマは、少なくとも1つの吸着基を有する重合性モノマA(配向助剤)を含むことが好ましい。また、液晶組成物は、かかる重合性モノマAを1種又は2種以上含有することも好ましい。
((重合性モノマA))
重合性モノマAは、液晶組成物を含む液晶層と直接当接する部材(電極(例えば、ITO)、基板(例えば、ガラス基板、アクリル基板、透明基板、フレキシブル基板等)、樹脂層(例えば、カラーフィルタ、配向膜、オーバーコート層等)、絶縁膜(例えば、無機材料膜、SiNx等))に対して相互作用し、液晶層4に含まれる液晶分子のホメオトロピック配列を誘起する機能を備えている。
重合性モノマAは、重合するための重合性基と、液晶分子と類似するメソゲン基と、液晶層と直接当接する部材と相互作用可能な吸着基と、液晶分子の配向を誘起する配向誘導基を有することが好ましい。
メソゲン基に対し、吸着基及び配向誘導基が結合し、重合性基はメソゲン基、吸着基及び配向誘導基に直接又は必要に応じスペーサ基を介して置換していることが好ましい。特に、重合性基は、吸着基中に組み込まれた状態で、メソゲン基に置換していることが好ましい。
以下、化学式中の左端の*及び右端の*は結合手を表す。
「配向誘導基」
配向誘導基は、液晶分子の配向を誘導する機能を有しており、下記一般式(AK)で表される基であることが好ましい。
Figure 2020106612
式中、RAK1は、直鎖状若しくは分岐状の炭素原子数1〜20のアルキル基を表す。ただし、アルキル基中の1個又は隣接しない2個以上の−CH−は、それぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよく、アルキル基中の1個又は2個以上の水素原子は、それぞれ独立して、ハロゲノ基で置換されてもよい。
AK1は、直鎖状若しくは分岐状の炭素原子数1〜20のアルキル基を表すことが好ましく、直鎖状の炭素原子数1〜20のアルキル基を表すことがより好ましく、直鎖状の炭素原子数1〜8のアルキル基を表すことがさらに好ましい。
また、アルキル基中の1個又は隣接しない2個以上の−CH−は、酸素原子が直接隣接しないようにそれぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよい。
さらに、アルキル基中の水素原子は、フッ素原子又は塩素原子で置換されてもよく、フッ素原子で置換されてもよい。
液晶層に対していわゆる両親媒性を、重合性モノマAに付与する観点から、上記配向誘導基は、メソゲン基に結合していることが好ましい。
「重合性基」
重合性基は、PAP1−で表され、−SpAP1−(単結合又はスペーサ基)を介してメソゲン基に結合していることが好ましい。
AP1は、下記一般式(AP−1)〜一般式(AP−9)で表される群より選ばれる基であることが好ましい。
Figure 2020106612
式中、RAP1及びRAP2は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基又は炭素原子数1〜10のハロゲン化アルキル基を表す。ただし、アルキル基中の1個又は2個以上の−CH−は、酸素原子が直接隣接しないように−O−又は−CO−で置換されてもよく、アルキル基中の1個又は2個以上の水素原子は、それぞれ独立して、ハロゲン原子又は水酸基で置換されてもよい。
AP1は、単結合、−O−、−COO−又は−CH−を表す。
AP1は、0、1又は2を表す。
AP1は、下記一般式(AP−1)〜一般式(AP−7)で表される基であることが好ましく、下記一般式(AP−1)又は一般式(AP−2)で表される基であることがより好ましく、一般式(AP−1)であることがさらに好ましい。
SpAP1は、単結合又は直鎖状若しくは分岐状の炭素原子数1〜20のアルキレン基を表すことが好ましく、単結合又は直鎖状の炭素原子数1〜20のアルキレン基を表すことがより好ましく、単結合又は直鎖状の炭素原子数2〜10のアルキレン基を表すことがさらに好ましい。
また、SpAP1において、アルキレン基中の1個又は隣接しない2個以上の−CH−は、酸素原子が直接隣接しないようにそれぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよい。
重合性モノマAにおいて、PAP1−SpAP1−の数は、1以上5以下であることが好ましく、1以上4以下であることがより好ましく、2以上4以下であることがさらに好ましく、2又は3であることが特に好ましく、2であることが最も好ましい。
AP1−SpAP1−中の水素原子は、重合性基、吸着基及び/又は配向誘導基で置換されてもよい。
AP1−SpAP1−は、重合性基、メソゲン基、吸着基及び/又は配向誘導基に対して結合してもよい。
また、PAP1−SpAP1−は、メソゲン基、吸着基又は配向誘導基に対して結合することが好ましく、メソゲン基又は吸着基に対して結合することがより好ましい。
なお、分子内にPAP1及び/又はSpAP1−が複数存在する場合に、それぞれ互いに同一であっても異なってもよい。
「メソゲン基」
メソゲン基は、剛直な部分を備えた基、例えば環式基を1つ以上備えた基をいい、環式基を2〜4個を備えた基が好ましく、環式基を3〜4個を備えた基がより好ましい。なお、必要に応じて、環式基は、連結基で連結されてもよい。メソゲン基は、液晶層に使用される液晶分子(液晶化合物)と類似の骨格を有することが好ましい。
なお、本明細書中において、「環式基」は、構成する原子が環状に結合した原子団をいい、炭素環、複素環、飽和又は不飽和環式構造、単環、2環式構造、多環式構造、芳香族、非芳香族などを含む。
また、環式基は、少なくとも1つのヘテロ原子を含んでもよく、さらに、少なくとも1つの置換基(ハロゲノ基、重合性基、有機基(アルキル、アルコキシ、アリール等)で置換されてもよい。環式基が単環である場合には、メソゲン基は、2個以上の単環を含んでいることが好ましい。
上記メソゲン基は、例えば、一般式(AL)で表されることが好ましい。
Figure 2020106612
式中、ZAL1は、単結合、−CH=CH−、−CF=CF−、−C≡C−、−COO−、−OCO−、−OCOO−、−CFO−、−OCF−、−CH=CHCOO−、−OCOCH=CH−、−CH−CHCOO−、−OCOCH−CH−、−CH=C(CH)COO−、−OCOC(CH)=CH−、−CH−CH(CH)COO−、−OCOCH(CH)−CH−、−OCHCHO−又は炭素原子数1〜20のアルキレン基を表す。ただし、アルキレン基中の1個又は隣接しない2個以上の−CH−は、−O−、−COO−又は−OCO−で置換されてもよい。
AL1及びAAL2は、それぞれ独立して、2価の環式基を表す。
AL1、AAL1及びAAL2中の1個又は2個以上の水素原子は、それぞれ独立して、ハロゲノ基、後述の吸着基、PAP1−SpAP1−又は1価の有機基で置換されてもよい。
なお、分子内にZAL1及びAAL1が複数存在する場合に、それぞれ互いに同一であっても異なってもよい。
AL1は、1〜5の整数を表す。
一般式(AL)中、ZAL1は、単結合又は炭素原子数2〜20のアルキレン基であることが好ましく、単結合又は炭素原子数2〜10のアルキレン基であることがより好ましく、単結合、−(CH−又は−(CH−であることがさらに好ましい。アルキレン基中の1個又は隣接しない2個以上の−CH−は、酸素原子が直接隣接しないように−O−、−COO−又は−OCO−で置換されてもよい。
さらに、棒状分子の直線性を高めることを目的とする場合は、ZAL1は、環と環とが直接連結した形態である単結合や、環と環とを直接結ぶ原子の数が偶数個の形態が好ましい。例えば、−CH−CHCOO−の場合、環と環とを直接結ぶ原子の数は4つである。
一般式(AL)中、AAL1及びAAL2は、それぞれ独立して、2価の環式基を表す。2価の環式基としては、1,4−フェニレン基、1,4−シクロヘキシレン基、1,4−シクロヘキセニル基、テトラヒドロピラン−2,5−ジイル基、1,3−ジオキサン−2,5−ジイル基、テトラヒドロチオピラン−2,5−ジイル基、チオフェン−2,5−ジイル基、1,4−ビシクロ(2.2.2)オクチレン基、デカヒドロナフタレン−2,6−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピラジン−2,5−ジイル基、チオフェン−2,5−ジイル基−、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基、フェナントレン−2,7−ジイル基、9,10−ジヒドロフェナントレン−2,7−ジイル基、1,2,3,4,4a,9,10a−オクタヒドロフェナントレン−2,7−ジイル基、1,4−ナフチレン基、ベンゾ[1,2−b:4,5−b’]ジチオフェン−2,6−ジイル基、ベンゾ[1,2−b:4,5−b’]ジセレノフェン−2,6−ジイル基、[1]ベンゾチエノ[3,2−b]チオフェン−2,7−ジイル基、[1]ベンゾセレノフェノ[3,2−b]セレノフェン−2,7−ジイル基及びフルオレン−2,7−ジイル基からなる群から選択される1種であることが好ましく、1,4−フェニレン基、1,4−シクロヘキシレン基、2,6−ナフチレン基又はフェナントレン−2,7−ジイル基がより好ましく、1,4−フェニレン基又は1,4−シクロヘキシレン基であることがさらに好ましい。
なお、これらの基は、非置換又は置換基で置換されてもよい。この置換基としては、フッ素原子又は炭素原子数1〜8のアルキル基であることが好ましい。さらに、アルキル基は、フッ素原子又は水酸基で置換されてもよい。
また、環式基中の1個又は2個以上の水素原子は、ハロゲノ基、吸着基、PAP1−SpAP1−又は1価の有機基で置換されてもよい。
一般式(AL)中、1価の有機基とは、有機化合物が1価の基の形態になることによって、化学構造が構成された基であり、有機化合物から水素原子を1つ取り除いてなる原子団をいう。
かかる1価の有機基としては、例えば、炭素原子数1〜15のアルキル基、炭素原子数2〜15のアルケニル基、炭素原子数1〜14のアルコキシ基、炭素原子数2〜15のアルケニルオキシ基などが挙げられ、炭素原子数1〜15のアルキル基又は炭素原子数1〜14のアルコキシ基であることが好ましく、炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基であることがより好ましく、炭素原子数1〜5のアルキル基又は炭素原子数1〜4のアルコキシ基であることがさらに好ましく、炭素原子数1〜3のアルキル基又は炭素原子数1〜2のアルコキシ基であることが特に好ましく、炭素原子数1又は2のアルキル基又は炭素原子数1のアルコキシ基であることが最も好ましい。
また、上記アルキル基、アルケニル基、アルコキシ基、アルケニルオキシ基中の1個又は隣接しない2個以上の−CH−は、−O−、−COO−又は−OCO−で置換されてもよい。さらには、上記1価の有機基は、後述の配向誘導基としての役割を有してもよい。
上記一般式(AL)中、mAL1は、1〜4の整数であることが好ましく、1〜3の整数であることがより好ましく、2又は3であることがさらに好ましい。
上記メソゲン基の好ましい形態としては、下記式(me−1)〜(me−44)が挙げられる。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
一般式(AL)は、これらの化合物から2個の水素原子が脱離した構造である。
これらの式(me−1)〜(me−44)において、シクロヘキサン環、ベンゼン環又はナフタレン環中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲノ基、PAP1−SpAP1−、1価の有機基(例えば、炭素原子数1〜15のアルキル基、炭素原子数1〜14のアルコキシ基)、吸着基又は配向誘導基で置換されてもよい。
上記メソゲン基のうち、好ましい形態は、式(me−8)〜(me−44)であり、より好ましい形態は、式(me−8)〜(me−10)、式(me−12)〜(me−18)、式(me−22)〜(me−24)、式(me−26)〜(me−27)及び式(me−29)〜(me−44)であり、さらに好ましい形態は、式(me−12)、(me−14)、(me−16)、(me−22)〜(me−24)、(me−29)、(me−34)、(me−36)〜(me−37)、(me−42)〜(me−44)である。
上記メソゲン基のうち、特に好ましい形態は、下記一般式(AL−1)又は(AL−2)であり、最も好ましい形態は、下記一般式(AL−1)である。

Figure 2020106612
式中、XAL101〜XAL118、XAL201〜XAL214は、それぞれ独立して、水素原子、ハロゲノ基、PAPl−SpAPl−、後述の吸着基又は前記配向誘導基を表す。
環AAL11、環AAL12及び環AAL21は、それぞれ独立して、シクロヘキサン環又はベンゼン環を表す。
AL101〜XAL118、XAL201〜XAL214のいずれか1種又は2種以上が、後述の吸着基で置換されている。
AL101〜XAL118、XAL201〜XAL214のいずれか1種又は2種以上が、前記配向誘導基で置換されている。
後述の吸着基及び前記配向誘導基は、PAP1−SpAP1−で置換されてもよい。
一般式(AL−1)又は一般式(AL−2)は、その分子内にPAP1−SpAPl−を1種又は2種以上有する。
一般式(AL−1)において、XAL101は、前記配向誘導基であることが好ましい。
一般式(AL−1)において、XAL109、XAL110及びXAL111の少なくとも1つが後述の吸着基であることが好ましく、XAL109及びXAL110がともに後述の吸着基であること又はXAL110が後述の吸着基であることがより好ましく、XAL110が後述の吸着基であることがさらに好ましい。
一般式(AL−1)において、XAL109、XAL110及びXAL111の少なくとも1つが後述の吸着基のうち、PAP1−SpAP1−又は構造内に重合可能な部位を有するものであることが好ましく、XAL109及びXAL111の両方又は一方がPAP1−SpAP1−であることがより好ましい。
一般式(AL−1)において、XAL104〜XAL108、XAL112〜XAL116の1つ又は2つがそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基又はハロゲノ基であることが好ましく、炭素原子数1〜3のアルキル基又はフッ素原子であることがより好ましい。特に、XAL105、XAL106又はXAL107がそれぞれ独立して、炭素原子数1〜3のアルキル基又はフッ素原子であることが好ましい。
一般式(AL−2)において、XAL201は、前記配向誘導基であることが好ましい。
一般式(AL−2)において、XAL207、XAL208及びXAL209の少なくとも1つが後述の吸着基であることが好ましく、XAL207及びXAL208がともに後述の吸着基であること又はXAL208が後述の吸着基であることがより好ましく、XAL208が後述の吸着基であることがさらに好ましい。
一般式(AL−2)において、XAL207、XAL208及びXAL209の少なくとも1つが後述の吸着基のうち、PAP1−SpAP1−又は構造内に重合可能な部位を有するものであることが好ましく、XAL207及びXAL209の両方又は一方がPAP1−SpAP1−であることがより好ましい。
一般式(AL−2)において、XAL202〜XAL206、XAL210〜XAL214の1つ又は2つがそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基又はハロゲノ基であることが好ましく、炭素原子数1〜3のアルキル基又はフッ素原子であることがより好ましい。特に、XAL204、XAL205又はXAL206がそれぞれ独立して、炭素原子数1〜3のアルキル基又はフッ素原子であることが好ましい。
「吸着基」
吸着基は、基板、膜、電極など液晶組成物と当接する層である吸着媒と吸着する役割を備えた基である。
吸着は、一般的に、化学結合(共有結合、イオン結合又は金属結合)をつくって吸着媒と吸着質との間で吸着する化学吸着と、化学吸着以外の物理吸着とに分別される。本明細書中において、吸着は、化学吸着又は物理吸着のいずれでもよいが、物理吸着であることが好ましい。そのため、吸着基は、吸着媒と物理吸着可能な基であることが好ましく、分子間力により吸着媒と結合可能な基であることがより好ましい。
分子間力により吸着媒と結合する形態としては、永久双極子、永久四重極子、分散力、電荷移動力又は水素結合などの相互作用による形態が挙げられる。
吸着基の好ましい形態としては、水素結合により吸着媒と結合可能な形態が挙げられる。この場合、吸着基が水素結合を介在するプロトンのドナーおよびアクセプターのいずれの役割を果たしてもよく、若しくは双方の役割を果たしてもよい。
吸着基は、炭素原子とヘテロ原子とが連結した原子団を有する極性要素を含む基(以下、「吸着基」を「極性基」とも記載する。)であることが好ましい。本明細書中において、極性要素とは、炭素原子とヘテロ原子とが直接連結した原子団をいう。
ヘテロ原子としては、N、O、S、P、B及びSiからなる群から選択される少なくとも1種であることが好ましく、N、O及びSからなる群から選択される少なくとも1種であることがより好ましく、N及びOからなる群から選択される少なくとも1種であることがさらに好ましく、Oであることが特に好ましい。
また、重合性モノマAにおいて、極性要素の価数は、1価、2価、3価など特に制限されず、また吸着基中の極性要素の個数も特に制限されることはない。
重合性モノマAは、一分子中に1〜8個の吸着基を有することが好ましく、1〜4個の吸着基を有することがより好ましく、1〜3個の吸着基を有することがさらに好ましい。
なお、吸着基からは、重合性基及び配向誘導基を除くが、吸着基中の水素原子がPAP1−SpAP1−で置換された構造及びPAP1−SpAP1−中の水素原子が−OHで置換された構造は吸着基に含む。
吸着基は、1又は2以上の極性要素を含み、環式基型と鎖式基型とに大別される。
環式基型は、その構造中に極性要素を含む環状構造を備えた環式基を含む形態であり、鎖式基型は、その構造中に極性要素を含む環状構造を備えた環式基を含まない形態である。
鎖式基型は、直鎖又は分岐した鎖状基中に極性要素を有する形態であり、その一部に極性要素を含まない環状構造を有していてもよい。
環式基型の吸着基とは、少なくとも1つの極性要素を環状の原子配列内に含む構造を有する形態を意味する。
なお、本明細書中において、環式基とは、上述した通りである。そのため、環式基型の吸着基は、極性要素を含む環式基さえ含んでいればよく、吸着基全体としては分岐しても直鎖状であってもよい。
一方、鎖式基型の吸着基とは、分子内に極性要素を含む環状の原子配列を含まず、かつ少なくとも1つの極性要素を線状の原子配列(枝分かれしてもよい)内に含む構造を有する形態を意味する。
なお、本明細書中において、鎖式基とは、構造式中に環状の原子配列を含まず、構成する原子が線状(分岐してもよい)に結合した原子団をいい、非環式基をいう。換言すると、鎖式基とは、直鎖状又は分枝状の脂肪族基をいい、飽和結合又は不飽和結合のどちらを含んでもよい。
したがって、鎖式基には、例えば、アルキル、アルケニル、アルコキシ、エステル、エーテル又はケトンなどが含まれる。なお、これらの基中の水素原子は、少なくとも1つの置換基(反応性官能基(ビニル基、アクリル基、メタクリル基等)、鎖状有機基(アルキル、シアノ等))で置換されてもよい。また、鎖式基は、直鎖状又は分岐状のいずれでもよい。
環式基型の吸着基としては、炭素原子数3〜20の複素芳香族基(縮合環を含む)又は炭素原子数3〜20の複素脂環族基(縮合環を含む)であることが好ましく、炭素原子数3〜12の複素芳香族基(縮合環を含む)又は炭素原子数3〜12の複素脂環族基(縮合環を含む)であることがより好ましく、5員環の複素芳香族基、5員環の複素脂環族基、6員環の複素芳香族基又は6員環の複素脂環族基であることがさらに好ましい。なお、これらの環構造中の水素原子は、ハロゲノ基、炭素原子数1〜5の直鎖状若しくは分岐状のアルキル基又はアルキルオキシ基で置換されてもよい。
鎖式基型の吸着基としては、構造内の水素原子や−CH−が極性要素で置換された直鎖状若しくは分岐状の炭素原子数1〜20のアルキル基であることが好ましい。なお、アルキル基中の1個又は隣接しない2個以上の−CH−は、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよい。また、鎖式基型の吸着基は、その端部に1個又は2個以上の極性要素を含むことが好ましい。
吸着基中の水素原子は、重合性基で置換されてもよい。
極性要素の具体例としては、酸素原子を含む極性要素(以下、含酸素極性要素)、窒素原子を含む極性要素(以下、含窒素極性要素)、リン原子を含む極性要素(以下、含リン極性要素)、ホウ素原子を含む極性要素(以下、含ホウ素極性要素)、ケイ素原子を含む極性要素(以下、含ケイ素極性要素)又は硫黄原子を含む極性要素(以下、含硫黄極性要素)が挙げられる。吸着能の観点から、極性要素としては、含窒素極性要素、含窒素極性要素又は含酸素極性要素であることが好ましく、含酸素極性要素であることがより好ましい。
含酸素極性要素としては、水酸基、アルキロール基、アルコキシ基、ホルミル基、カルボキシル基、エーテル基、カルボニル基、カーボネート基及びエステル基からなる群から選択される少なくとも1種の基又は当該基が炭素原子に連結している基であることが好ましい。
含窒素極性要素としては、シアノ基、1級アミノ基、2級アミノ基、3級アミノ基、ピリジル基、カルバモイル基及びウレイド基からなる群から選択される少なくとも1種の基又は当該基が炭素原子に連結している基であることが好ましい。
含リン極性要素としては、ホスフィニル基及びリン酸基からなる群から選択される少なくとも1種の基又は当該基が炭素原子に連結している基であることが好ましい。
そのため、吸着基としては、含酸素極性要素を備えた環式基(以下、含酸素環式基)、含窒素極性要素を備えた環式基(以下、含窒素環式基)、含硫黄極性要素を備えた環式基(以下、含硫黄環式基)、含酸素極性要素を備えた鎖式基(以下、含酸素鎖式基)及び含窒素極性要素を備えた鎖式基(以下、含窒素鎖式基)からなる群から選択される1種又は2種以上の基自体または当該基を含むことが好ましく、吸着能の観点から含酸素環式基、含硫黄環式基、含酸素鎖式基及び含窒素鎖式基からなる群から選択される1種又は2種以上の基を含むことがより好ましい。
含酸素環式基としては、環構造内に酸素原子をエーテル基として有する下記の基のいずれかを含むことが好ましい。
Figure 2020106612
また、含酸素環式基としては、環構造内に酸素原子をカルボニル基、カーボネート基及びエステル基として有する下記の基のいずれかを含むことが好ましい。
Figure 2020106612
含窒素環式基としては、下記の基のいずれかを含むことが好ましい。
Figure 2020106612
含酸素鎖式基としては、下記の基のいずれかを含むことが好ましい。
Figure 2020106612
式中、Rat1は、炭素原子数1〜5のアルキル基を表す。
at1は、単結合、炭素原子数1〜15の直鎖状若しくは分岐状のアルキレン基又は炭素原子数2〜18の直鎖状若しくは分岐状のアルケニレン基を表す。ただし、アルキレン基又はアルケニレン基中の−CH−は、酸素原子が直接隣接しないように−O−、−COO−、−C(=O)−、−OCO−で置換されてもよい。
at1は、炭素原子数1〜15のアルキル基を表す。ただし、アルキル基中の−CH−は、酸素原子が直接隣接しないように−O−、−COO−、−C(=O)−、−OCO−で置換されてもよい。
含窒素鎖式基としては、下記の基のいずれかを含むことが好ましい。
Figure 2020106612
式中、Rat、Rbt、Rct及びRdtは、それぞれ独立して、水素原子又は炭素原子数1〜5のアルキル基を表す。
吸着基としては、下記一般式(AT)で表される基であることが好ましい。
Figure 2020106612
式中、SpAT1は、単結合、炭素原子数1〜25の直鎖状若しくは分岐状のアルキレン基を表す。ただし、アルキレン基中の水素原子は、−OH、−CN、−WAT1−ZAT1又はPAP1−SpAP1−で置換されてもよく、アルキレン基中の−CH−は、酸素原子が直接結合しないように環式基、−O−、−COO−、−C(=O)−、−OCO−、−CH=CH−で置換されてもよい。
AT1は、単結合又は下記一般式(WAT1)又は(WAT2)を表す。
AT1は、極性要素を含む1価の基を表す。ただし、ZAT1中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよい。
Figure 2020106612
(式中、SpWAT1及びSpWAT2は、それぞれ独立して、単結合、炭素原子数1〜25の直鎖状若しくは分岐状のアルキレン基を表し、アルキレン基中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよく、アルキレン基中の−CH−は、酸素原子が直接結合しないように環式基、−O−、−COO−、−C(=O)−、−OCO−又は−CH=CH−で置換されてもよい。)
SpAT1、SpWAT1及びSpWAT2は、それぞれ独立して、単結合又は直鎖状若しくは分岐状の炭素原子数1〜20のアルキレン基を表すことが好ましく、単結合又は直鎖状の炭素原子数1〜20のアルキレン基を表すことがより好ましく、単結合又は直鎖状の炭素原子数2〜10のアルキレン基を表すことがさらに好ましい。
また、SpAT1、SpWAT1及びSpWAT2において、アルキレン基中の1個又は隣接しない2個以上の−CH−は、それぞれ独立して、酸素原子が直接結合しないよういに、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよい。
また、SpAT1及びSpWAT1中の水素原子は、それぞれ独立して、−WAT1−ZAT1又はPAP1−SpAP1−で置換されてもよい。
AT1は、極性要素を含む1価の基を表すが、下記一般式(ZAT1−1)又は(ZAT1−2)で表される基であることが好ましい。
Figure 2020106612
式中、SpZAT11及びSpZAT12は、それぞれ独立して、単結合、炭素原子数1〜25の直鎖状若しくは分岐状のアルキレン基を表す。ただし、アルキレン基中の水素原子は、−OH、−CN、−ZZAT11−RZAT11又はPAP1−SpAP1−で置換されてもよく、アルキレン基中の−CH−は、酸素原子が直接隣接しないように環式基、−O−、−COO−、−C(=O)−、−OCO−又は−CH=CH−で置換されてもよい。
ZAT11は、極性要素を含む基を表す。
一般式(ZAT1−2)中のZZAT12を含む環で表した構造は、5〜7員環を表す。
ZAT11及びZZAT12中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよい。
ZAT11及びRZAT12は、それぞれ独立して、水素原子、炭素原子数1〜8の直鎖状若しくは分岐状のアルキル基を表す。ただし、アルキル基中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよく、アルキル基中の−CH−は、酸素原子が直接結合しないように環式基、−O−、−COO−、−C(=O)−、−OCO−又は−CH=CH−又は−ZZAT11−で置換されてもよい。
一般式(ZAT1−1)で表される基としては、下記一般式(ZAT1−1−1)〜(ZAT1−1−30)で表される基であることが好ましい。
Figure 2020106612
Figure 2020106612
式中、炭素原子に結合する水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよい。
SpZAT11は、単結合、炭素原子数1〜25の直鎖状若しくは分岐状のアルキレン基を表す。ただし、アルキレン基中の水素原子は、−OH、−CN、−ZZAT11−RZAT11又はPAP1−SpAP1−で置換されてもよく、アルキレン基中の−CH−は、酸素原子が直接隣接しないように環式基、−O−、−COO−、−C(=O)−、−OCO−又は−CH=CH−で置換されてもよい。
ZAT11は、炭素原子数1〜8の直鎖状若しくは分岐状のアルキル基を表す。ただし、アルキル基中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよく、アルキル基中の−CH−は、酸素原子が直接結合しないように環式基、−O−、−COO−、−C(=O)−、−OCO−、−CH=CH−、又は−ZZAT11−で置換されてもよい。
一般式(ZAT1−2)で表される基としては、下記一般式(ZAT1−2−1)〜(ZAT1−2−9)で表される基であることが好ましい。
Figure 2020106612
式中、炭素原子に結合する水素原子は、ハロゲン原子、−OH、−CN又はPAP1−SpAP1−で置換されてもよい。
SpZAT11は、炭素原子数1〜25の直鎖状若しくは分岐状のアルキレン基を表す。ただし、アルキレン基中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよく、アルキレン基中の−CH−は、酸素原子が直接隣接しないように環式基、−O−、−COO−、−C(=O)−、−OCO−、−CH=CH−又は−ZZAT11−で置換されてもよい。
一般式(ZAT1−1)で表される基としては、下記の基が挙げられる。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
式中、Rtcは、水素原子、炭素原子数1〜20のアルキル基又はPAP1−SpAP1−を表す。ただし、アルキル基中の水素原子は、−OH、−CN又はPAP1−SpAP1−で置換されてもよく、アルキル基中の−CH−は、酸素原子が直接隣接しないように環式基、−O−、−COO−、−C(=O)−、−OCO−、−CH=CH−又は−ZZAT11−で置換されてもよい。
分子内の水素原子は、PAP1−SpAP1−で置換されてもよい。
*は、結合手を表す。
重合性モノマAは、吸着基に含まれる極性要素や重合性基に含まれる極性要素が局在化する形態であることが好ましい。吸着基は、液晶分子を垂直配向させるために重要な構造であり、吸着基と重合性基とが隣接していることで、より良好な配向性が得られ、また液晶組成物への良好な溶解性を示す。
具体的には、重合性モノマAは、メソゲン基の同一環上に重合性基及び吸着基を有する形態であることが好ましい。かかる形態には、1以上の重合性基及び1以上の吸着基がそれぞれ同一環上に結合している形態と、1以上の重合性基の少なくとも一つ又は1以上の吸着基の少なくとも一つのうち、一方が他方に結合して、同一環上に重合性基及び吸着基を有する形態とが含まれる。
また、この場合、重合性基が有するスペーサ基中の水素原子が、吸着基で置換されてもよく、さらには吸着基中の水素原子が、スペーサ基を介して重合性基で置換されてもよい。
重合性モノマA(自発配向性化合物)としては、下記一般式(SAL)で表される化合物であることが好ましい。
Figure 2020106612
式中、炭素原子に結合する水素原子は、炭素原子数1〜25の直鎖状若しくは分岐状のアルキル基、−OH、−CN、−SpAT1−WAT1−ZAT1又はPAP1−SpAP1−で置換されてもよい。ただし、アルキル基中の水素原子は、−OH、−CN、−SpAT1−WAT1−ZAT1又はPAP1−SpAP1−で置換されてもよく、アルキル基中の−CH−は、酸素原子が直接結合しないように環式基、−O−、−COO−、−C(=O)−、−OCO−又は−CH=CH−で置換されてもよい。
AK1は、一般式(AK)におけるRAK1と同じ意味を表す。
AL1及びAAL2は、それぞれ独立して、一般式(AL)におけるAAL1及びAAL2と同じ意味を表す。
AL1は、一般式(AL)におけるZAL1と同じ意味を表す。
AL1は、一般式(AL)におけるmAL1と同じ意味を表す。
SpAT1は、一般式(AT)におけるSpAT1と同じ意味を表す。
AT1は、一般式(AT)におけるWAT1と同じ意味を表す。
AT1は、一般式(AT)におけるZAT1と同じ意味を表す。
一般式(SAL)で表される化合物としては、下記式(SAL−1.1)〜(SAL−2.10)で表される化合物であることが好ましい。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
液晶組成物中に含まれる重合性モノマAの量は、0.01〜50質量%程度であることが好ましい。そのより好ましい下限値は、液晶分子を更に好適に配向させる観点から、0.05質量%、0.1質量%である。一方、そのより好ましい上限値は、応答特性を改善する観点から、30質量%、10質量%、7質量%、5質量%、4質量%、3質量%である。
((重合性モノマB))
少なくとも1種の重合性モノマは、さらに吸着基(極性基)を有さない重合性モノマBを含有してもよい。重合性モノマBは、下記一般式(P)で表される化合物であることが好ましい。また、液晶組成物は、かかる重合性モノマBを1種又は2種以上含有することも好ましい。
Figure 2020106612
式(P)中、Rp1は、水素原子、フッ素原子、シアノ基、炭素原子数1〜15のアルキル基又は−Spp2−Pp2を表す。ただし、アルキル基中に存在する1個又は2個以上の−CH−は、それぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよいが、隣接する2個以上の−CH−が同時に−O−で置換されることはない。また、アルキル基中に存在する1個又は2個以上の水素原子は、それぞれ独立して、シアノ基、フッ素原子又は塩素原子で置換されてもよい。
p1及びPp2は、それぞれ独立して、下記一般式(Pp1−1)〜式(Pp1−9)のいずれかを表す。
Figure 2020106612
(式中、Rp11及びRp12は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のハロゲン化アルキル基を表し、Wp11は、単結合、−O−、−COO−又はメチレン基を表し、tp11は、0、1又は2を表すが、分子内にRp11、Rp12、Wp11及び/又はtp11が複数存在する場合、それらは同一であっても異なってもよい。)
Spp1及びSpp2は、それぞれ独立して、単結合又はスペーサ基を表す。
p1及びZp2は、それぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRZP1−、−NRZP1−CO−、−SCH−、−CHS−、−CH=CRZP1−COO−、−CH=CRZP1−OCO−、−COO−CRZP1=CH−、−OCO−CRZP1=CH−、−COO−CRZP1=CH−COO−、−COO−CRZP1=CH−OCO−、−OCO−CRZP1=CH−COO−、−OCO−CRZP1=CH−OCO−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−(C=O)−O−(CH−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−又は−C≡C−(式中、RZP1は、それぞれ独立して、水素原子又は炭素原子数1〜4のアルキル基を表すが、分子内にRZP1が複数存在する場合、それらは同一であっても異なってもよい。)を表す。
p1、Ap2及びAp3は、それぞれ独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は、−O−で置換されてもよい。)
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。)及び
(c) ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基、フェナントレン−2,7−ジイル基又はアントラセン−2,6−ジイル基(これらの基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。)
からなる群より選ばれる基(前記基(a)、基(b)及び基(c)は、それぞれ独立して、この基中に存在する水素原子が、ハロゲン原子、炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルケニル基、シアノ基又は−Spp2−Pp2で置換されてもよい。)を表す。
p1は、0、1、2又は3を表す。
分子内にZp1、Ap2、Spp2及び/又はPp2が複数存在する場合、それらは同一であっても異なってもよい。ただし、Ap3は、mp1が0で、Ap1が前記基(c)である場合、単結合であってもよい。
なお、重合性モノマBからは、重合性モノマAを除く。
p1は、−Spp2−Pp2であることが好ましい。
p1及びPp2は、それぞれ独立して、一般式(Pp1−1)〜式(Pp1−3)のいずれかであることが好ましく、(Pp1−1)であることがより好ましい。
p11及びRp12は、それぞれ独立して、水素原子又はメチル基であることが好ましい。
p11は、0又は1であることが好ましい。
p11は、単結合、メチレン基又はエチレン基であることが好ましい。
p1は、0、1又は2であることが好ましく、0又は1であることが好ましい。
p1及びZp2は、それぞれ独立して、単結合、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−COOC−、−OCOC−、−COCO−、−CCOO−、−CH=CH−、−CF−、−CFO−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−CH=CH−COO−、−COO−CH=CH−、−OCOCH=CH−、−COO−(CH−、−OCF−又は−C≡C−であることが好ましく、単結合、−OCH−、−CHO−、−C−、−COO−、−OCO−、−COOC−、−OCOC−、−COCO−、−CCOO−、−CH=CH−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−CH=CH−COO−、−COO−CH=CH−、−OCOCH=CH−、−COO−(CH−又は−C≡C−であることがより好ましい。
なお、分子内に存在するZp1及びZp2の1つのみが−OCH−、−CHO−、−C−、−COO−、−OCO−、−COOC−、−OCOC−、−COCO−、−CCOO−、−CH=CH−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−CH=CH−COO−、−COO−CH=CH−、−OCOCH=CH−、−COO−(CH−又は−C≡C−であり、他がすべて単結合であることが好ましく、分子内に存在するZp1及びZp2の1つのみが、−OCH−、−CHO−、−C−、−COO−又は−OCO−であり、他がすべて単結合であることがより好ましく、分子内に存在するZp1及びZp2のすべてが単結合であることがさらに好ましい。
また、分子内に存在するZp1及びZp2の1つのみが、−CH=CH−COO−、−COO−CH=CH−、−(CH−COO−、−(CH−OCO−、−O−CO−(CH−、−COO−(CH−からなる群から選択される連結基であり、他がすべて単結合であることが好ましい。
Spp1及びSpp2は、それぞれ独立して、単結合又はスペーサ基を表すが、スペーサ基は、炭素原子数1〜30のアルキレン基であることが好ましい。ただし、アルキレン基中の−CH−は、酸素原子同士が直接連結しない限りにおいて−O−、−CO−、−COO−、−OCO−、−CH=CH−又は−C≡C−で置換されてもよく、アルキレン基中の水素原子は、ハロゲン原子で置換されてもよい。
中でも、Spp1及びSpp2は、それぞれ独立して、直鎖の炭素原子数1〜10のアルキレン基又は単結合であることが好ましい。
p1、Ap2及びAp3は、それぞれ独立して、1,4−フェニレン基又は1,4−シクロヘキシレン基であることが好ましく、1,4−フェニレン基であることがより好ましい。
1,4−フェニレン基は、液晶分子(液晶化合物)との相溶性を改善するために、1個のフッ素原子、1個のメチル基又は1個のメトキシ基で置換されていることが好ましい。
液晶組成物中に含まれる重合性モノマBの量は、0.05〜10質量%であることが好ましく、0.1〜8質量%であることがより好ましく、0.1〜5質量%であることがさらに好ましく、0.1〜3質量%であることがさらに好ましく、0.2〜2質量%であることがさらに好ましく、0.2〜1.3質量%であることがさらに好ましく、0.2〜1質量%であることが特に好ましく、0.2〜0.56質量%であることが最も好ましい。
その好ましい下限値は、0.01質量%であり、0.03質量%であり、0.05質量%であり、0.08質量%であり、0.1質量%であり、0.15質量%であり、0.2質量%であり、0.25質量%であり、0.3質量%である。一方、その好ましい上限値は、10質量%であり、8質量%であり、5質量%であり、3質量%であり、1.5質量%であり、1.2質量%であり、1質量%であり、0.8質量%であり、0.5質量%である。
重合性モノマBの量が少ないと、重合性モノマBを液晶組成物に加える効果が現れにくく、例えば液晶分子や重合性モノマAの種類等によっては、液晶分子の配向規制力が弱い又は経時的に弱くなってしまう等の問題が生じる場合がある。一方、重合性モノマBの量が多過ぎると、例えば紫外線の照度等によっては、重合性モノマBが硬化後に残存する量が多くなる、硬化に時間がかかる、液晶組成物の信頼性が低下する等の問題が生じる場合がある。このため、これらのバランスを考慮して、重合性モノマBの量を設定することが好ましい。
一般式(P)で表される化合物の好ましい例としては、下記式(P−1−1)〜式(P−1−46)で表される重合性化合物が挙げられる。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
式中、Pp11、Pp12、Spp11及びSpp12は、一般式(P)におけるPp1、Pp2、Spp1及びSpp2と同じ意味を表す。
また、一般式(P)で表される化合物の好ましい例としては、下記式(P−2−1)〜式(P−2−12)で表される重合性化合物も挙げられる。
Figure 2020106612
式中、Pp21、Pp22、Spp21及びSpp22は、一般式(P)におけるPp1、Pp2、Spp1及びSpp2と同じ意味を表す。
さらに、一般式(P)で表される化合物の好ましい例としては、下記式(P−3−1)〜式(P−3−15)で表される重合性化合物も挙げられる。
Figure 2020106612
Figure 2020106612
式中、Pp31、Pp32、Spp31及びSpp32は、一般式(P)におけるPp1、Pp2、Spp1及びSpp2と同じ意味を表す。
また、一般式(P)で表される化合物の好ましい例としては、下記式(P−4−1)〜式(P−4−19)で表される重合性化合物も挙げられる。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
式中、Pp41、Pp42、Spp41及びSpp42は、一般式(P)におけるPp1、Pp2、Spp1及びSpp2と同じ意味を表す。
一般式(P)で表される化合物としては、下記式(P−1.1)〜(P−1.3)で表される化合物であることがとりわけ好ましい。
Figure 2020106612
((液晶分子))
本発明における液晶組成物は、上記重合性モノマに加えて、液晶分子として、一般式(N−01)、(N−02)、(N−03)、(N−04)及び(N−05)で表される化合物群から選ばれる化合物を1種類又は2種類以上含有することが好ましい。これら化合物は誘電的に負の異方性を有する化合物に該当する。これらの化合物は、Δεの符号が負で、その絶対値が2より大きい値を示す。なお、化合物のΔεは、25℃において誘電的にほぼ中性の組成物に該化合物を添加した組成物の誘電率異方性の測定値から外挿した値である。
Figure 2020106612
式中、R21及びR22は、それぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルケニルオキシ基を表し、該基中の1個又は非隣接の2個以上の−CH−は、それぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されてもよく、Zは、それぞれ独立して、単結合、−CHCH−、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=CH−、−CF=CF−又は−C≡C−を表し、mは、それぞれ独立して、1又は2を表す。
21は、炭素原子数1〜8のアルキル基であることが好ましく、炭素原子数1〜5のアルキル基であることがより好ましく、炭素原子数1〜4のアルキル基であることがさらに好ましい。但し、Zが単結合以外を表す場合は、R21は、炭素原子数1〜3のアルキル基であることが好ましい。
22は、炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数1〜4のアルコキシ基であることがより好ましく、炭素原子数1〜4のアルコキシ基であることがさらに好ましい。
21及びR22は、アルケニル基であることもできる。この場合、R21及びR22は、それぞれ独立して、下記式(R1)〜式(R5)で表される基(各式中の黒点は環構造中の炭素原子を表す。)から選ばれることが好ましく、式(R1)又は式(R2)であることがより好ましい。但し、R21及びR22がアルケニル基である化合物の含有量は、できる限り少ない方がよく、含有しない方が好ましい場合が多い。
Figure 2020106612
は、それぞれ独立して、単結合、−CHCH−、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=CH−、−CF=CF−又は−C≡C−を表すが、単結合、−CHCH−、−OCH−、−CHO−であることが好ましく、単結合又は−CHO−であることがより好ましい。
mが1のとき、Zは、単結合であることが好ましい。
mが2のとき、Zは、−CHCH−又は−CHO−であることが好ましい。
一般式(N−01)、(N−02)、(N−03)、(N−04)及び(N−05)で表される化合物のフッ素原子は、同じハロゲン族である塩素原子で置換されていてもよい。但し、塩素原子で置換された化合物の含有量は、できる限り少ない方がよく、含有しない方が好ましい。
一般式(N−01)、(N−02)、(N−03)、(N−04)及び(N−05)で表される化合物の環上に存在する水素原子は、更にフッ素原子又は塩素原子で置換されていてもよい。但し、塩素原子で置換された化合物の含有量は、できる限り少ない方がよく、含有しない方が好ましい。
一般式(N−01)、(N−02)、(N−03)、(N−04)及び(N−05)で表される化合物は、Δεが負で、その絶対値が3よりも大きな化合物であることが好ましい。具体的には、R22は、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基であることが好ましい。
一般式(N−01)で表される化合物として、一般式(N−01−1)、一般式(N−01−2)、一般式(N−01−3)及び一般式(N−01−4)で表される化合物から選ばれる1種類又は2種類以上含有することが好ましい。
Figure 2020106612
(式中、R21は、上記と同じ意味を表し、R23は、それぞれ独立して、炭素原子数1〜4のアルコキシ基を表す。)
液晶組成物は、重合性モノマ及び一般式(N−01−1)及び一般式(N−01−4)で表される化合物を含有することが好ましい。
高いVHRを必要とする場合、すなわち、高信頼性を必要とする場合、さらに言い換えると、表示不良がない液晶表示素子1を得ることを重視する場合は、一般式(N−01−3)で表される化合物を含まないことが好ましい。
一般式(N−02)で表される化合物として、一般式(N−02−1)、一般式(N−02−2)及び一般式(N−02−3)で表される化合物から選ばれる1種類又は2種類以上含有することが好ましい。
Figure 2020106612
(式中、R21は、上記と同じ意味を表し、R23は、それぞれ独立して、炭素原子数1〜4のアルコキシ基を表す。)
液晶組成物は、重合性モノマ及び一般式(N−02−1)で表される化合物を含有することが好ましい。
液晶組成物は、重合性モノマ及び一般式(N−02−3)で表される化合物を含有することが好ましい。
液晶組成物は、重合性モノマ、一般式(N−01−1)で表される化合物、一般式(N−01−4)で表される化合物及び一般式(N−02−1)で表される化合物を同時に含有することが特に好ましい。
液晶組成物は、重合性モノマ、一般式(N−01−1)で表される化合物、一般式(N−01−4)で表される化合物及び一般式(N−02−3)で表される化合物を同時に含有することが特に好ましい。
一般式(N−03)で表される化合物として、一般式(N−03−1)で表される化合物を1種類又は2種類以上含有することが好ましい。
Figure 2020106612
(式中、R21、上記と同じ意味を表し、R23は、炭素原子数1〜4のアルコキシ基を表す。)
液晶組成物は、重合性モノマ及び一般式(N−03−1)で表される化合物を組み合わせることが好ましい。
液晶組成物は、重合性モノマ、一般式(N−01−1)で表される化合物、一般式(N−01−4)で表される化合物及び一般式(N−03−1)で表される化合物を同時に含有することが特に好ましい。
一般式(N−04)で表される化合物として、一般式(N−04−1)で表される化合物を1種類又は2種類以上含有することが好ましい。
Figure 2020106612
(式中、R21は、上記と同じ意味を表し、R23は、炭素原子数1〜4のアルコキシ基を表す。)
液晶組成物は、重合性モノマ、一般式(N−01−1)で表される化合物、一般式(N−01−4)で表される化合物及び一般式(N−04−1)で表される化合物を同時に含有することが特に好ましい。
一般式(N−05)で表される化合物は、式(N−05−1)〜式(N−05−3)で表される化合物から選ばれることが好ましい。
Figure 2020106612
液晶組成物の総量に対して、一般式(N−01)で表される化合物の好ましい含有量の下限値は、0質量%であり、1質量%であり、5質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%であり、15質量%であり、10質量%である。
液晶組成物の総量に対して、一般式(N−02)で表される化合物の好ましい含有量の下限値は、0質量%であり、1質量%であり、5質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%であり、15質量%であり、10質量%である。
液晶組成物の総量に対して、一般式(N−03)で表される化合物の好ましい含有量の下限値は、0質量%であり、1質量%であり、5質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%であり、15質量%であり、10質量%である。
液晶組成物の総量に対して、一般式(N−04)で表される化合物の好ましい含有量の下限値は、0質量%であり、1質量%であり、5質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%であり、15質量%であり、10質量%である。
液晶組成物の総量に対して、一般式(N−05)で表される化合物の好ましい含有量の下限値は、0質量%であり、2質量%であり、5質量%であり、8質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
液晶組成物は、重合性モノマを0.1〜15質量%含有し、一般式(N−01−1)で表される化合物を1〜20質量%含有し、一般式(N−01−4)で表される化合物を1〜30質量%含有し、一般式(N−04−1)で表される化合物を1〜20質量%含有することが特に好ましい。
液晶組成物は、更に、一般式(N−06)で表される化合物を1種又は2種以上含有してもよい。
Figure 2020106612
(式中、R21及びR22は、上記と同じ意味を表す。)
一般式(N−06)で表される化合物は、種々の物性を調整したい場合に有効であるが、大きな屈折率異方性(Δn)、高いTNI、大きなΔεを得るために使用することができる。
液晶組成物の総量に対して、一般式(N−06)で表される化合物の好ましい含有量の下限値は、0質量%であり、2質量%であり、5質量%であり、8質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、5質量%である。
液晶組成物は、一般式(NU−01)〜一般式(NU−06)で表される化合物から選ばれる1種又は2種以上含有することが好ましい。
Figure 2020106612
(式中、RNU11、RNU12、RNU21、RNU22、RNU31、RNU32、RNU41、RNU42、RNU51、RNU52、RNU61及びRNU62は、それぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基を表し、該基中の1個又は非隣接の2個以上の−CH−は、それぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換されてもよい。)
更に詳述すると、RNU11、RNU12、RNU21、RNU22、RNU31、RNU32、RNU41、RNU42、RNU51、RNU52、RNU61及びRNU62は、それぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基又は炭素原子数2〜3のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜3のアルケニル基であることがより好ましい。
応答速度を重視する場合には、RNU11、RNU21、RNU31、RNU41、RNU51及びRNU61のうちの少なくとも1個は、炭素原子数2〜3のアルケニル基であることが好ましい。このようなアルケニル基を有する化合物の好ましい含有量は、液晶組成物の総量に対して、10質量%以上であり、20質量%以上であり、25質量%以上であり、30質量%以上であり、40質量%以上であり、45質量%以上であり、50質量%以上である。
高いVHRを重視する場合には、アルケニル基を有する化合物の好ましい含有量は、40質量%以下であり、35質量%以下であり、30質量%以下である。
高速速度と高信頼性とを両立するためには、アルケニル基を有する化合物として、一般式(NU−01)のみを用いることが好ましい。この場合、RNU11は、炭素原子数2〜4のアルキル基、RNU12は、炭素原子数2〜3のアルケニル基であることが好ましい。
高速速度と高信頼性とを両立するためには、アルケニル基を有する化合物として、一般式(NU−01)及び一般式(NU−05)を用いることが好ましい。この場合、RNU11は、炭素原子数2〜4のアルキル基、RNU12は、炭素原子数2〜3のアルケニル基であることが好ましい。また、RNU51は、炭素原子数2〜3のアルケニル基、RNU52は、炭素原子数2〜3のアルキル基であることが好ましい。
高速速度と高信頼性とを両立するためには、アルケニル基を有する化合物として、一般式(NU−01)、一般式(NU−05)及び一般式(NU−04)を用いることが好ましい。この場合、RNU11は、炭素原子数2〜4のアルキル基、RNU12は、炭素原子数2〜3のアルケニル基であることが好ましい。また、RNU51及びRNU41は、それぞれ独立して、炭素原子数2〜3のアルケニル基、RNU52及びRNU42は、それぞれ独立して、炭素原子数2〜3のアルキル基であることが好ましい。
液晶組成物は、一般式(NU−01)及び一般式(NU−02)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−01)及び一般式(NU−03)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−04)及び一般式(NU−05)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−05)及び一般式(NU−06)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−01)及び一般式(NU−05)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−01)及び一般式(NU−06)で表される化合物を含有することが好ましい。
液晶組成物は、一般式(NU−01)、一般式(NU−05)及び一般式(NU−06)で表される化合物を含有することが好ましい。
一般式(NU−01)で表される化合物の含有量は、5〜60質量%であることが好ましく、10〜50質量%であることがより好ましく、25〜45質量%であることがさらに好ましい。
一般式(NU−02)で表される化合物の含有量は、3〜30質量%であることが好ましく、5〜25質量%であることがより好ましく、5〜20質量%であることがさらに好ましい。
一般式(NU−03)で表される化合物の含有量は、0〜20質量%であることが好ましく、0〜15質量%であることがより好ましく、0〜10質量%であることがさらに好ましい。
一般式(NU−04)で表される化合物の含有量は、3〜30質量%であることが好ましく、3〜20質量%であることがより好ましく、3〜10質量%であることがさらに好ましい。
一般式(NU−05)で表される化合物の含有量は、0〜30質量%であることが好ましく、1〜20質量%であることがより好ましく、3〜20質量%であることがさらに好ましい。
一般式(NU−06)で表される化合物の含有量は、1〜30質量%であることが好ましく、3〜20質量%であることがより好ましく、3〜10質量%であることがさらに好ましい。
本発明における液晶組成物は、液晶分子として、ターフェニル構造又はテトラフェニル構造を有し、誘電率異方性Δεが+2より大きい化合物、すなわち、誘電率異方性が正の化合物を1種類又は2種類以上含有することができる。なお、化合物のΔεは、25℃において誘電的にほぼ中性の組成物に該化合物を添加した組成物の誘電率異方性の測定値から外挿した値である。
該化合物は、例えば、低温での溶解性、転移温度、電気的な信頼性、屈折率異方性などの所望の性能に応じて組み合わせて使用するが、特に、重合性モノマを含有する液晶組成物中の重合性モノマの反応性を加速させることができる。
ターフェニル構造又はテトラフェニル構造を有し、誘電率異方性Δεが+2より大きい化合物は、液晶組成物の総量に対して、好ましい含有量の下限値は、0.1質量%であり、0.5質量%であり、1質量%であり、1.5質量%であり、2質量%であり、2.5質量%であり、3質量%であり、4質量%であり、5質量%であり、10質量%である。好ましい含有量の上限値は、液晶組成物の総量に対して、20質量%であり、15質量%であり、10質量%であり、9質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、4質量%であり、3質量%である。
液晶組成物に用いることができるターフェニル構造又はテトラフェニル構造を有し、誘電率異方性が+2より大きい化合物として、例えば、式(M−8.51)〜式(M−8.54)で表される化合物、式(M−7.1)〜式(M−7.4)で表される化合物、式(M−7.11)〜式(M−7.14)で表される化合物、式(M−7.21)〜式(M−7.24)で表される化合物を含有することが好ましい。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
液晶組成物は、そのTNIを高くするために、式(L−7.1)〜式(L−7.4)、式(L−7.11)〜式(L−7.13)、式(L−7.21)〜式(L−7.23)、式(L−7.31)〜式(L−7.34)、式(L−7.41)〜式(L−7.44)、式(L−7.51)〜式(L−7.53)の4環の誘電的にほぼゼロ(概ね、−2から+2の範囲)の化合物を含有してもよい。
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
Figure 2020106612
本発明の液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、光安定剤又は赤外線吸収剤等を含有してもよい。
酸化防止剤としては、一般式(H−1)〜一般式(H−4)で表されるヒンダードフェノールが挙げられる。
Figure 2020106612
一般式(H−1)〜一般式(H−3)中、RH1は、それぞれ独立して、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数2〜10のアルケニル基又は炭素原子数2〜10のアルケニルオキシ基を表すが、基中に存在する1個の−CH−又は非隣接の2個以上の−CH−は、それぞれ独立して、−O−又は−S−に置換されてもよく、また、基中に存在する1個又は2個以上の水素原子は、それぞれ独立して、フッ素原子又は塩素原子に置換されてもよい。
更に具体的には、RH1は、それぞれ独立して、炭素原子数2〜7のアルキル基、炭素原子数2〜7のアルコキシ基、炭素原子数2〜7のアルケニル基又は炭素原子数2〜7のアルケニルオキシ基であることが好ましく、炭素原子数3〜7のアルキル基又は炭素原子数2〜7のアルケニル基であることがより好ましい。
一般式(H−4)中、MH4は、炭素原子数1〜15のアルキレン基(該アルキレン基中の1つ又は2つ以上の−CH−は、酸素原子が直接隣接しないように、−O−、−CO−、−COO−、−OCO−に置換されていてもよい。)、−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−CH=CH−、−C≡C−、単結合、1,4−フェニレン基(1,4−フェニレン基中の任意の水素原子は、フッ素原子により置換されていてもよい。)又はトランス−1,4−シクロヘキシレン基を表すが、炭素原子数1〜14のアルキレン基であることが好ましい。なお、揮発性を考慮すると、炭素原子数は、大きい数値が好ましいが、粘度を考慮すると、炭素原子数は大き過ぎない方が好ましいことから、MH4は、炭素原子数2〜12であることが好ましく、炭素原子数3〜10であることがより好ましく、炭素原子数4〜10であることがさらに好ましく、炭素原子数5〜10であることが特に好ましく、炭素原子数6〜10であることが最も好ましい。
一般式(H−1)〜一般式(H−4)中、1,4−フェニレン基中の1個又は非隣接の2個以上の−CH=は、−N=によって置換されていてもよい。また、1,4−フェニレン基中の水素原子は、それぞれ独立して、フッ素原子又は塩素原子で置換されていてもよい。
一般式(H−2)及び一般式(H−4)中、1,4−シクロヘキシレン基中の1個又は非隣接の2個以上の−CH−は、−O−又は−S−によって置換されていてもよい。また、1,4−シクロヘキシレン基中の水素原子は、それぞれ独立して、フッ素原子又は塩素原子で置換されてもよい。
更に具体的には、酸化防止剤としては、例えば、式(H−11)から式(H−15)が挙げられる。
Figure 2020106612
液晶組成物が酸化防止剤を含有する場合、その好ましい下限は、10質量ppm以上であり、20質量ppm以上であり、50質量ppm以上である。一方、その好ましい上限は、10000質量ppmであり、1000質量ppmであり、500質量ppmであり、100質量ppmである。
液晶組成物は、ネマチック相−等方性液体相転移温度(TNI)が60〜120℃であることが好ましく、70〜100℃であることがより好ましく、70〜85℃がさらに好ましい。なお、本明細書中においては、60℃以上をTNIが高いと表現している。
液晶テレビ用途の場合、TNIは、70〜80℃が好ましく、モバイル用途の場合、TNIは、80〜90℃であることが好ましく、PID(Public Information Display)等の屋外表示用途の場合、TNIは、90〜110℃であることが好ましい。
液晶組成物は、20℃における屈折率異方性(Δn)が0.08〜0.14であることが好ましく、0.09〜0.13であることがより好ましく、0.09〜0.12であることがさらに好ましい。更に詳述すると、薄いセルギャップに対応する場合、屈折率異方性(Δn)は、0.10〜0.13であることが好ましく、厚いセルギャップに対応する場合、屈折率異方性(Δn)は、0.08〜0.10であることが好ましい。なお、本明細書中においては、0.09以上をΔnが大きいと表現している。
液晶組成物は、20℃における回転粘性(γ)が50〜160mPa・sであることが好ましく、55〜160mPa・sであることがより好ましく、60〜160mPa・sであることがより好ましく、80〜150mPa・sであることがより好ましく、90〜140mPa・sであることがさらに好ましく、90〜130mPa・sであることが特に好ましく、100〜130mPa・sであることが最も好ましい。
液晶組成物は、20℃における誘電率異方性(Δε)が−2.0〜−8.0であることが好ましく、−2.0〜−6.0がより好ましく、−2.0〜−5.0がさらに好ましく、−2.5〜−4.0が特に好ましく、−2.5〜−3.5が最も好ましい。
液晶組成物を構成する化合物のうち、アルケニル基を有する化合物の含有量の合計の好ましい上限値は、10質量%であり、8質量%であり、6質量%であり、5質量%であり、4質量%であり、3質量%であり、2質量%であり、1質量%であり、0質量%である。また、アルケニル基を有する化合物の含有量の合計の好ましい範囲は、0〜10質量%であり、0〜8質量%であり、0〜5質量%であり、0〜4質量%であり、0〜3質量%であり、0〜2質量%である。但し、一般式(NU−01)で表される化合物を除く。
液晶組成物は、必須成分である重合性モノマを含有し、更に一般式(N−01)、一般式(N−02)、一般式(N−03)、一般式(N−04)、一般式(N−05)及び一般式(N−06)で表される化合物から選ばれる1種類又は2種類以上含有し、更に一般式(NU−01)〜(NU−06)で表される化合物から選ばれる1種又は2種以上含有することが好ましい。
これらの含有量の合計の上限値は、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%であることが好ましく、これらの含有量の合計の下限値が、78質量%、80質量%、81質量%、83質量%、85質量%、86質量%、87質量%、88質量%、89質量%、90質量%、91質量%、92質量%、93質量%、94質量%、95質量%、96質量%、97質量%、98質量%、99質量%であることが好ましい。
本発明の液晶表示素子は、特に、アクティブマトリックス駆動用の液晶表示素子に有用であり、VA、FFS、IPS、PSA、PSVA、PS−IPS又はPS−FFS、NPS、PI−less等の液晶表示素子に適宜用いることができる。
以上、本発明の液晶表示素子の製造方法及び液晶表示素子を実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各工程は、同様の機能を有する任意の構成に置換してもよく、他の任意の工程が付加されていてもよい。
以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されるものではない。
液晶混合物について測定した特性は、次の通りである。
Tni :ネマチック相−等方性液体相転移温度(℃)
Δn :293Kにおける屈折率異方性
Δε :293Kにおける誘電率異方性
γ1 :293Kにおける回転粘度(mPa・s)
K11 :293Kにおける広がりの弾性定数(pN)
K33 :293Kにおける曲がりの弾性定数(pN)
1.液晶混合物の調製
以下では、化合物の記載について、次の略号を用いる。略号中のnは自然数である。
(側鎖)
−n −C2n+1:炭素原子数nの直鎖状アルキル基
n− C2n+1−:炭素原子数nの直鎖状のアルキル基
−On −OC2n+1:炭素原子数nの直鎖状アルコキシ基
−V1 −CH=CH−CH:プロペニル基
V− CH=CH−:ビニル基
1V2− CH−CH=CH−CH−CH−:ペンテニル基
(連結構造)
−nO− −C2nO−
(環構造)
Figure 2020106612
液晶混合物LC−1およびLC−2の組成及び物性について、以下の表1に示す。
Figure 2020106612
2.液晶組成物の調製
(液晶組成物1の調製)
100質量部の液晶混合物LC−1に対して、0.3質量部の下記重合性モノマAと、0.3質量部の下記重合性モノマBとを混合して、加熱溶解することにより液晶組成物1を得た。
Figure 2020106612
Figure 2020106612
(液晶組成物2の調製)
液晶混合物LC−2に変更した以外は、液晶組成物1と同様にして、液晶組成物2を得た。
3.液晶表示素子の作製
(実施例A1)
まず、ポリイミド膜をITO基板に塗布した後、ポリイミド膜にラビング処理することにより配向膜を形成した。その後、配向膜付きITO基板と配向膜なしITO基板とを含む空の液晶セル(セルギャップ3.5μm)を作製した。
次に、真空注入法により空の液晶セル内に液晶組成物1を注入した。
次に、液晶組成物1を注入した液晶セルに、周波数100Hzで10Vの交流電圧を印加した状態で、光源1を用いて、液晶層が3℃上昇するまで紫外線を照射した。これにより、液晶表示素子を得た。UV照度計は、ウシオ電機株式会社製「UIT−150」を用いた。
(実施例A2〜A7)
光源を変更するとともに、液晶層が表3に示す温度に上昇するまで紫外線を照射した以外は、実施例A1と同様にして、液晶表示素子を製造した。
(実施例B1〜B7)
液晶組成物2を用いた以外は、実施例A1〜A7と同様にして、液晶表示素子を製造した。
(実施例C1〜C7)
さらに、電圧を印加することなく、光源R−4を用いて、液晶層が5℃上昇するまでに紫外線を照射した以外は、実施例A1〜A7と同様にして、液晶表示素子を製造した。
(実施例D1〜D7)
さらに、電圧を印加することなく、光源6を用いて、液晶層が3℃上昇するまでに紫外線を照射した以外は、実施例A1〜A7と同様にして、液晶表示素子を製造した。
(比較例1〜7)
光源を変更するとともに、液晶層が表5に示す温度に上昇するまで紫外線を照射した以外は、実施例A1〜A7と同様にして、液晶表示素子を製造した。
4.評価
各実施例及び各比較例で得られた液晶表示素子について、以下の評価を行った。
4−1.プレチルト角形成の評価
得られた液晶表示素子において、液晶分子のプレチルト角を、プレチルト角測定システム(シンテック社製、「OPTIPRO」)を用いて測定し、以下の基準に従って評価した。
[評価基準]
A:88.5°以下
B:88.5°超、89°以下
C:89°超、89.5°以下
D:89.5°超
4−2.重合性モノマの残存量の評価
得られた液晶表示素子から液晶組成物を抽出し、高速液体クロマトグラフィーを用いて、残存する重合性モノマを分析し、以下の基準に従って評価した。
[評価基準]
A:検出限界以下
B:0.001質量%以上、0.01質量%未満
C:0.01質量%以上、0.1質量%未満
D:0.1質量%以上
4−3.表示不良(焼き付き)の評価
得られた液晶表示素子の表示エリア内に、所定の固定パターンを1000時間表示させた。その後、全画面均一表示を行ったときの固定パターンの残像のレベルを目視にて確認し、以下の基準に従って評価を行った。
[評価基準]
A:残像無し
B:残像ごく僅かに有るも、許容できるレベル
C:残像有り、許容できないレベル
D:残像有り、かなり劣悪
4−4.VHRの評価
得られた液晶表示素子にパルス状の5Vの交流電圧を、パルス周波数60Hz、パルス幅16.67msecで印加した。その後、液晶物性評価システム(東陽テクニカ社製、「6254型」)を用いて、交流電圧の印加前後でVHRの測定を行い、以下の基準に従って評価した。
[評価基準]
A:1%未満の低下
B:1%以上、3%未満の低下
C:3%以上、5%未満の低下
D:5%以上の低下
以上の結果を表2〜表4に示す。
Figure 2020106612
Figure 2020106612
Figure 2020106612
表2〜表4に示すように、照射する紫外線における波長313nmのピークの強度と波長365nmのピークの強度との比を所定の範囲に設定することにより、表示不良の発生やVHRの低下を防止することができた。
また、消費工程を追加することで、重合性モノマの残存量を低減することができた。これに伴って、表示不良の発生が低減する傾向を示した。
これに対して、照射する紫外線における波長313nmのピークの強度と波長365nmのピークの強度との比が所定の範囲からズレると、プレチルト角が十分に付与できないか、VHRの低下が著しかった。
実施例A1〜A7、B1〜B7、C1〜C7、D1〜D7において、重合性モノマAに代えて前記式(SAL−1.1)〜(SAL−2.9)の化合物、重合性モノマBに代えて前記式(P−1.1)〜(P−1.3)の化合物を用いた場合も、プレチルト角形成、重合性モノマの残存量、表示不良、VHRの各評価において良好な性能を示した。
また、実施例C1〜C7において、1回目の紫外線照射条件と2回目の紫外線照射条件とを反転させて、液晶組成物及び液晶層に紫外線を照射したところ、実施例C1〜C7と同じ傾向の結果が得られた。
1 液晶表示素子
AM アクティブマトリクス基板
CF カラーフィルタ基板
2 第1の基板
3 第2の基板
4 液晶層
5 画素電極層
6 共通電極層
7 第1の偏光板
8 第2の偏光板
9 カラーフィルタ
11 ゲートバスライン
12 データバスライン
13 画素電極
14 Cs電極
15 ソース電極
16 ドレイン電極
17 コンタクトホール

Claims (11)

  1. 液晶分子と、少なくとも1種の重合性モノマとを含有する液晶組成物を介して、一対の基板が対向するように配置する工程と、
    前記液晶組成物に紫外線を照射することにより、前記少なくとも1種の重合性モノマを重合させる工程と、を有し、
    前記紫外線は、波長313nmにおける強度X1に対する波長365nmにおける強度X2の比(X2/X1)が5〜70であることを特徴とする液晶表示素子の製造方法。
  2. 前記強度X1が0.05〜50mW/cmである請求項1に記載の液晶表示素子の製造方法。
  3. 前記紫外線を照射する工程は、前記少なくとも1種の重合性モノマを重合させて液晶層を形成する液晶層形成工程である請求項1又は2に記載の液晶表示素子の製造方法。
  4. 前記液晶層形成工程において、前記液晶組成物に電圧を印加しつつ、前記紫外線を照射する請求項3に記載の液晶表示素子の製造方法。
  5. 前記液晶層形成工程において、前記液晶層の温度が0.1〜5℃上昇するまで、前記紫外線を照射する請求項3又は4に記載の液晶表示素子の製造方法。
  6. 前記紫外線を照射する工程は、前記少なくとも1種の重合性モノマを重合させて形成された液晶層に紫外線を照射するモノマ消費工程である請求項1又は2に記載の液晶表示素子の製造方法。
  7. 前記モノマ消費工程において、前記液晶層の温度が1〜20℃上昇するまで、前記紫外線を照射する請求項6に記載の液晶表示素子の製造方法。
  8. 前記一対の基板を対向して配置する工程において、少なくとも一方の前記基板は、配向層を介すことなく、前記液晶組成物に直接接触するように配置され、
    前記少なくとも1種の重合性モノマは、少なくとも1つの吸着基を有する重合性モノマを含む請求項1〜7のいずれか1項に記載の液晶表示素子の製造方法。
  9. 前記少なくとも1種の重合性モノマは、吸着基を有さない重合性モノマを含有する請求項1〜8のいずれか1項に記載の液晶表示素子の製造方法。
  10. 前記吸着基を有さない重合性モノマは、下記一般式(P)で表される請求項9に記載の液晶表示素子の製造方法。
    Figure 2020106612
    (式(P)中、Rp1は、水素原子、フッ素原子、シアノ基、炭素原子数1〜15のアルキル基又は−Spp2−Pp2を表し、前記アルキル基中に存在する1個又は2個以上の−CH−は、それぞれ独立して、−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−で置換されてもよいが、隣接する2個以上の−CH−が同時に−O−で置換されることはなく、前記アルキル基中に存在する1個又は2個以上の水素原子は、それぞれ独立して、シアノ基、フッ素原子又は塩素原子で置換されてもよく、
    p1及びPp2は、それぞれ独立して、下記一般式(Pp1−1)〜式(Pp1−9)のいずれかを表し、
    Figure 2020106612
    [式中、Rp11及びRp12は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のハロゲン化アルキル基を表し、Wp11は、単結合、−O−、−COO−又は−CH−を表し、tp11は、0、1又は2を表すが、分子内にRp11、Rp12、Wp11及び/又はtp11が複数存在する場合、それらは同一であっても異なってもよい。]
    Spp1及びSpp2は、それぞれ独立して、単結合又はスペーサ基を表し、
    p1及びZp2は、それぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRZP1−、−NRZP1−CO−、−SCH−、−CHS−、−CH=CRZP1−COO−、−CH=CRZP1−OCO−、−COO−CRZP1=CH−、−OCO−CRZP1=CH−、−COO−CRZP1=CH−COO−、−COO−CRZP1=CH−OCO−、−OCO−CRZP1=CH−COO−、−OCO−CRZP1=CH−OCO−、−(CH−COO−、−(CH−OCO−、−OCO−(CH−、−(C=O)−O−(CH−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−又は−C≡C−[式中、RZP1は、それぞれ独立して、水素原子又は炭素原子数1〜4のアルキル基を表すが、分子内にRZP1が複数存在する場合、それらは同一であっても異なってもよい。]を表し、
    p1、Ap2及びAp3は、それぞれ独立して、
    (a) 1,4−シクロヘキシレン基[この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は、−O−で置換されてもよい。]
    (b) 1,4−フェニレン基[この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。]及び
    (c) ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基、フェナントレン−2,7−ジイル基又はアントラセン−2,6−ジイル基[これらの基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は、−N=で置換されてもよい。]
    からなる群より選ばれる基[前記基(a)、基(b)及び基(c)は、それぞれ独立して、この基中に存在する水素原子が、ハロゲン原子、炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルケニル基、シアノ基又は−Spp2−Pp2で置換されてもよい。]を表し、
    p1は、0、1、2又は3を表し、分子内にZp1、Ap2、Spp2及び/又はPp2が複数存在する場合、それらは同一であっても異なってもよいが、Ap3は、mp1が0で、Ap1が前記基(c)である場合、単結合であってもよい。)
  11. 一対の基板と、該一対の基板間に配置され、少なくとも1種の重合性モノマの紫外線照射による重合物を含む液晶層とを備え、
    前記紫外線は、波長313nmにおける強度X1に対する波長365nmにおける強度X2の比(X2/X1)が5〜70であることを特徴とする液晶表示素子。

JP2018243459A 2018-12-26 2018-12-26 液晶表示素子の製造方法及び液晶表示素子 Active JP7331361B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018243459A JP7331361B2 (ja) 2018-12-26 2018-12-26 液晶表示素子の製造方法及び液晶表示素子
TW108145484A TWI811501B (zh) 2018-12-26 2019-12-12 液晶顯示元件的製造方法
CN201911271058.9A CN111381401A (zh) 2018-12-26 2019-12-12 液晶显示元件的制造方法及液晶显示元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243459A JP7331361B2 (ja) 2018-12-26 2018-12-26 液晶表示素子の製造方法及び液晶表示素子

Publications (2)

Publication Number Publication Date
JP2020106612A true JP2020106612A (ja) 2020-07-09
JP7331361B2 JP7331361B2 (ja) 2023-08-23

Family

ID=71216928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243459A Active JP7331361B2 (ja) 2018-12-26 2018-12-26 液晶表示素子の製造方法及び液晶表示素子

Country Status (3)

Country Link
JP (1) JP7331361B2 (ja)
CN (1) CN111381401A (ja)
TW (1) TWI811501B (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177408A (ja) * 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2008116675A (ja) * 2006-11-02 2008-05-22 Au Optronics Corp 液晶パネル製造装置及び液晶パネルの製造方法
US20140002774A1 (en) * 2012-06-27 2014-01-02 Au Optronics Corporation Blue phase liquid crystal display panel and fabricating method thereof
WO2018079333A1 (ja) * 2016-10-26 2018-05-03 Dic株式会社 液晶組成物用自発配向助剤
WO2018180850A1 (ja) * 2017-03-30 2018-10-04 Dic株式会社 液晶表示素子の製造方法
WO2020008826A1 (ja) * 2018-07-04 2020-01-09 Jnc株式会社 化合物、液晶組成物および液晶表示素子
JP2020008673A (ja) * 2018-07-05 2020-01-16 Jnc株式会社 液晶表示素子の製造方法および液晶表示素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924801B2 (ja) * 2006-03-22 2012-04-25 Jsr株式会社 液晶の配向剤、配向膜、液晶表示素子および光学部材
KR102538719B1 (ko) * 2016-12-08 2023-06-01 메르크 파텐트 게엠베하 중합가능한 화합물 및 액정 디스플레이에서 이의 용도

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177408A (ja) * 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2008116675A (ja) * 2006-11-02 2008-05-22 Au Optronics Corp 液晶パネル製造装置及び液晶パネルの製造方法
CN101236321A (zh) * 2006-11-02 2008-08-06 哈利盛东芝照明株式会社 液晶面板制造装置和液晶面板制造方法
US20140002774A1 (en) * 2012-06-27 2014-01-02 Au Optronics Corporation Blue phase liquid crystal display panel and fabricating method thereof
WO2018079333A1 (ja) * 2016-10-26 2018-05-03 Dic株式会社 液晶組成物用自発配向助剤
WO2018180850A1 (ja) * 2017-03-30 2018-10-04 Dic株式会社 液晶表示素子の製造方法
WO2020008826A1 (ja) * 2018-07-04 2020-01-09 Jnc株式会社 化合物、液晶組成物および液晶表示素子
JP2020008673A (ja) * 2018-07-05 2020-01-16 Jnc株式会社 液晶表示素子の製造方法および液晶表示素子

Also Published As

Publication number Publication date
TW202024756A (zh) 2020-07-01
JP7331361B2 (ja) 2023-08-23
CN111381401A (zh) 2020-07-07
TWI811501B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
JP7255495B2 (ja) 液晶組成物
JP6610833B2 (ja) 液晶組成物用自発配向助剤
JP2020052305A (ja) 液晶表示素子の製造方法
JP7288166B2 (ja) 液晶組成物
JP6747611B2 (ja) 液晶表示素子の製造方法
JP7255496B2 (ja) 液晶組成物
JP7331361B2 (ja) 液晶表示素子の製造方法及び液晶表示素子
JP6841388B2 (ja) 液晶表示素子
WO2020110883A1 (ja) 配向助剤、液晶組成物及び液晶表示素子
JP6743987B2 (ja) 基板および液晶表示素子
JP6733842B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP7215151B2 (ja) 液晶組成物、及びそれを用いた液晶表示素子
JP6844749B2 (ja) 重合性液晶組成物及び液晶表示素子
JP6863522B2 (ja) 配向助剤、液晶組成物および液晶表示素子
JP2020105238A (ja) 液晶組成物及び液晶表示素子
JP2020050871A (ja) 配向助剤、液晶組成物及び液晶表示素子
JP2021148973A (ja) 液晶表示素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113