JP2020099257A - Vacuum cooling device and vacuum cooling method - Google Patents

Vacuum cooling device and vacuum cooling method Download PDF

Info

Publication number
JP2020099257A
JP2020099257A JP2018240110A JP2018240110A JP2020099257A JP 2020099257 A JP2020099257 A JP 2020099257A JP 2018240110 A JP2018240110 A JP 2018240110A JP 2018240110 A JP2018240110 A JP 2018240110A JP 2020099257 A JP2020099257 A JP 2020099257A
Authority
JP
Japan
Prior art keywords
water
temperature
vacuum pump
processing tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018240110A
Other languages
Japanese (ja)
Other versions
JP7232400B2 (en
Inventor
雅夫 蔵野
Masao Kurano
雅夫 蔵野
久美 松矢
Hisami Matsuya
久美 松矢
泰三 松川
Taizo Matsukawa
泰三 松川
泰範 狩野
Yasunori Kano
泰範 狩野
松本 拓也
Takuya Matsumoto
拓也 松本
仁志 武井
Hitoshi Takei
仁志 武井
将平 西内
Shohei Nishiuchi
将平 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018240110A priority Critical patent/JP7232400B2/en
Publication of JP2020099257A publication Critical patent/JP2020099257A/en
Application granted granted Critical
Publication of JP7232400B2 publication Critical patent/JP7232400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

To reduce useless consumption of water and electric power by shortening operation time during backup operation mode where only normal temperature water is used as water supplied to a water-sealed vacuum pump.SOLUTION: A vacuum cooling device comprises: a processing tank 2 in which food F is stored; depressurization means 3 having a water-sealed vacuum pump 11 for sucking and discharging gas in the processing tank 2 to the outside; pressure-recovering means 4 for introducing outside air into the decompressed room of the processing tank 2; a product temperature sensor 38 for detecting the temperature of the food F stored in the processing tank 2; a water temperature sensor 39 for detecting the temperature of water supplied to the vacuum pump 11; and control means. When the temperature detected by the product temperature sensor 38 becomes equal to or lower than "the temperature detected by the water temperature sensor 39+a set value" during depressurizing the inside of the processing tank 2 by the depressurization means 3, the depressurization in the processing tank 2 is stopped. In a case where the product temperature sensor 38 is replaced with a pressure sensor 37, the depressurization in the processing tank 2 may be stopped when saturation temperature at the pressure detected by the pressure sensor 37 becomes equal to or lower than "temperature detected by the water temperature sensor 39+a set value".SELECTED DRAWING: Figure 1

Description

本発明は、処理槽内を減圧して食品を冷却する真空冷却装置および真空冷却方法に関するものである。 The present invention relates to a vacuum cooling device and a vacuum cooling method for cooling food by reducing the pressure in a processing tank.

従来、下記特許文献1に開示されるように、冷却槽(4)内を減圧する手段として、蒸気凝縮用の熱交換器(6)と水封式の真空ポンプ(7)とを備えた真空冷却装置が知られている。この装置では、熱交換器(6)の通水および真空ポンプ(7)の封水として、常温水と冷水とを切替可能とされる。具体的には、熱交換器(6)および真空ポンプ(7)には、常温水供給ライン(24)からの常温水と、チラー(25)で冷却された冷水タンク(38)からの冷水とを切り替えて供給可能とされる。そして、熱交換器(6)を通過後の水は、排水ライン(31)から排水されるか、冷水タンク(38)へ戻される。 Conventionally, as disclosed in Patent Document 1 below, a vacuum provided with a heat exchanger (6) for steam condensation and a water-sealed vacuum pump (7) as means for reducing the pressure in the cooling tank (4). Cooling devices are known. In this apparatus, normal temperature water and cold water can be switched as water for the heat exchanger (6) and water for sealing the vacuum pump (7). Specifically, the heat exchanger (6) and the vacuum pump (7) are supplied with normal temperature water from the normal temperature water supply line (24) and cold water from the cold water tank (38) cooled by the chiller (25). It is possible to supply by switching. Then, the water that has passed through the heat exchanger (6) is drained from the drain line (31) or returned to the cold water tank (38).

この装置では、まず、待機工程として、冷水タンク(38)内の水がチラー(25)との間で循環されて冷却される(特許文献1の図2)。その後、冷却初期工程として、熱交換器(6)の通水を停止した状態で、封水として常温水を供給しつつ真空ポンプ(7)を作動させて、冷却槽(4)内を減圧する(特許文献1の図3)。その後、冷却中期工程として、熱交換器(6)の通水を開始し(特許文献1の図4)、さらに、冷却後期工程として、熱交換器(6)の通水と真空ポンプ(7)の封水を、常温水から冷水に切り替えて、冷却槽(4)内をさらに減圧する(特許文献1の図5)。熱交換器(6)に冷水を通す場合、熱交換器(6)を通過後の冷水は、冷水タンク(38)に戻される。 In this device, first, as a standby step, water in the cold water tank (38) is circulated between the chiller (25) and cooled (FIG. 2 of Patent Document 1). Then, as an initial cooling step, the vacuum pump (7) is operated while the water flow through the heat exchanger (6) is stopped, and room temperature water is supplied as sealing water to reduce the pressure in the cooling tank (4). (FIG. 3 of Patent Document 1). After that, as the middle stage cooling step, water flow through the heat exchanger (6) is started (FIG. 4 of Patent Document 1), and as the latter stage cooling step, water flow through the heat exchanger (6) and the vacuum pump (7). The sealing water of the above is switched from normal temperature water to cold water to further reduce the pressure in the cooling tank (4) (FIG. 5 of Patent Document 1). When passing cold water through the heat exchanger (6), the cold water that has passed through the heat exchanger (6) is returned to the cold water tank (38).

特開2004−170060号公報(段落0046−0053、図1−5)JP-A-2004-170060 (paragraph 0046-0053, FIG. 1-5)

熱交換器や真空ポンプへの給水として、常温水と冷水とを切り替えて運転する真空冷却装置では、チラーの故障時や過負荷時(冷水タンク内の水温が上限温度を超えた時)、冷水を用いることなく常温水だけで運転(バックアップ運転モードで運転)したい場合がある。 In the vacuum cooling device that operates by switching between normal temperature water and cold water as water supply to the heat exchanger and vacuum pump, when the chiller fails or is overloaded (when the water temperature in the cold water tank exceeds the upper limit temperature), the cold water There is a case where it is desired to operate only in normal temperature water without using (operating in backup operation mode).

冷却終了条件として、品温が冷却目標温度以下になるか、冷却時間が冷却最大時間を超えるかを設定していても、バックアップ運転モードの場合、常温水だけを使用することに伴い、通常、冷却目標温度までの冷却ができず、冷却最大時間の経過が実質的な終了条件となる。そのため、槽内圧力が到達限界(到達可能な真空度の限界)に至っても、言い換えれば減圧能力との関係でそれ以上の冷却ができない状況になっても、冷却最大時間の経過を待つことになり、時間とエネルギ(真空ポンプの水や電力)を無駄に消費するおそれがある。 Even if you have set as the cooling end condition whether the product temperature is below the cooling target temperature or whether the cooling time exceeds the maximum cooling time, in the backup operation mode, it is usually accompanied by using normal temperature water, The cooling to the cooling target temperature cannot be performed, and the elapse of the maximum cooling time is a substantial ending condition. Therefore, even if the pressure inside the tank reaches the limit (the limit of the degree of vacuum that can be reached), in other words, even if it is not possible to further cool it due to the pressure reduction capability, it is necessary to wait for the maximum cooling time to elapse. Therefore, time and energy (water and electric power of the vacuum pump) may be wasted.

また、冷水タンク内の水温が上限温度を超えることで、いきなり常温水によるバックアップ運転モードに切り替えるのでは、上述したような弊害があるので、事前にこれを抑制できれば好適である。冷水タンク内の水温がある程度上昇したことを検知し、事前に常温水から冷水への切替えタイミングを遅らせることができれば、チラーの冷却負荷を軽減し、バックアップ運転モードへの切替えを抑制することができる。できるだけバックアップ運転モードへの移行を事前に抑制できれば、バックアップ運転モードにおける時間とエネルギ(真空ポンプの水や電力)の無駄な消費を削減することができる。 Further, if the water temperature in the cold water tank exceeds the upper limit temperature and the backup operation mode is switched to normal temperature water suddenly, there are the above-mentioned adverse effects. Therefore, it is preferable to suppress this in advance. If it is possible to detect that the water temperature in the cold water tank has risen to some extent and delay the timing of switching from room temperature water to cold water in advance, the cooling load of the chiller can be reduced and switching to the backup operation mode can be suppressed. .. If the transition to the backup operation mode can be suppressed in advance as much as possible, it is possible to reduce unnecessary consumption of time and energy (water or electric power of the vacuum pump) in the backup operation mode.

そこで、本発明が解決しようとする課題は、運転時間を短縮し、水や電力の消費の無駄を削減することができる真空冷却装置および真空冷却方法を実現することにある。特に、通常運転モードとバックアップ運転モードとを切替可能な真空冷却装置において、バックアップ運転モードで運転する際、運転時間を短縮し、水や電力の消費の無駄を削減することを課題とする。 Therefore, the problem to be solved by the present invention is to realize a vacuum cooling device and a vacuum cooling method that can reduce operating time and waste of water and electric power consumption. In particular, in a vacuum cooling device capable of switching between a normal operation mode and a backup operation mode, it is an object to shorten the operation time and reduce waste of water and power consumption when operating in the backup operation mode.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプを有する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記各手段を制御する制御手段とを備え、前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサとの内、少なくとも一方のセンサを備えると共に、前記真空ポンプへの給水または前記真空ポンプ内の封水の温度を検出する水温センサを備え、前記減圧手段により前記処理槽内を減圧中、前記各センサの検出値を監視して、前記品温センサの検出温度、または前記圧力センサの検出圧力における飽和温度が、「前記水温センサの検出温度+設定値」以下になることを条件に、前記処理槽内の減圧を停止することを特徴とする真空冷却装置である。 The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is a water-sealing type tank for sucking and discharging a processing tank containing food and a gas in the processing tank to the outside. A depressurizing unit having a vacuum pump, a depressurizing unit for introducing outside air into the depressurized processing tank, and a control unit for controlling each unit, and a pressure sensor for detecting the pressure in the processing tank, A water temperature sensor that includes at least one of a product temperature sensor that detects the temperature of food contained in the processing tank, and that detects the temperature of water supplied to the vacuum pump or sealing water in the vacuum pump. While decompressing the inside of the processing tank by the decompression means, the detection value of each sensor is monitored, and the detection temperature of the product temperature sensor or the saturation temperature at the detection pressure of the pressure sensor is “the water temperature sensor. The vacuum cooling device is characterized in that the depressurization in the processing tank is stopped under the condition that the detected temperature + the set value of "1.

請求項1に記載の発明によれば、処理槽内の圧力を検出する圧力センサと、処理槽内に収容された食品の温度を検出する品温センサとの内、少なくとも一方のセンサを備えると共に、真空ポンプへの給水または真空ポンプ内の封水の温度を検出する水温センサを備える。そして、減圧手段により処理槽内を減圧中、各センサの検出値を監視して、品温センサの検出温度、または圧力センサの検出圧力における飽和温度が、「水温センサの検出温度+設定値」以下になることを条件に、処理槽内の減圧を停止する。真空ポンプへの給水または真空ポンプ内の封水の温度に応じて、槽内圧力の到達限界ひいては食品の冷却限界が決まるので、その限界域に入ることを条件に冷却を終了することで、それ以上の冷却を有効に行えないにも関わらず無駄に運転を続けることが防止される。これにより、単に冷却最大時間の経過まで冷却する場合と比較して、運転時間を短縮できると共に、水や電力の消費の無駄を削減することができる。 According to the first aspect of the present invention, at least one of a pressure sensor that detects the pressure in the processing tank and an article temperature sensor that detects the temperature of the food contained in the processing tank is provided. , A water temperature sensor for detecting the temperature of the water supplied to the vacuum pump or the sealing water in the vacuum pump. Then, while decompressing the inside of the processing tank by the decompression means, the detection value of each sensor is monitored, and the detection temperature of the product temperature sensor or the saturation temperature at the detection pressure of the pressure sensor is “the detection temperature of the water temperature sensor+the set value”. The pressure reduction in the processing tank is stopped under the following conditions. Depending on the temperature of the water supplied to the vacuum pump or the sealing water in the vacuum pump, the reaching limit of the tank pressure, and thus the cooling limit of food, is determined. It is possible to prevent wasteful operation even if the above cooling cannot be performed effectively. As a result, it is possible to reduce operating time and reduce waste of water and electric power consumption as compared with a case where cooling is simply performed until the maximum cooling time elapses.

請求項2に記載の発明は、前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、前記熱交換器および前記真空ポンプへの給水として、常温水と冷水とを切替可能とされ、前記熱交換器および前記真空ポンプへの給水として常温水を用いて前記処理槽内を減圧中、前記品温センサの検出温度、または前記圧力センサの検出圧力における飽和温度が、「前記水温センサの検出温度+設定値」以下になってから設定時間経過すると、前記処理槽内の減圧を停止することを特徴とする請求項1に記載の真空冷却装置である。 According to a second aspect of the present invention, the depressurizing means includes a heat exchanger for vapor condensation in addition to the vacuum pump, and normal temperature water and cold water are switched as water supply to the heat exchanger and the vacuum pump. It is possible, while decompressing the inside of the processing tank using normal temperature water as water supply to the heat exchanger and the vacuum pump, the temperature detected by the temperature sensor, or the saturation temperature at the pressure detected by the pressure sensor, The vacuum cooling device according to claim 1, wherein when the set time elapses after the temperature becomes equal to or lower than the “detected temperature of the water temperature sensor+the set value”, the depressurization in the processing tank is stopped.

請求項2に記載の発明によれば、熱交換器および真空ポンプへの給水として常温水を用いて処理槽内を減圧中、品温センサの検出温度、または圧力センサの検出圧力における飽和温度が、「水温センサの検出温度+設定値」以下になってから設定時間経過すると、処理槽内の減圧を停止する。温度と時間とに基づいて制御することで、より確実に安定して、到達限界域にて冷却を終了することができる。 According to the second aspect of the present invention, the temperature detected by the temperature sensor or the saturation temperature at the pressure detected by the pressure sensor is reduced while decompressing the inside of the processing tank by using room temperature water as water supply to the heat exchanger and the vacuum pump. , When the set time elapses after the temperature becomes equal to or lower than “the temperature detected by the water temperature sensor+the set value”, the depressurization in the processing tank is stopped. By controlling based on the temperature and the time, it is possible to more reliably and stably complete the cooling in the reaching limit region.

請求項3に記載の発明は、前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、前記熱交換器および前記真空ポンプへの給水を貯留し、貯留水をチラーにより冷却可能な冷水タンクを備え、通常運転モードとバックアップ運転モードとを切り替えて運転可能とされ、通常運転モードでは、品温が給水切替温度以下になると、前記熱交換器および前記真空ポンプへの給水を、常温水から冷水に切り替えて、前記処理槽内を減圧し、バックアップ運転モードでは、前記熱交換器および前記真空ポンプへの給水として常温水を用いて、前記処理槽内を減圧し、前記冷水タンク内の水温に基づき、前記給水切替温度を変更することを特徴とする請求項1または請求項2に記載の真空冷却装置である。 In the invention according to claim 3, as the depressurizing means, a heat exchanger for vapor condensation is provided in addition to the vacuum pump, the feed water to the heat exchanger and the vacuum pump is stored, and the stored water is stored by a chiller. It has a chilled water tank that can be cooled, and can be operated by switching between normal operation mode and backup operation mode.In the normal operation mode, when the product temperature falls below the water supply switching temperature, water supply to the heat exchanger and the vacuum pump is performed. Is switched from room temperature water to cold water to decompress the inside of the processing tank, and in the backup operation mode, using room temperature water as water supply to the heat exchanger and the vacuum pump to decompress the inside of the processing tank, The vacuum cooling device according to claim 1 or 2, wherein the feed water switching temperature is changed based on a water temperature in a cold water tank.

請求項3に記載の発明によれば、通常運転モードでは、品温が給水切替温度以下になると常温水から冷水に切り替えて処理槽内を減圧する一方、バックアップ運転モードでは冷水を用いず常温水を用いて処理槽内を減圧する。そして、冷水タンク内の水温に基づき、通常運転モードにおける給水切替温度を変更可能とされる。冷水タンク内の水温に基づきチラーの負荷を監視して、常温水から冷水への切替時期を調整することで、チラーの負荷を抑えることができる。 According to the third aspect of the invention, in the normal operation mode, when the product temperature becomes equal to or lower than the water supply switching temperature, normal temperature water is switched to cold water to depressurize the inside of the treatment tank, while in the backup operation mode, cold water is not used and normal temperature water is used. Is used to reduce the pressure inside the processing tank. Then, the water supply switching temperature in the normal operation mode can be changed based on the water temperature in the cold water tank. The load of the chiller can be suppressed by monitoring the load of the chiller based on the water temperature in the cold water tank and adjusting the timing of switching from normal temperature water to cold water.

請求項4に記載の発明は、前記冷水タンク内の水温がモード切替温度以上になると、通常運転モードからバックアップ運転モードに切り替えられ、前記冷水タンク内の水温が前記モード切替温度よりも低い所定温度以上になると、通常運転モードにおける前記給水切替温度を下げることを特徴とする請求項3に記載の真空冷却装置である。 In the invention according to claim 4, when the water temperature in the cold water tank becomes equal to or higher than the mode switching temperature, the normal operation mode is switched to the backup operation mode, and the water temperature in the cold water tank is a predetermined temperature lower than the mode switching temperature. The vacuum cooling device according to claim 3, wherein the water supply switching temperature in the normal operation mode is lowered when the above is achieved.

請求項4に記載の発明によれば、冷水タンク内の水温がモード切替温度よりも低い所定温度以上になると、通常運転モードにおける給水切替温度を下げることで、常温水から冷水への切替時期を遅らせることができる。これにより、冷水タンク内の水温上昇を抑えて、バックアップ運転モードへの切替えを抑制することができる。 According to the invention described in claim 4, when the water temperature in the cold water tank becomes equal to or higher than the predetermined temperature lower than the mode switching temperature, the water supply switching temperature in the normal operation mode is lowered to thereby switch the normal temperature water to the cold water. Can be delayed. As a result, it is possible to suppress an increase in water temperature in the cold water tank and suppress switching to the backup operation mode.

請求項5に記載の発明は、水封式の真空ポンプを有する減圧手段を用いて処理槽内を減圧することで、前記処理槽内の食品の冷却を図る真空冷却方法であって、前記処理槽内の食品の温度、または前記処理槽内の圧力における飽和温度が、「前記真空ポンプへの給水温度+設定値」以下になるか、「前記真空ポンプ内の封水温度+設定値」以下になることを条件に、前記処理槽内の減圧を停止することを特徴とする真空冷却方法である。 The invention according to claim 5 is a vacuum cooling method for cooling food in the treatment tank by decompressing the inside of the treatment tank by using a pressure reducing means having a water-sealed vacuum pump. The temperature of the food in the tank, or the saturation temperature at the pressure in the processing tank is less than or equal to "the temperature of water supplied to the vacuum pump + set value" or less than "the temperature of sealed water in the vacuum pump + set value". The vacuum cooling method is characterized in that the depressurization in the processing tank is stopped under the condition that

請求項5に記載の発明によれば、水封式の真空ポンプを有する減圧手段を用いて処理槽内を減圧することで、処理槽内の食品の冷却を図る。そして、処理槽内の食品の温度、または処理槽内の圧力における飽和温度が、「真空ポンプへの給水温度+設定値」以下になるか、「真空ポンプ内の封水温度+設定値」以下になることを条件に、処理槽内の減圧を停止する。真空ポンプへの給水または真空ポンプ内の封水の温度に応じて、槽内圧力の到達限界ひいては食品の冷却限界が決まるので、その限界域に入ることを条件に冷却を終了することで、それ以上の冷却を有効に行えないにも関わらず無駄に運転を続けることが防止される。これにより、単に冷却最大時間の経過まで冷却する場合と比較して、運転時間を短縮できると共に、水や電力の消費の無駄を削減することができる。 According to the fifth aspect of the invention, the food in the treatment tank is cooled by reducing the pressure inside the treatment tank by using the decompression means having a water-sealed vacuum pump. Then, the temperature of the food in the treatment tank or the saturation temperature at the pressure in the treatment tank is less than or equal to the "water supply temperature to the vacuum pump + set value" or less than the "sealing water temperature in the vacuum pump + set value". The pressure reduction in the processing tank is stopped under the condition that Depending on the temperature of the water supplied to the vacuum pump or the sealing water in the vacuum pump, the reaching limit of the tank pressure, and thus the cooling limit of food, is determined. It is possible to prevent wasteful operation even if the above cooling cannot be performed effectively. As a result, it is possible to reduce operating time and reduce waste of water and electric power consumption as compared with a case where cooling is simply performed until the maximum cooling time elapses.

さらに、請求項6に記載の発明は、前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、前記熱交換器および前記真空ポンプへの給水として、常温水と冷水とを切替可能とされ、前記熱交換器および前記真空ポンプへの給水として常温水を用いて前記処理槽内を減圧中、前記処理槽内の食品の温度、または前記処理槽内の圧力における飽和温度が、「前記真空ポンプへの給水温度+設定値」以下になってから設定時間経過するか、「前記真空ポンプ内の封水温度+設定値」以下になってから設定時間経過すると、前記処理槽内の減圧を停止することを特徴とする請求項5に記載の真空冷却方法である。 Further, in the invention according to claim 6, as the depressurizing means, a heat exchanger for vapor condensation is provided in addition to the vacuum pump, and normal temperature water and cold water are used as water supply to the heat exchanger and the vacuum pump. The heat exchanger and the vacuum pump can be decompressed in the treatment tank by using room temperature water as water supply to the heat exchanger and the vacuum pump, the temperature of the food in the treatment tank, or the saturation temperature at the pressure in the treatment tank. If the set time elapses after the temperature becomes equal to or lower than the "water supply temperature to the vacuum pump + set value" or the set time elapses after the temperature becomes equal to or lower than the "sealing water temperature in the vacuum pump + set value", The vacuum cooling method according to claim 5, wherein the pressure reduction in the tank is stopped.

請求項6に記載の発明によれば、熱交換器および真空ポンプへの給水として常温水を用いて処理槽内を減圧中、処理槽内の食品の温度、または処理槽内の圧力における飽和温度が、「真空ポンプへの給水温度+設定値」以下になってから設定時間経過するか、「真空ポンプ内の封水温度+設定値」以下になってから設定時間経過すると、処理槽内の減圧を停止する。温度と時間とに基づいて制御することで、より確実に安定して、到達限界域にて冷却を終了することができる。 According to the invention as set forth in claim 6, while decompressing the inside of the treatment tank by using room temperature water as water supply to the heat exchanger and the vacuum pump, the temperature of the food in the treatment tank or the saturation temperature at the pressure in the treatment tank. However, if the set time elapses after the temperature falls below the “water supply temperature to the vacuum pump + set value”, or if the set time elapses after the “sealed water temperature inside the vacuum pump + set value” falls, Stop decompression. By controlling based on the temperature and the time, it is possible to more reliably and stably complete the cooling in the reaching limit region.

本発明の真空冷却装置および真空冷却方法によれば、運転時間を短縮し、水や電力の消費の無駄を削減することができる。特に、通常運転モードとバックアップ運転モードとを切替可能な真空冷却装置において、バックアップ運転モードで運転する際、運転時間を短縮し、水や電力の消費の無駄を削減することができる。 According to the vacuum cooling device and the vacuum cooling method of the present invention, the operating time can be shortened and waste of water and electric power consumption can be reduced. In particular, in the vacuum cooling device capable of switching between the normal operation mode and the backup operation mode, when operating in the backup operation mode, it is possible to shorten the operation time and reduce waste of water and power consumption.

本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示している。It is the schematic which shows the vacuum cooling apparatus of one Example of this invention, and has shown one part in section. 通常運転モードでの運転内容を示すフローチャートである。It is a flow chart which shows the contents of operation in the normal operation mode. バックアップ運転モードでの運転内容を示すフローチャートである。It is a flowchart which shows the operation content in backup operation mode.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示している。
Hereinafter, specific examples of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing a vacuum cooling device 1 according to an embodiment of the present invention, a part of which is shown in cross section.

本実施例の真空冷却装置1は、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、減圧手段3で用いる水を貯留すると共に貯留水をチラー5により冷却可能な冷水タンク6と、前記各手段3,4やチラー5などを制御して処理槽2内の食品Fを冷却する制御手段(図示省略)とを備える。 The vacuum cooling device 1 of this embodiment includes a processing tank 2 in which the food F is stored, a decompression unit 3 for sucking and discharging the gas in the processing tank 2 to the outside, and an outside air introduced into the decompressed processing tank 2. Inside the processing tank 2 by controlling the cooling means 4 for storing the water used in the decompression means 3 and the cold water tank 6 capable of cooling the stored water by the chiller 5, the respective means 3, 4 and the chiller 5. The control means (illustration omitted) which cools the foodstuff F is provided.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドア(図示省略)で開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品Fを出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。なお、図示例では、食品Fは、ホテルパンや番重のような食品容器に入れられて、処理槽2内に収容されている。 The processing tank 2 is a hollow container that withstands the reduced pressure in the internal space, and can be opened and closed by a door (not shown). The processing tank 2 is typically formed in a substantially rectangular box shape, and its front opening can be opened and closed by a door. By opening the door, the food F can be put in and taken out of the processing tank 2, and by closing the door, the opening of the processing tank 2 can be airtightly closed. The doors may be provided on both the front surface and the back surface of the processing tank 2. In addition, in the illustrated example, the food F is put in a food container such as hotel bread or Banju and stored in the processing tank 2.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路7に、蒸気エゼクタ8、蒸気凝縮用の熱交換器9、逆止弁10、および水封式の真空ポンプ11を順に備える。 The decompression means 3 is a means for decompressing the inside of the processing tank 2 by sucking and discharging the gas (air or steam) in the processing tank 2 to the outside. In the present embodiment, the decompression unit 3 is provided with a steam ejector 8, a heat exchanger 9 for steam condensation, a check valve 10, and a water-sealed vacuum pump 11 in the exhaust path 7 from the inside of the processing tank 2. ..

蒸気エゼクタ8は、吸引口8aが処理槽2に接続されて設けられ、入口8bから出口8cへ向けて、エゼクタ給蒸路12からの蒸気がノズルで噴出可能とされる。入口8bから出口8cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口8aを介して出口8cへ吸引排出される。エゼクタ給蒸路12に設けたエゼクタ給蒸弁13の開閉を操作することで、蒸気エゼクタ8の作動の有無を切り替えることができる。 The vapor ejector 8 is provided with a suction port 8a connected to the processing tank 2, and the vapor from the ejector steam supply passage 12 can be ejected from a nozzle from the inlet 8b to the outlet 8c. By ejecting steam from the inlet 8b toward the outlet 8c, the gas in the processing tank 2 is also sucked and discharged to the outlet 8c through the suction port 8a. By operating the opening and closing of the ejector steam supply valve 13 provided in the ejector steam supply passage 12, the operation of the steam ejector 8 can be switched.

熱交換器9は、排気路7内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器9により、排気路7内の蒸気を、冷却水により冷却し凝縮させることができる。 The heat exchanger 9 is an indirect heat exchanger that exchanges heat without mixing the fluid in the exhaust passage 7 and the cooling water. The heat exchanger 9 allows the steam in the exhaust passage 7 to be cooled and condensed by cooling water.

真空ポンプ11は、本実施例では水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。そのために、真空ポンプ11の給水口11aには、封水給水路14を介して水が供給される。封水給水路14から給水しつつ真空ポンプ11を作動させると、真空ポンプ11は、吸気口11bから気体を吸入し、排気口11cへ排気および排水する。真空ポンプ11は、オンオフ制御されてもよいし、出力を調整可能とされてもよい。たとえば、真空ポンプ11は、インバータを用いて、モータの駆動周波数ひいては回転数を変更可能とされる。 The vacuum pump 11 is a water-sealed type in this embodiment, and as is well known, it is operated while supplying water called sealing water. Therefore, water is supplied to the water supply port 11 a of the vacuum pump 11 via the sealed water supply channel 14. When the vacuum pump 11 is operated while supplying water from the sealed water supply passage 14, the vacuum pump 11 sucks gas from the intake port 11b and exhausts and drains the gas to the exhaust port 11c. The vacuum pump 11 may be on/off controlled, or the output thereof may be adjustable. For example, the vacuum pump 11 can change the drive frequency of the motor and thus the number of rotations by using an inverter.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路15に、エアフィルタ16および給気弁17を順に備える。処理槽2内が減圧された状態で、給気弁17を開けると、外気がエアフィルタ16を介して処理槽2内へ導入され、処理槽2内を復圧することができる。給気弁17は、好ましくは開度調整可能な弁から構成される。 The pressure restoration means 4 is a means for introducing outside air into the depressurized processing tank 2 to restore the pressure in the processing tank 2. In the present embodiment, the pressure restoration means 4 is provided with an air filter 16 and an air supply valve 17 in order in the air supply passage 15 into the processing tank 2. When the air supply valve 17 is opened in a state where the inside of the processing tank 2 is depressurized, the outside air is introduced into the processing tank 2 through the air filter 16 and the pressure inside the processing tank 2 can be restored. The air supply valve 17 is preferably composed of a valve whose opening degree can be adjusted.

チラー5は、冷凍機(図示省略)を備え、冷水タンク6からの水を冷却する。冷凍機は、周知のとおり、圧縮機、凝縮器、膨張弁および蒸発器を備え、冷媒の圧縮、凝縮、膨張および蒸発の冷凍サイクルを実行する。そして、蒸発器において、冷媒と水とを混ぜることなく熱交換して、冷水タンク6からの水を冷却する。 The chiller 5 includes a refrigerator (not shown) and cools the water from the cold water tank 6. As is well known, the refrigerator includes a compressor, a condenser, an expansion valve and an evaporator, and executes a refrigeration cycle of compression, condensation, expansion and evaporation of a refrigerant. Then, in the evaporator, heat is exchanged without mixing the refrigerant and water to cool the water from the cold water tank 6.

冷水タンク6には、補給水路18を介して、適宜給水可能とされる。本実施例では、ボールタップ19により、冷水タンク6には補給水路18から適宜常温水が供給され、冷水タンク6内は設定水位に維持される。 Water can be appropriately supplied to the cold water tank 6 through the makeup water passage 18. In this embodiment, normal temperature water is appropriately supplied to the cold water tank 6 from the makeup water passage 18 by the ball tap 19, and the inside of the cold water tank 6 is maintained at the set water level.

冷水タンク6内の貯留水は、チラー5により冷却可能とされる。そのために、冷水タンク6は、チラー入口路20を介して、チラー5に接続される。チラー入口路20には、送水ポンプ21が設けられる。送水ポンプ21を作動させると、冷水タンク6からの水が、チラー入口路20を介してチラー5(より具体的には冷凍機の蒸発器)に通されて冷却され、冷水としてチラー出口路22へ導出される。 The stored water in the cold water tank 6 can be cooled by the chiller 5. To that end, the cold water tank 6 is connected to the chiller 5 via the chiller inlet channel 20. A water supply pump 21 is provided in the chiller inlet passage 20. When the water pump 21 is operated, the water from the cold water tank 6 is passed through the chiller inlet passage 20 to the chiller 5 (more specifically, the evaporator of the refrigerator) to be cooled, and the chiller outlet passage 22 is cooled as cold water. Is derived to.

チラー5からのチラー出口路22は、冷水給水路23と循環戻し路24とに分岐される。チラー出口路22からの冷水を、熱交換器9や真空ポンプ11への冷水給水路23へ送るか、冷水タンク6への循環戻し路24へ送るかは、切替可能とされる。本実施例では、冷水給水路23と循環戻し路24との分岐部に設けた三方弁からなる切替弁25により、チラー5からの冷水を冷水給水路23へ送るか、循環戻し路24へ送るかが切り替えられる。具体的には、切替弁25は、チラー出口路22と冷水給水路23とを連通させる「給水位置」と、チラー出口路22と循環戻し路24とを連通させる「循環位置」とを切替可能とされる。 The chiller outlet passage 22 from the chiller 5 is branched into a cold water supply passage 23 and a circulation return passage 24. It is possible to switch whether the cold water from the chiller outlet passage 22 is sent to the cold water supply passage 23 to the heat exchanger 9 or the vacuum pump 11 or the circulation return passage 24 to the cold water tank 6. In the present embodiment, the cold water from the chiller 5 is sent to the cold water supply passage 23 or the circulation return passage 24 by the switching valve 25 formed of a three-way valve provided at the branch portion between the cold water supply passage 23 and the circulation return passage 24. Can be switched. Specifically, the switching valve 25 can switch between a “water supply position” that allows the chiller outlet passage 22 and the cold water supply passage 23 to communicate with each other and a “circulation position” that allows the chiller outlet passage 22 and the circulation return passage 24 to communicate with each other. It is said that

熱交換器9および真空ポンプ11への給水系統について、さらに説明すると、本実施例では、熱交換器9および真空ポンプ11には、常温水と冷水とを切り替えて供給可能とされる。冷水とは、チラー5により冷却を図られた水であり、常温水とは、そのような冷却を図られない水である。 The water supply system to the heat exchanger 9 and the vacuum pump 11 will be further described. In this embodiment, the heat exchanger 9 and the vacuum pump 11 can be supplied by switching between normal temperature water and cold water. Cold water is water that has been cooled by the chiller 5, and normal temperature water is water that cannot be cooled as such.

熱交換器9および真空ポンプ11には、常温水給水路26を介して常温水が供給可能とされる一方、冷水給水路23を介して冷水が供給可能とされる。常温水給水路26には、常温水給水弁27および逆止弁28が設けられている。これら各弁27,28よりも下流の常温水給水路26と冷水給水路23とは、合流して共通給水路29とされている。そして、この共通給水路29は、熱交換器9への熱交給水路30と、真空ポンプ11への封水給水路14とに分岐されている。封水給水路14には、封水給水弁31が設けられている。 Normal temperature water can be supplied to the heat exchanger 9 and the vacuum pump 11 through the normal temperature water supply passage 26, while cold water can be supplied through the cold water supply passage 23. The room-temperature water supply passage 26 is provided with a room-temperature water supply valve 27 and a check valve 28. The normal temperature water supply passage 26 and the cold water supply passage 23 downstream of the valves 27 and 28 are joined to form a common water supply passage 29. The common water supply passage 29 is branched into a heat exchange water supply passage 30 to the heat exchanger 9 and a sealed water supply passage 14 to the vacuum pump 11. A sealing water supply valve 31 is provided in the sealing water supply passage 14.

熱交換器9は、熱交給水路30を介して水が供給され、熱交排水路32を介して水が排出される。熱交排水路32は、冷水タンク6への冷水戻し路33と、外部への排水出口路34とに分岐されている。そして、冷水戻し路33には冷水戻し弁35が設けられ、排水出口路34には排水出口弁36が設けられている。冷水戻し弁35および排水出口弁36により、熱交換器9を通過後の水を、冷水タンク6へ戻すか、排水出口路34から排出するか、あるいはいずれも行わずに熱交換器9の通水を阻止するか(つまり熱交換器9の冷却水出口側を閉じるか)を切り替えることができる。なお、図示例では、切替弁25からの循環戻し路24と、冷水戻し弁35からの冷水戻し路33とは、合流して冷水タンク6に接続されている。 The heat exchanger 9 is supplied with water via the heat exchange water supply passage 30 and discharged through the heat exchange drainage passage 32. The heat exchange drainage channel 32 is branched into a cold water return channel 33 to the cold water tank 6 and a drainage outlet channel 34 to the outside. The cold water return passage 33 is provided with a cold water return valve 35, and the drainage outlet passage 34 is provided with a drainage outlet valve 36. By the cold water return valve 35 and the drain outlet valve 36, the water after passing through the heat exchanger 9 is returned to the cold water tank 6 or discharged from the drain outlet passage 34, or the water is not passed through the heat exchanger 9. Whether to block water (that is, to close the cooling water outlet side of the heat exchanger 9) can be switched. In the illustrated example, the circulation return passage 24 from the switching valve 25 and the cold water return passage 33 from the cold water return valve 35 join and are connected to the cold water tank 6.

熱交換器9に冷水を供給する場合、チラー5および送水ポンプ21を作動させると共に、切替弁25を給水位置にすればよい。これにより、冷水タンク6内の貯留水は、チラー入口路20、チラー5、チラー出口路22、冷水給水路23、共通給水路29および熱交給水路30を介して、熱交換器9に供給される。さらに封水給水弁31を開ければ、冷水は、封水給水路14を介して真空ポンプ11に供給される。また、排水出口弁36を閉じた状態で、冷水戻し弁35を開けておくことで、熱交換器9を通過後の冷水は、冷水タンク6へ戻される。 When supplying cold water to the heat exchanger 9, the chiller 5 and the water supply pump 21 may be operated and the switching valve 25 may be set to the water supply position. Thereby, the stored water in the cold water tank 6 is supplied to the heat exchanger 9 through the chiller inlet passage 20, the chiller 5, the chiller outlet passage 22, the cold water supply passage 23, the common water supply passage 29, and the heat exchange water supply passage 30. To be done. Further, if the sealing water supply valve 31 is opened, the cold water is supplied to the vacuum pump 11 via the sealing water supply passage 14. Further, by opening the cold water return valve 35 with the drain outlet valve 36 closed, the cold water after passing through the heat exchanger 9 is returned to the cold water tank 6.

一方、熱交換器9に常温水を供給する場合、切替弁25を循環位置とした状態で、常温水給水弁27を開ければよい。この場合も、さらに封水給水弁31を開ければ、常温水は、封水給水路14を介して真空ポンプ11に供給される。また、冷水戻し弁35を閉じた状態で、排水出口弁36を開けておくことで、熱交換器9を通過後の常温水は、排水出口路34から排出される。 On the other hand, when supplying room temperature water to the heat exchanger 9, the room temperature water supply valve 27 may be opened with the switching valve 25 in the circulation position. Also in this case, if the sealing water supply valve 31 is further opened, the room temperature water is supplied to the vacuum pump 11 via the sealing water supply passage 14. Further, by opening the drain outlet valve 36 with the cold water return valve 35 closed, the room temperature water after passing through the heat exchanger 9 is discharged from the drain outlet passage 34.

一方、共通給水路29に常温水または冷水のいずれを供給する場合も、冷水戻し弁35および排水出口弁36を閉じておくことで、熱交換器9の通水を停止することができる。その状態で、封水給水弁31を開ければ、常温水または冷水を真空ポンプ11に供給することができる。 On the other hand, regardless of whether normal temperature water or cold water is supplied to the common water supply passage 29, the cold water return valve 35 and the drainage outlet valve 36 can be closed to stop the water flow through the heat exchanger 9. In that state, by opening the water sealing water supply valve 31, normal temperature water or cold water can be supplied to the vacuum pump 11.

真空冷却装置1は、処理槽2内の圧力を検出する圧力センサ37と、処理槽2内に収容された食品Fの温度を検出する品温センサ38と、真空ポンプ11への給水(常温水または冷水)の温度を検出する水温センサ39とを備える。本実施例では、水温センサ39は、封水給水路14に設けられているが、場合により共通給水路29などに設けられてもよい。 The vacuum cooling device 1 includes a pressure sensor 37 that detects the pressure in the processing tank 2, an article temperature sensor 38 that detects the temperature of the food F stored in the processing tank 2, and a water supply (normal temperature water) to the vacuum pump 11. Or a water temperature sensor 39 for detecting the temperature of cold water). In this embodiment, the water temperature sensor 39 is provided in the sealed water supply passage 14, but may be provided in the common water supply passage 29 or the like depending on the case.

また、冷水タンク6には、貯留水の温度を検出する貯留水温度センサ40が設けられる一方、チラー出口路22には、冷水の温度を検出する冷水温度センサ41が設けられる。本実施例では、冷水温度センサ41は、チラー出口路22に設けられているが、チラー5に内蔵されてもよいし、場合により、チラー入口路20などに設けられてもよい。 Further, the cold water tank 6 is provided with a stored water temperature sensor 40 for detecting the temperature of the stored water, while the chiller outlet passage 22 is provided with a cold water temperature sensor 41 for detecting the temperature of the cold water. In the present embodiment, the chilled water temperature sensor 41 is provided in the chiller outlet passage 22, but it may be built in the chiller 5, or in some cases, provided in the chiller inlet passage 20 or the like.

その他、冷水タンク6には、低水位検出器として、たとえばフロートスイッチ42が設けられる。前述したとおり、冷水タンク6は、ボールタップ19により設定水位に維持されるが、何らかの不具合により、万一下限水位を下回った場合には、フロートスイッチ42により異常を検知可能とされている。 In addition, the cold water tank 6 is provided with, for example, a float switch 42 as a low water level detector. As described above, the cold water tank 6 is maintained at the set water level by the ball tap 19, but if the water level falls below the lower limit water level due to some malfunction, an abnormality can be detected by the float switch 42.

制御手段は、前記各センサ37〜42の検出信号や経過時間などに基づき、前記各手段3,4やチラー5などを制御する制御器(図示省略)である。具体的には、チラー5、真空ポンプ11、送水ポンプ21、エゼクタ給蒸弁13、給気弁17、切替弁25、常温水給水弁27、封水給水弁31、冷水戻し弁35、排水出口弁36の他、圧力センサ37、品温センサ38、水温センサ39、貯留水温度センサ40、冷水温度センサ41、フロートスイッチ42などは、制御器に接続されている。そして、制御器は、所定の手順(プログラム)に従い、処理槽2内の食品Fの真空冷却を図る。以下、真空冷却装置1の運転方法(真空冷却方法)の一例について説明する。 The control means is a controller (not shown) that controls the respective means 3, 4 and the chiller 5 based on the detection signals of the respective sensors 37 to 42 and the elapsed time. Specifically, the chiller 5, the vacuum pump 11, the water supply pump 21, the ejector vapor supply valve 13, the air supply valve 17, the switching valve 25, the room temperature water supply valve 27, the sealing water supply valve 31, the cold water return valve 35, the drainage outlet. In addition to the valve 36, a pressure sensor 37, a product temperature sensor 38, a water temperature sensor 39, a stored water temperature sensor 40, a cold water temperature sensor 41, a float switch 42, etc. are connected to the controller. Then, the controller performs vacuum cooling of the food F in the processing tank 2 according to a predetermined procedure (program). Hereinafter, an example of an operating method (vacuum cooling method) of the vacuum cooling device 1 will be described.

本実施例の真空冷却装置1は、通常運転モードとバックアップ運転モードとを切り替えて運転可能とされる。詳細は後述するが、通常運転モードでは、熱交換器9や真空ポンプ11への給水を、運転途中で常温水から冷水に切り替えて、処理槽2内を減圧する一方、バックアップ運転モードでは、冷水を用いずに常温水のみを用いて、処理槽2内を減圧する。 The vacuum cooling device 1 of the present embodiment can be operated by switching between the normal operation mode and the backup operation mode. Although details will be described later, in the normal operation mode, the water supply to the heat exchanger 9 and the vacuum pump 11 is switched from room temperature water to cold water during operation to depressurize the inside of the processing tank 2, while in the backup operation mode, cold water is supplied. The inside of the processing tank 2 is decompressed by using only normal temperature water without using.

真空冷却装置1は、基本的には通常運転モードで運転されるが、所定の場合に、自動または手動で、バックアップ運転モードに切り替えられて運転される。たとえば、冷水タンク6内の貯留水の水温が上限温度(モード切替温度)以上になったことを、貯留水温度センサ40により検知して、バックアップ運転モードに切り替えられる。また、冷水タンク6内の貯留水が下限水位を下回ったことを、フロートスイッチ42により検知して、バックアップ運転モードに切り替えられる。あるいは、チラー5が故障したことを検知して、バックアップ運転モードに切り替えられる。以下、各運転モードでの運転内容の具体例について説明する。 The vacuum cooling device 1 is basically operated in the normal operation mode, but in a predetermined case, it is automatically or manually switched to the backup operation mode and operated. For example, the stored water temperature sensor 40 detects that the temperature of the stored water in the cold water tank 6 is equal to or higher than the upper limit temperature (mode switching temperature), and switches to the backup operation mode. Further, the fact that the stored water in the cold water tank 6 has fallen below the lower limit water level is detected by the float switch 42, and the backup operation mode is switched to. Alternatively, the failure of the chiller 5 is detected, and the operation mode is switched to the backup operation mode. Hereinafter, a specific example of the operation content in each operation mode will be described.

≪通常運転モード≫
図2は、通常運転モードでの運転内容を示すフローチャートである。
≪Normal operation mode≫
FIG. 2 is a flowchart showing the operation content in the normal operation mode.

運転開始前、給気弁17は開けられており、また切替弁25は循環位置(チラー出口路22と循環戻し路24との連通状態)にあり、その他の前記各弁は閉じられた状態にある。また、チラー5、真空ポンプ11および送水ポンプ21は、停止している。 Before the start of operation, the air supply valve 17 is opened, the switching valve 25 is in the circulation position (communication state between the chiller outlet passage 22 and the circulation return passage 24), and the other valves are closed. is there. Moreover, the chiller 5, the vacuum pump 11, and the water supply pump 21 are stopped.

真空冷却装置1は、電源が投入されると待機処理を開始し、その後、スタートボタンが押されるなど、冷却運転の開始を指示されると、図2に基づき処理槽2内を減圧して食品Fの冷却を図る。なお、処理槽2内への食品Fの収容は、待機処理後に行われるが、冷却運転の開始前であれば、待機処理前または待機処理中に行われてもよい。 The vacuum cooling device 1 starts the standby process when the power is turned on, and then when the start button is pressed to instruct the start of the cooling operation, the pressure inside the processing tank 2 is reduced according to FIG. Cool F. Although the food F is stored in the processing tank 2 after the standby process, it may be stored before or during the standby process before the cooling operation is started.

待機処理では、冷水タンク6内の貯留水を、チラー5との間で循環させて冷却する。具体的には、切替弁25によりチラー出口路22と循環戻し路24とを連通させた状態で、チラー5および送水ポンプ21を作動させる。なお、冷水タンク6は、ボールタップ19により適宜給水され、設定水位に維持されている。 In the standby process, the stored water in the cold water tank 6 is circulated and cooled with the chiller 5. Specifically, the chiller 5 and the water supply pump 21 are operated in a state where the chiller outlet passage 22 and the circulation return passage 24 are communicated with each other by the switching valve 25. The cold water tank 6 is appropriately supplied with water by a ball tap 19 and maintained at a set water level.

送水ポンプ21を作動させることで、冷水タンク6内の貯留水は、チラー入口路20を介してチラー5に送られて冷却され、チラー出口路22および循環戻し路24を介して、冷水タンク6に戻される。この際、冷水温度センサ41の検出温度を設定温度(たとえば7℃)に維持するように、チラー5を制御する。ここでは、圧縮機をインバータ制御するが、場合によりオンオフ制御してもよい。 By operating the water supply pump 21, the stored water in the cold water tank 6 is sent to the chiller 5 via the chiller inlet passage 20 to be cooled, and the stored water in the cold water tank 6 is passed through the chiller outlet passage 22 and the circulation return passage 24. Returned to. At this time, the chiller 5 is controlled so that the temperature detected by the cold water temperature sensor 41 is maintained at the set temperature (for example, 7° C.). Here, the compressor is inverter-controlled, but on-off control may be performed depending on the case.

貯留水温度センサ40の検出温度が設定温度以下になるか、所定のスタートボタンが押されるなどにより、図2に示す冷却運転を開始する。以後も、送水ポンプ21は、基本的には作動を継続する。その間、チラー5も基本的には作動を継続するが、前述したとおりインバータ制御(出口側水温を設定温度に維持するようにインバータ制御)されるので、チラー5に通される水温に基づき出力は自動的に調整される。 The cooling operation shown in FIG. 2 is started when the detected temperature of the stored water temperature sensor 40 becomes equal to or lower than the set temperature or when a predetermined start button is pressed. After that, the water supply pump 21 basically continues to operate. During that time, the chiller 5 basically continues to operate, but as described above, the inverter control (inverter control so as to maintain the outlet side water temperature at the set temperature) is performed, so that the output is based on the water temperature passed through the chiller 5. Adjusted automatically.

冷却運転を開始すると、まずは、給気弁17を閉じると共に、熱交換器9の通水を停止した状態で、真空ポンプ11の封水として常温水を供給しつつ、真空ポンプ11により処理槽2内を減圧する(S1)。具体的には、給気弁17を閉じて、処理槽2内を密閉する。また、冷水戻し弁35および排水出口弁36を閉じたままとすることで、熱交換器9の通水を不能とする。さらに、常温水給水弁27および封水給水弁31を開けて、真空ポンプ11への封水として常温水を供給しつつ、真空ポンプ11を作動させて処理槽2内を減圧する。 When the cooling operation is started, first, the air supply valve 17 is closed, and while the water flow through the heat exchanger 9 is stopped, ambient temperature water is supplied as sealing water for the vacuum pump 11, and the treatment tank 2 is operated by the vacuum pump 11. The inside pressure is reduced (S1). Specifically, the air supply valve 17 is closed to seal the inside of the processing tank 2. Further, by keeping the cold water return valve 35 and the drain outlet valve 36 closed, water flow through the heat exchanger 9 is disabled. Further, the room temperature water supply valve 27 and the sealing water supply valve 31 are opened to supply the room temperature water as the sealing water to the vacuum pump 11, and the vacuum pump 11 is operated to reduce the pressure in the processing tank 2.

その後、所定の通水開始条件を満たすと、熱交換器9の通水を開始する(S2,S3)。本実施例では、品温センサ38の検出温度が通水開始温度(たとえば60℃)以下になると、熱交換器9の通水を開始する。この際、熱交換器9および真空ポンプ11への給水は、冷水に切り替えられる。つまり、常温水給水弁27が閉じられる一方、切替弁25が通水位置(チラー出口路22と冷水給水路23との連通状態)に切り替えられる。また、冷水戻し弁35が開けられることで、熱交換器9を通過後の冷水は、冷水タンク6へ戻される。 Then, when a predetermined water flow start condition is satisfied, water flow through the heat exchanger 9 is started (S2, S3). In the present embodiment, when the temperature detected by the product temperature sensor 38 becomes equal to or lower than the water flow start temperature (for example, 60° C.), the water flow through the heat exchanger 9 is started. At this time, the water supply to the heat exchanger 9 and the vacuum pump 11 is switched to cold water. That is, the normal temperature water supply valve 27 is closed, while the switching valve 25 is switched to the water passage position (the communication state between the chiller outlet passage 22 and the cold water supply passage 23). Further, by opening the cold water return valve 35, the cold water that has passed through the heat exchanger 9 is returned to the cold water tank 6.

その後、所定のエゼクタ作動条件を満たすと、蒸気エゼクタ8を作動させる(S4,S5)。本実施例では、品温センサ38の検出温度がエゼクタ作動温度(たとえば30℃)以下になると、エゼクタ給蒸弁13を開けて蒸気エゼクタ8を作動させる。 After that, when the predetermined ejector operating condition is satisfied, the steam ejector 8 is operated (S4, S5). In the present embodiment, when the temperature detected by the product temperature sensor 38 becomes equal to or lower than the ejector operating temperature (for example, 30° C.), the ejector steam supply valve 13 is opened to operate the vapor ejector 8.

上述した一連の減圧中、給気弁17を閉じておくことで、処理槽2内の圧力を迅速に低下させて食品Fを急冷することができる(急冷制御)。但し、場合により、給気弁17の開度ひいては処理槽2内の圧力を調整しつつ食品Fを徐冷してもよい(徐冷制御)。 By closing the air supply valve 17 during the above-described series of depressurization, the pressure in the processing tank 2 can be rapidly lowered to rapidly cool the food F (rapid cooling control). However, in some cases, the food F may be gradually cooled while adjusting the opening degree of the air supply valve 17 and thus the pressure in the processing tank 2 (gradual cooling control).

いずれにしても、処理槽2内の減圧により、処理槽2内の食品Fは冷却を図られる。そして、冷却終了条件として、たとえば品温センサ38の検出温度が冷却目標温度(たとえば10℃)以下になると、処理槽2内の減圧を停止する(S6,S7)。具体的には、エゼクタ給蒸弁13、封水給水弁31、冷水戻し弁35を閉じると共に、切替弁25を循環位置(チラー出口路22と循環戻し路24との連通状態)に切り替えて、蒸気エゼクタ8および真空ポンプ11を停止すると共に、熱交換器9の通水を停止する。 In any case, the food F in the processing tank 2 can be cooled by the reduced pressure in the processing tank 2. Then, as a cooling end condition, for example, when the temperature detected by the product temperature sensor 38 becomes equal to or lower than the cooling target temperature (for example, 10° C.), the depressurization in the processing tank 2 is stopped (S6, S7). Specifically, the ejector steam supply valve 13, the sealing water supply valve 31, and the cold water return valve 35 are closed, and the switching valve 25 is switched to the circulation position (the communication state between the chiller outlet passage 22 and the circulation return passage 24). The steam ejector 8 and the vacuum pump 11 are stopped, and the water flow through the heat exchanger 9 is stopped.

その後、給気弁17を開けて、処理槽2内を大気圧まで復圧すればよい。この際、給気弁17の開度を調整しつつ、処理槽2内を徐々に復圧することができる。なお、切替弁25を循環位置に切り替えた後は、次回の冷却運転に備えて、前述した待機処理を行ってもよい。 Then, the air supply valve 17 may be opened to restore the pressure in the processing tank 2 to atmospheric pressure. At this time, the pressure inside the processing tank 2 can be gradually restored while adjusting the opening degree of the air supply valve 17. After switching the switching valve 25 to the circulation position, the standby process described above may be performed in preparation for the next cooling operation.

≪バックアップ運転モード≫
図3は、バックアップ運転モードでの運転内容を示すフローチャートである。
≪Backup operation mode≫
FIG. 3 is a flowchart showing the operation contents in the backup operation mode.

バックアップ運転モードでは、処理槽2内の減圧時、熱交換器9および真空ポンプ11への給水として、冷水を用いないで常温水を用いる。また、蒸気エゼクタ8は作動させない。さらに、冷却終了条件が異なる。以下、具体的に説明する。 In the backup operation mode, room temperature water is used as the water supply to the heat exchanger 9 and the vacuum pump 11 without using cold water when the pressure in the processing tank 2 is reduced. Further, the steam ejector 8 is not operated. Furthermore, the cooling end conditions are different. The details will be described below.

なお、バックアップ運転モードでは、チラー5の故障や冷水タンク6内の水位異常に基づく場合があるため、基本的には待機処理(冷水タンク6内の貯留水の冷却処理)を行わない。但し、待機処理を実行できる場合には、実行してもよい。 In the backup operation mode, the standby process (the cooling process of the stored water in the cold water tank 6) is basically not performed because the chiller 5 may malfunction or the water level in the cold water tank 6 may be abnormal. However, if the standby process can be executed, it may be executed.

バックアップ運転モードの場合も、通常運転モードの場合と同様、所定のスタートボタンが押されると、図3に示す冷却運転を開始する。 Also in the backup operation mode, as in the normal operation mode, when a predetermined start button is pressed, the cooling operation shown in FIG. 3 is started.

冷却運転を開始すると、まずは、給気弁17を閉じると共に、熱交換器9の通水を停止した状態で、真空ポンプ11の封水として常温水を供給しつつ、真空ポンプ11により処理槽2内を減圧する(S11)。具体的には、給気弁17を閉じて、処理槽2内を密閉する。また、冷水戻し弁35および排水出口弁36を閉じたままとすることで、熱交換器9の通水を不能とする。さらに、常温水給水弁27および封水給水弁31を開けて、真空ポンプ11への封水として常温水を供給しつつ、真空ポンプ11を作動させて処理槽2内を減圧する。 When the cooling operation is started, first, the air supply valve 17 is closed, and while the water flow through the heat exchanger 9 is stopped, ambient temperature water is supplied as sealing water for the vacuum pump 11, and the treatment tank 2 is operated by the vacuum pump 11. The inside pressure is reduced (S11). Specifically, the air supply valve 17 is closed to seal the inside of the processing tank 2. Further, by keeping the cold water return valve 35 and the drain outlet valve 36 closed, water flow through the heat exchanger 9 is disabled. Further, the room temperature water supply valve 27 and the sealing water supply valve 31 are opened to supply the room temperature water as the sealing water to the vacuum pump 11, and the vacuum pump 11 is operated to reduce the pressure in the processing tank 2.

その後、所定の通水開始条件を満たすと、熱交換器9の通水を開始する(S12,S13)。本実施例では、品温センサ38の検出温度が通水開始温度(たとえば60℃)以下になると、排水出口弁36を開けて熱交換器9の通水を開始する。熱交換器9の通水開始時、通常運転モードの場合は冷水に切り替えたが、バックアップ運転モードの場合は常温水のままとする。そして、熱交換器9にて使用後の水は、排水出口路34から排出される。 Then, when the predetermined water flow start condition is satisfied, the water flow through the heat exchanger 9 is started (S12, S13). In the present embodiment, when the temperature detected by the product temperature sensor 38 becomes equal to or lower than the water passage start temperature (for example, 60° C.), the drain outlet valve 36 is opened to start water passage through the heat exchanger 9. At the start of water flow through the heat exchanger 9, it was switched to cold water in the normal operation mode, but kept at room temperature water in the backup operation mode. Then, the water used in the heat exchanger 9 is discharged from the drainage outlet passage 34.

その後、品温が「給水温度+設定値」以下になると、処理槽2内の減圧を停止する(S14,S15)。より好ましくは、品温が「給水温度+設定値」以下になってから設定時間経過すると、処理槽2内の減圧を停止する。すなわち、処理槽2内の減圧中、品温センサ38と水温センサ39の各検出温度を監視して、品温センサ38の検出温度が「水温センサ39の検出温度+設定値」以下になってから設定時間経過すると、処理槽2内の減圧を停止する。具体的には、常温水給水弁27、封水給水弁31および排水出口弁36を閉じて、真空ポンプ11を停止すると共に、熱交換器9の通水を停止する。その後、給気弁17を開けて、処理槽2内を大気圧まで復圧すればよい。なお、設定値(第一設定値)は、5〜10℃、好ましくは6〜8℃の範囲で設定される。本実施例では、第一設定値は、たとえば7℃に設定される。 After that, when the product temperature becomes equal to or lower than the “supply water temperature+set value”, the depressurization in the processing tank 2 is stopped (S14, S15). More preferably, when the set time elapses after the product temperature becomes equal to or lower than the “supply water temperature+set value”, the depressurization in the processing tank 2 is stopped. That is, the temperature detected by the product temperature sensor 38 and the water temperature sensor 39 are monitored during depressurization in the processing tank 2, and the temperature detected by the product temperature sensor 38 becomes equal to or lower than “the temperature detected by the water temperature sensor 39+the set value”. After a lapse of a set time from, the depressurization in the processing tank 2 is stopped. Specifically, the normal temperature water supply valve 27, the sealing water supply valve 31, and the drain outlet valve 36 are closed to stop the vacuum pump 11 and stop the water flow through the heat exchanger 9. Then, the air supply valve 17 may be opened to restore the pressure in the processing tank 2 to atmospheric pressure. The set value (first set value) is set in the range of 5 to 10°C, preferably 6 to 8°C. In this embodiment, the first set value is set to, for example, 7°C.

バックアップ運転の終了条件を、単なる冷却時間ではなく、品温と給水温度との関係から決定することで、運転時間の短縮と、エネルギの削減とを図ることができる。すなわち、真空ポンプ11への給水温度に応じて、槽内圧力の到達限界ひいては食品Fの冷却限界が決まるので、その限界域に入ることを条件に冷却を終了することで、無駄に運転を続けることが防止される。これにより、単に予め設定された冷却最大時間の経過まで冷却する場合と比較して、運転時間を短縮できると共に、水や電力の消費の無駄を削減することができる。 By determining the termination condition of the backup operation based on the relationship between the product temperature and the feed water temperature, not just the cooling time, it is possible to reduce the operation time and energy. That is, since the reaching limit of the tank pressure and thus the cooling limit of the food F are determined according to the temperature of the water supplied to the vacuum pump 11, the cooling is ended on the condition that it enters the limit region, and the operation is wastefully continued. Is prevented. As a result, the operation time can be shortened and the waste of water and electric power consumption can be reduced as compared with the case where the cooling is simply performed until the preset maximum cooling time elapses.

なお、処理槽2内の減圧中、品温センサ38と水温センサ39の各検出温度を監視して、品温が「給水温度+設定値」以下になるか、品温が「給水温度+設定値」以下になってから設定時間経過すると、処理槽2内の減圧を停止させたが、品温センサ38ではなく圧力センサ37を用いて、次のように制御することもできる。すなわち、処理槽2内の減圧中、圧力センサ37の検出圧力と水温センサ39の検出温度を監視して、槽内圧力換算温度(圧力センサ37の検出圧力における飽和温度)が「給水温度+設定値」以下になるか、槽内圧力換算温度が「給水温度+設定値」以下になってから設定時間経過すると、処理槽2内の減圧を停止させてもよい。圧力センサ37を用いて制御する場合も、品温センサ38を用いて制御する場合と同様の作用効果を奏することができる。 During depressurization in the treatment tank 2, the temperature detected by the product temperature sensor 38 and the water temperature sensor 39 is monitored to determine whether the product temperature is equal to or lower than the "water supply temperature + set value" or the product temperature is "supply water temperature + set value". When the set time elapses after the value becomes equal to or less than the "value", the depressurization in the processing tank 2 is stopped, but the pressure sensor 37 may be used instead of the product temperature sensor 38 to perform the following control. That is, the pressure detected by the pressure sensor 37 and the temperature detected by the water temperature sensor 39 are monitored during depressurization in the treatment tank 2, and the tank internal pressure conversion temperature (saturation temperature at the pressure detected by the pressure sensor 37) is set to “supply water temperature+setting”. When the set time elapses after the value “below” or the tank pressure conversion temperature becomes “water supply temperature+set value” or below, the depressurization in the processing tank 2 may be stopped. Even when the pressure sensor 37 is used for control, it is possible to obtain the same operational effect as when the product temperature sensor 38 is used for control.

また、処理槽2内の減圧中、品温センサ38(または圧力センサ37)と水温センサ39の各検出値を監視して、品温(または槽内圧力換算温度)が「給水温度+設定値」以下になるか、品温(または槽内圧力換算温度)が「給水温度+設定値」以下になってから設定時間経過すると、処理槽2内の減圧を制御器により自動的に停止させたが、次のように構成してもよい。すなわち、品温(または槽内圧力換算温度)が「給水温度+設定値」以下になるか、品温(または槽内圧力換算温度)が「給水温度+設定値」以下になってから設定時間経過すると、制御器はその旨、ブザーやランプなどの報知手段により報知し、それに基づき手動で減圧を停止させてもよい。 Further, during depressurization in the processing tank 2, the detection values of the product temperature sensor 38 (or the pressure sensor 37) and the water temperature sensor 39 are monitored, and the product temperature (or the tank internal pressure conversion temperature) is “supply water temperature+set value. Or when the set time has elapsed after the product temperature (or the tank internal pressure conversion temperature) became below the "supply water temperature + set value", the depressurization in the processing tank 2 was automatically stopped by the controller. However, it may be configured as follows. That is, the product temperature (or tank internal pressure conversion temperature) is below the "water supply temperature + set value" or the product temperature (or tank internal pressure conversion temperature) is below the "water supply temperature + set value". After a lapse of time, the controller may give a notification to that effect by a notification means such as a buzzer or a lamp, and the decompression may be stopped manually based on the notification.

ところで、通常運転モードでは、品温が所定の給水切替温度(前記実施例では熱交換器9の通水開始温度と同一であるが異なってもよい)以下になると、熱交換器9および真空ポンプ11への給水を、常温水から冷水に切り替えたが、冷水タンク6内の水温に基づき、給水切替温度を変更してもよい。冷水タンク6内の水温が上昇すると、給水切替温度を下げて、冷水への切替時期を遅らせるのが好ましい。たとえば、次のように構成することができる。 By the way, in the normal operation mode, when the product temperature becomes lower than or equal to a predetermined water supply switching temperature (which is the same as the water flow starting temperature of the heat exchanger 9 in the above-mentioned embodiment, it may be different), the heat exchanger 9 and the vacuum pump. Although the water supply to 11 is switched from room temperature water to cold water, the water supply switching temperature may be changed based on the water temperature in the cold water tank 6. When the water temperature in the cold water tank 6 rises, it is preferable to lower the feed water switching temperature and delay the timing of switching to cold water. For example, it can be configured as follows.

前提として、前述したとおり、通常運転モードからバックアップ運転モードへの切替条件の一つとして、冷水タンク6内の水温がモード切替温度(たとえば25℃)以上になった場合がある。この場合において、冷水タンク6内の水温がモード切替温度よりも低い所定温度(たとえば20℃)以上になると、通常運転モードにおける給水切替温度を下げるのがよい。たとえば、冷水タンク6内の水温が所定温度未満では、給水切替温度は第一設定温度(たとえば60℃)とされる一方、冷水タンク6内の水温が所定温度以上になると、給水切替温度を第一設定温度よりも低い第二設定温度(たとえば40〜50℃)に変更する。給水切替温度を下げると、通常運転モードでの処理槽2内の減圧中、常温水から冷水への切替時期が遅れることになり、その分だけ、冷水の使用(ひいては使用後の冷水の冷水タンク6への戻り)が抑制されることになる。そのため、冷水タンク6内の水温上昇(チラーの負荷)を抑えて、貯留水がモード切替温度以上になることが抑制され、バックアップ運転モードへの切替えが防止される。 As a premise, as described above, as one of the switching conditions from the normal operation mode to the backup operation mode, the water temperature in the cold water tank 6 may be equal to or higher than the mode switching temperature (for example, 25° C.). In this case, when the water temperature in the cold water tank 6 becomes equal to or higher than a predetermined temperature (for example, 20° C.) lower than the mode switching temperature, it is preferable to lower the water supply switching temperature in the normal operation mode. For example, when the water temperature in the cold water tank 6 is lower than the predetermined temperature, the feed water switching temperature is set to the first set temperature (for example, 60° C.), while when the water temperature in the cold water tank 6 becomes equal to or higher than the predetermined temperature, the feed water switching temperature is set to the first temperature. The temperature is changed to a second set temperature (eg 40 to 50° C.) lower than the one set temperature. When the water supply switching temperature is lowered, the switching time from normal temperature water to cold water is delayed during the depressurization of the treatment tank 2 in the normal operation mode, and the use of cold water (and thus the cold water tank for cold water after use is delayed). (Return to 6) will be suppressed. Therefore, the rise of the water temperature in the cold water tank 6 (the load of the chiller) is suppressed, the stored water is suppressed from becoming the mode switching temperature or higher, and the switching to the backup operation mode is prevented.

次に、本実施例の真空冷却装置1の変形例について説明する。
前記実施例では、水温センサ39は、封水給水路14に設けられて真空ポンプ11への給水の温度を監視したが、水温センサ39は、真空ポンプ11に設けられて真空ポンプ11内の封水の温度を監視してもよい。
Next, a modified example of the vacuum cooling device 1 of the present embodiment will be described.
In the above-described embodiment, the water temperature sensor 39 is provided in the sealed water supply passage 14 to monitor the temperature of the water supplied to the vacuum pump 11, but the water temperature sensor 39 is provided in the vacuum pump 11 to seal the inside of the vacuum pump 11. The temperature of the water may be monitored.

この場合も、基本的には前記実施例と同様に制御できるが、バックアップ運転モードでの冷却終了条件の設定値(ステップS14の設定値)は変更される。すなわち、前記実施例では、品温(または槽内圧力換算温度)が「給水温度+設定値(第一設定値)」以下になることを条件に、処理槽2内の減圧を停止したが、本変形例では、品温(または槽内圧力換算温度)が「封水温度+設定値(第二設定値)」以下になることを条件に、処理槽2内の減圧を停止する。この場合も、減圧の停止は、自動停止に代えて、報知手段への報知に基づく手動停止により行ってもよい。なお、給水に凝縮水とモータ発熱が加わる封水の温度は、給水温度より上昇する。このため、本変形例の第二設定値は、前記実施例の第一設定値よりも小さく設定され、たとえば0〜5℃、好ましくは2〜3℃に設定される。その他の構成および制御は、前記実施例と同様のため、説明を省略する。 Also in this case, basically, the control can be performed in the same manner as the above-mentioned embodiment, but the set value of the cooling end condition in the backup operation mode (the set value of step S14) is changed. That is, in the above-described embodiment, the depressurization in the treatment tank 2 was stopped under the condition that the product temperature (or the tank internal pressure conversion temperature) was equal to or less than the “supply water temperature+set value (first set value)”, In this modification, the depressurization in the processing tank 2 is stopped under the condition that the product temperature (or the tank internal pressure conversion temperature) is equal to or lower than the “sealing water temperature+set value (second set value)”. Also in this case, the decompression may be stopped by manual stop based on the notification to the notification means instead of the automatic stop. It should be noted that the temperature of the condensate and the sealing water that is heated by the motor are higher than the temperature of the supply water. Therefore, the second set value of this modification is set smaller than the first set value of the above-described embodiment, and is set to, for example, 0 to 5°C, preferably 2 to 3°C. The other configurations and controls are the same as those in the above-described embodiment, and thus the description thereof is omitted.

本発明の真空冷却装置1は、前記実施例の構成に限らず、適宜変更可能である。特に、(a)食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する水封式の真空ポンプ11を有する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、各手段を制御する制御手段とを備え、(b)処理槽2内の圧力を検出する圧力センサ37と、処理槽2内に収容された食品Fの温度を検出する品温センサ38との内、少なくとも一方のセンサを備えると共に、真空ポンプ11への給水または真空ポンプ11内の封水の温度を検出する水温センサ39を備え、(c)減圧手段3により処理槽2内を減圧中、各センサの検出値を監視して、品温センサ38の検出温度、または圧力センサ37の検出圧力における飽和温度が、「水温センサ39の検出温度+設定値」以下になることを条件に、処理槽2内の減圧を停止するのであれば、その他の構成は適宜に変更可能である。 The vacuum cooling device 1 of the present invention is not limited to the configuration of the above-described embodiment, but can be modified as appropriate. In particular, (a) the processing tank 2 in which the food F is stored, the depressurizing means 3 having the water-sealed vacuum pump 11 for sucking and discharging the gas in the processing tank 2 to the outside, and the depressurized processing tank 2 The pressure sensor 37 for detecting the pressure in the processing tank 2 and the food F stored in the processing tank 2 are provided with the pressure-returning means 4 for introducing outside air into the processing tank 2 and the control means for controlling each means. At least one of the product temperature sensor 38 for detecting the temperature is provided, and a water temperature sensor 39 for detecting the temperature of the water supplied to the vacuum pump 11 or the sealing water in the vacuum pump 11 is provided. While the inside of the processing tank 2 is being depressurized by 3, the detection value of each sensor is monitored, and the saturation temperature at the detection temperature of the product temperature sensor 38 or the detection pressure of the pressure sensor 37 becomes "the detection temperature of the water temperature sensor 39+the set value. As long as the depressurization in the processing tank 2 is stopped on condition that it becomes the following, other configurations can be appropriately changed.

たとえば、前記実施例において、減圧手段3の構成は、水封式の真空ポンプ11を有するのであれば、適宜変更可能である。たとえば、前記実施例では、減圧手段3として蒸気エゼクタ8を備えたが、場合により蒸気エゼクタ8の設置を省略してもよい。 For example, in the above-described embodiment, the structure of the decompression unit 3 can be appropriately changed as long as it has the water-sealed vacuum pump 11. For example, although the steam ejector 8 is provided as the depressurizing means 3 in the above-described embodiment, the installation of the steam ejector 8 may be omitted depending on circumstances.

さらに、真空冷却装置1は、少なくとも真空冷却機能を有すれば足り、場合により処理槽2内の食品Fの加熱機能を備えていてもよい。つまり、処理槽2内の食品Fの加熱後、前記実施例と同様にして、食品Fの真空冷却を図るようにしてもよい。 Furthermore, the vacuum cooling device 1 only needs to have at least a vacuum cooling function, and may have a heating function of the food F in the processing tank 2 in some cases. That is, after heating the food F in the processing tank 2, the food F may be vacuum-cooled in the same manner as in the above embodiment.

また、本発明の真空冷却方法は、(x)水封式の真空ポンプ11を有する減圧手段3を用いて処理槽2内を減圧することで、処理槽2内の食品Fの冷却を図る真空冷却方法であって、(y)処理槽2内の食品Fの温度、または処理槽2内の圧力における飽和温度が、「真空ポンプ11への給水温度+設定値」以下になる(好ましくはさらに設定時間経過する)か、「真空ポンプ11内の封水温度+設定値」以下になる(好ましくはさらに設定時間経過する)ことを条件に、処理槽2内の減圧を停止するのであれば、その他は適宜に変更可能である。そのため、前記(x)および(y)を満たすのであれば、必ずしも前記実施例の真空冷却装置1を用いる必要はない。また、前記(y)に記載した終了条件に基づき減圧を停止する際、前述したように、その終了条件を満たした旨を真空冷却装置1の報知手段で報知されると、それに基づき手動で減圧を停止させてもよい。 In the vacuum cooling method of the present invention, (x) a vacuum for cooling the food F in the processing tank 2 by depressurizing the processing tank 2 using the depressurizing means 3 having the water-sealed vacuum pump 11. In the cooling method, (y) the temperature of the food F in the treatment tank 2 or the saturation temperature at the pressure in the treatment tank 2 is equal to or lower than “the temperature of the water supplied to the vacuum pump 11+the set value” (preferably further If the depressurization in the treatment tank 2 is stopped under the condition that the set time elapses) or the “sealing water temperature in the vacuum pump 11+the set value” or less (preferably the set time elapses), Others can be changed appropriately. Therefore, if the conditions (x) and (y) are satisfied, it is not always necessary to use the vacuum cooling device 1 of the above embodiment. Further, when the depressurization is stopped based on the termination condition described in (y) above, when the notification means of the vacuum cooling device 1 notifies that the termination condition is satisfied, the decompression is manually performed based on the termination condition. May be stopped.

1 真空冷却装置
2 処理槽
3 減圧手段
4 復圧手段
5 チラー
6 冷水タンク
7 排気路
8 蒸気エゼクタ(8a:吸引口、8b:入口、8c:出口)
9 熱交換器
10 逆止弁
11 真空ポンプ(11a:給水口、11b:吸気口、11c:排気口)
12 エゼクタ給蒸路
13 エゼクタ給蒸弁
14 封水給水路
15 給気路
16 エアフィルタ
17 給気弁
18 補給水路
19 ボールタップ
20 チラー入口路
21 送水ポンプ
22 チラー出口路
23 冷水給水路
24 循環戻し路
25 切替弁
26 常温水給水路
27 常温水給水弁
28 逆止弁
29 共通給水路
30 熱交給水路
31 封水給水弁
32 熱交排水路
33 冷水戻し路
34 排水出口路
35 冷水戻し弁
36 排水出口弁
37 圧力センサ
38 品温センサ
39 水温センサ
40 貯留水温度センサ
41 冷水温度センサ
42 フロートスイッチ
DESCRIPTION OF SYMBOLS 1 Vacuum cooling device 2 Processing tank 3 Decompression means 4 Recompression means 5 Chiller 6 Cold water tank 7 Exhaust passage 8 Steam ejector (8a: suction port, 8b: inlet, 8c: outlet)
9 heat exchanger 10 check valve 11 vacuum pump (11a: water supply port, 11b: intake port, 11c: exhaust port)
12 Ejector steam supply passage 13 Ejector steam supply valve 14 Sealing water supply passage 15 Air supply passage 16 Air filter 17 Air supply valve 18 Make-up water passage 19 Ball tap 20 Chiller inlet passage 21 Water pump 22 Chiller outlet passage 23 Cold water supply passage 24 Circulation return passage 25 Switching Valve 26 Room Temperature Water Supply Channel 27 Room Temperature Water Supply Valve 28 Check Valve 29 Common Water Supply Channel 30 Heat Exchange Water Supply Channel 31 Sealing Water Supply Valve 32 Heat Exchange Drainage Channel 33 Cold Water Return Channel 34 Drainage Exit Channel 35 Cold Water Return Valve 36 Drainage Outlet valve 37 Pressure sensor 38 Product temperature sensor 39 Water temperature sensor 40 Stored water temperature sensor 41 Cold water temperature sensor 42 Float switch

Claims (6)

食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプを有する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記各手段を制御する制御手段とを備え、
前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサとの内、少なくとも一方のセンサを備えると共に、前記真空ポンプへの給水または前記真空ポンプ内の封水の温度を検出する水温センサを備え、
前記減圧手段により前記処理槽内を減圧中、前記各センサの検出値を監視して、前記品温センサの検出温度、または前記圧力センサの検出圧力における飽和温度が、「前記水温センサの検出温度+設定値」以下になることを条件に、前記処理槽内の減圧を停止する
ことを特徴とする真空冷却装置。
A processing tank in which food is stored, a depressurizing means having a water-sealed vacuum pump for sucking and discharging the gas in the processing tank to the outside, and a pressure-reducing means for introducing outside air into the depressurized processing tank, A control means for controlling each of the above means,
A pressure sensor for detecting the pressure in the processing tank, and an article temperature sensor for detecting the temperature of the food contained in the processing tank, with at least one sensor, water supply to the vacuum pump or the Equipped with a water temperature sensor that detects the temperature of the sealed water in the vacuum pump,
While decompressing the inside of the processing tank by the decompression unit, the detection value of each sensor is monitored, and the detection temperature of the product temperature sensor or the saturation temperature at the detection pressure of the pressure sensor is “the detection temperature of the water temperature sensor”. A vacuum cooling device, characterized in that the depressurization in the processing tank is stopped on condition that the value becomes equal to or less than a "set value".
前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、
前記熱交換器および前記真空ポンプへの給水として、常温水と冷水とを切替可能とされ、
前記熱交換器および前記真空ポンプへの給水として常温水を用いて前記処理槽内を減圧中、前記品温センサの検出温度、または前記圧力センサの検出圧力における飽和温度が、「前記水温センサの検出温度+設定値」以下になってから設定時間経過すると、前記処理槽内の減圧を停止する
ことを特徴とする請求項1に記載の真空冷却装置。
As the pressure reducing means, in addition to the vacuum pump, a heat exchanger for vapor condensation is provided,
As water supply to the heat exchanger and the vacuum pump, it is possible to switch between room temperature water and cold water,
While decompressing the inside of the processing tank using room temperature water as water supply to the heat exchanger and the vacuum pump, the detection temperature of the product temperature sensor, or the saturation temperature at the detection pressure of the pressure sensor, "the water temperature sensor The vacuum cooling device according to claim 1, wherein the depressurization in the processing tank is stopped when a set time elapses after being equal to or lower than the “detected temperature+set value”.
前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、
前記熱交換器および前記真空ポンプへの給水を貯留し、貯留水をチラーにより冷却可能な冷水タンクを備え、
通常運転モードとバックアップ運転モードとを切り替えて運転可能とされ、
通常運転モードでは、品温が給水切替温度以下になると、前記熱交換器および前記真空ポンプへの給水を、常温水から冷水に切り替えて、前記処理槽内を減圧し、
バックアップ運転モードでは、前記熱交換器および前記真空ポンプへの給水として常温水を用いて、前記処理槽内を減圧し、
前記冷水タンク内の水温に基づき、前記給水切替温度を変更する
ことを特徴とする請求項1または請求項2に記載の真空冷却装置。
As the pressure reducing means, in addition to the vacuum pump, a heat exchanger for vapor condensation is provided,
The water supply to the heat exchanger and the vacuum pump is stored, and a cold water tank capable of cooling the stored water by a chiller is provided,
It is possible to operate by switching between normal operation mode and backup operation mode,
In the normal operation mode, when the product temperature becomes equal to or lower than the water supply switching temperature, the water supply to the heat exchanger and the vacuum pump is switched from normal temperature water to cold water to reduce the pressure in the treatment tank,
In the backup operation mode, normal temperature water is used as water supply to the heat exchanger and the vacuum pump to reduce the pressure in the processing tank,
The vacuum cooling device according to claim 1 or 2, wherein the feed water switching temperature is changed based on a water temperature in the cold water tank.
前記冷水タンク内の水温がモード切替温度以上になると、通常運転モードからバックアップ運転モードに切り替えられ、
前記冷水タンク内の水温が前記モード切替温度よりも低い所定温度以上になると、通常運転モードにおける前記給水切替温度を下げる
ことを特徴とする請求項3に記載の真空冷却装置。
When the water temperature in the cold water tank becomes equal to or higher than the mode switching temperature, the normal operation mode is switched to the backup operation mode,
The vacuum cooling device according to claim 3, wherein when the water temperature in the cold water tank becomes equal to or higher than a predetermined temperature lower than the mode switching temperature, the water supply switching temperature in the normal operation mode is lowered.
水封式の真空ポンプを有する減圧手段を用いて処理槽内を減圧することで、前記処理槽内の食品の冷却を図る真空冷却方法であって、
前記処理槽内の食品の温度、または前記処理槽内の圧力における飽和温度が、「前記真空ポンプへの給水温度+設定値」以下になるか、「前記真空ポンプ内の封水温度+設定値」以下になることを条件に、前記処理槽内の減圧を停止する
ことを特徴とする真空冷却方法。
A vacuum cooling method for cooling the food in the processing tank by reducing the pressure in the processing tank using a pressure reducing means having a water-sealed vacuum pump,
The temperature of the food in the treatment tank or the saturation temperature at the pressure in the treatment tank is equal to or lower than "the temperature of the water supplied to the vacuum pump+the set value" or "the temperature of the sealed water in the vacuum pump+the set value". The vacuum cooling method is characterized in that the pressure reduction in the processing tank is stopped under the following conditions.
前記減圧手段として、前記真空ポンプの他、蒸気凝縮用の熱交換器を備え、
前記熱交換器および前記真空ポンプへの給水として、常温水と冷水とを切替可能とされ、
前記熱交換器および前記真空ポンプへの給水として常温水を用いて前記処理槽内を減圧中、前記処理槽内の食品の温度、または前記処理槽内の圧力における飽和温度が、「前記真空ポンプへの給水温度+設定値」以下になってから設定時間経過するか、「前記真空ポンプ内の封水温度+設定値」以下になってから設定時間経過すると、前記処理槽内の減圧を停止する
ことを特徴とする請求項5に記載の真空冷却方法。
As the pressure reducing means, in addition to the vacuum pump, a heat exchanger for vapor condensation is provided,
As water supply to the heat exchanger and the vacuum pump, it is possible to switch between room temperature water and cold water,
While decompressing the inside of the treatment tank by using room temperature water as water supply to the heat exchanger and the vacuum pump, the temperature of the food in the treatment tank, or the saturation temperature at the pressure in the treatment tank is “the vacuum pump. When the set time elapses after the temperature falls below the "supply water temperature + set value", or when the set time elapses after the "sealed water temperature inside the vacuum pump + set value", the depressurization in the treatment tank is stopped. The vacuum cooling method according to claim 5, wherein
JP2018240110A 2018-12-21 2018-12-21 vacuum cooling system Active JP7232400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018240110A JP7232400B2 (en) 2018-12-21 2018-12-21 vacuum cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018240110A JP7232400B2 (en) 2018-12-21 2018-12-21 vacuum cooling system

Publications (2)

Publication Number Publication Date
JP2020099257A true JP2020099257A (en) 2020-07-02
JP7232400B2 JP7232400B2 (en) 2023-03-03

Family

ID=71138921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240110A Active JP7232400B2 (en) 2018-12-21 2018-12-21 vacuum cooling system

Country Status (1)

Country Link
JP (1) JP7232400B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170060A (en) * 2002-11-07 2004-06-17 Miura Co Ltd Method of controlling vacuum cooling device and vacuum cooling device
JP2004218958A (en) * 2003-01-16 2004-08-05 Miura Co Ltd Vacuum cooling method
JP2008170016A (en) * 2006-02-13 2008-07-24 Miura Co Ltd Cooling device
JP2017040417A (en) * 2015-08-19 2017-02-23 株式会社サムソン Vacuum cooling apparatus
JP2018155423A (en) * 2017-03-15 2018-10-04 三浦工業株式会社 Food machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170060A (en) * 2002-11-07 2004-06-17 Miura Co Ltd Method of controlling vacuum cooling device and vacuum cooling device
JP2004218958A (en) * 2003-01-16 2004-08-05 Miura Co Ltd Vacuum cooling method
JP2008170016A (en) * 2006-02-13 2008-07-24 Miura Co Ltd Cooling device
JP2017040417A (en) * 2015-08-19 2017-02-23 株式会社サムソン Vacuum cooling apparatus
JP2018155423A (en) * 2017-03-15 2018-10-04 三浦工業株式会社 Food machine

Also Published As

Publication number Publication date
JP7232400B2 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
KR100888384B1 (en) System and method for controlling an economizer circuit
US20130025304A1 (en) Loading and unloading of compressors in a cooling system
JP2003028515A (en) Constant-temperature liquid circulating device
JP3783711B2 (en) Heat pump water heater
JP5251557B2 (en) Cooling device and cooling method
KR20110072441A (en) Refrigerator and method for controlling operation thereof
US20170227260A1 (en) Heat Pump Heating Apparatus
JP3894190B2 (en) Heat pump water heater
JP2005147584A (en) Start-up controller and start-up control method for heat pump hot water supply apparatus
JP6264532B2 (en) Food machine with vacuum cooling function
JP7232400B2 (en) vacuum cooling system
WO2007094141A1 (en) Cooling device
JP2733195B2 (en) Refrigeration cycle control method in liquid cooling device and liquid cooling device
JP2018204860A (en) Vacuum cooler
JP6417872B2 (en) Vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP7432103B2 (en) vacuum cooling device
JP6369755B2 (en) Vacuum cooling device
JP4288699B2 (en) Control method of vacuum cooling device and vacuum cooling device
JP7223319B2 (en) vacuum cooling system
JP2020034199A (en) Vacuum cooling device
JPH07305903A (en) Controller for freezer
JP7167572B2 (en) vacuum cooling system
JP2020091052A (en) Vacuum cooling device
JP4073142B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7232400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150