JP2020034199A - Vacuum cooling device - Google Patents

Vacuum cooling device Download PDF

Info

Publication number
JP2020034199A
JP2020034199A JP2018159772A JP2018159772A JP2020034199A JP 2020034199 A JP2020034199 A JP 2020034199A JP 2018159772 A JP2018159772 A JP 2018159772A JP 2018159772 A JP2018159772 A JP 2018159772A JP 2020034199 A JP2020034199 A JP 2020034199A
Authority
JP
Japan
Prior art keywords
water
cooling
heat exchanger
vacuum pump
processing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018159772A
Other languages
Japanese (ja)
Inventor
雅夫 蔵野
Masao Kurano
雅夫 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018159772A priority Critical patent/JP2020034199A/en
Publication of JP2020034199A publication Critical patent/JP2020034199A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a vacuum cooling device which can supply cold water of a desired temperature to a decompression system toward the end of a cooling step, and which can improve the cooling speed and can reduce cavitation.SOLUTION: A vacuum cooling device includes: a processing tank 2 in which a food F is stored; a water-seal type vacuum pump 11 for sucking and exhausting gas in the processing tank 2 to the outside; a heat exchanger 9 provided in an exhaust passage 8 from the processing tank 2 to the vacuum pump 11, and for cooling an exhaust fluid by cooling water; and storage parts 6, 7 capable of cooling storage water by a chiller 5. As the storage part, the vacuum cooling device includes the first storage part 6 and the second storage part 7, and from which storage part the water should be supplied to the heat exchanger 9 and/or the vacuum pump 11 is switchable. It is preferable that, toward the end of a cooling step, the storage water in the first storage part 6 is circulated between itself and the heat exchanger 9 while being cooled by the chiller 5, and the cold water in the second storage part 7 is not circulated between itself and the heat exchanger 9 but is used as seal water of the vacuum pump 11.SELECTED DRAWING: Figure 1

Description

本発明は、処理槽内を減圧して食品を冷却する真空冷却装置に関するものである。   The present invention relates to a vacuum cooling device that cools food by reducing the pressure in a processing tank.

従来、下記特許文献1に開示されるように、冷却槽(4)内を減圧する手段として、蒸気凝縮用の熱交換器(6)と水封式の真空ポンプ(7)とを備えた真空冷却装置が知られている。この装置では、熱交換器(6)の通水および真空ポンプ(7)の封水として、常温水と冷水とを切替可能とされる。具体的には、熱交換器(6)および真空ポンプ(7)には、常温水供給ライン(24)からの常温水と、チラー(25)で冷却された冷水タンク(38)からの冷水とを切り替えて供給可能とされる。そして、熱交換器(6)を通過後の水は、排水ライン(31)から排水されるか、冷水タンク(38)へ戻される。   Conventionally, as disclosed in Patent Document 1 below, as a means for reducing the pressure in a cooling tank (4), a vacuum provided with a heat exchanger (6) for vapor condensation and a water ring vacuum pump (7). Cooling devices are known. In this device, room-temperature water and cold water can be switched as the water flow of the heat exchanger (6) and the sealing of the vacuum pump (7). Specifically, room temperature water from a room temperature water supply line (24) and cold water from a cold water tank (38) cooled by a chiller (25) are supplied to the heat exchanger (6) and the vacuum pump (7). And can be supplied. Then, the water after passing through the heat exchanger (6) is drained from the drain line (31) or returned to the cold water tank (38).

この装置では、まず、待機工程として、冷水タンク(38)内の水がチラー(25)との間で循環されて冷却される(特許文献1の図2)。その後、冷却初期工程として、熱交換器(6)の通水を停止した状態で、封水として常温水を供給しつつ真空ポンプ(7)を作動させて、冷却槽(4)内を減圧する(特許文献1の図3)。その後、冷却中期工程として、熱交換器(6)の通水を開始し(特許文献1の図4)、さらに、冷却後期工程として、熱交換器(6)の通水と真空ポンプ(7)の封水を、常温水から冷水に切り替えて、冷却槽(4)内をさらに減圧する(特許文献1の図5)。熱交換器(6)に冷水を通す場合、熱交換器(6)を通過後の冷水は、冷水タンク(38)へ戻される。   In this apparatus, first, as a standby step, water in a cold water tank (38) is circulated and cooled with a chiller (25) (FIG. 2 of Patent Document 1). Then, as a cooling initial step, the vacuum pump (7) is operated while supplying normal-temperature water as sealing water in a state where the flow of water through the heat exchanger (6) is stopped, and the pressure in the cooling tank (4) is reduced. (FIG. 3 of Patent Document 1). Thereafter, as the middle stage of cooling, the passage of water through the heat exchanger (6) is started (FIG. 4 of Patent Document 1), and as the latter stage of cooling, the passage of water through the heat exchanger (6) and the vacuum pump (7). Is switched from room temperature water to cold water, and the pressure in the cooling tank (4) is further reduced (FIG. 5 of Patent Document 1). When passing cold water through the heat exchanger (6), the cold water that has passed through the heat exchanger (6) is returned to the cold water tank (38).

特開2004−170060号公報(段落0046−0053、図1−5)JP-A-2004-170060 (Paragraph 0046-0053, FIG. 1-5)

従来技術では、冷却工程終盤(冷却後期工程)において、熱交換器および真空ポンプに冷水が供給されるが、熱交換器を通過後の昇温された水は冷水タンクへ戻される。また、冷水タンクから真空ポンプへ供給された冷水は、使い捨てられるので、その分、冷水タンクに常温水が補給され得る。   In the related art, at the end of the cooling process (late cooling process), cold water is supplied to the heat exchanger and the vacuum pump, but the heated water after passing through the heat exchanger is returned to the cold water tank. Further, since the cold water supplied from the cold water tank to the vacuum pump is disposable, the cold water tank can be replenished with normal temperature water accordingly.

このようなことから、冷水タンク内の水温は上昇し得る。そのため、チラーによる冷却状況によっては、冷却工程終盤の一番低い冷水温度が必要な状況で、冷水温度が成行きとなり、所望温度の冷水を供給できないおそれがある。それにより、冷却速度が遅くなったり、真空ポンプにおいてキャビテーションが発生したりするおそれがある。   For this reason, the water temperature in the cold water tank can rise. For this reason, depending on the cooling condition of the chiller, the cold water temperature may reach a desired temperature at the end of the cooling process in a situation where the lowest cold water temperature is required. As a result, there is a possibility that the cooling rate becomes slow or cavitation occurs in the vacuum pump.

そこで、本発明が解決しようとする課題は、冷却工程終盤に所望温度の冷水を減圧系統に供給でき、冷却速度の向上や、キャビテーションの低減が可能な真空冷却装置を提供することにある。   Therefore, an object of the present invention is to provide a vacuum cooling device that can supply cold water at a desired temperature to a decompression system at the end of a cooling process, and can improve a cooling speed and reduce cavitation.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプと、前記処理槽から前記真空ポンプへの排気路に設けられ、排気流体を冷却水で冷却する熱交換器と、前記熱交換器や前記真空ポンプへの給水を貯留し、貯留水をチラーにより冷却可能な貯留部とを備え、前記貯留部として、第一貯留部と第二貯留部とを備え、いずれの貯留部の水を前記熱交換器および/または前記真空ポンプへ供給するかを切替可能とされたことを特徴とする真空冷却装置である。   The present invention has been made to solve the above-mentioned problem, and the invention according to claim 1 has a processing tank in which food is stored, and a water-sealing type that sucks and discharges gas in the processing tank to the outside. A vacuum pump, a heat exchanger that is provided in an exhaust path from the processing tank to the vacuum pump, and cools an exhaust fluid with cooling water, stores water supplied to the heat exchanger and the vacuum pump, and stores the stored water. A storage unit that can be cooled by a chiller, and as the storage unit, a first storage unit and a second storage unit, and which storage unit supplies water to the heat exchanger and / or the vacuum pump. A vacuum cooling device characterized by being able to be switched.

請求項1に記載の発明によれば、熱交換器および/または真空ポンプへの給水として、第一貯留部と第二貯留部との内、いずれの貯留部からの冷水を用いるかを切り替えることができる。冷却工程の途中(好ましくは終盤)で切り替えれば、冷却工程が進んだ状況でも比較的低温の冷水を供給することができ、冷却速度の向上や、キャビテーションの低減を図ることができる。   According to the first aspect of the present invention, the water supply to the heat exchanger and / or the vacuum pump is switched between the first storage unit and the second storage unit, from which of the storage units the cold water is used. Can be. If the switching is performed in the middle of the cooling step (preferably at the end of the cooling step), relatively low-temperature cold water can be supplied even in a state where the cooling step has been advanced, and the cooling rate can be improved and cavitation can be reduced.

請求項2に記載の発明は、前記第一貯留部内の貯留水は、前記熱交換器との間で循環可能とされると共に、前記真空ポンプへ給水可能とされ、前記第二貯留部内の貯留水は、前記熱交換器との間で循環不能とされると共に、前記真空ポンプへ給水可能とされることを特徴とする請求項1に記載の真空冷却装置である。   In the invention according to claim 2, the stored water in the first storage unit can be circulated between the heat exchanger and the water supply to the vacuum pump, and stored in the second storage unit. 2. The vacuum cooling device according to claim 1, wherein the water cannot be circulated between the heat exchanger and the water, and the water can be supplied to the vacuum pump. 3.

請求項2に記載の発明によれば、第一貯留部内の貯留水(冷水)は、熱交換器との間で循環可能とされるので昇温し得るが、第二貯留部内の貯留水(冷水)は、熱交換器との間で循環不能とされるので昇温が防止される。冷却工程の途中(好ましくは終盤)で、真空ポンプの封水を第二貯留部の貯留水に切り替えれば、冷却工程が進んだ状況でも比較的低温の冷水を供給することができ、冷却速度の向上や、キャビテーションの低減を図ることができる。   According to the second aspect of the present invention, the stored water (cold water) in the first storage unit can be circulated with the heat exchanger, so that the temperature can be increased. The cold water) is not allowed to circulate with the heat exchanger, so that the temperature is prevented from rising. In the middle of the cooling step (preferably at the end), if the water sealed by the vacuum pump is switched to the stored water in the second storage section, relatively low-temperature cold water can be supplied even in the state where the cooling step has been advanced, and the cooling rate can be reduced. Improvement and reduction of cavitation can be achieved.

請求項3に記載の発明は、前記真空ポンプへ常温水を供給しつつ、前記処理槽内を減圧する第一冷却工程と、前記第一貯留部内の貯留水を、チラーで冷却しつつ前記熱交換器との間で循環させると共に前記真空ポンプへ供給して、前記処理槽内を減圧する第二冷却工程と、前記第一貯留部内の貯留水を、チラーで冷却しつつ前記熱交換器との間で循環させると共に、前記第二貯留部内の貯留水を、前記真空ポンプへ供給して、前記処理槽内をさらに減圧する第三冷却工程と、を順次に含んで実行することを特徴とする請求項1または請求項2に記載の真空冷却装置である。   The first aspect of the present invention is a first cooling step of depressurizing the inside of the processing tank while supplying room-temperature water to the vacuum pump, and the cooling water in the first storage unit while cooling the stored water in the first storage unit with a chiller. A second cooling step of circulating between the exchanger and supplying to the vacuum pump to reduce the pressure in the processing tank, and the stored water in the first storage unit is cooled by a chiller while the heat exchanger. And a third cooling step of supplying the stored water in the second storage section to the vacuum pump to further reduce the pressure in the treatment tank, and sequentially performing the steps. A vacuum cooling device according to claim 1 or claim 2.

請求項3に記載の発明によれば、第一冷却工程、第二冷却工程および第三冷却工程を順次に実行して、食品の冷却を図ることができる。また、冷却工程終盤の一番低い冷水温度が必要な状況では、第三冷却工程として、真空ポンプの封水を第二貯留部の貯留水に切り替える。第二貯留部内の貯留水は、熱交換器との間で循環されず(それ故に昇温されず)、比較的低温であるから、この低温の冷水を真空ポンプへ供給することで、冷却速度の向上や、キャビテーションの低減を図ることができる。   According to the third aspect of the present invention, the first cooling step, the second cooling step, and the third cooling step are sequentially performed to cool the food. In the situation where the lowest chilled water temperature is required at the end of the cooling step, the sealing of the vacuum pump is switched to the stored water in the second storage section as the third cooling step. Since the stored water in the second storage unit is not circulated to the heat exchanger (hence, the temperature is not raised) and is relatively low in temperature, supplying the low-temperature cold water to the vacuum pump reduces the cooling rate. And cavitation can be reduced.

さらに、請求項4に記載の発明は、前記各貯留部では、貯留水を設定水位に維持するよう給水を制御されるが、前記第三冷却工程では、前記第二貯留部へは給水しないことを特徴とする請求項3に記載の真空冷却装置である。   Further, in the invention according to claim 4, in each of the storage units, water supply is controlled to maintain the stored water at a set water level, but in the third cooling step, water is not supplied to the second storage unit. The vacuum cooling device according to claim 3, wherein:

請求項4に記載の発明によれば、第三冷却工程では第二貯留部へは給水しないので、第二貯留部内の貯留水の水温が上昇するのが防止される。それにより、第三冷却工程における真空ポンプへの給水温度は低温のまま安定し、冷却速度の向上や、キャビテーションの低減を図ることができる。   According to the fourth aspect of the present invention, since the water is not supplied to the second storage part in the third cooling step, the temperature of the stored water in the second storage part is prevented from rising. Thereby, the temperature of the water supply to the vacuum pump in the third cooling step is stabilized at a low temperature, and the cooling rate can be improved and cavitation can be reduced.

本発明の真空冷却装置によれば、冷却工程終盤に所望温度の冷水を減圧系統に供給でき、冷却速度の向上や、キャビテーションの低減を図ることができる。   ADVANTAGE OF THE INVENTION According to the vacuum cooling device of this invention, the cold water of a desired temperature can be supplied to a decompression system at the end of a cooling process, and the improvement of a cooling rate and reduction of cavitation can be aimed at.

本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示すと共に、待機工程での水の流れを示している。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the vacuum cooling device of one Example of this invention, and shows the flow of water in a standby process while showing a part in cross section. 図1の真空冷却装置の減圧手段とそれへの給排水系統を示す図であり、第一冷却工程での水の流れを示している。FIG. 2 is a diagram illustrating a pressure reducing unit of the vacuum cooling device of FIG. 1 and a water supply / drainage system to the unit, and illustrates a flow of water in a first cooling step. 図1の真空冷却装置の減圧手段とそれへの給排水系統を示す図であり、第二冷却工程での水の流れを示している。It is a figure which shows the decompression means of the vacuum cooling device of FIG. 1, and the water supply / drainage system to it, and has shown the flow of the water in a 2nd cooling process. 図1の真空冷却装置の減圧手段とそれへの給排水系統を示す図であり、第三冷却工程での水の流れを示している。FIG. 2 is a diagram illustrating a pressure reducing unit of the vacuum cooling device in FIG. 1 and a water supply / drainage system to the pressure reducing unit, and illustrates a flow of water in a third cooling step.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示すと共に、後述する待機工程での水の流れを示している。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a vacuum cooling device 1 according to one embodiment of the present invention, and shows a part of the cross section and shows a flow of water in a standby step described later.

本実施例の真空冷却装置1は、冷却を図りたい食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出して処理槽2内を減圧する減圧手段3と、減圧された処理槽2内へ外気を導入して処理槽2内を復圧する復圧手段4と、減圧手段3で用いる水を貯留すると共に貯留水をチラー5により冷却可能な貯留部6,7と、前記各手段3,4やチラー5などを制御して処理槽2内の食品Fの真空冷却を図る制御手段(図示省略)とを備える。   The vacuum cooling device 1 according to the present embodiment includes a processing tank 2 in which a food F to be cooled is stored, a decompression unit 3 that suctions and discharges gas in the processing tank 2 to the outside, and depressurizes the processing tank 2. A decompression means 4 for introducing outside air into the decompressed processing tank 2 to repressurize the processing tank 2, and a storage unit 6 for storing water used in the decompression means 3 and cooling the stored water by a chiller 5. And control means (not shown) for controlling the means 3, 4 and the chiller 5 for vacuum cooling the food F in the processing tank 2.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドアで開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品Fを出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。   The processing tank 2 is a hollow container that can withstand reduced pressure in the internal space, and can be opened and closed by a door. The processing tank 2 is typically formed in a substantially rectangular box shape, and an opening at the front can be opened and closed by a door. The food F can be taken in and out of the processing tank 2 by opening the door, and the opening of the processing tank 2 can be closed airtight by closing the door. The door may be provided on both the front and back of the processing tank 2.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路8に、熱交換器9、逆止弁10および真空ポンプ11を順に備える。   The decompression unit 3 is a unit that sucks and discharges a gas (air or steam) in the processing tank 2 to the outside to reduce the pressure in the processing tank 2. In this embodiment, the pressure reducing means 3 includes a heat exchanger 9, a check valve 10, and a vacuum pump 11 in order in an exhaust path 8 from inside the processing tank 2.

熱交換器9は、処理槽2内からの排気流体と冷却水とを混ぜることなく熱交換する。熱交換器9において、排気流体を冷却水で冷却して、排気流体中の蒸気を凝縮させることができる。   The heat exchanger 9 exchanges heat without mixing the exhaust fluid from the processing tank 2 and the cooling water. In the heat exchanger 9, the exhaust fluid can be cooled by the cooling water to condense the vapor in the exhaust fluid.

真空ポンプ11は、水封式とされ、周知のとおり、封水と呼ばれる水が供給されつつ運転される。詳細は後述するが、熱交換器9および真空ポンプ11には、常温水と冷水とを切り替えて供給することができる。なお、冷水とは、チラー5により冷却された水をいい、常温水とは、そのような冷却がなされない水をいう。   The vacuum pump 11 is of a water-sealing type, and is operated while being supplied with water called water sealing, as is well known. Although the details will be described later, the heat exchanger 9 and the vacuum pump 11 can be supplied by switching between normal temperature water and cold water. Note that cold water refers to water cooled by the chiller 5, and room-temperature water refers to water that is not cooled.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路12に、エアフィルタ13および真空解除弁14を順に備える。処理槽2内が減圧された状態で、真空解除弁14を開けると、外気がエアフィルタ13を介して処理槽2内へ導入され、処理槽2内を復圧することができる。真空解除弁14は、好ましくは開度調整可能な弁から構成される。   The pressure recovery means 4 is means for introducing outside air into the depressurized processing tank 2 to recover the pressure inside the processing tank 2. In the present embodiment, the pressure recovery means 4 includes an air filter 13 and a vacuum release valve 14 in order in an air supply path 12 into the processing tank 2. When the vacuum release valve 14 is opened in a state where the pressure in the processing tank 2 is reduced, outside air is introduced into the processing tank 2 via the air filter 13, and the pressure in the processing tank 2 can be restored. The vacuum release valve 14 is preferably composed of a valve whose opening can be adjusted.

チラー5は、冷凍機(図示省略)を備え、貯留部6,7からの水を冷却する。冷凍機は、周知のとおり、圧縮機、凝縮器、膨張弁および蒸発器を備え、冷媒の圧縮、凝縮、膨張および蒸発の冷凍サイクルを実行する。そして、蒸発器において、冷媒と水とを混ぜることなく熱交換して、貯留部6,7からの水を冷却する。   The chiller 5 includes a refrigerator (not shown) and cools water from the storage units 6 and 7. As is well known, a refrigerator includes a compressor, a condenser, an expansion valve, and an evaporator, and executes a refrigeration cycle of compression, condensation, expansion, and evaporation of a refrigerant. Then, in the evaporator, heat exchange is performed without mixing the refrigerant and water, and the water from the storage units 6 and 7 is cooled.

貯留部として、第一貯留部6と第二貯留部7とを備える。本実施例では、冷水タンク15内が仕切板16で仕切られて、第一貯留部6と第二貯留部7とに分けられている。各貯留部6,7を一つの冷水タンク15に一体的に設けることで、コンパクトな構成となる。しかも、外気に接する面積を小さくでき、断熱施工も容易になる等、冷水の温度上昇の抑制に有利である。但し、二つの冷水タンク15を用意して、一方の冷水タンク15を第一貯留部6として用い、他方の冷水タンク15を第二貯留部7として用いてもよい。   The storage unit includes a first storage unit 6 and a second storage unit 7. In the present embodiment, the inside of the cold water tank 15 is partitioned by a partition plate 16 and divided into a first storage section 6 and a second storage section 7. By providing the storage sections 6 and 7 integrally in one cold water tank 15, a compact configuration is achieved. In addition, the area in contact with the outside air can be reduced, and heat insulation can be easily performed. However, two chilled water tanks 15 may be prepared, and one chilled water tank 15 may be used as the first storage unit 6 and the other chilled water tank 15 may be used as the second storage unit 7.

第二貯留部7は、本実施例では、第一貯留部6よりも小容量とされる。第二貯留部7の容量(貯水量)は、後述する第三冷却工程での使用水量(封水量)に合わせるか、それよりもやや多い容量とされる。たとえば、本実施例では、第一貯留部6の容量が400Lとされ、第二貯留部7の容量が20〜60L(第一貯留部6の容量の5〜15%、より好ましくは5〜10%)とされる。   In the present embodiment, the second storage unit 7 has a smaller capacity than the first storage unit 6. The capacity (water storage amount) of the second storage unit 7 is set to be equal to or slightly larger than the amount of water used (water sealing amount) in the third cooling step described later. For example, in the present embodiment, the capacity of the first storage section 6 is 400 L, and the capacity of the second storage section 7 is 20 to 60 L (5 to 15% of the capacity of the first storage section 6, more preferably 5 to 10 L). %).

第一貯留部6には、第一補水路17を介して、給水可能とされる。本実施例では、ボールタップ18により、第一貯留部6には第一補水路17から適宜、常温水が供給され、第一貯留部6の貯留水は設定水位に維持される。   Water can be supplied to the first storage section 6 via the first water supply passage 17. In the present embodiment, normal temperature water is supplied to the first storage unit 6 from the first water supply channel 17 as appropriate by the ball tap 18, and the stored water in the first storage unit 6 is maintained at the set water level.

第二貯留部7には、第二補水路19を介して、給水可能とされる。本実施例では、ボールタップ20により、第二貯留部7には第二補水路19から適宜、常温水が供給され、第二貯留部7の貯留水は設定水位に維持される。但し、第二補水路19には補水遮断弁21が設けられており、補水遮断弁21の開閉により、第二補水路19を介した第二貯留部7への給水の可否が切り替えられる。補水遮断弁21を開けた状態では、ボールタップ20により、第二貯留部7の貯留水は設定水位に維持されるが、補水遮断弁21を閉めた状態では、第二補水路19を介した第二貯留部7への給水が阻止される。   Water can be supplied to the second storage section 7 via the second water supply passage 19. In the present embodiment, normal temperature water is appropriately supplied to the second storage section 7 from the second water supply channel 19 by the ball tap 20, and the stored water in the second storage section 7 is maintained at the set water level. However, the second water supply channel 19 is provided with a water supply shutoff valve 21, and the open / close of the water supply shutoff valve 21 switches whether water can be supplied to the second storage unit 7 through the second water supply channel 19. In a state in which the rehydration cutoff valve 21 is opened, the stored water in the second storage section 7 is maintained at the set water level by the ball tap 20, but in a state in which the rehydration cutoff valve 21 is closed, the second water through the second refill channel 19 is provided. Water supply to the two storage units 7 is prevented.

各貯留部6,7内の貯留水は、チラー5により冷却可能とされる。そのために、第一貯留部6からの第一送水路22と、第二貯留部7からの第二送水路23とは、合流してチラー入口路24としてチラー5に接続される。第一送水路22には、流量調整弁25(またはオリフィスなどの圧損要素)が設けられる一方、第二送水路23には、送水弁26が設けられる。さらに、チラー入口路24には、送水ポンプ27が設けられている。送水ポンプ27を作動させると、チラー入口路24からの水が、チラー5(より具体的には冷凍機の蒸発器)に通されて冷却され、冷水としてチラー出口路28へ導出される。   The stored water in each of the storage units 6 and 7 can be cooled by the chiller 5. For that purpose, the first water supply channel 22 from the first storage unit 6 and the second water supply channel 23 from the second storage unit 7 are merged and connected to the chiller 5 as a chiller inlet channel 24. The first water passage 22 is provided with a flow control valve 25 (or a pressure loss element such as an orifice), while the second water passage 23 is provided with a water valve 26. Further, a water supply pump 27 is provided in the chiller inlet passage 24. When the water supply pump 27 is operated, the water from the chiller inlet channel 24 is passed through the chiller 5 (more specifically, the evaporator of the refrigerator) to be cooled, and is discharged to the chiller outlet channel 28 as cold water.

流量調整弁25および送水弁26を開けた状態で送水ポンプ27を作動させて、各貯留部6,7内の貯留水をチラー5との間で循環させて冷却することができるが、その際、各貯留部6,7内の貯留水が均等に冷却されるように、流量調整弁25の開度(またはオリフィスの大きさ)が予め設定される。そのため、第一送水路22に流量調整弁25を設ける場合でも、通常、流量調整弁25は一旦開度調整された後、その所定開度のまま維持される。但し、流量調整弁25(およびオリフィスなど)の設置は、場合により省略可能である。   By operating the water supply pump 27 with the flow control valve 25 and the water supply valve 26 opened, the stored water in each of the storage parts 6, 7 can be circulated between the chiller 5 and cooled. The opening degree (or the size of the orifice) of the flow control valve 25 is set in advance so that the stored water in each of the storage sections 6 and 7 is uniformly cooled. Therefore, even when the flow rate control valve 25 is provided in the first water supply passage 22, the flow rate control valve 25 is normally maintained at the predetermined opening degree after the opening degree is once adjusted. However, the installation of the flow control valve 25 (and the orifice or the like) can be omitted in some cases.

チラー5からのチラー出口路28は、冷水給水路29と冷水戻し路30とに分岐される。チラー出口路28からの冷水を、冷水給水路29へ送るか、冷水戻し路30へ送るかは、切替可能とされる。本実施例では、冷水給水路29と冷水戻し路30との分岐部に第一切替弁(三方弁)31が設けられ、この第一切替弁31により、チラー5からの冷水を冷水給水路29へ送るか、冷水戻し路30へ送るかが切り替えられる。冷水戻し路30は、第一貯留部6への第一返水路32と、第二貯留部7への第二返水路33とに分岐される。第二返水路33には、返水弁34が設けられている。返水弁34を閉じておけば、冷水戻し路30を介した第二貯留部7へ返水を防止することができる。   A chiller outlet path 28 from the chiller 5 is branched into a chilled water supply path 29 and a chilled water return path 30. Whether the cold water from the chiller outlet passage 28 is sent to the cold water supply passage 29 or the cold water return passage 30 can be switched. In the present embodiment, a first switching valve (three-way valve) 31 is provided at a branch portion between the chilled water supply passage 29 and the chilled water return passage 30, and the first switching valve 31 allows the chilled water from the chiller 5 to be supplied to the chilled water supply passage 29. Or the cold water return path 30 is switched. The cold water return path 30 is branched into a first return path 32 to the first storage section 6 and a second return path 33 to the second storage section 7. A return valve 34 is provided in the second return passage 33. If the return valve 34 is closed, return of water to the second storage section 7 via the cold water return path 30 can be prevented.

熱交換器9および真空ポンプ11への給水として、本実施例では、常温水と冷水とを切り替えることができる。そのために、常温水が通される常温水給水路35と、冷水が通される冷水給水路29とが、合流して第一給水路36とされる。常温水給水路35には、常温水給水弁37および逆止弁38が設けられている。そして、第一給水路36には、熱交換器9への熱交給水路39が分岐して設けられる。また、第一給水路36の水は、封水給水路40を介して真空ポンプ11へ供給可能とされる。   In the present embodiment, the water supply to the heat exchanger 9 and the vacuum pump 11 can be switched between normal temperature water and cold water. Therefore, the normal temperature water supply channel 35 through which the normal temperature water passes and the cold water supply channel 29 through which the cold water passes merge into the first water supply channel 36. The room temperature water supply passage 35 is provided with a room temperature water supply valve 37 and a check valve 38. In the first water supply channel 36, a heat exchange water supply channel 39 to the heat exchanger 9 is provided in a branched manner. Further, the water in the first water supply channel 36 can be supplied to the vacuum pump 11 via the sealed water supply channel 40.

但し、真空ポンプ11には、第一給水路36の水と、第二貯留部7から第二給水路41を介した水とを、切り替えて供給可能とされる。本実施例では、第一給水路36と第二給水路41との合流部に第二切替弁(三方弁)42が設けられており、この第二切替弁42により、第一給水路36からの水(常温水または第一貯留部6内の貯留水)を真空ポンプ11へ送るか、第二給水路41からの水(第二貯留部7内の貯留水)を真空ポンプ11へ送るかが切り替えられる。   However, the water in the first water supply path 36 and the water from the second storage section 7 via the second water supply path 41 can be switched and supplied to the vacuum pump 11. In the present embodiment, a second switching valve (three-way valve) 42 is provided at the junction of the first water supply path 36 and the second water supply path 41, and the second switching valve 42 allows the first water supply path 36 to be separated from the first water supply path 36. Water (room temperature water or water stored in the first storage unit 6) to the vacuum pump 11, or water (water stored in the second storage unit 7) from the second water supply passage 41 to the vacuum pump 11 Is switched.

熱交換器9は、熱交給水路39を介して水が供給され、熱交排水路43を介して水が排出される。熱交換器9からの熱交排水路43は、冷水戻し弁44を介して、冷水戻し路30に接続されている。そのため、冷水戻し弁44を開けておくことで、熱交換器9で使用後の水を、冷水タンク15へ戻すことができる。その際、返水弁34を閉じておけば、熱交換器9で使用後の水を、第二貯留部7へは戻さず、第一貯留部6へ戻すことができる。   The heat exchanger 9 is supplied with water through a heat exchange water supply channel 39 and discharged through a heat exchange drainage channel 43. The heat exchange drainage channel 43 from the heat exchanger 9 is connected to the chilled water return channel 30 via a chilled water return valve 44. Therefore, by opening the cold water return valve 44, the water used in the heat exchanger 9 can be returned to the cold water tank 15. At this time, if the water return valve 34 is closed, the water used in the heat exchanger 9 can be returned to the first storage unit 6 without returning to the second storage unit 7.

処理槽2には、処理槽2内の圧力を検出する圧力センサ45と、処理槽2内に収容された食品Fの温度を検出する品温センサ46とが設けられる。また、チラー出口路28には、冷水の温度を検出する冷水温度センサ47が設けられる。但し、冷水温度センサ47は、場合により、チラー出口路28ではなく、チラー入口路24などに設けられてもよい。   The processing tank 2 is provided with a pressure sensor 45 for detecting the pressure in the processing tank 2 and a product temperature sensor 46 for detecting the temperature of the food F stored in the processing tank 2. The chiller outlet path 28 is provided with a chilled water temperature sensor 47 for detecting the temperature of the chilled water. However, the chilled water temperature sensor 47 may be provided in the chiller inlet passage 24 instead of the chiller outlet passage 28 in some cases.

制御手段は、前記各センサ45〜47の検出信号や経過時間などに基づき、前記各手段3,4やチラー5などを制御する制御器(図示省略)である。具体的には、チラー5、真空ポンプ11、送水ポンプ27、補水遮断弁21、送水弁26、第一切替弁31、返水弁34、常温水給水弁37、第二切替弁42、冷水戻し弁44、真空解除弁14の他、圧力センサ45、品温センサ46、冷水温度センサ47などは、制御器に接続されている。そして、制御器は、所定の手順(プログラム)に従い、処理槽2内の食品Fの真空冷却を図る。以下、真空冷却装置1の運転方法の一例について説明する。   The control means is a controller (not shown) for controlling the means 3, 4 and the chiller 5 based on the detection signals of the sensors 45 to 47 and the elapsed time. Specifically, the chiller 5, the vacuum pump 11, the water supply pump 27, the water supply shutoff valve 21, the water supply valve 26, the first switching valve 31, the return valve 34, the normal temperature water supply valve 37, the second switching valve 42, and the cold water return In addition to the valve 44 and the vacuum release valve 14, a pressure sensor 45, a product temperature sensor 46, a cold water temperature sensor 47, and the like are connected to the controller. Then, the controller performs vacuum cooling of the food F in the processing tank 2 according to a predetermined procedure (program). Hereinafter, an example of an operation method of the vacuum cooling device 1 will be described.

本実施例の真空冷却装置1は、待機工程、第一冷却工程、第二冷却工程、第三冷却工程および真空解除工程を順に含んで実行する。以下、図1〜図4に基づき、各工程について順に説明する。なお、前述した図1の他、図2から図4には、減圧手段3に対する給排水系統が示され、図1は待機工程での水の流れ、図2は第一冷却工程での水の流れ、図3は第二冷却工程での水の流れ、図4は第三冷却工程での水の流れを示している。各図において、黒塗りの弁は、閉鎖状態を示しており、白抜きの弁は、開放状態を示している。   The vacuum cooling device 1 according to the present embodiment sequentially executes a standby process, a first cooling process, a second cooling process, a third cooling process, and a vacuum release process. Hereinafter, each step will be described in order with reference to FIGS. 2 to 4 show a water supply / drainage system for the pressure reducing means 3 in addition to FIG. 1 described above. FIG. 1 shows a flow of water in a standby step, and FIG. 2 shows a flow of water in a first cooling step. FIG. 3 shows the flow of water in the second cooling step, and FIG. 4 shows the flow of water in the third cooling step. In each of the drawings, a black valve indicates a closed state, and a white valve indicates an open state.

運転開始前、真空解除弁14は開けられ、第一切替弁31はチラー出口路28と冷水戻し路30とを連通させ、第二切替弁42は第一給水路36と封水給水路40とを連通させ、その他の弁21,26,34,37,44は閉じられた状態にあり、チラー5および各ポンプ11,27は停止している。   Before the start of operation, the vacuum release valve 14 is opened, the first switching valve 31 connects the chiller outlet path 28 and the cold water return path 30, and the second switching valve 42 connects the first water supply path 36 and the closed water supply path 40. The other valves 21, 26, 34, 37, and 44 are closed, and the chiller 5 and the pumps 11 and 27 are stopped.

真空冷却装置1は、電源が投入されると待機工程を開始し、その後、第一冷却工程、第二冷却工程、第三冷却工程および真空解除工程を順に実行する。なお、処理槽2内への食品Fの収容は、典型的には待機工程後に行われるが、第一冷却工程前であれば、場合により待機工程前または待機工程中に行われてもよい。   When the power is turned on, the vacuum cooling device 1 starts a standby process, and thereafter sequentially executes a first cooling process, a second cooling process, a third cooling process, and a vacuum release process. Note that the food F is typically stored in the processing tank 2 after the standby step, but may be performed before or during the standby step depending on the case before the first cooling step.

≪待機工程(図1)≫
待機工程では、各貯留部6,7内の貯留水を、チラー5との間で循環させて設定温度まで冷却を図る。具体的には、図1に示すように、第一切替弁31によりチラー出口路28と冷水戻し路30とを連通させた状態で、且つ、送水弁26および返水弁34を開けた状態で、送水ポンプ27を作動させる。なお、流量調整弁25は、前述したとおり、予め所定開度に調整されており、本実施例では制御されない。また、予め補水遮断弁21が開けられており、待機工程では、各貯留部6,7内には設定水位まで水が貯留されて維持される。
<< Standby process (Fig.1) >>
In the standby step, the stored water in each of the storage units 6 and 7 is circulated between the storage unit 6 and the chiller 5 to cool the storage water to the set temperature. Specifically, as shown in FIG. 1, in a state where the chiller outlet path 28 and the cold water return path 30 are communicated by the first switching valve 31, and in a state where the water supply valve 26 and the water return valve 34 are opened. Then, the water pump 27 is operated. Note that, as described above, the flow control valve 25 is adjusted to a predetermined opening degree in advance, and is not controlled in the present embodiment. In addition, the water supply shutoff valve 21 is opened in advance, and in the standby process, water is stored and maintained in each of the storage units 6 and 7 to the set water level.

各貯留部6,7内の貯留水は、各送水路22,23およびチラー入口路24を介して、チラー5へ送られて冷却され、チラー出口路28、冷水戻し路30および各返水路32,33を介して、各貯留部6,7へ戻される。この際、冷水温度センサ47の検出温度を設定温度(たとえば7℃)に維持するように、チラー5を制御する。ここでは、圧縮機をインバータ制御するが、場合によりオンオフ制御してもよい。各貯留部6,7から送水ポンプ27への合流割合を流量調整弁25で調整しておくことで、また所望により冷水戻し路30から各返水路32,33(ひいては各貯留部6,7)への分配割合も同様の手法で調整しておくことで、各貯留部6,7内の貯留水を均等に冷却することができる。   The stored water in each of the storage units 6 and 7 is sent to the chiller 5 via each of the water supply channels 22 and 23 and the chiller inlet channel 24 to be cooled, and the chiller outlet channel 28, the cold water return channel 30 and each of the return channels 32 are provided. , 33, and is returned to each storage section 6, 7. At this time, the chiller 5 is controlled such that the temperature detected by the cold water temperature sensor 47 is maintained at a set temperature (for example, 7 ° C.). Here, the compressor is controlled by an inverter, but may be controlled on / off in some cases. By adjusting the merging ratio from each of the storage units 6 and 7 to the water pump 27 with the flow control valve 25, and from the cold water return path 30 to each of the water return paths 32 and 33 (accordingly, each of the storage sections 6 and 7). By adjusting the distribution ratio to the storage sections in the same manner, the stored water in each of the storage sections 6 and 7 can be uniformly cooled.

冷水温度センサ47の検出温度が設定温度以下になるか、さらに所定のスタートボタンが押される(つまり冷却開始が指示される)などにより、次工程へ移行する。以後、送水ポンプ27は、少なくとも第三冷却工程の終了まで作動を継続する。その間、チラー5も基本的には作動を継続するが、前述したとおりインバータ制御(出口側水温を設定温度に維持するようにインバータ制御)されるので、チラー5に通される水温に基づき出力は自動的に調整される。なお、各貯留部6,7内の貯留水を(熱交換器9には通さず)チラー5に循環させての冷却は、第一冷却工程の終了まで継続され、各貯留部6,7内の貯留水は設定温度(実際には各貯留部6,7内では多少行き過ぎた温度(たとえば5〜6℃)となり得る)に維持される。   When the temperature detected by the chilled water temperature sensor 47 becomes equal to or lower than the set temperature, or when a predetermined start button is pressed (that is, the start of cooling is instructed), the process proceeds to the next step. Thereafter, the water pump 27 continues to operate at least until the end of the third cooling step. During that time, the chiller 5 also basically continues to operate, but as described above, the inverter is controlled (the inverter is controlled so as to maintain the outlet water temperature at the set temperature), so the output is based on the water temperature passed through the chiller 5. Adjusted automatically. The cooling by circulating the stored water in each storage unit 6, 7 through the chiller 5 (not passing through the heat exchanger 9) is continued until the end of the first cooling step. Is maintained at a set temperature (actually, the temperature in each of the storage sections 6, 7 may be somewhat excessive (eg, 5 to 6 ° C.)).

≪第一冷却工程(図2)≫
第一冷却工程では、真空解除弁14を閉じると共に、熱交換器9の通水を停止した状態で、真空ポンプ11の封水として常温水を供給しつつ、真空ポンプ11により処理槽2内を減圧する。
<< First cooling process (Fig. 2) >>
In the first cooling step, while the vacuum release valve 14 is closed and the passage of water through the heat exchanger 9 is stopped, while supplying room temperature water as sealing water for the vacuum pump 11, the inside of the processing tank 2 is evacuated by the vacuum pump 11. Reduce pressure.

具体的には、真空解除弁14を閉じて、処理槽2内を密閉する。また、冷水戻し弁44を閉じたままとすることで、熱交換器9の通水を不能とする。さらに、第二切替弁42により第一給水路36と封水給水路40とを連通させた状態で、常温水給水弁37を開けて、真空ポンプ11への封水として常温水を供給しつつ、真空ポンプ11を作動させて処理槽2内を減圧する。   Specifically, the vacuum release valve 14 is closed to seal the inside of the processing tank 2. Further, by keeping the cold water return valve 44 closed, the passage of water through the heat exchanger 9 is disabled. Further, with the second switching valve 42 connecting the first water supply path 36 and the sealed water supply path 40, the normal temperature water supply valve 37 is opened to supply room temperature water as water sealing to the vacuum pump 11. Then, the inside of the processing tank 2 is depressurized by operating the vacuum pump 11.

このようにして、処理槽2内が減圧され、処理槽2内の食品Fの冷却が図られる。品温センサ46の検出温度がチラー切替温度(たとえば60℃)以下になると、次工程へ移行する。但し、品温センサ46の故障時など、圧力センサ45の検出圧力に基づき制御してもよく、その場合は、圧力センサ45の検出圧力がチラー切替圧力(チラー切替温度における飽和圧力(たとえば200hPa))以下になると、次工程へ移行する。   Thus, the pressure in the processing tank 2 is reduced, and the food F in the processing tank 2 is cooled. When the temperature detected by the product temperature sensor 46 becomes equal to or lower than the chiller switching temperature (for example, 60 ° C.), the process proceeds to the next step. However, control may be performed based on the detected pressure of the pressure sensor 45, such as when the product temperature sensor 46 fails, in which case the detected pressure of the pressure sensor 45 is changed to the chiller switching pressure (saturation pressure (for example, 200 hPa) at the chiller switching temperature). ) When it becomes the following, it moves to the next step.

≪第二冷却工程(図3)≫
第二冷却工程では、熱交換器9に通水すると共に、熱交換器9の通水および真空ポンプ11の封水を、常温水から冷水に切り替えて、処理槽2内をさらに減圧する。この際、熱交換器9を通過後の水は、第一貯留部6へ戻される。また、補水遮断弁21、送水弁26および返水弁34は閉じられ、第二貯留部7に対する給排水はなされない。
<< Second cooling process (Fig. 3) >>
In the second cooling step, while the water is passed through the heat exchanger 9, the water passing through the heat exchanger 9 and the sealing of the vacuum pump 11 are switched from normal-temperature water to cold water to further reduce the pressure inside the processing tank 2. At this time, the water after passing through the heat exchanger 9 is returned to the first storage unit 6. Further, the refilling shutoff valve 21, the water supply valve 26, and the water return valve 34 are closed, and the supply / drainage of the second storage unit 7 is not performed.

具体的には、常温水給水弁37を閉じる一方、第一切替弁31を切り替えて、チラー出口路28を冷水給水路29と連通させる。これにより、第一貯留部6からチラー5を介した冷水を、チラー出口路28および冷水給水路29を介して、熱交換器9および真空ポンプ11に供給することができる。つまり、冷水給水路29からの冷水は、熱交給水路39を介して熱交換器9に供給されると共に、封水給水路40を介して真空ポンプ11に供給される。そして、冷水戻し弁44を開けておくことで、熱交換器9を通過後の冷水を、第一貯留部6へ戻すことができる。前述したとおり、第二冷却工程では、補水遮断弁21、送水弁26および返水弁34は閉じられ、第二貯留部7に対する給排水はなされないので、第二貯留部7内の貯留水の水温は、概ね前記設定温度に維持されたままとなる。   Specifically, the normal temperature water supply valve 37 is closed, and the first switching valve 31 is switched so that the chiller outlet path 28 communicates with the cold water supply path 29. Thereby, the cold water from the first storage section 6 through the chiller 5 can be supplied to the heat exchanger 9 and the vacuum pump 11 through the chiller outlet path 28 and the cold water supply path 29. That is, the chilled water from the chilled water supply channel 29 is supplied to the heat exchanger 9 via the heat exchange water channel 39 and is also supplied to the vacuum pump 11 via the sealed water supply channel 40. Then, by opening the cold water return valve 44, the cold water that has passed through the heat exchanger 9 can be returned to the first storage section 6. As described above, in the second cooling step, the water supplement shutoff valve 21, the water supply valve 26, and the water return valve 34 are closed, and the supply / drainage of the second storage unit 7 is not performed. Remains substantially at the set temperature.

このようにして、処理槽2内がさらに減圧され、処理槽2内の食品Fの冷却が進められる。品温センサ46の検出温度が封水切替温度(たとえば30℃)以下になると、次工程へ移行する。但し、第一冷却工程から第二冷却工程への移行時と同様、第二冷却工程から第三冷却工程への移行時も、圧力センサ45の検出圧力に基づき制御してもよい。その場合、圧力センサ45の検出圧力が封水切替圧力(封水切替温度における飽和圧力(たとえば42hPa))以下になると、次工程へ移行する。   Thus, the pressure in the processing tank 2 is further reduced, and the cooling of the food F in the processing tank 2 is advanced. When the temperature detected by the product temperature sensor 46 becomes lower than the water sealing switching temperature (for example, 30 ° C.), the process proceeds to the next step. However, similarly to the transition from the first cooling step to the second cooling step, the control may be performed based on the detected pressure of the pressure sensor 45 at the transition from the second cooling step to the third cooling step. In this case, when the pressure detected by the pressure sensor 45 becomes equal to or lower than the water sealing switching pressure (saturation pressure (for example, 42 hPa) at the water sealing switching temperature), the process proceeds to the next step.

≪第三冷却工程(図4)≫
第三冷却工程では、真空ポンプ11の封水を、第一貯留部6の水から第二貯留部7の水に切り替える。つまり、第二冷却工程では、熱交換器9および真空ポンプ11には、第一貯留部6からの水を供給したが、第三冷却工程では、熱交換器9には第一貯留部6からの水を供給しつつ、真空ポンプ11には第二貯留部7からの水を供給する。
≪Third cooling process (Fig. 4) ≫
In the third cooling step, the water sealed by the vacuum pump 11 is switched from the water in the first storage 6 to the water in the second storage 7. That is, in the second cooling step, the water from the first storage section 6 was supplied to the heat exchanger 9 and the vacuum pump 11, but in the third cooling step, the heat exchanger 9 was supplied to the heat exchanger 9 from the first storage section 6. While supplying water from the second storage unit 7 to the vacuum pump 11.

具体的には、第二切替弁42を切り替えて、第二貯留部7からの第二給水路41を、真空ポンプ11への封水給水路40と連通させる。これにより、真空ポンプ11の封水として、第二貯留部7内の冷水を供給することができる。なお、第三冷却工程では、補水遮断弁21、送水弁26および返水弁34は、閉じられたままとされる。   Specifically, the second switching valve 42 is switched so that the second water supply channel 41 from the second storage unit 7 communicates with the sealed water supply channel 40 to the vacuum pump 11. Thereby, cold water in the second storage unit 7 can be supplied as the water sealing of the vacuum pump 11. In the third cooling step, the water supplement shutoff valve 21, the water supply valve 26, and the water return valve 34 are kept closed.

第二冷却工程および第三冷却工程において、第一貯留部6は、貯留水が熱交換器9との間で循環される上、第二冷却工程では真空ポンプ11にて使い捨てられる分と対応して、常温水が第一補水路17を介して供給される。そのため、第一貯留部6内の貯留水は、前記設定温度(待機工程時の冷却目標温度)よりも高い温度となる(たとえば12〜13℃)。これに対し、第二貯留部7内の貯留水は、熱交換器9との間で循環不能とされると共に補給もされないので昇温が防止される。つまり、第二貯留部7内の貯留水は、待機工程および第一冷却工程で設定温度まで冷却された後、その冷却状態を概ね維持される(たとえば5〜6℃)。そのため、冷却工程終盤の一番低い冷水温度が必要な状況で、第三冷却工程として、真空ポンプ11の封水を第二貯留部7の貯留水に切り替えることで、安定した低温水を真空ポンプ11へ供給することができる。この低温の冷水を真空ポンプ11へ供給することで、冷却速度の向上や、キャビテーションの低減を図ることができる。   In the second cooling step and the third cooling step, the first storage section 6 circulates the stored water between the heat exchanger 9 and the second cooling step. Thus, room temperature water is supplied via the first water supply passage 17. Therefore, the temperature of the stored water in the first storage unit 6 becomes higher than the set temperature (the cooling target temperature in the standby step) (for example, 12 to 13 ° C.). On the other hand, the stored water in the second storage section 7 cannot be circulated with the heat exchanger 9 and is not replenished, so that the temperature rise is prevented. In other words, the water stored in the second storage unit 7 is cooled to the set temperature in the standby step and the first cooling step, and then the cooling state is substantially maintained (for example, 5 to 6 ° C.). Therefore, in a situation where the lowest chilled water temperature is required at the end of the cooling step, as a third cooling step, the sealed water of the vacuum pump 11 is switched to the stored water of the second storage section 7 so that stable low-temperature water is supplied to the vacuum pump. 11 can be supplied. By supplying this low-temperature cold water to the vacuum pump 11, it is possible to improve the cooling rate and reduce cavitation.

このようにして、処理槽2内がさらに減圧され、処理槽2内の食品Fの冷却が進められる。品温センサ46の検出温度が冷却目標温度(たとえば18℃)になるなど、所定の終了条件を満たせば、熱交換器9および真空ポンプ11への給水を停止すると共に、真空ポンプ11を停止して、次工程へ移行する。但し、次回の真空冷却運転に備えて、待機工程と同様にして、各貯留部6,7内の貯留水をチラー5との間で循環させて、設定温度まで冷却することを継続してもよい。   Thus, the pressure in the processing tank 2 is further reduced, and the cooling of the food F in the processing tank 2 is advanced. When a predetermined termination condition is satisfied, such as when the temperature detected by the product temperature sensor 46 reaches a cooling target temperature (for example, 18 ° C.), water supply to the heat exchanger 9 and the vacuum pump 11 is stopped, and the vacuum pump 11 is stopped. To the next step. However, in preparation for the next vacuum cooling operation, the stored water in each of the storage units 6 and 7 is circulated between the storage units 6 and 7 with the chiller 5 to continue cooling to the set temperature in the same manner as in the standby process. Good.

なお、各冷却工程では、真空解除弁14の開度を調整してもよく、その場合、処理槽2内の圧力を所望に低下させ、処理槽2内の食品Fを徐冷することができる。   In each cooling step, the opening of the vacuum release valve 14 may be adjusted. In that case, the pressure in the processing tank 2 can be reduced as desired, and the food F in the processing tank 2 can be gradually cooled. .

≪真空解除工程≫
真空解除工程では、復圧手段4を用いて、処理槽2内を大気圧まで復圧する。具体的には、真空解除弁14を開けて、処理槽2内を大気圧まで復圧する。この際、真空解除弁14の開度を調整することで、処理槽2内を徐々に復圧することができる。このようにして、処理槽2内を大気圧まで復圧した後、処理槽2のドアを開けて、処理槽2から冷却後の食品Fを取り出すことができる。
≪Vacuum release process≫
In the vacuum release step, the pressure inside the processing tank 2 is restored to the atmospheric pressure by using the pressure restoration means 4. Specifically, the vacuum release valve 14 is opened, and the pressure inside the processing tank 2 is restored to the atmospheric pressure. At this time, the pressure inside the processing tank 2 can be gradually restored by adjusting the opening of the vacuum release valve 14. In this way, after the pressure in the processing tank 2 is restored to the atmospheric pressure, the door of the processing tank 2 is opened, and the cooled food F can be taken out of the processing tank 2.

本実施例の真空冷却装置1によれば、第一冷却工程、第二冷却工程および第三冷却工程を順次に実行して、食品Fの冷却を図ることができる。また、冷却工程終盤の一番低い冷水温度が必要な状況では、第三冷却工程として、真空ポンプ11の封水を第二貯留部7の貯留水に切り替える。第二貯留部7内の貯留水は、熱交換器9との間で循環されず(それ故に昇温されず)しかも新規に給水もされず(それ故に昇温されず)、比較的低温のまま維持されるから、この低温の冷水を真空ポンプ11へ供給することで、冷却速度の向上や、キャビテーションの低減を図ることができる。   According to the vacuum cooling device 1 of the present embodiment, the food F can be cooled by sequentially executing the first cooling step, the second cooling step, and the third cooling step. In a situation where the lowest cold water temperature is required at the end of the cooling step, the water sealed in the vacuum pump 11 is switched to the stored water in the second storage unit 7 as the third cooling step. The stored water in the second storage unit 7 is not circulated between the heat exchanger 9 (hence, the temperature is not increased) and is not newly supplied (hence, the temperature is not increased), and is relatively low in temperature. Since the low-temperature cold water is supplied to the vacuum pump 11, the cooling rate can be improved and cavitation can be reduced.

本発明の真空冷却装置1は、前記実施例の構成に限らず、適宜変更可能である。特に、(a)食品Fが収容される処理槽2と、(b)この処理槽2内の気体を外部へ吸引排出する水封式の真空ポンプ11と、(c)処理槽2から真空ポンプ11への排気路8に設けられ、排気流体を冷却水で冷却する熱交換器9と、(d)熱交換器9や真空ポンプ11への給水を貯留し、貯留水をチラー5により冷却可能な貯留部6,7とを備え、(e)貯留部として、第一貯留部6と第二貯留部7とを備え、いずれの貯留部の水を熱交換器9および/または真空ポンプ11へ供給するかを切替可能とされるのであれば、その他の構成は適宜に変更可能である。   The vacuum cooling device 1 of the present invention is not limited to the configuration of the above-described embodiment, and can be appropriately changed. In particular, (a) the processing tank 2 in which the food F is stored, (b) a water-sealed vacuum pump 11 for sucking and discharging the gas in the processing tank 2 to the outside, and (c) a vacuum pump from the processing tank 2 A heat exchanger 9 provided in an exhaust passage 8 for cooling the exhaust fluid with cooling water; and (d) storing the water supply to the heat exchanger 9 and the vacuum pump 11, and cooling the stored water by the chiller 5. (E) as a storage unit, a first storage unit 6 and a second storage unit 7, and water in any of the storage units is supplied to the heat exchanger 9 and / or the vacuum pump 11. If the supply can be switched, other configurations can be appropriately changed.

たとえば、前記実施例では、真空ポンプ11の封水として冷水を供給する場合、その冷水の供給源を第一貯留部6と第二貯留部7との間で切替可能としたが、これに代えてまたはこれに加えて、熱交換器9の通水として冷水を供給する場合、その冷水の供給源を第一貯留部6と第二貯留部7との間で切替可能としてもよい。   For example, in the above-described embodiment, when cold water is supplied as sealing water for the vacuum pump 11, the supply source of the cold water can be switched between the first storage section 6 and the second storage section 7. Alternatively or additionally, when supplying cold water as water flow through the heat exchanger 9, the supply source of the cold water may be switchable between the first storage unit 6 and the second storage unit 7.

また、前記実施例において、減圧手段3として、さらに蒸気エゼクタを備えてもよい。その場合、処理槽2内からの排気路8には、蒸気エゼクタ、熱交換器9および真空ポンプ11が順に設けられる。そして、第二冷却工程の途中、または第三冷却工程の開始時または途中において、所定の作動条件を満たすと蒸気エゼクタを作動させればよい。   Further, in the above embodiment, a steam ejector may be further provided as the pressure reducing means 3. In that case, a steam ejector, a heat exchanger 9 and a vacuum pump 11 are sequentially provided in an exhaust path 8 from inside the processing tank 2. Then, when a predetermined operating condition is satisfied in the middle of the second cooling step or at the start or in the middle of the third cooling step, the steam ejector may be operated.

また、第一冷却工程では、熱交換器9には通水しなかったが、場合により、所定の通水条件を満たせば、熱交換器9に常温水を通水するようにしてもよい。その場合、熱交排水路43には、外部への廃棄路を分岐して設けておき、熱交換器9を通過後の常温水は、廃棄路を介して外部へ排水する(つまり第一貯留部6へは戻さない)のが好ましい。   In the first cooling step, water was not passed through the heat exchanger 9. However, in some cases, normal temperature water may be passed through the heat exchanger 9 if predetermined water passing conditions are satisfied. In this case, the heat exchange drainage channel 43 is provided with a branch to the outside to be branched, and the room temperature water after passing through the heat exchanger 9 is drained to the outside through the waste channel (that is, the first storage). (It is not returned to the part 6).

また、前記実施例では、第一貯留部6と第二貯留部7とを備えたが、場合により、さらに多くの(つまり全部で三つ以上の)貯留部を備えてもよい。その場合も、待機工程や第一冷却工程において、各貯留部内の貯留水を冷却しておき、その後の工程で、第二以上の各貯留部の冷水を、順次、減圧手段3への給水として用いるようにすればよい。その際、前記実施例と同様、第二以上の各貯留部には使用後の冷水が戻されず、また新規の給水もされず、冷却状態を可能な限り維持されて、その冷水の使用のみがなされるのがよい。   In the above-described embodiment, the first storage unit 6 and the second storage unit 7 are provided. However, in some cases, more (that is, three or more storage units in total) may be provided. Also in that case, in the standby step or the first cooling step, the stored water in each storage section is cooled, and in the subsequent step, the cold water in each of the second or more storage sections is sequentially supplied as water to the decompression means 3. What is necessary is just to use it. At that time, similarly to the above-described embodiment, the used cold water is not returned to each of the second or more storage units, new water is not supplied, the cooling state is maintained as much as possible, and only the use of the cold water is used. Good to be done.

さらに、真空冷却装置1は、少なくとも真空冷却機能を有すれば足り、場合により処理槽2内の食品Fの加熱機能を備えていてもよい。つまり、処理槽2内の食品Fの加熱後、前記実施例と同様にして、食品Fの真空冷却を図るようにしてもよい。   Further, the vacuum cooling device 1 only needs to have at least a vacuum cooling function, and may have a function of heating the food F in the treatment tank 2 in some cases. That is, after the food F in the treatment tank 2 is heated, the food F may be vacuum cooled in the same manner as in the above embodiment.

1 真空冷却装置
2 処理槽
3 減圧手段
4 復圧手段
5 チラー
6 第一貯留部
7 第二貯留部
8 排気路
9 熱交換器
10 逆止弁
11 真空ポンプ
12 給気路
13 エアフィルタ
14 真空解除弁
15 冷水タンク
16 仕切板
17 第一補水路
18 ボールタップ
19 第二補水路
20 ボールタップ
21 補水遮断弁
22 第一送水路
23 第二送水路
24 チラー入口路
25 流量調整弁
26 送水弁
27 送水ポンプ
28 チラー出口路
29 冷水給水路
30 冷水戻し路
31 第一切替弁
32 第一返水路
33 第二返水路
34 返水弁
35 常温水給水路
36 第一給水路
37 常温水給水弁
38 逆止弁
39 熱交給水路
40 封水給水路
41 第二給水路
42 第二切替弁
43 熱交排水路
44 冷水戻し弁
45 圧力センサ
46 品温センサ
47 冷水温度センサ
DESCRIPTION OF SYMBOLS 1 Vacuum cooling device 2 Processing tank 3 Decompression means 4 Decompression means 5 Chiller 6 First storage part 7 Second storage part 8 Exhaust path 9 Heat exchanger 10 Check valve 11 Vacuum pump 12 Air supply path 13 Air filter 14 Vacuum release Valve 15 Cold water tank 16 Partition plate 17 First water supply path 18 Ball tap 19 Second water supply path 20 Ball tap 21 Water supply cutoff valve 22 First water supply path 23 Second water supply path 24 Chiller inlet path 25 Flow control valve 26 Water supply valve 27 Water supply pump 28 Chiller outlet path 29 Chilled water supply path 30 Chilled water return path 31 First switching valve 32 First return path 33 Second return path 34 Return valve 35 Room temperature water supply path 36 First water path 37 Room temperature water supply valve 38 Check valve 39 Heat exchange water channel 40 Sealed water channel 41 Second water channel 42 Second switching valve 43 Heat exchange drain channel 44 Cold water return valve 45 Pressure sensor 46 Material temperature sensor 47 Water temperature sensor

Claims (4)

食品が収容される処理槽と、
この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプと、
前記処理槽から前記真空ポンプへの排気路に設けられ、排気流体を冷却水で冷却する熱交換器と、
前記熱交換器や前記真空ポンプへの給水を貯留し、貯留水をチラーにより冷却可能な貯留部とを備え、
前記貯留部として、第一貯留部と第二貯留部とを備え、いずれの貯留部の水を前記熱交換器および/または前記真空ポンプへ供給するかを切替可能とされた
ことを特徴とする真空冷却装置。
A processing tank in which food is stored,
A water-sealed vacuum pump that sucks and discharges the gas in this processing tank to the outside,
A heat exchanger provided in an exhaust path from the processing tank to the vacuum pump, and cooling an exhaust fluid with cooling water;
Storing a water supply to the heat exchanger and the vacuum pump, and a storage unit capable of cooling the stored water by a chiller,
The storage section includes a first storage section and a second storage section, and it is possible to switch between which storage section water is supplied to the heat exchanger and / or the vacuum pump. Vacuum cooling device.
前記第一貯留部内の貯留水は、前記熱交換器との間で循環可能とされると共に、前記真空ポンプへ給水可能とされ、
前記第二貯留部内の貯留水は、前記熱交換器との間で循環不能とされると共に、前記真空ポンプへ給水可能とされる
ことを特徴とする請求項1に記載の真空冷却装置。
The stored water in the first storage unit is circulated between the heat exchanger and the water pump is supplied to the vacuum pump,
2. The vacuum cooling device according to claim 1, wherein the stored water in the second storage unit is not allowed to circulate with the heat exchanger and can be supplied to the vacuum pump. 3.
前記真空ポンプへ常温水を供給しつつ、前記処理槽内を減圧する第一冷却工程と、
前記第一貯留部内の貯留水を、チラーで冷却しつつ前記熱交換器との間で循環させると共に前記真空ポンプへ供給して、前記処理槽内を減圧する第二冷却工程と、
前記第一貯留部内の貯留水を、チラーで冷却しつつ前記熱交換器との間で循環させると共に、前記第二貯留部内の貯留水を、前記真空ポンプへ供給して、前記処理槽内をさらに減圧する第三冷却工程と、を順次に含んで実行する
ことを特徴とする請求項1または請求項2に記載の真空冷却装置。
While supplying room temperature water to the vacuum pump, a first cooling step of reducing the pressure in the processing tank,
A second cooling step of storing water in the first storage unit, circulating between the heat exchanger while cooling with a chiller and supplying the vacuum pump, and depressurizing the inside of the processing tank,
The stored water in the first storage unit is circulated between the heat exchanger while cooling with a chiller, and the stored water in the second storage unit is supplied to the vacuum pump to circulate the processing tank. The vacuum cooling device according to claim 1, wherein the third cooling step of further reducing the pressure is sequentially performed.
前記各貯留部では、貯留水を設定水位に維持するよう給水を制御されるが、前記第三冷却工程では、前記第二貯留部へは給水しない
ことを特徴とする請求項3に記載の真空冷却装置。
In each of the storage sections, water supply is controlled so as to maintain stored water at a set water level, but in the third cooling step, water is not supplied to the second storage section. The vacuum according to claim 3, wherein Cooling system.
JP2018159772A 2018-08-28 2018-08-28 Vacuum cooling device Pending JP2020034199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159772A JP2020034199A (en) 2018-08-28 2018-08-28 Vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159772A JP2020034199A (en) 2018-08-28 2018-08-28 Vacuum cooling device

Publications (1)

Publication Number Publication Date
JP2020034199A true JP2020034199A (en) 2020-03-05

Family

ID=69667625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159772A Pending JP2020034199A (en) 2018-08-28 2018-08-28 Vacuum cooling device

Country Status (1)

Country Link
JP (1) JP2020034199A (en)

Similar Documents

Publication Publication Date Title
KR20110072441A (en) Refrigerator and method for controlling operation thereof
US20170227260A1 (en) Heat Pump Heating Apparatus
JP2010084975A (en) Heating device
JP6264532B2 (en) Food machine with vacuum cooling function
JP2020034199A (en) Vacuum cooling device
JP6417872B2 (en) Vacuum cooling device
JP5607505B2 (en) Vacuum cooling device
JP2733195B2 (en) Refrigeration cycle control method in liquid cooling device and liquid cooling device
JP7232400B2 (en) vacuum cooling system
JP2746025B2 (en) Two-channel liquid cooling device
JP4288699B2 (en) Control method of vacuum cooling device and vacuum cooling device
JP2019124369A (en) Cold water production system
JP2018204860A (en) Vacuum cooler
JP6369755B2 (en) Vacuum cooling device
KR20080085835A (en) Composite cooling apparatus
JP7124677B2 (en) vacuum cooling system
JP7354799B2 (en) vacuum cooling device
JP7432103B2 (en) vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP5247335B2 (en) Heating system
JP4227692B2 (en) Water ejector type vacuum generator with multiple circulating water tanks
JP2004116841A (en) Refrigerator
JP7223319B2 (en) vacuum cooling system
JP2014126292A (en) Cold recovery system from cooled seal water
CN116817534A (en) Refrigerator and control method thereof