JP2004116841A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004116841A
JP2004116841A JP2002278756A JP2002278756A JP2004116841A JP 2004116841 A JP2004116841 A JP 2004116841A JP 2002278756 A JP2002278756 A JP 2002278756A JP 2002278756 A JP2002278756 A JP 2002278756A JP 2004116841 A JP2004116841 A JP 2004116841A
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
evaporator
compressor
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278756A
Other languages
Japanese (ja)
Inventor
Hirokuni Imada
今田 寛訓
Keiichi Takase
高瀬 恵一
Shinichi Hashimoto
橋本 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002278756A priority Critical patent/JP2004116841A/en
Publication of JP2004116841A publication Critical patent/JP2004116841A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase efficiency of a cooling system in a mutually independently cooling refrigerator having respectively evaporators in a refrigerating room and a freezing room. <P>SOLUTION: A vacuum heat insulating material 20 is used as a heat insulating material of a refrigerator box body 18. The evaporator 5 is arranged in the refrigerating room 9, and the evaporator 7 for the freezing room is arranged in the freezing room 10, respectively in parallel. When both a temperature of the refrigerating room 9 and a temperature of the freezing room 10 are detected as a preset temperature or less, a compressor 1 is stopped, and a three-way valve 3 is fully closed, and the full closure state is continued up to next time starting of the compressor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵室と冷凍室にそれぞれ蒸発器を有し、交互に独立して冷却する冷蔵庫の冷却システムの効率化に関するものである。
【0002】
【従来の技術】
従来の冷却サイクル並びに冷蔵庫の一例を、図面を参照しながら以下に説明する。
【0003】
図14において、1は圧縮機、2は凝縮器、3は機械室11内に配設された切替弁であり、冷蔵室9内には冷蔵室用蒸発器5および冷蔵室用ファン11が配設され、冷凍室10内には冷凍室用蒸発器7および冷凍室用ファン12が配設されている。
【0004】
冷蔵室用蒸発器5の上流側には冷蔵室用の第一のキャピラリ4を配置し、冷凍室用蒸発器7の上流側には冷凍室用の第二のキャピラリ6を配置している。冷凍室用蒸発器7の下流側には逆止弁8を設けている。そして、冷蔵室用蒸発器5と冷凍室用蒸発器7は並列に接続されている。
【0005】
以上のように構成された従来の冷蔵庫について、以下、その動作を説明する。
【0006】
圧縮機1が駆動された状態で、切替弁3により、圧縮機1から吐出される冷媒が冷蔵室用蒸発器5側に流れるように冷媒流路を切り替えた状態では、圧縮機1において圧縮された冷媒は、高温高圧ガスとなって凝縮器2に送られ、ここで放熱して液化されるようになる。液化された冷媒は、切替弁3により第一のキャピラリ4を通って冷蔵室用蒸発器5に送られ、ここで蒸発することに伴い周囲の熱を奪い、この結果周囲の空気を冷却する。ガス化した冷媒は再び圧縮機1において圧縮されるようになる。
【0007】
このとき、冷蔵室用蒸発器5により冷却された冷気は冷蔵室用ファン11の送風作用により冷蔵室9に供給され庫内が冷却される。この場合、冷蔵室9の温度は例えば+2℃であるために、冷蔵室用蒸発器5による蒸発温度が約−5℃となるように、圧縮機1の運転周波数が設定される。また、この時の冷蔵室用蒸発器5の圧力は例えば約0.24MPaである。このような冷却状態を冷蔵室冷却モードという。
【0008】
また、圧縮機1が駆動された状態で、切替弁3により、圧縮機1から吐出される冷媒が冷凍室用蒸発器7側に流れるように冷媒流路を切り替えた状態では、圧縮機1において圧縮された冷媒は、高温高圧ガスとなって凝縮器2に送られ液化された冷媒は、切替弁3により第二のキャピラリ6を通って冷凍室用蒸発器7に送られ、ここで蒸発することに伴い周囲の熱を奪い、この結果周囲の空気を冷却する。ガス化した冷媒は逆止弁8を通り、再び圧縮機1において圧縮されるようになる。
【0009】
このとき、冷凍室用蒸発器7により冷却された冷気は冷凍室用ファン12の送風作用により冷凍室10に供給され庫内が冷却される。この場合、冷凍室10の温度は例えば−18℃であるために、冷凍室用蒸発器7による蒸発温度が約−28℃となるように、圧縮機1の運転周波数が設定される。また、この時の冷凍室用蒸発器7の圧力は例えば約0.09MPaである。このような冷却状態を冷凍室冷却モードという。
【0010】
この冷蔵庫において、冷蔵室9、冷凍室10には図示しないがそれぞれ温度センサーが設けられていて、それら各温度センサーの検出信号はマイクロコンピューターを備えた制御回路に入力される。制御回路は、それらの検出信号と、予め備えた制御プログラムに従って、圧縮機1、切替弁3、冷蔵室用ファン11、冷凍室用ファン12などを制御する。
【0011】
そして、冷蔵室9および冷凍室10とが共に予め設定された設定温度まで冷却された状態で、圧縮機1を停止させる場合、冷蔵室冷却モード切替後に行なう。冷蔵室冷却モードにおいては、切替弁3は圧縮機1と冷蔵室用蒸発器5の入口とを連通した状態となっており、圧縮機1と冷凍室用蒸発器7の入口との間は遮断されている。この状態で圧縮機1を停止させた場合、高圧側からの高温の冷媒が冷凍室用蒸発器7に流入することはなく、しかも、圧力差のために冷凍室用蒸発器7の出口側の逆止弁8が作用するようになるので、冷蔵室用蒸発器5から冷凍室用蒸発器7への冷媒の逆流もない。
【0012】
従って、冷凍室用蒸発器7には低温の冷媒が保持されることになり、冷凍室用蒸発器7の温度が上昇することを抑えられるようになる。そして、圧縮機1の再起動時には冷凍室冷却モードから開始され、このときに、冷凍室用蒸発器7に保持されていた低温の冷媒が再循環することになるので、冷却効率の良い運転ができる(例えば、特許文献1参照。)。
【0013】
【特許文献1】
特開2001−91130号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は圧縮機1を冷蔵室冷却モードで停止させるので圧縮機1と冷凍室用蒸発器7の入口との間は遮断されているために冷凍室用蒸発器7の温度上昇に伴う冷凍室10の昇温は抑制できるが、圧縮機1と冷蔵室用蒸発器5の入口とが連通した状態となっているために高圧側から高温の冷媒が冷蔵室用蒸発器5に流入し冷蔵室用蒸発器5の温度上昇に伴う冷蔵室9の温度上昇が大きいという欠点があった。また、常に圧縮機1を冷蔵室冷却モードで停止させるので、冷凍室10のみ扉開閉があった場合等実際の使用条件下で負荷が冷凍室10に偏った状況でも冷蔵室冷却を常に行うので、冷蔵室9の温調が冷凍室10に依存してしまいフレキシブルに対応できないという欠点もあった。
【0015】
本発明は、従来の課題を解決するもので、圧縮機停止中の冷蔵室および冷凍室の昇温を最小限にとどめ、且つ冷却時の効率を向上することで省エネ化を図ることを目的とする。
【0016】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、その全閉状態は次回の前記圧縮機起動まで継続するものであり、圧縮機停止中に高温高圧の冷媒が冷蔵室、冷凍室それぞれの冷却器ともに流入しないので各部屋の温度上昇を最小限に抑えることが可能となる。また、冷蔵庫箱体に真空断熱材を使用しているため、庫外からの吸熱負荷量が減少することで圧縮機停止時間がさらに長くなり、運転率の低下により省エネ化が図れる。
【0017】
また、圧縮機停止中は凝縮器側に冷媒をホールドしているので次回の冷却が冷蔵室冷却、冷凍室冷却何れの場合でも速やかに各蒸発器に冷媒を供給することができ冷却効率を向上することが可能となる。
【0018】
本発明の請求項2に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を前記冷蔵室用蒸発器側に開とするものであり、三方弁を圧縮機停止と同時に冷蔵室用蒸発器側回路に開とするので停止直前の冷却状態との依存性はなく実際の使用条件下でもフレキシブルな対応が可能となる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、冷蔵室用蒸発器側回路を開とした場合の庫内への負荷も減らすことができる。
【0019】
また、圧縮機起動時には冷蔵室用蒸発器回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑える事ができ圧縮機のトルク不足による起動不良を防止することが可能となる。
【0020】
本発明の請求項3に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後前記圧縮機を起動させるものであり、圧縮機停止時には高温高圧の冷媒が冷蔵室、冷凍室それぞれの冷却器ともに流入しないので各部屋の温度上昇を最小限に抑えることが可能となる。また、圧縮機起動時には冷蔵室用蒸発器回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑えることができ圧縮機のトルク不足による起動不良を防止することが可能となり、且つ冷蔵室の昇温を最小限に抑えることができる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機の起動特性の向上を図ることができる。
【0021】
本発明の請求項4に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を全閉したまま、前記圧縮機を起動させ、所定時間動作させるものであり、蒸発器内での起動初期の冷媒不足が生じず、すばやく冷蔵室もしくは冷凍室の冷却を開始することができる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機の起動特性の向上を図ることができる。
【0022】
本発明の請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定下限温度を検知してから所定時間冷蔵室冷却用ファンを運転するものであり、冷蔵室用蒸発器内に滞留している冷媒の蒸発を促進し、冷媒不足が生じ難くなり、冷却効率が向上する。
【0023】
本発明の請求項6に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷蔵室冷却用ファンを停止するものであり、冷蔵室用蒸発器の冷却開始初期、冷蔵室用蒸発器の温度を低下させてから冷蔵室庫内冷却を開始できるため、冷蔵室の冷却開始初期の庫内温度上昇を防止できる。また、冷凍室蒸発器より冷蔵室用蒸発器の冷却開始初期、蒸発温度を低くすることにより、冷凍室用蒸発器に残留した冷媒を圧縮機に戻すことができる。
【0024】
本発明の請求項7に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷凍室冷却用ファンを運転するものであり、冷蔵室冷却に移行した場合に、冷凍室用蒸発器に残留した冷媒の蒸発を促進し冷媒の循環量を増加させることができる。
【0025】
本発明の請求項8に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷凍室温度検知手段が設定下限温度を検知してから所定時間冷凍室冷却用ファンを運転するものであり、冷凍室用蒸発器に残留した冷媒の蒸発を促進し冷媒の循環量を増加させることができる。
【0026】
本発明の請求項9に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時は圧縮機を低回転で運転し、冷凍室冷却時は圧縮機を高回転で運転するものであり、蒸発温度が高い冷蔵室冷却時は入力を低減させるために、圧縮機回転数を低下させ、蒸発温度が低い冷凍室冷却時は冷凍サイクル向上のため回転数をあげることで、高効率サイクル運転が可能となる。
【0027】
本発明の請求項10に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時の圧縮機用ファンの回転数を冷凍室冷却時よりも高くしたものであり、冷蔵室蒸発器、冷凍室蒸発器それぞれの熱交換量に応じた放熱量を設定することができ、冷凍サイクルの効率向上が図れる。
【0028】
本発明の請求項11に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷凍室冷却用ファン回転数を冷凍室冷却開始から所定時間毎に回転数を増加させるものであり、冷凍室冷却開始時の冷凍室蒸発器の温度が高い場合は低回転数で冷凍室冷却用ファンを回すことで冷凍室蒸発器温度を低下させ、冷凍室蒸発器の温度が低下すると高回転で冷凍室全体を冷却することができる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図11を用いて説明する。なお、従来と同一構成については同一符号を付して詳細な説明を省略する。
【0030】
(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の概略断面図、図2は同実施の形態の冷蔵庫の動作を示すタイムチャートである。
【0031】
図において、18は冷蔵庫箱体であり、上方部に比較的高温の区画である冷蔵室9を、下方部に比較的低温の冷凍室10を配置しており、断熱ウレタンと真空断熱材20によって断熱箱体を構成している。食品等の収納物の出し入れは図示しない断熱扉の開閉により行われる。真空断熱材20は冷蔵庫箱体18の背面、側面、天面、側面、あるいは前面の扉に配置し、冷蔵庫箱体18の外表面積に対する被覆率を50〜80%に設定している。また、真空断熱材20の芯材としては無機繊維集合体を用い周囲を金属箔あるいはアルミ蒸着したラミネートフィルムにてシールし内部を減圧真空状態に保ち、ウレタンの数倍の断熱性能を有している。
【0032】
冷蔵室9は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている場合もある。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。
【0033】
冷凍室10は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低めの温度、例えば−30〜−25℃で設定されることもある。
【0034】
冷凍サイクル19は圧縮機1と凝縮器2と流路切替手段である三方弁3と第一のキャピラリ4と冷蔵室用蒸発器5と第一のサクションライン13を順次接続し、三方弁3を介して第一のキャピラリ4と冷蔵室用蒸発器5と第一のサクションライン13と並列になるように第ニのキャピラリ6と冷凍室用蒸発器7と第二のサクションライン14と第二のサクションライン14途中に逆止弁8を接続してある。
【0035】
圧縮機1と凝縮器2と三方弁3と逆止弁8は可燃性冷媒を用いた場合の安全性向上の面から冷蔵庫箱体18内での配管溶接箇所低減のため機械室17内に配設してある。
【0036】
また、各蒸発器から戻ってくる冷媒は圧縮機吸込管15を通って圧縮機1内空間へ放出された後、圧縮機吐出管16を通じて吐出される構成である。
【0037】
冷蔵室用蒸発器5は冷蔵室9内の、例えば冷蔵室9奥面に配設されており、近傍には冷蔵室9の区画内空気を冷蔵室用蒸発器5に通過させて循環させる冷蔵室用ファン11が設けてある。
【0038】
また、冷凍室用蒸発器7は冷凍室10内の、例えば冷凍室10奥面に配設されており、近傍には冷凍室10の区画内空気を冷凍室用蒸発器7を通過させて循環させる冷凍室用ファン12が設けてある。
【0039】
また、圧縮機1は例えばインバーターによる回転数制御で冷媒循環量を制御し冷凍能力を変化させることができる能力可変型としてある。
【0040】
また、三方弁3は例えばパルスモータにより作動するものであり開閉の動作中のみ通電されるものである。
【0041】
また、冷蔵室9と冷凍室10には区画内温度を検知する、例えばサーミスタである温度検知手段TH1、TH2を設けてあり、圧縮機1と三方弁3と冷蔵室用ファン11と冷凍室用ファン12とを制御する制御手段C1とを備えている。また、機械室17内には凝縮器2および圧縮機1を冷却する圧縮機用ファン21を設けている。
【0042】
図2は本発明の実施の形態1のタイムチャートである。
【0043】
以上のように構成された冷蔵庫について、冷蔵室9と冷凍室10の冷却タイミングについて図2のタイムチャートに基づき説明する。
【0044】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T1)。
【0045】
圧縮機1の動作により吐出された高温高圧の冷媒は、凝縮器2にて放熱して凝縮液化し、三方弁3を経て第一のキャピラリ4に至る。その後、第一のキャピラリ4で第一のサクションライン13と熱交換しながら減圧されて冷蔵室用蒸発器5に至る。冷蔵室用ファン11の作動により冷蔵室9内の空気と積極的に熱交換した冷媒は冷蔵室用蒸発器5内で蒸発気化し、熱交換した空気はより低温の空気となって吐出され冷蔵室9を冷却する。気化した冷媒は、第一のサクションライン13を経て圧縮機1に吸入される。
【0046】
なお、第二のサクションライン14の途中に逆止弁8を配設しているので第一のサクションライン13を経た冷媒が第二のサクションライン14を経て冷凍室用蒸発器7内に流入することはない。
【0047】
冷蔵室9冷却中に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下且つ冷凍室温度検知手段であるTH2が予め設定された所定の温度(t2H)以上を検知すると制御手段C1はこの信号を受け冷蔵室用ファン11を停止するとともに冷凍室用ファン12を作動し、三方弁3を第ニのキャピラリ6側に開放し冷凍室10の冷却を開始する(T2)。
【0048】
圧縮機1の動作により吐出された高温高圧の冷媒は、凝縮器2にて放熱して凝縮液化し、三方弁3を経て第ニのキャピラリ6に至る。その後、第ニのキャピラリ6で第ニのサクションライン14と熱交換しながら減圧されて冷凍室用蒸発器7に至る。冷凍室用ファン12の作動により冷凍室10内の空気と積極的に熱交換した冷媒は冷凍室用蒸発器7内で蒸発気化し、熱交換した空気はより低温の空気となって吐出され冷凍室10を冷却する。気化した冷媒は、第ニのサクションライン14および逆止弁8を経て圧縮機1に吸入される。
【0049】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け冷凍室用ファン12を停止するとともに冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T3)。
【0050】
以上の動作を繰り返し、三方弁3を用いて冷媒の流れを切り替えることにより、冷蔵室9と冷凍室10を交互に冷却し、冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉とし圧縮機1、冷蔵室用ファン11、冷凍室用ファン12を停止する(T4)。
【0051】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T5)。
【0052】
圧縮機1停止中は三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉としているので、圧縮機1運転中に凝縮機2内に滞留していた高温高圧の冷媒は冷蔵室用蒸発器5および冷凍室用蒸発器7に流入しないので圧縮機1停止中の各部屋の温度上昇を最小限に抑えることが可能となる。
【0053】
また、圧縮機1停止中は凝縮器2側に冷媒をホールドしているので次回の冷却が冷蔵室9冷却、冷凍室10冷却何れの場合でも速やかに各蒸発器に冷媒を供給することができ冷却効率を向上することが可能となる。
【0054】
また、冷蔵庫箱体に真空断熱材20を使用しているため、庫外からの吸熱負荷量が減少することで圧縮機1の停止時間がさらに長くなり、運転率の低下により省エネ化が図れる。
【0055】
なお、冷蔵室用ファン11を停止後冷凍室10の冷却を開始するとしたが冷蔵室用蒸発器5を除霜する目的で冷凍室10の冷却開始後所定時間経過した後冷蔵室ファン11を停止させると次回の冷蔵室10の冷却をさらに効率よく行うことが可能となる。
【0056】
なお、冷凍サイクルの冷媒としては、地球環境保護の点から地球温暖化係数の小さい自然冷媒、たとえばイソブタン等を用いることが好ましい。
【0057】
(実施の形態2)
図3は、本発明の実施の形態2の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0058】
冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側に開放し圧縮機1を停止する(T6)。
【0059】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T7)。
【0060】
圧縮機1の停止は、停止直前の冷却状態に依存せず、冷蔵室9冷却、冷凍室10冷却いずれの冷却からでも圧縮機1を停止することができるので、実際の使用条件下において不具合が生じることがない。
【0061】
また、圧縮機停止中、三方弁3は冷蔵室用蒸発器5側に開放されており、且つ逆止弁8の作用により圧縮機1運転中に凝縮機2内に滞留していた高温高圧の冷媒は冷凍室用蒸発器7に流入しないので冷凍室10の温度上昇を最小限に抑えることが可能となる。
【0062】
また、真空断熱材20を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室9を冷却するために必要な冷媒量も減らすことができ、冷蔵室用蒸発器5側回路を開とした場合の庫内への負荷も減らすことができる。
【0063】
また、圧縮機1起動時には冷蔵室用蒸発器5回路と連通し、高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑える事ができ圧縮機のトルク不足による起動不良を防止することが可能となる。
【0064】
(実施の形態3)
図4は、本発明の実施の形態3の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0065】
冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉とし圧縮機1を停止する(T8)。
【0066】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると三方弁3を冷蔵室蒸発器5側に開放する(T9)。
【0067】
所定時間経過後、圧縮機1と冷蔵室用ファン11を作動し冷蔵室9冷却を開始する(T10)。
【0068】
圧縮機1起動時には冷蔵室用蒸発器5回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機1にかかるトルクを最小限に抑えることができ圧縮機1のトルク不足による起動不良を防止することが可能となり、且つ冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知するまで三方弁3を冷蔵室用蒸発器5側および冷凍室用蒸発器7側ともに閉としているので冷蔵室9の昇温を最小限に抑えることができる。
【0069】
なお、T9〜T10までの時間は高低圧がバランスするまでの最小時間に設定するが外気温により高低圧がバランスする時間にばらつきがあるので外気温別にT9〜T10までの時間を設定するとさらに冷却効率を向上することが可能となる。
【0070】
また、図5に示すように圧縮機1停止中に冷凍室10の温度検知手段が予め設定された所定の温度(t2H)以上を検知した場合も同様に三方弁3を冷蔵室蒸発器5側に開放し、所定時間経過後、圧縮機1と冷凍室用ファン12を作動し三方弁3を第二のキャピラリ6側に開放し冷凍室10冷却を開始する。
【0071】
圧縮機1停止中に冷凍室10の庫内温度が上昇した場合でも三方弁3を冷蔵室蒸発器5側に開放して高低圧をバランスさせるので、冷凍室10の昇温を最小限に抑えることが可能となる。
【0072】
また、真空断熱材20を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室9を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機1の起動特性の向上を図ることができる。
【0073】
(実施の形態4)
図6は実施の形態4の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0074】
冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉とし圧縮機1を停止する(T11)。
【0075】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると三方弁3を全閉したまま圧縮機1を動作させる(T12)。
【0076】
所定時間経過後、三方弁3を冷蔵室蒸発器側に開放し、冷蔵室用ファン11を作動し冷蔵室9冷却を開始する(T13)。
【0077】
圧縮機1を動作させてから所定時間経過後、冷却を開始するため、蒸発器内での起動初期の冷媒不足が生じず、すばやく冷蔵室9もしくは冷凍室10の冷却を開始することができる。また、真空断熱材20を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室9を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機1の起動特性の向上を図ることができる。
【0078】
(実施の形態5)
図7は実施の形態5の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0079】
冷蔵室9冷却中に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下を検知すると制御手段C1はこの信号を受け冷蔵室用ファン11を、所定時間(TPCA)動作させ続ける(T14)。
【0080】
冷蔵室9冷却終了時に冷蔵室用ファン11を運転することにより冷蔵室用蒸発器7内に滞留している冷媒の蒸発を促進できるので、冷媒不足が生じ難くなり、冷却効率が向上する。
【0081】
(実施の形態6)
図8は実施の形態6の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0082】
冷凍室10冷却中もしくは、圧縮機1停止中に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け三方弁3を冷蔵室蒸発器7側に開放する。(T15,T16)
また、冷蔵室9冷却開始から所定時間(TPCB)、冷蔵室用ファン11を動作させないように設定している。
【0083】
冷蔵室用ファン11を所定時間動作させないことにより、冷蔵室用蒸発器5の冷却開始初期、冷蔵室用蒸発器5の温度を低下させてから冷蔵室9の庫内冷却を開始できるため、冷蔵室9の冷却開始初期の庫内温度上昇を防止できる。また、冷蔵室蒸発器7の蒸発温度を低下させることができ、冷凍室蒸発器8に滞留している冷媒を冷蔵室冷却器7側に回すことが可能となり、冷媒不足を防止できる。
【0084】
(実施の形態7)
図9は実施の形態7の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0085】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知以下すると制御手段C1はこの信号を受け冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T17)。
【0086】
そして、タイマーにより所定時間(TFCA)経過後冷凍室用ファン12を停止し冷蔵室9冷却を継続する。(T18)
また、圧縮機1停止中に、冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11と冷凍室用ファン12を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T19)。
【0087】
そして同様にタイマーにより所定時間(TFCA)経過後冷凍室用ファン12を停止し冷蔵室9冷却を継続する。(T20)
また、所定時間(TFCA)以内に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下を検知した場合は冷蔵室10冷却を終了するとともに冷凍室用ファン12を停止する。
【0088】
冷蔵室9冷却開始時に冷凍室用ファン12を運転することにより冷凍室用蒸発器7内に滞留している冷媒の蒸発を促進し、冷凍室用蒸発器7から圧縮機1へ冷媒をスムーズに供給できるので冷蔵室9冷却開始時の冷媒循環量不足を防止でき冷蔵室9の冷却効率を向上することが可能となる。
【0089】
(実施の形態8)
図10は実施の形態8の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0090】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下を検知すると(T21)、制御手段C1はこの信号を受け冷凍室用ファン12を所定時間(TFCB)運転し続ける(T22)。
【0091】
冷凍室10冷却終了時に冷凍室用ファン12を運転することにより冷凍室蒸発器8内に滞留している冷媒の蒸発を促進できるので、冷凍室10の冷却効率を向上することが可能となる。
【0092】
(実施の形態9)
図11は実施の形態9の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0093】
冷凍室10冷却中は圧縮機1の回転数を高回転(RH)とし、冷蔵室9冷却中は圧縮機1の回転数は低回転(RL)に設定している。また、冷蔵室9冷却時の圧縮機用ファン21の回転数は高回転(CH)とし、冷凍室10冷却時の回転数は低回転(CL)としている。
【0094】
冷凍室10冷却中は冷凍室蒸発器8内で冷媒が全て蒸発することはほとんどないため、冷凍能力が高く、冷凍サイクル効率の良い比較的回転数の高い領域で運転し、冷蔵室9冷却中は冷蔵室蒸発器7内で冷媒が全て蒸発することが多く、圧縮機1を比較的回転数の低い領域で運転することで入力の低減を図ることにより高効率運転が可能となり省エネを図ることができる。
【0095】
また、冷凍室蒸発器8より冷蔵室蒸発器7の方が熱交換量が多いため、必要な放熱量も冷凍室10冷却より冷蔵室9冷却の方が多く必要となる。したがって、冷凍室10冷却時よりも冷蔵室9冷却時に圧縮機用ファン21の回転数を高くすることで、各冷却モードに適した凝縮器2での必要放熱量を得ることができる。
【0096】
(実施の形態10)
図12は実施の形態10の冷蔵庫の動作を示すタイムチャートである。なお、実施の形態1と同一部分については説明を省略する。
【0097】
冷凍室用ファン12の回転数を冷凍室10冷却開始から所定時間毎(TFCC)に回転数を増加させるように設定している。
【0098】
冷凍室10冷却開始時の冷凍室蒸発器7の温度が高い場合は低回転数(FL)で冷凍室用ファン12を回すことで冷凍室蒸発器7の温度を低下させ、冷凍室蒸発器7の温度が低下すると高回転(FH)で冷凍室10全体を冷却することができるので、効率的にすばやく冷凍室10を冷却することができる。
【0099】
【発明の効果】
以上説明したように、請求項1に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、その全閉状態は次回の前記圧縮機起動まで継続するものであり、各庫内の温度上昇を最小限に抑えることができる。また、冷蔵庫箱体に真空断熱材を使用しているため、庫外からの吸熱負荷量が減少することで圧縮機停止時間がさらに長くなり、運転率の低下により省エネ化が図れる。
【0100】
また、次回の冷却が冷蔵室冷却、冷凍室冷却何れの場合でも速やかに各蒸発器に冷媒を供給することができ冷却効率を向上することが可能となる。
【0101】
また、本発明の請求項2に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を前記冷蔵室用蒸発器側に開とするものであり、停止直前の冷却状態との依存性はなく実際の使用条件下でもフレキシブルな対応が可能となる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、冷蔵室用蒸発器側回路を開とした場合の庫内への負荷も減らすことができる。
【0102】
また、起動時に圧縮機にかかるトルクを最小限に抑える事ができ圧縮機のトルク不足による起動不良を防止することが可能となる。
【0103】
また、本発明の請求項3に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後前記圧縮機を起動させるものであり、各庫内の温度上昇を最小限に抑えることが可能となる。また、起動時に圧縮機にかかるトルクを最小限に抑えることができ圧縮機のトルク不足による起動不良を防止することが可能となり、且つ冷蔵室の昇温を最小限に抑えることができる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機の起動特性の向上を図ることができる。
【0104】
また、本発明の請求項4に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を全閉したまま、前記圧縮機を起動させ、所定時間動作させるものであり、蒸発器内での起動初期の冷媒不足が生じず、すばやく冷蔵室もしくは冷凍室の冷却を開始することができる。また、真空断熱材を用いることで冷蔵庫箱体の吸熱負荷量が減らせ、冷蔵室を冷却するために必要な冷媒量も減らすことができ、さらに圧縮機の起動特性の向上を図ることができる。
【0105】
また、本発明の請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定下限温度を検知してから所定時間冷蔵室冷却用ファンを運転するものであり、冷蔵室用蒸発器内に滞留している冷媒の蒸発を促進し、冷媒不足が生じ難くなり、冷却効率が向上する。
【0106】
また、本発明の請求項6に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷蔵室冷却用ファンを停止するものであり、冷蔵室用蒸発器の冷却開始初期、冷蔵室用蒸発器の温度を低下させてから冷蔵室庫内冷却を開始できるため、冷蔵室の冷却開始初期の庫内温度上昇を防止できる。また、冷凍室蒸発器より冷蔵室用蒸発器の冷却開始初期、蒸発温度を低くすることにより、冷凍室用蒸発器に残留した冷媒を圧縮機に戻すことができ、冷媒不足を防止できる。
【0107】
また、本発明の請求項7に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷凍室冷却用ファンを運転するものであり、冷蔵室冷却に移行した場合に、冷凍室用蒸発器に残留した冷媒の蒸発を促進し冷媒の循環量を増加させることができる。
【0108】
また、本発明の請求項8に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、冷凍室温度検知手段が設定下限温度を検知してから所定時間冷凍室冷却用ファンを運転するものであり、冷凍室用蒸発器に残留した冷媒の蒸発を促進し冷媒の循環量を増加させることができる。
【0109】
また、本発明の請求項9に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時は圧縮機を低回転で運転し、冷凍室冷却時は圧縮機を高回転で運転するものであり、蒸発温度が高い冷蔵室冷却時は入力を低減させるために、圧縮機回転数を低下させ、蒸発温度が低い冷凍室冷却時は冷凍サイクル向上のため回転数をあげることで、高効率サイクル運転が可能となる。
【0110】
また、本発明の請求項10に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時の圧縮機用ファンの回転数を冷凍室冷却時よりも高くしたものであり、冷蔵室蒸発器、冷凍室蒸発器それぞれの熱交換量に応じた放熱量を設定することができ、冷凍サイクルの効率向上が図れる。
【0111】
また、本発明の請求項11に記載の発明は、圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷凍室冷却用ファン回転数を冷凍室冷却開始から所定時間毎に回転数を増加させるものであり、冷凍室冷却開始時の冷凍室蒸発器の温度が高い場合は低回転数で冷凍室冷却用ファンを回すことで冷凍室蒸発器温度を低下させ、冷凍室蒸発器の温度が低下すると高回転で冷凍室全体をすばやく冷却することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の冷蔵庫の概略断面図
【図2】同実施の形態の冷蔵庫の動作を示すタイムチャート
【図3】本発明の実施の形態2の冷蔵庫の動作を示すタイムチャート
【図4】本発明の実施の形態3の冷蔵庫の動作を示すタイムチャート
【図5】同実施の形態の冷蔵庫の他の動作を示すタイムチャート
【図6】本発明の実施の形態4の冷蔵庫の動作を示すタイムチャート
【図7】本発明の実施の形態5の冷蔵庫の動作を示すタイムチャート
【図8】本発明の実施の形態6の冷蔵庫の動作を示すタイムチャート
【図9】本発明の実施の形態7の冷蔵庫の動作を示すタイムチャート
【図10】本発明の実施の形態8の冷蔵庫の動作を示すタイムチャート
【図11】本発明の実施の形態9の冷蔵庫の動作を示すタイムチャート
【図12】本発明の実施の形態10の冷蔵庫の動作を示すタイムチャート
【図13】従来の冷蔵庫の概略断面図
【符号の説明】
1  圧縮機
2  凝縮器
3  三方弁
4  第一のキャピラリ
5  冷蔵室用蒸発器
6  第二のキャピラリ
7  冷凍室用蒸発器
8  逆止弁
9  冷蔵室
10 冷凍室
11 冷蔵室用ファン
12 冷凍室用ファン
18 冷蔵庫箱体
20 真空断熱材
21 圧縮機用ファン
C1 制御手段
TH1 冷蔵室温度検知手段
TH2 冷凍室温度検知手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to improving the efficiency of a cooling system for a refrigerator having an evaporator in each of a refrigerator compartment and a freezer compartment and alternately and independently cooling.
[0002]
[Prior art]
An example of a conventional cooling cycle and a refrigerator will be described below with reference to the drawings.
[0003]
In FIG. 14, reference numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes a switching valve disposed in the machine room 11, and a refrigerating room evaporator 5 and a refrigerating room fan 11 are disposed in a refrigerating room 9. The freezer compartment 10 is provided with a freezer compartment evaporator 7 and a freezer compartment fan 12.
[0004]
A first capillary 4 for the refrigerator compartment is disposed upstream of the evaporator 5 for the refrigerator compartment, and a second capillary 6 for the refrigerator compartment is disposed upstream of the evaporator 7 for the refrigerator compartment. A check valve 8 is provided downstream of the freezer evaporator 7. The evaporator 5 for the refrigerator compartment and the evaporator 7 for the freezer compartment are connected in parallel.
[0005]
The operation of the conventional refrigerator configured as described above will be described below.
[0006]
When the refrigerant flow is switched by the switching valve 3 so that the refrigerant discharged from the compressor 1 flows toward the refrigerator compartment evaporator 5 while the compressor 1 is driven, the refrigerant is compressed in the compressor 1. The cooled refrigerant is sent to the condenser 2 as a high-temperature and high-pressure gas, where it is released and liquefied. The liquefied refrigerant is sent to the refrigerating room evaporator 5 through the first capillary 4 by the switching valve 3, and takes off the surrounding heat as it evaporates, thereby cooling the surrounding air. The gasified refrigerant is compressed in the compressor 1 again.
[0007]
At this time, the cool air cooled by the refrigerator compartment evaporator 5 is supplied to the refrigerator compartment 9 by the blowing action of the refrigerator compartment fan 11 to cool the inside of the refrigerator. In this case, since the temperature of the refrigerator compartment 9 is, for example, + 2 ° C., the operating frequency of the compressor 1 is set such that the evaporation temperature of the refrigerator compartment evaporator 5 becomes approximately −5 ° C. At this time, the pressure of the refrigerator evaporator 5 is, for example, about 0.24 MPa. Such a cooling state is referred to as a refrigerator cooling mode.
[0008]
In the state where the refrigerant flow is switched by the switching valve 3 so that the refrigerant discharged from the compressor 1 flows toward the freezer evaporator 7 while the compressor 1 is driven, the compressor 1 The compressed refrigerant is sent to the condenser 2 as a high-temperature and high-pressure gas, and the liquefied refrigerant is sent to the freezer evaporator 7 through the second capillary 6 by the switching valve 3 and evaporates there. Accordingly, the surrounding heat is removed, and as a result, the surrounding air is cooled. The gasified refrigerant passes through the check valve 8 and is compressed again in the compressor 1.
[0009]
At this time, the cool air cooled by the freezing room evaporator 7 is supplied to the freezing room 10 by the blowing action of the freezing room fan 12, and the inside of the refrigerator is cooled. In this case, since the temperature of the freezing room 10 is, for example, −18 ° C., the operating frequency of the compressor 1 is set so that the evaporation temperature of the freezing room evaporator 7 becomes approximately −28 ° C. At this time, the pressure of the freezer evaporator 7 is, for example, about 0.09 MPa. Such a cooling state is called a freezing room cooling mode.
[0010]
In this refrigerator, although not shown, the refrigerator compartment 9 and the freezer compartment 10 are provided with respective temperature sensors, and detection signals of the respective temperature sensors are input to a control circuit provided with a microcomputer. The control circuit controls the compressor 1, the switching valve 3, the refrigerating room fan 11, the freezing room fan 12, and the like according to the detection signals and a control program provided in advance.
[0011]
When the compressor 1 is stopped in a state where both the refrigerator compartment 9 and the freezer compartment 10 have been cooled to a preset set temperature, it is performed after switching the refrigerator compartment cooling mode. In the refrigerating compartment cooling mode, the switching valve 3 is in a state in which the compressor 1 communicates with the entrance of the evaporator 5 for the refrigerating compartment, and the connection between the compressor 1 and the entrance of the evaporator 7 for the freezing compartment is shut off. Have been. When the compressor 1 is stopped in this state, the high-temperature refrigerant from the high-pressure side does not flow into the freezing-room evaporator 7, and furthermore, because of the pressure difference, the outlet side of the freezing-room evaporator 7 Since the check valve 8 operates, there is no backflow of the refrigerant from the refrigerator-room evaporator 5 to the freezer-room evaporator 7.
[0012]
Therefore, the low-temperature refrigerant is held in the freezer compartment evaporator 7, and the rise in the temperature of the freezer compartment evaporator 7 can be suppressed. When the compressor 1 is restarted, the operation is started from the freezing room cooling mode. At this time, the low-temperature refrigerant held in the freezing room evaporator 7 is recirculated. (For example, see Patent Document 1).
[0013]
[Patent Document 1]
JP 2001-91130 A
[0014]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the compressor 1 is stopped in the refrigerator compartment cooling mode, so that the compressor 1 is shut off from the inlet of the freezer compartment evaporator 7, so that the temperature of the freezer compartment evaporator 7 rises. However, since the compressor 1 and the inlet of the refrigerator compartment evaporator 5 are in communication with each other, a high-temperature refrigerant flows from the high pressure side to the refrigerator compartment evaporator 5 due to the above. There is a drawback that the temperature rise of the refrigerator compartment 9 accompanying the rise in the temperature of the refrigerator evaporator 5 is large. Also, since the compressor 1 is always stopped in the refrigerator compartment cooling mode, the refrigerator compartment is always cooled even when the load is biased toward the refrigerator compartment 10 under actual use conditions such as when the door is opened and closed only in the refrigerator compartment 10. In addition, there is a disadvantage that the temperature control of the refrigerator compartment 9 depends on the refrigerator compartment 10 and cannot be flexibly performed.
[0015]
The present invention has been made to solve the conventional problems, and has as its object to save energy by minimizing the temperature rise of the refrigerator compartment and the freezer compartment while the compressor is stopped, and improving the efficiency at the time of cooling. I do.
[0016]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, a vacuum heat insulating material is used as a heat insulating material for a refrigerator box, and the refrigerator room evaporator is used in a refrigerator room and the freezer evaporator is used in a freezing room. Arranged in parallel with each other, a check valve is provided between the freezer compartment evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, whereby the refrigerating compartment and the freezer compartment are provided. When the temperature of the refrigerating compartment and the temperature of the freezing compartment both detect a set temperature or less, the compressor is stopped and the three-way valve is fully closed. It continues until the compressor starts, and the compressor stops. It is possible to minimize the high-temperature high-pressure refrigerant refrigerating compartment, the temperature rise of each room does not flow into the cooler both of the respective freezing chamber. Further, since the refrigerator box is made of a vacuum heat insulating material, the amount of heat absorption from the outside of the refrigerator is reduced, so that the compressor stoppage time is further lengthened, and the operation rate is reduced, thereby saving energy.
[0017]
Also, while the compressor is stopped, the refrigerant is held on the condenser side, so the refrigerant can be quickly supplied to each evaporator regardless of whether it is the refrigerator room cooling or the freezing room cooling next time, improving the cooling efficiency. It is possible to do.
[0018]
According to a second aspect of the present invention, there is provided a compressor, a condenser, a three-way valve serving as flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, a vacuum heat insulating material is used as a heat insulating material for a refrigerator box, and the refrigerator room evaporator is used in a refrigerator room and the freezer evaporator is used in a freezing room. Arranged in parallel with each other, a check valve is provided between the freezer compartment evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, whereby the refrigerating compartment and the freezer compartment are provided. When the temperature of the refrigerator compartment and the temperature of the freezer compartment both detect a set temperature or lower, the compressor is stopped and the three-way valve is opened to the refrigerator compartment evaporator side. The three-way valve is turned off at the same time Since the opening in the vessel side circuit flexible response becomes possible with the actual conditions of use rather than dependency and cooling state just before stopping. In addition, the use of the vacuum heat insulating material can reduce the heat absorption load of the refrigerator box, reduce the amount of refrigerant required for cooling the refrigerator compartment, and reduce the amount of refrigerant required when the refrigerator-evaporator-side circuit is opened. The load on the inside can also be reduced.
[0019]
Also, when the compressor is started, the high pressure side and the low pressure side pressure are balanced to the same pressure via the refrigerator compartment evaporator circuit, so that the torque applied to the compressor at the time of start can be minimized. It is possible to prevent poor starting due to insufficient torque.
[0020]
According to a third aspect of the present invention, there is provided a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, a vacuum heat insulating material is used as a heat insulating material for a refrigerator box, and the refrigerator room evaporator is used in a refrigerator room and the freezer evaporator is used in a freezing room. Arranged in parallel with each other, a check valve is provided between the freezer compartment evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, whereby the refrigerating compartment and the freezer compartment are provided. When the temperature of the refrigerator compartment and the temperature of the freezer compartment both detect a set temperature or lower, the compressor is stopped, and the three-way valve is fully closed. If either of them detects the temperature equal to or higher than the set temperature, the three-way valve The compressor is started after a predetermined time elapses after being opened to the room evaporator side. When the compressor is stopped, the high-temperature and high-pressure refrigerant does not flow into both the refrigerator and the freezer, so the temperature of each room is reduced. The rise can be minimized. In addition, when the compressor is started, the high-pressure side and the low-pressure side pressure are balanced to the same pressure via the refrigerator compartment evaporator circuit, so that the torque applied to the compressor at startup can be minimized. It is possible to prevent starting failure due to insufficient torque, and it is possible to minimize the temperature rise in the refrigerator compartment. Further, by using the vacuum heat insulating material, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment can be reduced, and the starting characteristics of the compressor can be improved.
[0021]
According to a fourth aspect of the present invention, there is provided a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, a vacuum heat insulating material is used as a heat insulating material for a refrigerator box, and the refrigerator room evaporator is used in a refrigerator room and the freezer evaporator is used in a freezing room. Arranged in parallel with each other, a check valve is provided between the freezer compartment evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, whereby the refrigerating compartment and the freezer compartment are provided. When the temperature of the refrigerator compartment and the temperature of the freezer compartment both detect a set temperature or lower, the compressor is stopped, and the three-way valve is fully closed. If one of them detects a temperature higher than the set temperature, the three-way valve is fully closed. While the activates the compressor, which is operated a predetermined time, it is possible to start the initial lack of the refrigerant in the evaporator is not generated, starts quickly refrigerator compartment or the freezer compartment cooling. Further, by using the vacuum heat insulating material, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment can be reduced, and the starting characteristics of the compressor can be improved.
[0022]
The invention according to claim 5 of the present invention is the invention according to any one of claims 1 to 4, wherein the cooling room temperature detecting means detects the set lower limit temperature and then cools the refrigerator room for a predetermined time. The fan is operated to promote the evaporation of the refrigerant remaining in the evaporator for the refrigerator compartment, so that the shortage of the refrigerant hardly occurs and the cooling efficiency is improved.
[0023]
The invention according to claim 6 of the present invention is the invention according to any one of claims 1 to 4, wherein the cooling room temperature detecting means detects the set upper limit temperature and cools the refrigerator room for a predetermined time. Since the fan is stopped and the cooling of the refrigerator compartment evaporator can be started at the beginning of the cooling compartment evaporator cooling, the cooling compartment interior cooling can be started after the temperature of the refrigerator compartment evaporator is lowered. The rise can be prevented. In addition, the refrigerant remaining in the freezer evaporator can be returned to the compressor by lowering the evaporation temperature at the beginning of the cooling of the refrigerator evaporator than in the freezer evaporator.
[0024]
The invention according to claim 7 of the present invention is the invention according to any one of claims 1 to 4, wherein the cooling room temperature detecting means detects the set upper limit temperature for a predetermined time after the refrigerator compartment temperature detecting means detects the set upper limit temperature. The fan is operated, and when the mode is shifted to the cooling of the refrigerator, the evaporation of the refrigerant remaining in the evaporator for the freezing room is promoted, and the circulation amount of the refrigerant can be increased.
[0025]
The invention according to claim 8 of the present invention is the invention according to any one of claims 1 to 4, wherein the freezer compartment temperature is detected for a predetermined time after the freezer compartment temperature detecting means detects the set lower limit temperature. The fan is operated to accelerate the evaporation of the refrigerant remaining in the freezer evaporator and increase the amount of the circulated refrigerant.
[0026]
According to a ninth aspect of the present invention, there is provided a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, the refrigerating room evaporator is disposed in parallel with the refrigerating room evaporator in the refrigerating room, and the refrigerant flow is performed by the three-way valve. Is switched to a refrigerator compartment circuit and a freezer compartment circuit to alternately cool the refrigerator compartment and the freezer compartment.The refrigerator operates at a low speed when the refrigerator compartment is cooled, and operates when the refrigerator compartment is cooled. It operates at a high rotation speed.The compressor speed is reduced to reduce the input when cooling the refrigerator compartment where the evaporation temperature is high, and the rotation speed is improved to improve the refrigeration cycle when cooling the refrigerator compartment where the evaporation temperature is low. That high efficiency cycle operation is possible. That.
[0027]
According to a tenth aspect of the present invention, there is provided a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, the refrigerating room evaporator is disposed in parallel with the refrigerating room evaporator in the refrigerating room, and the refrigerant flow is performed by the three-way valve. Is switched between a refrigerator compartment circuit and a freezer compartment circuit to alternately cool the refrigerator compartment and the freezer compartment, wherein the number of rotations of the compressor fan at the time of cooling the refrigerator compartment is higher than that at the time of cooling the freezer compartment. Thus, the heat radiation amount can be set according to the heat exchange amount of each of the refrigerator compartment evaporator and the freezer compartment evaporator, and the efficiency of the refrigeration cycle can be improved.
[0028]
According to an eleventh aspect of the present invention, there is provided a compressor, a condenser, a three-way valve serving as flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a freezer evaporator, and a refrigerator. In a refrigerator provided with a room cooling fan and a freezing room cooling fan, the refrigerating room evaporator is disposed in parallel with the refrigerating room evaporator in the refrigerating room, and the refrigerant flow is performed by the three-way valve. Is switched to a refrigerator compartment circuit and a freezer compartment circuit to alternately cool the refrigerator compartment and the freezer compartment, and increases the rotational speed of the freezer compartment cooling fan every predetermined time from the start of freezer compartment cooling. If the temperature of the freezer compartment evaporator at the start of freezer compartment cooling is high, the temperature of the freezer compartment evaporator is reduced by lowering the freezer compartment evaporator temperature by rotating the freezer compartment cooling fan at a low rotation speed. Then, the whole freezer compartment is cooled with high rotation Door can be.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.
[0030]
(Embodiment 1)
FIG. 1 is a schematic sectional view of a refrigerator according to Embodiment 1 of the present invention, and FIG. 2 is a time chart showing an operation of the refrigerator of the embodiment.
[0031]
In the figure, reference numeral 18 denotes a refrigerator box, in which a refrigerator compartment 9 which is a relatively high temperature compartment is arranged in an upper part, and a relatively low temperature freezer compartment 10 is arranged in a lower part, and a heat insulating urethane and a vacuum heat insulating material 20 are used. It constitutes an insulated box. Storage of foods and the like is carried out by opening and closing a heat insulating door (not shown). The vacuum heat insulating material 20 is arranged on the rear, side, top, side, or front door of the refrigerator box 18, and the coverage of the refrigerator box 18 with respect to the outer surface area is set to 50 to 80%. In addition, as the core material of the vacuum heat insulating material 20, an inorganic fiber aggregate is used, and the periphery is sealed with a metal foil or a laminated film formed by aluminum evaporation, and the inside is kept in a vacuum state under reduced pressure. I have.
[0032]
The refrigerating compartment 9 is usually set at 1 to 5 ° C. for refrigerated storage, but may be set at a slightly lower temperature, for example, -3 to 0 ° C. for improving freshness. In some cases, it is possible for the user to freely switch the temperature setting as described above. In some cases, the temperature may be set slightly higher, for example, about 10 ° C., for freshening wine or root vegetables.
[0033]
The freezer compartment 10 is usually set at −22 to −18 ° C. for frozen storage, but may be set at a lower temperature, for example, −30 to −25 ° C., for improving freshness.
[0034]
The refrigeration cycle 19 sequentially connects the compressor 1, the condenser 2, the three-way valve 3 as the flow path switching means, the first capillary 4, the refrigerator compartment evaporator 5, and the first suction line 13, and connects the three-way valve 3 The second capillary 6, the freezer evaporator 7, the second suction line 14, and the second capillary 6 are arranged in parallel with the first capillary 4, the refrigerator evaporator 5, and the first suction line 13. The check valve 8 is connected in the middle of the suction line 14.
[0035]
The compressor 1, the condenser 2, the three-way valve 3, and the check valve 8 are arranged in the machine room 17 to reduce the number of welded pipes in the refrigerator box 18 from the viewpoint of improving safety when a flammable refrigerant is used. It is set up.
[0036]
In addition, the refrigerant returning from each evaporator is discharged to the space inside the compressor 1 through the compressor suction pipe 15 and then discharged through the compressor discharge pipe 16.
[0037]
The refrigerating compartment evaporator 5 is provided in the refrigerating compartment 9, for example, on the inner surface of the refrigerating compartment 9, and is refrigerated in which air in the compartment of the refrigerating compartment 9 is circulated through the refrigerating compartment evaporator 5. A room fan 11 is provided.
[0038]
The freezer evaporator 7 is disposed inside the freezer 10, for example, on the inner surface of the freezer 10, and circulates air in the compartment of the freezer 10 through the freezer evaporator 7 in the vicinity. A freezing room fan 12 is provided.
[0039]
Further, the compressor 1 is of a variable capacity type that can change the refrigeration capacity by controlling the amount of circulating refrigerant by controlling the rotation speed by an inverter, for example.
[0040]
The three-way valve 3 is operated by a pulse motor, for example, and is energized only during opening and closing operations.
[0041]
The refrigerator compartment 9 and the freezer compartment 10 are provided with temperature detecting means TH1 and TH2, for example, thermistors, which detect the temperature in the compartments. The compressor 1, the three-way valve 3, the refrigerator compartment fan 11, and the freezer compartment Control means C1 for controlling the fan 12; In the machine room 17, a compressor fan 21 for cooling the condenser 2 and the compressor 1 is provided.
[0042]
FIG. 2 is a time chart according to the first embodiment of the present invention.
[0043]
In the refrigerator configured as described above, the cooling timing of the refrigerator compartment 9 and the freezer compartment 10 will be described with reference to the time chart of FIG.
[0044]
When one of TH1 or TH2, which is the temperature detecting means of the refrigerator compartment 9 and the freezing compartment 10, detects a temperature equal to or higher than a predetermined temperature while the compressor 1 is stopped, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerator compartment 9 detects a temperature equal to or higher than a predetermined temperature (t1H), the compressor 1 and the refrigerator compartment fan 11 are operated, and the three-way valve 3 is opened to the first capillary 4 side to cool the refrigerator. The cooling of the chamber 9 is started (T1).
[0045]
The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 radiates heat in the condenser 2 to be condensed and liquefied, and reaches the first capillary 4 via the three-way valve 3. Thereafter, the pressure is reduced while exchanging heat with the first suction line 13 in the first capillary 4 and reaches the refrigerator evaporator 5. The refrigerant that has actively exchanged heat with the air in the refrigerator compartment 9 by the operation of the refrigerator compartment fan 11 evaporates and evaporates in the refrigerator compartment evaporator 5, and the heat exchanged air is discharged as lower-temperature air to be refrigerated. The chamber 9 is cooled. The vaporized refrigerant is sucked into the compressor 1 via the first suction line 13.
[0046]
Since the check valve 8 is provided in the middle of the second suction line 14, the refrigerant having passed through the first suction line 13 flows into the freezer evaporator 7 through the second suction line 14. Never.
[0047]
When the refrigerator compartment temperature detecting means TH1 detects a predetermined temperature (t1L) or less and the freezing compartment temperature detecting means TH2 detects a preset temperature (t2H) or more during the cooling of the refrigerator compartment 9, the control means. C1 receives this signal, stops the refrigerator compartment fan 11 and operates the freezer compartment fan 12, opens the three-way valve 3 to the second capillary 6 side, and starts cooling the freezer compartment 10 (T2).
[0048]
The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 releases heat in the condenser 2 to be condensed and liquefied, and reaches the second capillary 6 via the three-way valve 3. Thereafter, the pressure is reduced while exchanging heat with the second suction line 14 in the second capillary 6 to reach the freezer evaporator 7. The refrigerant that has actively exchanged heat with the air in the freezing room 10 by the operation of the freezing room fan 12 evaporates and evaporates in the freezing room evaporator 7, and the heat exchanged air is discharged as lower-temperature air and is frozen. The chamber 10 is cooled. The vaporized refrigerant is sucked into the compressor 1 via the second suction line 14 and the check valve 8.
[0049]
When the freezing room temperature detecting means TH2 detects a predetermined temperature (t2L) or lower and the refrigerator compartment temperature detecting means TH1 detects a predetermined temperature (t1H) or higher during cooling of the freezing room 10, the controlling means. C1 receives this signal, stops the freezer compartment fan 12, activates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T3).
[0050]
By repeating the above operation and switching the flow of the refrigerant using the three-way valve 3, the refrigerator compartment 9 and the refrigerator compartment 10 are alternately cooled, and the temperature detection means of the refrigerator compartment 9 and the refrigerator compartment 10 are both set in advance. When detecting that the temperature is lower than the predetermined temperature (t1H and t2L), the three-way valve 3 is closed together with the first capillary 4 side flow path and the second capillary 6 side flow path, and the compressor 1, the refrigerator compartment fan 11, the freezer compartment The fan 12 is stopped (T4).
[0051]
When one of TH1 or TH2, which is the temperature detecting means of the refrigerator compartment 9 and the freezing compartment 10, detects a temperature equal to or higher than a predetermined temperature while the compressor 1 is stopped, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerator compartment 9 detects a temperature equal to or higher than a predetermined temperature (t1H), the compressor 1 and the refrigerator compartment fan 11 are operated, and the three-way valve 3 is opened to the first capillary 4 side to cool the refrigerator. The cooling of the chamber 9 is started (T5).
[0052]
While the compressor 1 is stopped, the three-way valve 3 is closed both in the first capillary 4 side flow path and the second capillary 6 side flow path. Does not flow into the refrigerating room evaporator 5 and the freezing room evaporator 7, it is possible to minimize the temperature rise in each room while the compressor 1 is stopped.
[0053]
Also, while the compressor 1 is stopped, the refrigerant is held on the condenser 2 side, so that the refrigerant can be quickly supplied to each evaporator regardless of whether the next cooling is the refrigerator compartment 9 or the freezer compartment 10. The cooling efficiency can be improved.
[0054]
In addition, since the vacuum heat insulating material 20 is used for the refrigerator box, the amount of heat absorbed from outside the refrigerator is reduced, so that the stop time of the compressor 1 is further lengthened, and the operation rate is reduced, thereby saving energy.
[0055]
It is assumed that the cooling of the freezing compartment 10 is started after the cooling compartment fan 11 is stopped, but the cooling compartment fan 11 is stopped after a lapse of a predetermined time from the start of cooling of the freezing compartment 10 for the purpose of defrosting the refrigerator evaporator 5. By doing so, the next cooling of the refrigerator compartment 10 can be performed more efficiently.
[0056]
As a refrigerant for the refrigeration cycle, it is preferable to use a natural refrigerant having a low global warming potential, for example, isobutane or the like, from the viewpoint of protecting the global environment.
[0057]
(Embodiment 2)
FIG. 3 is a time chart illustrating the operation of the refrigerator according to the second embodiment of the present invention. The description of the same parts as in the first embodiment is omitted.
[0058]
When both the temperature detecting means of the refrigerating compartment 9 and the temperature detecting means of the freezing compartment 10 detect that the temperature is lower than a predetermined temperature (t1H and t2L), the three-way valve 3 is opened to the first capillary 4 side and the compressor 1 is stopped. (T6).
[0059]
When one of TH1 or TH2, which is the temperature detecting means of the refrigerator compartment 9 and the freezing compartment 10, detects a temperature equal to or higher than a predetermined temperature while the compressor 1 is stopped, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerator compartment 9 detects a temperature equal to or higher than a predetermined temperature (t1H), the compressor 1 and the refrigerator compartment fan 11 are operated, and the three-way valve 3 is opened to the first capillary 4 side to cool the refrigerator. The cooling of the chamber 9 is started (T7).
[0060]
The compressor 1 can be stopped from the cooling of the refrigerator compartment 9 or the cooling of the freezer compartment 10 without depending on the cooling state immediately before the stop. Will not occur.
[0061]
During the stop of the compressor, the three-way valve 3 is open to the evaporator 5 for the refrigerating compartment, and the high-temperature and high-pressure Since the refrigerant does not flow into the freezer evaporator 7, the temperature rise in the freezer 10 can be minimized.
[0062]
Further, by using the vacuum heat insulating material 20, the heat absorption load of the refrigerator box can be reduced, and the amount of refrigerant required for cooling the refrigerator compartment 9 can be reduced, and the circuit for the refrigerator compartment evaporator 5 is opened. In this case, the load on the inside of the refrigerator can be reduced.
[0063]
Also, when the compressor 1 is started, it communicates with the refrigerating compartment evaporator 5 circuit, and the high pressure side and the low pressure side pressure are balanced to the same pressure, so that the torque applied to the compressor at the time of startup can be minimized. It is possible to prevent starting failure due to insufficient torque of the compressor.
[0064]
(Embodiment 3)
FIG. 4 is a time chart illustrating an operation of the refrigerator according to the third embodiment of the present invention. The description of the same parts as in the first embodiment is omitted.
[0065]
When both of the temperature detecting means of the refrigerating compartment 9 and the temperature detecting means of the freezing compartment 10 detect that the temperature is lower than a predetermined temperature (t1H and t2L), the three-way valve 3 is moved to the first capillary 4 side flow path and the second capillary 6 side. Both the flow paths are closed, and the compressor 1 is stopped (T8).
[0066]
When one of TH1 or TH2, which is the temperature detecting means of the refrigerator compartment 9 and the freezing compartment 10, detects a temperature equal to or higher than a predetermined temperature while the compressor 1 is stopped, the control means C1 receives this signal, For example, when the temperature detection means of the refrigerator compartment 9 detects a temperature equal to or higher than a predetermined temperature (t1H), the three-way valve 3 is opened to the refrigerator compartment evaporator 5 side (T9).
[0067]
After a predetermined time has elapsed, the compressor 1 and the refrigerator compartment fan 11 are operated to start cooling the refrigerator compartment 9 (T10).
[0068]
When the compressor 1 is started, the high-pressure side and the low-pressure side pressure are balanced to the same pressure via the refrigerator compartment evaporator 5 circuit, so that the torque applied to the compressor 1 at the start can be minimized. The three-way valve 3 is connected to the refrigerating room evaporator 5 until the temperature detecting means of the refrigerating room 9 detects a temperature equal to or higher than a predetermined temperature (t1H). In addition, since both the freezing room evaporator 7 and the evaporator 7 are closed, the temperature rise of the refrigerator compartment 9 can be minimized.
[0069]
The time from T9 to T10 is set to the minimum time until the high and low pressures are balanced, but the time for the high and low pressures to balance varies depending on the outside temperature. Efficiency can be improved.
[0070]
Also, as shown in FIG. 5, when the temperature detecting means of the freezing room 10 detects a temperature equal to or higher than a predetermined temperature (t2H) while the compressor 1 is stopped, the three-way valve 3 is similarly connected to the refrigerator compartment evaporator 5 side. After a lapse of a predetermined time, the compressor 1 and the freezing room fan 12 are operated to open the three-way valve 3 to the second capillary 6 side to start cooling the freezing room 10.
[0071]
Even when the temperature in the freezer compartment 10 rises while the compressor 1 is stopped, the three-way valve 3 is opened to the refrigerator compartment evaporator 5 side to balance the high and low pressures, so that the temperature rise in the freezer compartment 10 is minimized. It becomes possible.
[0072]
In addition, by using the vacuum heat insulating material 20, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment 9 can be reduced, and the starting characteristics of the compressor 1 can be improved. Can be.
[0073]
(Embodiment 4)
FIG. 6 is a time chart showing the operation of the refrigerator of the fourth embodiment. The description of the same parts as in the first embodiment is omitted.
[0074]
When both of the temperature detecting means of the refrigerating compartment 9 and the temperature detecting means of the freezing compartment 10 detect that the temperature is lower than a predetermined temperature (t1H and t2L), the three-way valve 3 is moved to the first capillary 4 side flow path and the second capillary 6 side. Both the flow paths are closed, and the compressor 1 is stopped (T11).
[0075]
When one of TH1 or TH2, which is the temperature detecting means of the refrigerator compartment 9 and the freezing compartment 10, detects a temperature equal to or higher than a predetermined temperature while the compressor 1 is stopped, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerator compartment 9 detects a temperature equal to or higher than a predetermined temperature (t1H), the compressor 1 is operated with the three-way valve 3 fully closed (T12).
[0076]
After a lapse of a predetermined time, the three-way valve 3 is opened to the refrigerator compartment evaporator side, and the refrigerator compartment fan 11 is operated to start cooling the refrigerator compartment 9 (T13).
[0077]
Since the cooling is started after a predetermined time has elapsed since the operation of the compressor 1, the cooling of the refrigerator compartment 9 or the freezing compartment 10 can be started quickly without causing the shortage of the refrigerant in the initial stage of the startup in the evaporator. In addition, by using the vacuum heat insulating material 20, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment 9 can be reduced, and the starting characteristics of the compressor 1 can be improved. Can be.
[0078]
(Embodiment 5)
FIG. 7 is a time chart showing the operation of the refrigerator of the fifth embodiment. The description of the same parts as in the first embodiment is omitted.
[0079]
When the refrigerating compartment temperature detecting means TH1 detects a temperature equal to or lower than a preset predetermined temperature (t1L) during cooling of the refrigerating compartment 9, the control means C1 receives this signal and keeps the refrigerating compartment fan 11 operating for a predetermined time (TPCA). (T14).
[0080]
By operating the refrigerating compartment fan 11 at the end of the cooling of the refrigerating compartment 9, the evaporation of the refrigerant remaining in the refrigerating compartment evaporator 7 can be promoted, so that shortage of the refrigerant hardly occurs and the cooling efficiency is improved.
[0081]
(Embodiment 6)
FIG. 8 is a time chart showing the operation of the refrigerator in the sixth embodiment. The description of the same parts as in the first embodiment is omitted.
[0082]
When the refrigerating compartment temperature detecting means TH1 detects a predetermined temperature (t1H) or more while the freezing compartment 10 is being cooled or the compressor 1 is stopped, the control means C1 receives this signal and sets the three-way valve 3 to the refrigerating compartment evaporator. Open to the 7 side. (T15, T16)
In addition, it is set so that the refrigerator compartment fan 11 is not operated for a predetermined time (TPCB) from the start of cooling the refrigerator compartment 9.
[0083]
By not operating the refrigerator compartment fan 11 for a predetermined period of time, the inside of the refrigerator compartment 9 can be started after the temperature of the refrigerator compartment evaporator 5 is lowered at the beginning of the cooling of the refrigerator compartment evaporator 5. It is possible to prevent the internal temperature of the chamber 9 from rising at the beginning of cooling. Further, the evaporating temperature of the refrigerator compartment evaporator 7 can be lowered, and the refrigerant staying in the freezer compartment evaporator 8 can be turned to the refrigerator compartment cooler 7 side, so that shortage of the refrigerant can be prevented.
[0084]
(Embodiment 7)
FIG. 9 is a time chart showing the operation of the refrigerator of the seventh embodiment. The description of the same parts as in the first embodiment is omitted.
[0085]
Control is performed when the freezer compartment temperature detecting means TH2 detects below the predetermined temperature (t2L) and the refrigerator compartment temperature detecting means TH1 detects below the predetermined temperature (t1H) during cooling of the freezer compartment 10. Means C1 receives this signal, operates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T17).
[0086]
Then, after a predetermined time (TFCA) has elapsed by the timer, the freezing room fan 12 is stopped, and the cooling of the refrigerator compartment 9 is continued. (T18)
Also, when the temperature detecting means of the refrigerator compartment 9 detects a predetermined temperature (t1H) or more while the compressor 1 is stopped, the compressor 1, the refrigerator compartment fan 11, and the freezer compartment fan 12 are operated. The three-way valve 3 is opened to the first capillary 4 side to start cooling the refrigerator compartment 9 (T19).
[0087]
Then, similarly, after a predetermined time (TFCA) has elapsed by the timer, the freezing room fan 12 is stopped, and the cooling of the refrigerator compartment 9 is continued. (T20)
When the refrigerator temperature detecting means TH1 detects a temperature lower than a predetermined temperature (t1L) within a predetermined time (TFCA), the cooling of the refrigerator 10 is terminated and the fan 12 for the freezer is stopped.
[0088]
By operating the freezing room fan 12 at the start of the cooling of the refrigerator compartment 9, the evaporation of the refrigerant remaining in the freezing room evaporator 7 is promoted, and the refrigerant is smoothly transferred from the freezing room evaporator 7 to the compressor 1. Since the supply can be performed, it is possible to prevent the shortage of the amount of the circulating refrigerant at the start of the cooling of the refrigerator compartment 9 and improve the cooling efficiency of the refrigerator compartment 9.
[0089]
(Embodiment 8)
FIG. 10 is a time chart showing the operation of the refrigerator in the eighth embodiment. The description of the same parts as in the first embodiment is omitted.
[0090]
When the freezing room temperature detecting means TH2 detects a temperature equal to or lower than a predetermined temperature (t2L) set in advance during cooling of the freezing room 10 (T21), the control means C1 receives this signal and turns on the freezing room fan 12 for a predetermined time (TFCB). Continue driving (T22).
[0091]
By operating the freezing room fan 12 at the end of freezing room cooling, the evaporation of the refrigerant remaining in the freezing room evaporator 8 can be promoted, so that the cooling efficiency of the freezing room 10 can be improved.
[0092]
(Embodiment 9)
FIG. 11 is a time chart showing the operation of the refrigerator in the ninth embodiment. The description of the same parts as in the first embodiment is omitted.
[0093]
The rotation speed of the compressor 1 is set to a high rotation speed (RH) during the cooling of the freezer compartment 10, and the rotation speed of the compressor 1 is set to a low rotation (RL) during the cooling of the refrigerator compartment 9. Further, the rotation speed of the compressor fan 21 during the cooling of the refrigerator compartment 9 is set to a high rotation speed (CH), and the rotation speed during the cooling of the freezing compartment 10 is set to a low rotation (CL).
[0094]
During the cooling of the freezer compartment 10, the refrigerant hardly evaporates in the freezer compartment evaporator 8, so that it is operated in a region having a high refrigerating capacity and a high refrigerating cycle efficiency and a relatively high rotational speed. In the refrigerator, the refrigerant often evaporates completely in the refrigerator compartment evaporator 7, and the compressor 1 is operated in a relatively low rotation speed region to reduce the input, thereby enabling high-efficiency operation and energy saving. Can be.
[0095]
Further, since the heat exchange amount of the refrigerator compartment evaporator 7 is larger than that of the refrigerator compartment evaporator 8, the required heat radiation amount is required to be larger in the refrigerator compartment 9 than in the refrigerator compartment 10. Therefore, by increasing the rotation speed of the compressor fan 21 at the time of cooling the refrigerating compartment 9 rather than at the time of cooling the freezing compartment 10, it is possible to obtain a necessary heat radiation amount in the condenser 2 suitable for each cooling mode.
[0096]
(Embodiment 10)
FIG. 12 is a time chart showing the operation of the refrigerator of the tenth embodiment. The description of the same parts as in the first embodiment is omitted.
[0097]
The rotation speed of the freezer compartment fan 12 is set to increase at predetermined intervals (TFCC) from the start of freezing compartment 10 cooling.
[0098]
If the temperature of the freezer compartment evaporator 7 at the start of freezing compartment 10 cooling is high, the temperature of the freezer compartment evaporator 7 is lowered by turning the freezer fan 12 at a low rotation speed (FL). When the temperature is lowered, the entire freezing compartment 10 can be cooled at a high rotation speed (FH), so that the freezing compartment 10 can be efficiently and quickly cooled.
[0099]
【The invention's effect】
As described above, the first aspect of the present invention provides a compressor, a condenser, a three-way valve serving as a flow path switching unit, a first capillary, a refrigerator evaporator, a second capillary, and a refrigerator evaporator. In a refrigerator provided with a refrigerator, a refrigerator cooling fan and a freezer cooling fan, a vacuum heat insulating material is used as a heat insulating material of the refrigerator box, and the refrigerator evaporator is used in the refrigerator and the freezer is used in the freezer. The evaporators are arranged in parallel, a check valve is provided between the freezer compartment evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, thereby forming the refrigerator compartment. When the temperature of the refrigerating compartment and the temperature of the refrigerating compartment both detect a temperature lower than a set temperature, the compressor is stopped and the three-way valve is fully closed. Is to continue until the next start of the compressor The temperature rise in each of the refrigerator can be kept to a minimum. Further, since the refrigerator box is made of a vacuum heat insulating material, the amount of heat absorption from the outside of the refrigerator is reduced, so that the compressor stoppage time is further lengthened, and the operation rate is reduced, thereby saving energy.
[0100]
In addition, the refrigerant can be quickly supplied to each evaporator regardless of whether the next cooling is the refrigerator compartment cooling or the freezing compartment cooling, and the cooling efficiency can be improved.
[0101]
The invention according to claim 2 of the present invention provides a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator equipped with a cooling room cooling fan and a freezing room cooling fan, wherein a vacuum heat insulating material is used as a heat insulating material of the refrigerator box, the refrigerator room evaporator is provided in the cooling room, and the freezing room evaporation is provided in the freezing room. Are arranged in parallel with each other, a check valve is provided between the freezer evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, thereby forming the refrigerator compartment and the refrigerator compartment. When the temperature of the refrigerator and the temperature of the refrigerator both become lower than a set temperature, the compressor is stopped and the three-way valve is opened toward the evaporator for the refrigerator. The dependence on the cooling state immediately before the stop is Ku flexible response is possible even in the actual conditions of use. In addition, the use of the vacuum heat insulating material can reduce the heat absorption load of the refrigerator box, reduce the amount of refrigerant required for cooling the refrigerator compartment, and reduce the amount of refrigerant required when the refrigerator-evaporator-side circuit is opened. The load on the inside can also be reduced.
[0102]
In addition, the torque applied to the compressor at the time of starting can be minimized, and starting failure due to insufficient torque of the compressor can be prevented.
[0103]
The invention according to claim 3 of the present invention provides a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator equipped with a cooling room cooling fan and a freezing room cooling fan, wherein a vacuum heat insulating material is used as a heat insulating material of the refrigerator box, the refrigerator room evaporator is provided in the cooling room, and the freezing room evaporation is provided in the freezing room. Are arranged in parallel with each other, a check valve is provided between the freezer evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, thereby forming the refrigerator compartment and the refrigerator compartment. It is to cool the freezer alternately, and when the temperature of the refrigerator and the temperature of the freezer both detect a set temperature or less, the compressor is stopped and the three-way valve is fully closed, and the temperature of each refrigerator is checked. When any one of them detects a temperature equal to or higher than the set temperature, the three-way valve is activated. Is intended to start the compressor after a predetermined time After the opened serial refrigerator compartment evaporator side, it is possible to minimize the temperature rise in each compartment. Further, the torque applied to the compressor at the time of starting can be minimized, and starting failure due to insufficient torque of the compressor can be prevented, and the temperature rise of the refrigerator compartment can be minimized. Further, by using the vacuum heat insulating material, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment can be reduced, and the starting characteristics of the compressor can be improved.
[0104]
Further, the invention according to claim 4 of the present invention provides a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator provided with a cooling room cooling fan and a freezing room cooling fan, wherein a vacuum heat insulating material is used as a heat insulating material of the refrigerator box, the refrigerator room evaporator is provided in the cooling room, and the freezing room evaporation is provided in the freezing room. Are arranged in parallel with each other, a check valve is provided between the freezer evaporator and the compressor, and the three-way valve switches the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit, thereby forming the refrigerator compartment and the refrigerator compartment. It is to cool the freezer alternately, and when the temperature of the refrigerator and the temperature of the freezer both detect a set temperature or less, the compressor is stopped and the three-way valve is fully closed, and the temperature of each refrigerator is checked. When any one of them detects a temperature equal to or higher than the set temperature, the three-way valve is activated. While closed, the activates the compressor, which is operated a predetermined time, it is possible to start the initial lack of the refrigerant in the evaporator is not generated, starts quickly refrigerator compartment or the freezer compartment cooling. Further, by using the vacuum heat insulating material, the heat absorption load of the refrigerator box can be reduced, the amount of refrigerant required for cooling the refrigerator compartment can be reduced, and the starting characteristics of the compressor can be improved.
[0105]
According to a fifth aspect of the present invention, there is provided the refrigerator according to any one of the first to fourth aspects, wherein the refrigerator compartment temperature detecting means detects the set lower limit temperature for a predetermined time. The cooling fan is operated, which promotes the evaporation of the refrigerant remaining in the refrigerator evaporator, makes it difficult for the refrigerant to run short, and improves the cooling efficiency.
[0106]
The invention according to claim 6 of the present invention is the invention according to any one of claims 1 to 4, wherein the refrigerator compartment temperature detection means detects the set upper limit temperature for a predetermined time. The cooling fan is stopped, so that the cooling of the refrigerator compartment evaporator can be started at the beginning of the cooling compartment evaporator cooling, and then the cooling in the refrigerator compartment can be started after the temperature of the refrigerator compartment evaporator is lowered. The internal temperature rise can be prevented. Further, by lowering the evaporation temperature at the beginning of cooling of the refrigerator compartment evaporator than in the freezer compartment evaporator, the refrigerant remaining in the freezer compartment evaporator can be returned to the compressor, and shortage of the refrigerant can be prevented.
[0107]
The invention according to claim 7 of the present invention is the invention according to any one of claims 1 to 4, wherein the refrigerating compartment temperature for a predetermined time after the refrigerator compartment temperature detecting means detects the set upper limit temperature. The cooling fan is operated, and when the cooling mode is switched to the cooling of the refrigerator, the evaporation of the refrigerant remaining in the evaporator for the freezing room is promoted, and the circulation amount of the refrigerant can be increased.
[0108]
The invention according to claim 8 of the present invention is the invention according to any one of claims 1 to 4, wherein the freezing compartment temperature is detected for a predetermined time after the freezing compartment temperature detecting means detects the set lower limit temperature. The cooling fan is operated, and the evaporation of the refrigerant remaining in the freezer evaporator can be promoted to increase the circulation amount of the refrigerant.
[0109]
According to a ninth aspect of the present invention, there is provided a compressor, a condenser, a three-way valve serving as flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator provided with a cooling room cooling fan and a freezing room cooling fan, wherein the refrigerator room evaporator is disposed in parallel with the refrigerator room evaporator in the refrigerator room, and the refrigerant is controlled by the three-way valve. By switching the flow to the refrigerator compartment circuit and the freezer compartment circuit, the refrigerator compartment and the freezer compartment are alternately cooled.When the refrigerator compartment is cooled, the compressor is operated at a low speed. The compressor is operated at a high speed.The compressor speed is reduced to reduce the input when cooling the refrigerator compartment where the evaporation temperature is high, and the compressor is rotated to improve the refrigeration cycle when cooling the refrigerator compartment where the evaporation temperature is low. By increasing the number, high efficiency cycle operation The ability.
[0110]
The invention according to claim 10 of the present invention provides a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator provided with a cooling room cooling fan and a freezing room cooling fan, wherein the refrigerator room evaporator is disposed in parallel with the refrigerator room evaporator in the refrigerator room, and the refrigerant is controlled by the three-way valve. The flow of air is switched between the refrigerator compartment circuit and the freezer compartment circuit to alternately cool the refrigerator compartment and the freezer compartment, and the number of rotations of the compressor fan at the time of cooling the refrigerator compartment is higher than at the time of cooling the freezer compartment. The amount of heat radiation can be set according to the amount of heat exchange between the refrigerator compartment evaporator and the freezer compartment evaporator, and the efficiency of the refrigeration cycle can be improved.
[0111]
The invention according to claim 11 of the present invention provides a compressor, a condenser, a three-way valve as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, and a freezer evaporator. And a refrigerator provided with a cooling room cooling fan and a freezing room cooling fan, wherein the refrigerator room evaporator is disposed in parallel with the refrigerator room evaporator in the refrigerator room, and the refrigerant is controlled by the three-way valve. The flow of the cooling is switched between the refrigerator compartment circuit and the freezer compartment circuit to alternately cool the refrigerator compartment and the freezer compartment. If the temperature of the freezer compartment evaporator at the start of freezer compartment cooling is high, the temperature of the freezer compartment evaporator is lowered by rotating the freezer cooling fan at a low rotation speed. When the temperature drops, the entire freezer compartment is It is possible to bake cooling.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a time chart showing the operation of the refrigerator according to the embodiment;
FIG. 3 is a time chart showing the operation of the refrigerator according to the second embodiment of the present invention.
FIG. 4 is a time chart showing the operation of the refrigerator according to the third embodiment of the present invention.
FIG. 5 is a time chart showing another operation of the refrigerator of the embodiment.
FIG. 6 is a time chart showing the operation of the refrigerator according to the fourth embodiment of the present invention.
FIG. 7 is a time chart showing the operation of the refrigerator according to the fifth embodiment of the present invention.
FIG. 8 is a time chart showing the operation of the refrigerator according to the sixth embodiment of the present invention.
FIG. 9 is a time chart showing the operation of the refrigerator according to the seventh embodiment of the present invention.
FIG. 10 is a time chart showing the operation of the refrigerator according to the eighth embodiment of the present invention.
FIG. 11 is a time chart showing the operation of the refrigerator in the ninth embodiment of the present invention.
FIG. 12 is a time chart illustrating the operation of the refrigerator according to the tenth embodiment of the present invention.
FIG. 13 is a schematic sectional view of a conventional refrigerator.
[Explanation of symbols]
1 compressor
2 condenser
3 Three-way valve
4 The first capillary
5 Evaporator for refrigerator compartment
6 The second capillary
7 Freezer evaporator
8 Check valve
9 Refrigerator room
10 Freezer compartment
11 Cooling room fan
12 Freezer fan
18 refrigerator box
20 Vacuum insulation
21 Compressor fan
C1 control means
TH1 Refrigerator room temperature detection means
TH2 Freezer compartment temperature detection means

Claims (11)

圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、その全閉状態は次回の前記圧縮機起動まで継続する冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In a refrigerator, a vacuum heat insulating material is used as a heat insulating material of a refrigerator box, and the evaporator for a refrigerator is arranged in parallel in a refrigerator, and the evaporator for a freezer is arranged in parallel in a freezer. A check valve is provided between the compressor and the compressor, and the three-way valve alternately cools the refrigerator compartment and the freezer compartment by switching the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit. A refrigerator that stops the compressor and fully closes the three-way valve when both the temperature of the refrigerator and the temperature of the freezing room are equal to or lower than a set temperature, and the fully closed state continues until the next time the compressor is started. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を前記冷蔵室用蒸発器側に開とする冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In a refrigerator, a vacuum heat insulating material is used as a heat insulating material of a refrigerator box, and the evaporator for a refrigerator is arranged in parallel in a refrigerator, and the evaporator for a freezer is arranged in parallel in a freezer. A check valve is provided between the compressor and the compressor, and the three-way valve alternately cools the refrigerator compartment and the freezer compartment by switching the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit. A refrigerator that stops the compressor and opens the three-way valve to the refrigerating room evaporator side when both the temperature of the refrigerating room and the temperature of the freezing room are lower than a set temperature. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後前記圧縮機を起動させる冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In a refrigerator, a vacuum heat insulating material is used as a heat insulating material of a refrigerator box, and the evaporator for a refrigerator is arranged in parallel in a refrigerator, and the evaporator for a freezer is arranged in parallel in a freezer. A check valve is provided between the compressor and the compressor, and the three-way valve alternately cools the refrigerator compartment and the freezer compartment by switching the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit. When both the temperature of the freezer and the temperature of the freezer compartment detect a temperature lower than a set temperature, the compressor is stopped and the three-way valve is fully closed. Open to the refrigerator compartment evaporator side and then Refrigerator after activating the compressor elapsed between. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵庫箱体の断熱材には真空断熱材を用い、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、冷凍室用蒸発器と圧縮機の間に逆止弁を設け、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の内何れか一方が設定温度以上を検知すると前記三方弁を全閉したまま、前記圧縮機を起動させ、所定時間動作させる冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In a refrigerator, a vacuum heat insulating material is used as a heat insulating material of a refrigerator box, and the evaporator for a refrigerator is arranged in parallel in a refrigerator, and the evaporator for a freezer is arranged in parallel in a freezer. A check valve is provided between the compressor and the compressor, and the three-way valve alternately cools the refrigerator compartment and the freezer compartment by switching the flow of the refrigerant between the refrigerator compartment circuit and the freezer compartment circuit. When both the temperature of the freezer and the temperature of the freezer compartment detect a temperature lower than a set temperature, the compressor is stopped and the three-way valve is fully closed. With the compressor fully closed, start the compressor and Refrigerator to-time operation. 冷蔵室温度検知手段が設定下限温度を検知してから所定時間冷蔵室冷却用ファンを運転する請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the refrigerator compartment cooling fan is operated for a predetermined time after the refrigerator compartment temperature detecting means detects the set lower limit temperature. 冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷蔵室冷却用ファンを停止する請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the refrigerator compartment cooling fan is stopped for a predetermined time after the refrigerator compartment temperature detecting means detects the set upper limit temperature. 冷蔵室温度検知手段が設定上限温度を検知してから所定時間冷凍室冷却用ファンを運転する請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the refrigerator compartment cooling fan is operated for a predetermined time after the refrigerator compartment temperature detecting means detects the set upper limit temperature. 冷凍室温度検知手段が設定下限温度を検知してから所定時間冷凍室冷却用ファンを運転する請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the freezer compartment cooling fan is operated for a predetermined time after the freezer compartment temperature detecting means detects the set lower limit temperature. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時は圧縮機を低回転で運転し、冷凍室冷却時は圧縮機を高回転で運転する冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In the refrigerator, the refrigerator compartment evaporator is arranged in the refrigerator compartment and the freezer compartment evaporator is arranged in parallel in the freezer compartment, and the flow of the refrigerant is switched between the refrigerator compartment circuit and the freezer compartment circuit by the three-way valve. A refrigerator for alternately cooling the refrigerator compartment and the freezer compartment, wherein the refrigerator is operated at a low rotation speed when the refrigerator compartment is cooled, and the compressor is operated at a high revolution speed when the freezer compartment is cooled. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷蔵室冷却時の圧縮機用ファンの回転数を冷凍室冷却時よりも高くした冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In the refrigerator, the refrigerator compartment evaporator is arranged in the refrigerator compartment and the freezer compartment evaporator is arranged in parallel in the freezer compartment, and the flow of the refrigerant is switched between the refrigerator compartment circuit and the freezer compartment circuit by the three-way valve. A refrigerator for cooling the refrigerator compartment and the freezer compartment alternately, wherein the number of rotations of the compressor fan during cooling the refrigerator compartment is higher than that during cooling the freezer compartment. 圧縮機と凝縮器と流路切替手段である三方弁と第一のキャピラリと冷蔵室用蒸発器と第二のキャピラリと冷凍室用蒸発器と冷蔵室冷却用ファンと冷凍室冷却用ファンを備えた冷蔵庫において、冷蔵室に前記冷蔵室用蒸発器を冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室回路と冷凍室回路に切り替えることにより前記冷蔵室と前記冷凍室を交互に冷却するものであり、冷凍室冷却用ファン回転数を冷凍室冷却開始から所定時間毎に回転数を増加させる冷蔵庫。A compressor, a condenser, a three-way valve serving as a flow path switching means, a first capillary, a refrigerator evaporator, a second capillary, a refrigerator evaporator, a refrigerator cooling fan, and a refrigerator cooling fan are provided. In the refrigerator, the refrigerator compartment evaporator is arranged in the refrigerator compartment and the freezer compartment evaporator is arranged in parallel in the freezer compartment, and the flow of the refrigerant is switched between the refrigerator compartment circuit and the freezer compartment circuit by the three-way valve. A refrigerator for alternately cooling the refrigerating compartment and the freezing compartment, and increasing the rotating speed of the freezing compartment cooling fan every predetermined time from the start of freezing compartment cooling.
JP2002278756A 2002-09-25 2002-09-25 Refrigerator Pending JP2004116841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278756A JP2004116841A (en) 2002-09-25 2002-09-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278756A JP2004116841A (en) 2002-09-25 2002-09-25 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004116841A true JP2004116841A (en) 2004-04-15

Family

ID=32273951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278756A Pending JP2004116841A (en) 2002-09-25 2002-09-25 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004116841A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095554B1 (en) 2004-12-30 2011-12-19 삼성전자주식회사 Method for control operating of refrigerator
CN106123450A (en) * 2016-06-23 2016-11-16 青岛海尔股份有限公司 The refrigeration control method of refrigerator and refrigerator
KR20180001943A (en) * 2016-06-28 2018-01-05 엘지전자 주식회사 Refrigerator and method for controlling fixed temperature thereof
JP2019138516A (en) * 2018-02-08 2019-08-22 日立グローバルライフソリューションズ株式会社 refrigerator
JP2020122636A (en) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095554B1 (en) 2004-12-30 2011-12-19 삼성전자주식회사 Method for control operating of refrigerator
CN106123450A (en) * 2016-06-23 2016-11-16 青岛海尔股份有限公司 The refrigeration control method of refrigerator and refrigerator
US10782066B2 (en) 2016-06-23 2020-09-22 Qingdao Haier Joint Stock Co., Ltd Refrigeration control method for refrigerator and refrigerator
KR20180001943A (en) * 2016-06-28 2018-01-05 엘지전자 주식회사 Refrigerator and method for controlling fixed temperature thereof
KR101897332B1 (en) * 2016-06-28 2018-10-18 엘지전자 주식회사 Refrigerator and method for controlling fixed temperature thereof
US10473388B2 (en) 2016-06-28 2019-11-12 Lg Electronics Inc. Refrigerator and method for controlling constant temperature thereof
JP2019138516A (en) * 2018-02-08 2019-08-22 日立グローバルライフソリューションズ株式会社 refrigerator
JP2020122636A (en) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 refrigerator
JP7209554B2 (en) 2019-01-31 2023-01-20 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP3464949B2 (en) refrigerator
TW454084B (en) Refrigerator
JP5624295B2 (en) refrigerator
JP4178646B2 (en) refrigerator
CN203203293U (en) Refrigerating and heating system for air source heat pump
JP4253957B2 (en) refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JP2000121178A (en) Cooling cycle and refrigerator
JP2014044025A (en) Refrigerator
JP2004116841A (en) Refrigerator
JP2000346526A5 (en)
JP4021209B2 (en) refrigerator
TWI235814B (en) Refrigerating equipment
JP3497759B2 (en) refrigerator
JP2005337677A (en) Refrigerator
JP2005016777A (en) Refrigerator
JP2003065619A (en) Refrigerator
JP4284789B2 (en) refrigerator
JP2016050753A (en) Refrigeration cycle device and refrigerator
JP2000230768A (en) Refrigerator
JP2002071254A (en) Refrigerator and its controlling method
JPH1082571A (en) Refrigerator
KR100775625B1 (en) Air circulation system of kimchi refrigerator
JP2003214745A (en) Refrigerator
JP2002061973A (en) Cooler