JP2020091052A - Vacuum cooling device - Google Patents

Vacuum cooling device Download PDF

Info

Publication number
JP2020091052A
JP2020091052A JP2018227122A JP2018227122A JP2020091052A JP 2020091052 A JP2020091052 A JP 2020091052A JP 2018227122 A JP2018227122 A JP 2018227122A JP 2018227122 A JP2018227122 A JP 2018227122A JP 2020091052 A JP2020091052 A JP 2020091052A
Authority
JP
Japan
Prior art keywords
water
pressure
temperature
vacuum pump
processing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018227122A
Other languages
Japanese (ja)
Other versions
JP7124677B2 (en
Inventor
雅夫 蔵野
Masao Kurano
雅夫 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018227122A priority Critical patent/JP7124677B2/en
Publication of JP2020091052A publication Critical patent/JP2020091052A/en
Application granted granted Critical
Publication of JP7124677B2 publication Critical patent/JP7124677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a vacuum cooling device capable of cooling foods as desired while reducing a water supply amount to a vacuum pump even when a product temperature sensor is not used or cannot be used.SOLUTION: A vacuum cooling device includes: a processing tank 2 for storing foods F; decompression means 3 having a water-sealing type vacuum pump 9 sucking and discharging gas in the processing tank 2 to the outside; pressure-restoring means 4 for introducing outside air into the decompressed processing tank 2; a pressure sensor 31 detecting pressure in the processing tank 2; and a water temperature sensor 32 detecting a water supply temperature to the vacuum pump 9. A water supply amount to the vacuum pump 9 is increased when a saturation temperature in detected pressure of the pressure sensor 31 becomes lower than a detection temperature of the temperature sensor 32+a set value while the processing tank 2 is decompressed by the decompression means 3. For instance, when a saturation temperature in detected pressure of the pressure sensor 31 becomes lower than a detection temperature of the temperature sensor 32+a set value while a first water-sealing valve 13 is opened to decompress, a second water-sealing valve 14 is also opened.SELECTED DRAWING: Figure 1

Description

本発明は、処理槽内を減圧して食品を冷却する真空冷却装置に関するものである。 The present invention relates to a vacuum cooling device that cools food by decompressing the inside of a processing tank.

従来、たとえば下記特許文献1に開示されるように、蒸気凝縮用の熱交換器と水封式の真空ポンプの他、所望によりさらに蒸気エゼクタを備えた真空冷却装置が知られている。この種の真空冷却装置では、真空ポンプへの給水量は、所定に維持されている。すなわち、所定の能力を満たす規定値として、真空ポンプへの給水量が設定されており、常にその規定値で真空ポンプを運転している。 Conventionally, as disclosed in, for example, Patent Document 1 below, there is known a vacuum cooling device that further includes a steam ejector and a heat exchanger for steam condensation and a water-sealed vacuum pump. In this type of vacuum cooling device, the amount of water supplied to the vacuum pump is maintained at a predetermined level. That is, the amount of water supplied to the vacuum pump is set as a specified value that satisfies a predetermined capacity, and the vacuum pump is always operated at that specified value.

特開平9−296975号公報JP-A-9-296975

真空ポンプを運転する際、常に真空ポンプへの給水量をフル(前記規定値)で運転したのでは、水の消費を抑えることができない。一方で、真空ポンプへの給水量を抑えただけでは、食品を所望まで冷却できないおそれがある。 When the vacuum pump is operated, if the water supply amount to the vacuum pump is always operated at the full amount (the specified value), the water consumption cannot be suppressed. On the other hand, there is a possibility that the food cannot be cooled to a desired level simply by reducing the amount of water supplied to the vacuum pump.

また、真空冷却時、通常、処理槽内の食品の温度は、品温センサにより監視されるが、品温センサを使わなかったり、断線などにより品温センサを使えなかったりする場合もあるので、それらの場合を考慮した節水制御が望まれる。 Also, during vacuum cooling, the temperature of the food in the processing tank is usually monitored by the product temperature sensor, but there are cases where the product temperature sensor is not used or the product temperature sensor cannot be used due to disconnection, etc. Water saving control considering these cases is desired.

本発明が解決しようとする課題は、品温センサを使わなかったり使えなかったりした場合でも、真空ポンプへの給水量を削減しつつ、食品を所望まで冷却することができる真空冷却装置を提供することを課題とする。 The problem to be solved by the present invention is to provide a vacuum cooling device capable of cooling food to a desired level while reducing the amount of water supplied to the vacuum pump even when the product temperature sensor is not used or cannot be used. This is an issue.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプを有する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記真空ポンプへの給水または前記真空ポンプ内の封水の温度を検出する水温センサと、前記各手段を制御する制御手段とを備え、前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、(a)前記真空ポンプへの給水量を増加させるか、(b)前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」以上になるように、前記真空ポンプへの給水量を調整することを特徴とする真空冷却装置である。 The present invention has been made to solve the above problems, and the invention according to claim 1 is of a water-sealing type in which a processing tank in which food is stored and a gas in the processing tank is sucked and discharged to the outside. A decompression means having a vacuum pump, a decompression means for introducing outside air into the decompressed processing tank, a pressure sensor for detecting the pressure in the processing tank, and water supply to the vacuum pump or in the vacuum pump. A water temperature sensor for detecting the temperature of the sealed water and a control means for controlling each of the means are provided, and while the decompression means is depressurizing the inside of the processing tank, the saturation temperature at the pressure detected by the pressure sensor is “the water temperature sensor When it is lower than the "detected temperature + set value", (a) the amount of water supplied to the vacuum pump is increased, or (b) the saturation temperature at the detected pressure of the pressure sensor is "detected temperature of the water temperature sensor + set value" or more. The amount of water supplied to the vacuum pump is adjusted so that

請求項1に記載の発明によれば、処理槽内の圧力を検出する圧力センサの他、真空ポンプへの給水または真空ポンプ内の封水の温度を検出する水温センサを備える。そして、減圧手段により処理槽内を減圧中、槽内圧力換算温度(圧力センサの検出圧力における飽和温度)が「水温センサの検出温度+設定値」を下回ると、(a)真空ポンプへの給水量を増加させるか、(b)槽内圧力換算温度が「水温センサの検出温度+設定値」以上になるように、真空ポンプへの給水量を調整することで、処理槽内の減圧をさらに進めることができる。槽内圧力換算温度が「水温センサの検出温度+設定値」を下回るまでは、真空ポンプへの給水量を抑えることで、節水を図ることができる。しかも、品温センサを用いないで制御することができ、品温センサを使わなかったり使えなかったりした場合でも、真空ポンプへの給水量を削減しつつ、食品を所望まで冷却することができる。 According to the invention described in claim 1, in addition to the pressure sensor that detects the pressure in the processing tank, a water temperature sensor that detects the temperature of the water supplied to the vacuum pump or the sealing water in the vacuum pump is provided. When the pressure inside the processing tank is being reduced by the pressure reducing means, the temperature converted into the tank pressure (saturation temperature at the pressure detected by the pressure sensor) falls below the “temperature detected by the water temperature sensor+set value” (a) water supply to the vacuum pump Increase the amount or (b) adjust the amount of water supplied to the vacuum pump so that the temperature conversion temperature inside the tank is equal to or higher than the "temperature detected by the water temperature sensor + set value", to further reduce the pressure inside the processing tank. You can proceed. Water can be saved by suppressing the amount of water supplied to the vacuum pump until the tank internal pressure conversion temperature falls below the “temperature detected by the water temperature sensor+set value”. Moreover, the control can be performed without using the product temperature sensor, and even when the product temperature sensor is not used or cannot be used, it is possible to cool the food to a desired amount while reducing the amount of water supplied to the vacuum pump.

請求項2に記載の発明は、前記真空ポンプへの給水路として、第一定流量弁を備えた第一封水路と、第二定流量弁を備えた第二封水路との並列部を備え、前記第一封水路を介して前記真空ポンプに給水しつつ、前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、前記第一封水路に代えてまたは加えて、前記第二封水路を介して前記真空ポンプに給水することを特徴とする請求項1に記載の真空冷却装置である。 In the invention according to claim 2, as a water supply passage to the vacuum pump, a parallel portion of a first sealed water passage having a first constant flow valve and a second sealed water passage having a second constant flow valve is provided. While supplying water to the vacuum pump through the first water sealing passage, the saturation temperature at the pressure detected by the pressure sensor is “the temperature detected by the water temperature sensor+the set value” while the pressure in the processing tank is being reduced by the pressure reducing means. When it is less than, the vacuum cooling device according to claim 1, wherein water is supplied to the vacuum pump through the second sealed water passage instead of or in addition to the first sealed water passage.

請求項2に記載の発明によれば、第一封水路を介して真空ポンプに給水しつつ処理槽内を減圧中、槽内圧力換算温度が「水温センサの検出温度+設定値」を下回ると、第一封水路に代えてまたは加えて、第二封水路を介して真空ポンプに給水することで、真空ポンプへの給水量を増加させて、処理槽内の減圧をさらに進めることができる。槽内圧力換算温度が「水温センサの検出温度+設定値」を下回るまでは、真空ポンプへの給水量を抑えることで、節水を図ることができる。しかも、簡易な構成および制御で実現することができる。 According to the second aspect of the present invention, when the inside pressure of the tank is reduced below the “temperature detected by the water temperature sensor+set value” while depressurizing the inside of the processing tank while supplying water to the vacuum pump through the first sealed water passage. By supplying water to the vacuum pump via the second sealed water passage instead of or in addition to the first sealed water passage, it is possible to increase the amount of water supplied to the vacuum pump and further reduce the pressure in the treatment tank. Water can be saved by suppressing the amount of water supplied to the vacuum pump until the tank internal pressure conversion temperature falls below the “temperature detected by the water temperature sensor+set value”. Moreover, it can be realized with a simple configuration and control.

請求項3に記載の発明は、前記真空ポンプへの給水路として、定流量弁を備えた第一封水路と、流量調整弁を備えた第二封水路との並列部を備え、前記第一封水路を介して前記真空ポンプに給水しつつ、前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」以上になるように、前記流量調整弁の開度を調整することを特徴とする請求項1に記載の真空冷却装置である。 According to a third aspect of the present invention, as a water supply passage to the vacuum pump, a parallel portion of a first sealing passage having a constant flow valve and a second sealing passage having a flow rate adjusting valve is provided, and the first sealing pipe is provided. While supplying water to the vacuum pump via a water sealing passage, while depressurizing the inside of the processing tank by the depressurizing means, when the saturation temperature at the pressure detected by the pressure sensor is lower than the "temperature detected by the water temperature sensor+set value", The vacuum cooling according to claim 1, wherein the opening degree of the flow rate adjusting valve is adjusted so that the saturation temperature at the pressure detected by the pressure sensor becomes equal to or higher than the "temperature detected by the water temperature sensor+set value". It is a device.

請求項3に記載の発明によれば、第一封水路を介して真空ポンプに給水しつつ処理槽内を減圧中、槽内圧力換算温度が「水温センサの検出温度+設定値」を下回ると、槽内圧力換算温度が「水温センサの検出温度+設定値」以上になるように、流量調整弁の開度を調整することで、処理槽内の減圧をさらに進めることができる。槽内圧力換算温度が「水温センサの検出温度+設定値」を下回るまでは、真空ポンプへの給水量を抑えることで、節水を図ることができる。しかも、簡易な構成および制御で実現することができる。 According to the invention as set forth in claim 3, when the inside pressure of the tank is reduced below the “temperature detected by the water temperature sensor+set value” while depressurizing the inside of the processing tank while supplying water to the vacuum pump through the first sealed water passage. The pressure in the processing tank can be further reduced by adjusting the opening of the flow rate adjusting valve so that the temperature converted into the tank pressure becomes equal to or higher than the “temperature detected by the water temperature sensor+set value”. Water can be saved by suppressing the amount of water supplied to the vacuum pump until the tank internal pressure conversion temperature falls below the “temperature detected by the water temperature sensor+set value”. Moreover, it can be realized with a simple configuration and control.

さらに、請求項4に記載の発明は、前記減圧手段として、蒸気エゼクタをさらに備え、前記真空ポンプへの給水量を増加させる前に、前記蒸気エゼクタを作動させる場合、前記蒸気エゼクタの作動時に、前記真空ポンプへの給水量を増加させることを特徴とする請求項1〜3のいずれか1項に記載の真空冷却装置である。 Further, the invention according to claim 4 further comprises a steam ejector as the decompression means, and when the steam ejector is operated before increasing the amount of water supplied to the vacuum pump, when the steam ejector is operated, The vacuum cooling device according to any one of claims 1 to 3, wherein a water supply amount to the vacuum pump is increased.

請求項4に記載の発明によれば、遅くとも蒸気エゼクタを作動させる際には、真空ポンプへの給水量を増加させる。これにより、蒸気エゼクタを作動させても、封水温度の昇温を防止しつつ、処理槽内の減圧をさらに進めることができる。真空ポンプへの給水量を増加させるまでは、比較的小流量で給水ポンプに給水することができ、節水を図ることができる。 According to the invention described in claim 4, when the steam ejector is activated at the latest, the amount of water supplied to the vacuum pump is increased. Thereby, even if the steam ejector is operated, the pressure in the processing tank can be further reduced while preventing the temperature of the sealing water from rising. Until the amount of water supplied to the vacuum pump is increased, water can be supplied to the water supply pump at a relatively small flow rate, and water can be saved.

本発明の真空冷却装置によれば、品温センサを使わなかったり使えなかったりした場合でも、真空ポンプへの給水量を削減しつつ、食品を所望まで冷却することができる。 According to the vacuum cooling device of the present invention, food can be cooled to a desired level while reducing the amount of water supplied to the vacuum pump even when the product temperature sensor is not used or cannot be used.

本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示している。It is the schematic which shows the vacuum cooling apparatus of one Example of this invention, and has shown one part in section. 図1の真空冷却装置の運転方法の一例を示すフローチャートである。It is a flowchart which shows an example of the operating method of the vacuum cooling device of FIG. 図1の真空冷却装置の変形例を示す図であり、真空ポンプへの封水給水路を示している。It is a figure which shows the modification of the vacuum cooling device of FIG. 1, and has shown the sealing water supply path to a vacuum pump.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示している。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing a vacuum cooling device 1 according to an embodiment of the present invention, a part of which is shown in cross section.

本実施例の真空冷却装置1は、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、これら各手段3,4を制御して処理槽2内の食品Fを冷却する制御手段(図示省略)とを備える。 The vacuum cooling device 1 of the present embodiment introduces outside air into the processing tank 2 in which the food F is stored, decompression means 3 for sucking and discharging the gas in the processing tank 2 to the outside, and decompressed processing tank 2. And a control unit (not shown) for controlling the respective units 3 and 4 to cool the food F in the processing tank 2.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドア(図示省略)で開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品Fを出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。なお、図示例では、食品Fは、ホテルパンや番重のような食品容器に入れられて、処理槽2内に収容されている。 The processing tank 2 is a hollow container that withstands a reduced pressure in the internal space, and can be opened and closed by a door (not shown). The processing tank 2 is typically formed in a substantially rectangular box shape, and its front opening can be opened and closed by a door. By opening the door, the food F can be put in and taken out of the treatment tank 2, and by closing the door, the opening of the treatment tank 2 can be airtightly closed. The doors may be provided on both the front surface and the back surface of the processing tank 2. In addition, in the illustrated example, the food F is put in a food container such as hotel bread or Banju and stored in the processing tank 2.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路5に、蒸気エゼクタ6、蒸気凝縮用の熱交換器7、逆止弁8、および水封式の真空ポンプ9を順に備える。 The decompression means 3 is a means for decompressing the inside of the processing tank 2 by sucking and discharging the gas (air or steam) in the processing tank 2 to the outside. In the present embodiment, the decompression unit 3 is provided with a vapor ejector 6, a heat exchanger 7 for vapor condensation, a check valve 8, and a water-sealed vacuum pump 9 in the exhaust passage 5 from the inside of the processing tank 2. ..

蒸気エゼクタ6は、吸引口6aが処理槽2に接続されて設けられ、入口6bから出口6cへ向けて、エゼクタ給蒸路10からの蒸気がノズルで噴出可能とされる。入口6bから出口6cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口6aを介して出口6cへ吸引排出される。エゼクタ給蒸路10に設けたエゼクタ給蒸弁11の開閉を操作することで、蒸気エゼクタ6の作動の有無を切り替えることができる。 The vapor ejector 6 is provided with a suction port 6a connected to the processing tank 2, and vapor from the ejector steam supply passage 10 can be ejected from a nozzle from the inlet 6b to the outlet 6c. By ejecting steam from the inlet 6b toward the outlet 6c, the gas in the processing tank 2 is also sucked and discharged to the outlet 6c via the suction port 6a. By operating the opening and closing of the ejector steam supply valve 11 provided in the ejector steam supply passage 10, the operation of the steam ejector 6 can be switched.

熱交換器7は、排気路5内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器7により、排気路5内の蒸気を、冷却水により冷却し凝縮させることができる。 The heat exchanger 7 is an indirect heat exchanger that exchanges heat without mixing the fluid in the exhaust passage 5 with the cooling water. The heat exchanger 7 allows the steam in the exhaust passage 5 to be cooled and condensed by cooling water.

真空ポンプ9は、本実施例では水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。そのために、真空ポンプ9の給水口9aには、封水給水路12(12a〜12d)を介して水が供給される。封水給水路12から給水しつつ真空ポンプ9を作動させると、真空ポンプ9は、吸気口9bから気体を吸入し、排気口9cへ排気および排水する。真空ポンプ9は、オンオフ制御されてもよいし、出力を調整可能とされてもよい。たとえば、真空ポンプ9は、インバータを用いて、モータの駆動周波数ひいては回転数を変更可能とされる。 The vacuum pump 9 is a water seal type in the present embodiment, and as is well known, it is operated while supplying water called seal water. Therefore, water is supplied to the water supply port 9a of the vacuum pump 9 through the sealed water supply passage 12 (12a to 12d). When the vacuum pump 9 is operated while supplying water from the sealed water supply passage 12, the vacuum pump 9 sucks gas from the intake port 9b and exhausts and drains the gas to the exhaust port 9c. The vacuum pump 9 may be on/off controlled, or the output thereof may be adjustable. For example, the vacuum pump 9 can change the drive frequency of the motor and thus the number of rotations by using an inverter.

真空ポンプ9への給水量は、変更可能とされる。本実施例では、次のように構成されている。すなわち、まず、封水給水路12は、第一封水路12aと第二封水路12bとの並列部を備える。具体的には、給水源からの上流側封水路12cは、第一封水路12aと第二封水路12bとに分岐した後、再び合流して下流側封水路12dとして、真空ポンプ9に接続される。そして、上流側封水路12c(または第一封水路12a)には、第一封水弁13が設けられる一方、第二封水路12bには、第二封水弁14が設けられる。また、第一封水路12aには、第一定流量弁15が設けられる一方、第二封水路12bには、第二定流量弁16が設けられる。各定流量弁15,16は、周知のとおり、一定の流量で通水可能に構成される。各定流量弁15,16の設定流量は、互いに同一でも異なってもよいが、本実施例では、第一定流量弁15は、第二定流量弁16よりも小流量に設定されている。なお、各封水弁13,14は、電磁弁から構成されている。 The amount of water supplied to the vacuum pump 9 can be changed. In this embodiment, it is configured as follows. That is, first, the sealed water supply channel 12 includes a parallel portion of the first sealed channel 12a and the second sealed channel 12b. Specifically, the upstream side water sealing path 12c from the water supply source is branched into the first water sealing path 12a and the second water sealing path 12b, and then merges again to be connected to the vacuum pump 9 as the downstream side water sealing path 12d. It A first water sealing valve 13 is provided on the upstream side water sealing passage 12c (or the first water sealing passage 12a), while a second water sealing valve 14 is provided on the second water sealing passage 12b. Further, the first constant flow valve 12a is provided with the first constant flow valve 15, while the second constant flow valve 12b is provided with the second constant flow valve 16. As is well known, the constant flow valves 15 and 16 are configured to be able to pass water at a constant flow rate. The set flow rates of the constant flow valves 15 and 16 may be the same or different from each other, but in the present embodiment, the first constant flow valve 15 is set to a smaller flow rate than the second constant flow valve 16. The water sealing valves 13 and 14 are electromagnetic valves.

第二封水弁14を閉じた状態で第一封水弁13を開けると、第一封水路12aを介して、比較的小流量(第一設定水量)で、真空ポンプ9に封水を供給することができる。さらに第二封水弁14も開けると、第一封水路12aおよび第二封水路12bを介して、比較的大流量(前記第一設定水量よりも大きな第二設定水量)で、真空ポンプ9に封水を供給することができる。つまり、両封水弁13,14を開けると、各定流量弁15,16の設定流量の合算値で、真空ポンプ9に封水が供給される。なお、第一設定水量は、第二封水弁14を開けるまで、所期の減圧速度を維持できる最低流量に設定しておくのが好ましい。 When the first water sealing valve 13 is opened with the second water sealing valve 14 closed, the sealing water is supplied to the vacuum pump 9 via the first water sealing passage 12a at a relatively small flow rate (first set water amount). can do. When the second water sealing valve 14 is also opened, the vacuum pump 9 is supplied with a relatively large flow rate (second set water amount larger than the first set water amount) via the first water sealing passage 12a and the second water sealing passage 12b. Sealing water can be supplied. That is, when both water sealing valves 13 and 14 are opened, the sealing water is supplied to the vacuum pump 9 at the sum of the set flow rates of the constant flow valves 15 and 16. In addition, it is preferable that the first set amount of water is set to a minimum flow rate that can maintain a desired depressurization rate until the second sealing valve 14 is opened.

熱交換器7および真空ポンプ9への給水系統について、さらに説明すると、本実施例では、熱交換器7および真空ポンプ9には、常温水と冷水とを切り替えて供給可能とされる。冷水とは、チラー(図示省略)により所定温度に冷却を図られた水であり、常温水とは、そのような冷却を図られない水である。 The water supply system to the heat exchanger 7 and the vacuum pump 9 will be further described. In this embodiment, the heat exchanger 7 and the vacuum pump 9 can be switched between normal temperature water and cold water to be supplied. Cold water is water that has been cooled to a predetermined temperature by a chiller (not shown), and room temperature water is water that cannot be cooled as such.

図示例の場合、常温水と冷水の切り替えは、常温水給水路17に設けられた常温水給水弁18と、冷水給水路19に設けられた冷水給水弁20で行われる。常温水給水弁18より下流の常温水給水路17と、冷水給水弁20より下流の冷水給水路19とは、合流して共通給水路21とされている。そして、この共通給水路21は、熱交換器への熱交給水路22と、真空ポンプ9への封水給水路12(上流側封水路12c)とに分岐されている。常温水給水弁18または冷水給水弁20を開けることで、熱交換器7に給水され、さらに第一封水弁13(所望によりさらに第二封水弁14)を開けると、真空ポンプ9に給水される。 In the case of the illustrated example, switching between normal temperature water and cold water is performed by a normal temperature water supply valve 18 provided in the normal temperature water supply passage 17 and a cold water supply valve 20 provided in the cold water supply passage 19. The normal temperature water supply passage 17 downstream of the normal temperature water supply valve 18 and the cold water supply passage 19 downstream of the cold water supply valve 20 join together to form a common water supply passage 21. The common water supply passage 21 is branched into a heat exchange water supply passage 22 to the heat exchanger and a water sealing water supply passage 12 (upstream side water sealing passage 12c) to the vacuum pump 9. Water is supplied to the heat exchanger 7 by opening the room temperature water supply valve 18 or the cold water supply valve 20, and when the first water sealing valve 13 (and further the second water sealing valve 14 if desired) is opened, water is supplied to the vacuum pump 9. To be done.

熱交換器7は、熱交給水路22を介して水が供給され、熱交排水路23を介して水が排出される。熱交排水路23は、冷水タンク(チラーの給水源)への冷水戻し路24と、外部への排水出口路25とに分岐されており、冷水戻し路24には冷水戻し弁26が設けられ、排水出口路25には排水出口弁27が設けられている。冷水戻し弁26および排水出口弁27により、熱交換器7を通過後の水を、冷水タンクへ戻すか、排水出口路25から排出するか、あるいはいずれも行わずに熱交換器7の通水を阻止するか(つまり熱交換器7の冷却水出口側を閉じるか)を切り替えることができる。 The heat exchanger 7 is supplied with water via the heat exchange water supply passage 22 and discharged through the heat exchange drainage passage 23. The heat exchange drainage channel 23 is branched into a cold water return channel 24 to a cold water tank (water supply source of the chiller) and a drainage outlet channel 25 to the outside, and the cold water return channel 24 is provided with a cold water return valve 26. A drain outlet valve 27 is provided in the drain outlet passage 25. By the cold water return valve 26 and the drain outlet valve 27, the water after passing through the heat exchanger 7 is returned to the cold water tank, discharged from the drain outlet passage 25, or neither of them is passed through the heat exchanger 7. Can be switched (that is, whether the cooling water outlet side of the heat exchanger 7 is closed).

熱交換器7に冷水を供給する場合、排水出口弁27を閉じると共に冷水戻し弁26を開けることで、熱交換器7を通過後の冷水は冷水タンクへ戻される。冷水タンク内の貯留水は、チラーで冷却されて再び冷水給水路19へ供給可能とされる。一方、熱交換器7に常温水を供給する場合、冷水戻し弁26を閉じると共に排水出口弁27を開けることで、熱交換器7を通過後の常温水は排水出口路25から排出される。その他、冷水戻し弁26および排水出口弁27を閉じることで、熱交換器7の通水を停止することができる。 When supplying cold water to the heat exchanger 7, the cold water after passing through the heat exchanger 7 is returned to the cold water tank by closing the drain outlet valve 27 and opening the cold water return valve 26. The stored water in the cold water tank is cooled by the chiller and can be supplied to the cold water supply passage 19 again. On the other hand, when the room temperature water is supplied to the heat exchanger 7, the room temperature water after passing through the heat exchanger 7 is discharged from the drainage outlet passage 25 by closing the cold water return valve 26 and opening the drainage outlet valve 27. In addition, by closing the cold water return valve 26 and the drain outlet valve 27, the water flow through the heat exchanger 7 can be stopped.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路28に、エアフィルタ29および給気弁30を順に備える。処理槽2内が減圧された状態で、給気弁30を開けると、外気がエアフィルタ29を介して処理槽2内へ導入され、処理槽2内を復圧することができる。給気弁30は、好ましくは開度調整可能な弁から構成される。 The pressure restoration means 4 is means for introducing outside air into the depressurized processing tank 2 to restore the pressure in the processing tank 2. In the present embodiment, the pressure restoration unit 4 is provided with an air filter 29 and an air supply valve 30 in order in the air supply passage 28 into the processing tank 2. When the air supply valve 30 is opened while the inside of the processing tank 2 is depressurized, the outside air is introduced into the processing tank 2 through the air filter 29, and the inside of the processing tank 2 can be restored in pressure. The air supply valve 30 is preferably composed of a valve whose opening degree can be adjusted.

真空冷却装置1は、さらに、処理槽2内の圧力を検出する圧力センサ31と、真空ポンプ9への給水の温度を検出する水温センサ32とを備える。本実施例では、図1において、水温センサ32は、封水給水路12の内、上流側封水路12cに設けられているが、下流側封水路12dまたは第一封水路12aに設けられてもよいし、場合により共通給水路21などに設けられてもよい。 The vacuum cooling device 1 further includes a pressure sensor 31 that detects the pressure in the processing tank 2 and a water temperature sensor 32 that detects the temperature of the water supplied to the vacuum pump 9. In the present embodiment, in FIG. 1, the water temperature sensor 32 is provided in the upstream water sealing passage 12c of the water sealing water supply passage 12, but may be provided in the downstream water sealing passage 12d or the first water sealing passage 12a. It may be provided in the common water supply passage 21 or the like.

なお、真空冷却装置1は、さらに、処理槽2内に収容された食品Fの温度(品温)を検出する品温センサ(図示省略)が設けられてもよい。但し、本実施例の真空冷却装置1では、品温センサの設置は必須ではないし、品温センサを備えるにしても、後述するように、品温センサを使わなかったり、断線などにより品温センサを使えなかったりしても、食品Fを所望まで冷却可能とされる。 The vacuum cooling device 1 may further be provided with a product temperature sensor (not shown) that detects the temperature (product temperature) of the food F stored in the processing tank 2. However, in the vacuum cooling device 1 of the present embodiment, it is not necessary to install the product temperature sensor, and even if the product temperature sensor is provided, as will be described later, the product temperature sensor is not used, or the product temperature sensor is broken due to a disconnection or the like. Even if the food cannot be used, the food F can be cooled to a desired level.

制御手段は、前記各センサ31,32の検出信号や経過時間などに基づき、前記各手段3,4を制御する制御器(図示省略)である。具体的には、真空ポンプ9、エゼクタ給蒸弁11、第一封水弁13、第二封水弁14、常温水給水弁18、冷水給水弁20、冷水戻し弁26、排水出口弁27、給気弁30の他、圧力センサ31および水温センサ32などは、制御器に接続されている。そして、制御器は、以下に述べるように、所定の手順(プログラム)に従い、処理槽2内の食品Fの真空冷却を図る。なお、制御器は、予め登録された所定の演算式(またはテーブル)に基づき、圧力センサ31の検出圧力から飽和温度としての槽内圧力換算温度を求めることができる。 The control means is a controller (not shown) that controls the respective means 3, 4 based on the detection signals of the respective sensors 31, 32 and the elapsed time. Specifically, the vacuum pump 9, the ejector steam supply valve 11, the first water seal valve 13, the second water seal valve 14, the room temperature water water supply valve 18, the cold water water supply valve 20, the cold water return valve 26, the drainage outlet valve 27, In addition to the air supply valve 30, the pressure sensor 31, the water temperature sensor 32, and the like are connected to the controller. Then, as described below, the controller vacuum-cools the food F in the processing tank 2 according to a predetermined procedure (program). The controller can obtain the tank internal pressure conversion temperature as the saturation temperature from the pressure detected by the pressure sensor 31 based on a predetermined arithmetic expression (or table) registered in advance.

以下、本実施例の真空冷却装置1の運転方法の具体例について説明する。
図2は、本実施例の真空冷却装置1の運転方法の一例を示すフローチャートである。
Hereinafter, a specific example of the operation method of the vacuum cooling device 1 of the present embodiment will be described.
FIG. 2 is a flowchart showing an example of the operating method of the vacuum cooling device 1 of this embodiment.

運転開始前、給気弁30は開けられた状態にある一方、その他の前記各弁は閉じられた状態にあり、真空ポンプ9は停止している。その状態で、処理槽2内に食品Fが収容され、処理槽2のドアは気密に閉じられる。そして、スタートボタンが押されるなど運転開始が指示されると、制御器は、給気弁30を閉じると共に、減圧手段3により処理槽2内の減圧を開始する。 Before the start of operation, the air supply valve 30 is in the open state, while the other valves are in the closed state, and the vacuum pump 9 is stopped. In that state, the food F is stored in the processing tank 2, and the door of the processing tank 2 is airtightly closed. Then, when the operation start is instructed such as by pressing the start button, the controller closes the air supply valve 30 and starts depressurizing the processing tank 2 by the depressurizing means 3.

減圧の開始時、まずは、熱交換器7の通水を停止した状態で、真空ポンプ9に常温水を供給しつつ、真空ポンプ9により処理槽2内を減圧する(ステップS1)。この際、第二封水弁14を閉じた状態で、第一封水弁13を開けて、真空ポンプ9には小流量で給水される。また、エゼクタ給蒸弁11は閉じられており、蒸気エゼクタ6は作動していない。 At the start of depressurization, first, in a state in which water flow through the heat exchanger 7 is stopped, room temperature water is supplied to the vacuum pump 9 and the inside of the processing tank 2 is depressurized by the vacuum pump 9 (step S1). At this time, the first water sealing valve 13 is opened with the second water sealing valve 14 closed, and water is supplied to the vacuum pump 9 at a small flow rate. Further, the ejector steam supply valve 11 is closed, and the steam ejector 6 is not operating.

その後、所定の通水開始条件を満たすと、熱交換器7の通水を開始する。本実施例では、槽内圧力換算温度(圧力センサ31の検出圧力における飽和温度)が通水開始温度(たとえば60℃)以下になると、熱交換器7の通水を開始する(S2,S3)。この際、熱交換器7および真空ポンプ9への給水は、冷水に切り替えられる。 Then, when a predetermined water flow start condition is satisfied, water flow through the heat exchanger 7 is started. In the present embodiment, when the tank internal pressure conversion temperature (saturation temperature at the pressure detected by the pressure sensor 31) becomes equal to or lower than the water passage start temperature (for example, 60° C.), water passage through the heat exchanger 7 is started (S2, S3). .. At this time, the water supply to the heat exchanger 7 and the vacuum pump 9 is switched to cold water.

その後、槽内圧力換算温度に応じて所定のタイミングで、真空ポンプ9への給水量を増加させたり、蒸気エゼクタ6を作動させたりしながら、所定の終了条件を満たすまで処理槽2内を減圧する。本実施例では、槽内圧力換算温度が冷却目標温度(たとえば10℃)以下になるまで、処理槽2内を減圧する。そして、この減圧中、下記[A](または[B])の制御により、真空ポンプ9への給水量を増加可能とされると共に、下記[B]の制御により、蒸気エゼクタ6を作動可能とされる。 After that, at a predetermined timing according to the tank-converted temperature, while increasing the amount of water supplied to the vacuum pump 9 or operating the steam ejector 6, the pressure inside the processing tank 2 is reduced until a predetermined end condition is satisfied. To do. In the present embodiment, the pressure inside the processing tank 2 is reduced until the tank internal pressure conversion temperature becomes equal to or lower than the cooling target temperature (for example, 10° C.). Then, during this pressure reduction, the amount of water supplied to the vacuum pump 9 can be increased by the control of [A] (or [B]) described below, and the steam ejector 6 can be operated by the control of [B] described below. To be done.

[A]第二封水弁14が閉じられ且つ蒸気エゼクタ6が停止した状態で、処理槽2内を減圧中、槽内圧力換算温度が「給水温度+設定値(第一設定値)」を下回れば、第二封水弁14を開けて、真空ポンプ9への給水量を増加させる(S4,S5)。つまり、圧力センサ31の検出圧力における飽和温度が「水温センサ32の検出温度+第一設定値」を下回ると、現状の給水量での到達限界(到達可能な真空度の限界)に達した(または近づいた)として、第二封水弁14を開けることで、真空ポンプ9への給水量を大流量にする。これにより、処理槽2内の減圧をさらに進めることができる。なお、第一設定値が大きすぎると、後述する節水効果が薄れる一方、第一設定値が小さすぎると、食品を所望に冷却できない。この点を考慮して、第一設定値は5〜10℃、好ましくは6〜8℃の範囲で設定される。本実施例では、第一設定値は、たとえば7℃に設定される。 [A] While the second sealing valve 14 is closed and the steam ejector 6 is stopped, the pressure inside the processing tank 2 is being reduced, and the tank internal pressure conversion temperature is equal to “supply water temperature+set value (first set value)”. If it is lower, the second water sealing valve 14 is opened to increase the amount of water supplied to the vacuum pump 9 (S4, S5). That is, when the saturation temperature at the pressure detected by the pressure sensor 31 falls below “the temperature detected by the water temperature sensor 32+the first set value”, the limit reached (the limit of the degree of vacuum that can be reached) with the current water supply amount is reached ( Or approaching), the second water sealing valve 14 is opened to increase the amount of water supplied to the vacuum pump 9 to a large flow rate. As a result, the pressure in the processing tank 2 can be further reduced. It should be noted that if the first set value is too large, the water-saving effect described below is diminished, while if the first set value is too small, the food cannot be cooled as desired. Considering this point, the first set value is set in the range of 5 to 10°C, preferably 6 to 8°C. In this embodiment, the first set value is set to, for example, 7°C.

[B]蒸気エゼクタ6が停止した状態で、処理槽2内を減圧中、エゼクタ作動条件を満たすと、蒸気エゼクタ6を作動させる。本実施例では、槽内圧力換算温度がエゼクタ作動温度(たとえば30℃)以下になると、エゼクタ給蒸弁11を開けて、蒸気エゼクタ6を作動させる(S6,S7)。この際、第二封水弁14が閉じられた状態にあったならば、蒸気エゼクタ6の作動時、第二封水弁14を開けて、真空ポンプ9への給水量を増加させる。つまり、蒸気エゼクタ6の作動前に真空ポンプ9への給水量を増加させなかった場合、蒸気エゼクタ6の作動時に真空ポンプ9への給水量を増加させる。 [B] When the ejector operating condition is satisfied while the pressure inside the processing tank 2 is being reduced while the vapor ejector 6 is stopped, the vapor ejector 6 is activated. In this embodiment, when the tank internal pressure conversion temperature becomes equal to or lower than the ejector operating temperature (for example, 30° C.), the ejector steam supply valve 11 is opened and the steam ejector 6 is operated (S6, S7). At this time, if the second water sealing valve 14 is closed, the second water sealing valve 14 is opened when the steam ejector 6 is operated to increase the amount of water supplied to the vacuum pump 9. That is, if the water supply amount to the vacuum pump 9 is not increased before the steam ejector 6 is operated, the water supply amount to the vacuum pump 9 is increased when the steam ejector 6 is operated.

このように、処理槽2内の減圧中、第二封水弁14が閉鎖状態で且つ蒸気エゼクタ6が停止状態の場合は、上記[A]および[B]を監視しながら、槽内圧力換算温度が冷却目標温度になるまで処理槽2内を減圧する。一方、第二封水弁14が開放状態で且つ蒸気エゼクタ6が停止状態の場合は、上記[B]を監視しながら、槽内圧力換算温度が冷却目標温度になるまで処理槽2内を減圧する。そして、上記[B]を実行後(つまり蒸気エゼクタ6が作動中)の場合は、以後、単に槽内圧力換算温度が冷却目標温度以下になったかを監視しながら、処理槽2内を減圧すればよい。 As described above, when the second water sealing valve 14 is closed and the steam ejector 6 is stopped during the depressurization in the processing tank 2, the tank pressure conversion is performed while monitoring the above [A] and [B]. The pressure inside the processing tank 2 is reduced until the temperature reaches the cooling target temperature. On the other hand, when the second water sealing valve 14 is in the open state and the steam ejector 6 is in the stopped state, the inside of the processing tank 2 is depressurized while monitoring the above [B] until the tank internal pressure conversion temperature reaches the cooling target temperature. To do. After performing the above [B] (that is, the steam ejector 6 is operating), the inside of the processing tank 2 can be depressurized while simply monitoring whether or not the tank internal pressure conversion temperature is equal to or lower than the cooling target temperature. Good.

槽内圧力換算温度が冷却目標温度(たとえば10℃)になると、処理槽2内の減圧を停止する(S8,S9)。具体的には、エゼクタ給蒸弁11、各封水弁13,14および冷水給水弁20などを閉じて、蒸気エゼクタ6および真空ポンプ9を停止すると共に、熱交換器7の通水を停止する。その後、給気弁30を開けて、処理槽2内を大気圧まで復圧すればよい。 When the tank internal pressure conversion temperature reaches the cooling target temperature (for example, 10° C.), the depressurization in the processing tank 2 is stopped (S8, S9). Specifically, the ejector steam supply valve 11, the water sealing valves 13 and 14, the cold water supply valve 20 and the like are closed to stop the steam ejector 6 and the vacuum pump 9 and also stop the water flow through the heat exchanger 7. .. Then, the air supply valve 30 may be opened to restore the pressure in the processing tank 2 to atmospheric pressure.

ところで、減圧手段3の作動中、給気弁30の開度ひいては処理槽2内の圧力を調整して、食品Fを徐冷できる(徐冷制御)。たとえば、運転開始からの経過時間と槽内圧力との関係(冷却パターン)が予め制御器に設定されており、制御器は、その冷却パターンに沿うように処理槽2内の圧力を調整しつつ、食品Fを冷却する。その際、冷却パターンとして複数種が登録されており、その内のいずれかを設定器から選択して実行可能に構成されてもよい。 By the way, during the operation of the depressurizing means 3, the opening degree of the air supply valve 30 and thus the pressure in the processing tank 2 can be adjusted to gradually cool the food F (gradual cooling control). For example, the relationship (cooling pattern) between the elapsed time from the start of operation and the pressure in the tank is set in the controller in advance, and the controller adjusts the pressure in the processing tank 2 so as to follow the cooling pattern. , Cool the food F. At that time, a plurality of types are registered as the cooling pattern, and any one of them may be configured to be executable by being selected from the setter.

本実施例の真空冷却装置1によれば、槽内圧力換算温度が「水温センサ32の検出温度+第一設定値」を下回るまでは、真空ポンプ9への給水量を抑えることで、節水を図ることができる。しかも、品温センサを用いないで制御することができ、品温センサを使わなかったり使えなかったりした場合でも、真空ポンプ9への給水量を削減しつつ、食品Fを所望まで冷却することができる。 According to the vacuum cooling device 1 of the present embodiment, water is saved by suppressing the amount of water supplied to the vacuum pump 9 until the tank internal pressure conversion temperature falls below the “temperature detected by the water temperature sensor 32+first set value”. Can be planned. Moreover, it is possible to control without using the product temperature sensor, and even when the product temperature sensor is not used or cannot be used, it is possible to cool the food F to a desired level while reducing the amount of water supplied to the vacuum pump 9. it can.

次に、本実施例の真空冷却装置1の変形例について説明する。
図3は、真空ポンプ9への封水給水路12(12a〜12d)の変形例を示す図であり、これ以外の箇所は、図1と同様である。
Next, a modified example of the vacuum cooling device 1 of the present embodiment will be described.
FIG. 3 is a diagram showing a modified example of the sealing water supply passage 12 (12a to 12d) to the vacuum pump 9, and the other parts are the same as those in FIG.

前記実施例では、第二封水路12bには、第二封水弁14および第二定流量弁16が設置されたが、本変形例では、第二封水路12bには、第二定流量弁16は設置されず第二封水弁14が設置される。また、前記実施例では、第二封水弁14は、オンオフで開閉切替される電磁弁から構成されたが、本変形例では、第二封水弁14は、開度調整可能な電動弁(流量調整弁)から構成される。さらに、前記実施例では、水温センサ32は、封水給水路12に設けられて真空ポンプ9への給水の温度を監視したが、本変形例では、水温センサ32は、真空ポンプ9に設けられて真空ポンプ9内の封水の温度を監視する。 In the above-described embodiment, the second water sealing valve 12 and the second constant flow valve 16 are installed in the second water sealing passage 12b, but in the present modification, the second constant flow valve 12b is installed in the second water sealing passage 12b. 16 is not installed but the second water sealing valve 14 is installed. In addition, in the above-described embodiment, the second water sealing valve 14 is composed of an electromagnetic valve that is switched on and off by turning it on and off, but in the present modification, the second water sealing valve 14 is a motor-operated valve whose opening can be adjusted ( Flow control valve). Further, in the above-described embodiment, the water temperature sensor 32 is provided in the sealed water supply passage 12 to monitor the temperature of the water supplied to the vacuum pump 9, but in the present modification, the water temperature sensor 32 is provided in the vacuum pump 9. Then, the temperature of the sealing water in the vacuum pump 9 is monitored.

本変形例の場合も、第二封水弁14を開ける際、所定開度(たとえば全開)まで開放することで、前記実施例と同様に制御することができる。但し、本変形例の場合、次のように制御することもできる。 Also in the case of this modification, when the second water sealing valve 14 is opened, it can be controlled in the same manner as in the above embodiment by opening it to a predetermined opening (for example, fully open). However, in the case of this modification, it is also possible to control as follows.

具体的には、本変形例でも、基本的には図2に基づき制御されるが、次の点が異なる。すなわち、前記[A]の制御では、第二封水弁14が閉じられ且つ蒸気エゼクタ6が停止した状態で、処理槽2内を減圧中、槽内圧力換算温度が「封水温度+設定値(第二設定値)」を下回れば、第二封水弁14を開けて、真空ポンプ9への給水量を増加させる。この際、「槽内圧力換算温度≧封水温度+第二設定値」を満たすように、給水量を制御するのがよい。つまり、圧力センサ31の検出圧力における飽和温度が「水温センサ32の検出温度+第二設定値」を下回ると、圧力センサ31の検出圧力における飽和温度が「水温センサ32の検出温度+第二設定値」以上になるように(典型的には「水温センサ32の検出温度+第二設定値」になるように)、第二封水弁14の開度を調整すればよい。このような第二封水弁14の開度調整制御は、前記[B]において、蒸気エゼクタ6を作動させた後も実行可能である。但し、蒸気エゼクタ6を作動させた後は、前記実施例と同様に、第二封水弁14を所定開度(たとえば全開)としてもよい。なお、給水に凝縮水とモータ発熱が加わる封水の温度は、給水温度より上昇する。このため、本変形例の第二設定値は、前記実施例の第一設定値よりも小さく設定され、たとえば0〜5℃、好ましくは2〜3℃に設定される。その他の構成および制御は、前記実施例と同様のため、説明を省略する。 Specifically, this modified example is also basically controlled based on FIG. 2, but the following points are different. That is, in the control of the above [A], while the second sealing valve 14 is closed and the steam ejector 6 is stopped, while decompressing the inside of the processing tank 2, the tank internal pressure conversion temperature is “sealing water temperature+set value”. (Second set value)”, the second water sealing valve 14 is opened to increase the amount of water supplied to the vacuum pump 9. At this time, it is preferable to control the water supply amount so as to satisfy “the tank pressure conversion temperature≧sealing temperature+second set value”. That is, when the saturation temperature at the pressure detected by the pressure sensor 31 falls below “the temperature detected by the water temperature sensor 32+the second set value”, the saturation temperature at the pressure detected by the pressure sensor 31 becomes “the temperature detected by the water temperature sensor 32+the second set value”. The opening degree of the second water sealing valve 14 may be adjusted so as to be equal to or more than “value” (typically, “the temperature detected by the water temperature sensor 32+the second set value”). Such an opening degree adjustment control of the second water sealing valve 14 can be executed even after the steam ejector 6 is operated in the above [B]. However, after activating the steam ejector 6, the second water sealing valve 14 may be set to a predetermined opening degree (for example, fully open) as in the above embodiment. It should be noted that the temperature of the confined water to which the condensed water and the heat generated by the motor are added to the supplied water rises above the supplied water temperature. Therefore, the second set value of the present modification is set smaller than the first set value of the above-described embodiment, and is set to, for example, 0 to 5°C, preferably 2 to 3°C. The other configurations and controls are the same as those in the above-described embodiment, and thus the description thereof will be omitted.

本発明の真空冷却装置1は、前記実施例(変形例を含む)の構成(制御を含む)に限らず適宜変更可能である。特に、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する水封式の真空ポンプ9を有する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、処理槽2内の圧力を検出する圧力センサ31と、真空ポンプ9への給水または真空ポンプ9内の封水の温度を検出する水温センサ32と、前記各手段3,4を制御する制御手段とを備え、減圧手段3により処理槽2内を減圧中、圧力センサ31の検出圧力における飽和温度が「水温センサ32の検出温度+設定値」を下回ると、(a)真空ポンプ9への給水量を増加させるか、(b)圧力センサ31の検出圧力における飽和温度が「水温センサ32の検出温度+設定値」以上になるように、真空ポンプ9への給水量を調整するのであれば、その他の構成は適宜に変更可能である。 The vacuum cooling device 1 of the present invention is not limited to the configuration (including control) of the above-described embodiment (including modified examples), and can be appropriately changed. In particular, the processing tank 2 in which the food F is housed, the depressurizing means 3 having a water-sealed vacuum pump 9 for sucking and discharging the gas in the processing tank 2 to the outside, and the depressurized processing tank 2 to discharge the outside air. Reintroducing pressure means 4, a pressure sensor 31 for detecting the pressure in the processing tank 2, a water temperature sensor 32 for detecting the temperature of the water supplied to the vacuum pump 9 or the sealing water in the vacuum pump 9, and the respective means 3 , 4 for controlling the pressure inside the processing tank 2 by the pressure reducing means 3 and the saturation temperature at the pressure detected by the pressure sensor 31 falls below the “temperature detected by the water temperature sensor 32+set value” (a ) Increase the amount of water supplied to the vacuum pump 9 or (b) supply the amount of water to the vacuum pump 9 so that the saturation temperature at the pressure detected by the pressure sensor 31 is equal to or higher than the "temperature detected by the water temperature sensor 32 + set value". Other configurations can be appropriately changed as long as the above is adjusted.

また、前記実施例では、減圧手段3として蒸気エゼクタ6を備えたが、場合により蒸気エゼクタ6の設置を省略してもよい。その場合、図2において、ステップS6,S7を省略すればよい。 Further, although the steam ejector 6 is provided as the depressurizing means 3 in the above-mentioned embodiment, the installation of the steam ejector 6 may be omitted in some cases. In that case, steps S6 and S7 may be omitted in FIG.

また、前記実施例において、真空ポンプ9への給水流量は、第一封水弁13と第二封水弁14との内、第一封水弁13のみを開けるか、第二封水弁14も開けるかにより、二段階で流量を切り替えたが、多段階あるいは無段階で変更してもよい。また、第一封水弁13を上流側封水路12cではなく第一封水路12aに設けておき、第一定流量弁15と第二定流量弁16とが異なる流量のものであるならば、第一封水弁13と第二封水弁14とを択一的に開くことで、流量を切り替えてもよい。 Further, in the above-described embodiment, the water supply flow rate to the vacuum pump 9 is such that only the first water sealing valve 13 of the first water sealing valve 13 and the second water sealing valve 14 is opened or the second water sealing valve 14 is used. Although the flow rate is switched in two steps depending on whether or not it is opened, it may be changed in multiple steps or steplessly. Further, if the first water sealing valve 13 is provided not in the upstream water sealing passage 12c but in the first water sealing passage 12a and the first constant flow valve 15 and the second constant flow valve 16 have different flow rates, The flow rate may be switched by selectively opening the first water sealing valve 13 and the second water sealing valve 14.

さらに、前記実施例では、真空冷却装置1は、冷却専用機として説明したが、真空冷却機能を有するのであれば、適宜に変更可能である。たとえば、蒸気による加熱手段を備えることで、蒸煮冷却装置や飽和蒸気調理装置のように構成されてもよい。あるいは、冷凍機やファンを用いた冷風冷却手段を備えることで、冷風真空複合冷却装置のように構成されてもよい。 Furthermore, in the above-described embodiment, the vacuum cooling device 1 has been described as a cooling-only machine, but it can be appropriately modified as long as it has a vacuum cooling function. For example, a steam cooling device or a saturated steam cooking device may be provided by including a heating device using steam. Alternatively, it may be configured as a cold air vacuum composite cooling device by including a cold air cooling means using a refrigerator or a fan.

1 真空冷却装置
2 処理槽
3 減圧手段
4 復圧手段
5 排気路
6 蒸気エゼクタ(6a:吸引口、6b:入口、6c:出口)
7 熱交換器
8 逆止弁
9 真空ポンプ(9a:給水口、9b:吸気口、9c:排気口)
10 エゼクタ給蒸路
11 エゼクタ給蒸弁
12 封水給水路(12a:第一封水路、12b:第二封水路、12c:上流側封水路、12d:下流側封水路)
13 第一封水弁
14 第二封水弁
15 第一定流量弁
16 第二定流量弁
17 常温水給水路
18 常温水給水弁
19 冷水給水路
20 冷水給水弁
21 共通給水路
22 熱交給水路
23 熱交排水路
24 冷水戻し路
25 排水出口路
26 冷水戻し弁
27 排水出口弁
28 給気路
29 エアフィルタ
30 給気弁
31 圧力センサ
32 水温センサ
DESCRIPTION OF SYMBOLS 1 Vacuum cooling device 2 Processing tank 3 Decompression means 4 Recompression means 5 Exhaust path 6 Steam ejector (6a: suction port, 6b: inlet, 6c: outlet)
7 Heat Exchanger 8 Check Valve 9 Vacuum Pump (9a: Water Supply Port, 9b: Intake Port, 9c: Exhaust Port)
10 Ejector Steam Supply Channel 11 Ejector Steam Supply Valve 12 Sealing Water Supply Channel (12a: First Sealing Channel, 12b: Second Sealing Channel, 12c: Upstream Sealing Channel, 12d: Downstream Sealing Channel)
13 1st water sealing valve 14 2nd water sealing valve 15 1st constant flow valve 16 2nd constant flow valve 17 Normal temperature water supply channel 18 Normal temperature water supply valve 19 Cold water supply channel 20 Cold water supply valve 21 Common water supply channel 22 Heat exchange water supply Channel 23 Heat exchange drainage channel 24 Cold water return channel 25 Drainage outlet channel 26 Cold water return valve 27 Drainage outlet valve 28 Air supply passage 29 Air filter 30 Air supply valve 31 Pressure sensor 32 Water temperature sensor

Claims (4)

食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する水封式の真空ポンプを有する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記真空ポンプへの給水または前記真空ポンプ内の封水の温度を検出する水温センサと、前記各手段を制御する制御手段とを備え、
前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、(a)前記真空ポンプへの給水量を増加させるか、(b)前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」以上になるように、前記真空ポンプへの給水量を調整する
ことを特徴とする真空冷却装置。
A processing tank in which food is stored, a depressurizing means having a water-sealed vacuum pump for sucking and discharging the gas in the processing tank to the outside, and a pressure-reducing means for introducing outside air into the depressurized processing tank, A pressure sensor for detecting the pressure in the processing tank, a water temperature sensor for detecting the temperature of water supplied to the vacuum pump or sealing water in the vacuum pump, and a control means for controlling the respective means,
When the saturation temperature at the pressure detected by the pressure sensor falls below “the temperature detected by the water temperature sensor+the set value” while the pressure in the processing tank is being reduced by the pressure reducing means, (a) the amount of water supplied to the vacuum pump is increased. Alternatively, (b) the amount of water supplied to the vacuum pump is adjusted so that the saturation temperature at the pressure detected by the pressure sensor becomes equal to or higher than the “temperature detected by the water temperature sensor+set value”. .
前記真空ポンプへの給水路として、第一定流量弁を備えた第一封水路と、第二定流量弁を備えた第二封水路との並列部を備え、
前記第一封水路を介して前記真空ポンプに給水しつつ、前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、前記第一封水路に代えてまたは加えて、前記第二封水路を介して前記真空ポンプに給水する
ことを特徴とする請求項1に記載の真空冷却装置。
As a water supply path to the vacuum pump, a first sealed water path having a first constant flow valve, and a parallel portion of a second sealed water path having a second constant flow valve,
While the water is being supplied to the vacuum pump via the first water sealing passage, the saturation temperature at the pressure detected by the pressure sensor is “the temperature detected by the water temperature sensor+the set value” while the pressure in the processing tank is being reduced by the pressure reducing means. When it falls below, in place of or in addition to the first sealed water passage, water is supplied to the vacuum pump through the second sealed water passage.
前記真空ポンプへの給水路として、定流量弁を備えた第一封水路と、流量調整弁を備えた第二封水路との並列部を備え、
前記第一封水路を介して前記真空ポンプに給水しつつ、前記減圧手段により前記処理槽内を減圧中、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」を下回ると、前記圧力センサの検出圧力における飽和温度が「前記水温センサの検出温度+設定値」以上になるように、前記流量調整弁の開度を調整する
ことを特徴とする請求項1に記載の真空冷却装置。
As a water supply passage to the vacuum pump, a parallel portion of a first water seal passage having a constant flow valve and a second water seal passage having a flow rate adjusting valve,
While the water is being supplied to the vacuum pump via the first water sealing passage, the saturation temperature at the pressure detected by the pressure sensor is “the temperature detected by the water temperature sensor+the set value” while the pressure in the processing tank is being reduced by the pressure reducing means. The opening degree of the flow rate adjusting valve is adjusted so that the saturation temperature at the pressure detected by the pressure sensor becomes equal to or higher than “the temperature detected by the water temperature sensor+the set value” when the temperature falls below the temperature. Vacuum cooling device.
前記減圧手段として、蒸気エゼクタをさらに備え、
前記真空ポンプへの給水量を増加させる前に、前記蒸気エゼクタを作動させる場合、前記蒸気エゼクタの作動時に、前記真空ポンプへの給水量を増加させる
ことを特徴とする請求項1〜3のいずれか1項に記載の真空冷却装置。
As the pressure reducing means, a steam ejector is further provided.
When the steam ejector is operated before increasing the water supply amount to the vacuum pump, the water supply amount to the vacuum pump is increased when the steam ejector is operated. The vacuum cooling device according to item 1.
JP2018227122A 2018-12-04 2018-12-04 vacuum cooling system Active JP7124677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018227122A JP7124677B2 (en) 2018-12-04 2018-12-04 vacuum cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018227122A JP7124677B2 (en) 2018-12-04 2018-12-04 vacuum cooling system

Publications (2)

Publication Number Publication Date
JP2020091052A true JP2020091052A (en) 2020-06-11
JP7124677B2 JP7124677B2 (en) 2022-08-24

Family

ID=71012622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227122A Active JP7124677B2 (en) 2018-12-04 2018-12-04 vacuum cooling system

Country Status (1)

Country Link
JP (1) JP7124677B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248983A (en) * 1987-04-06 1988-10-17 Kubota Ltd Cavitation preventing device of liquid-sealed vacuum pump
JPH09151873A (en) * 1995-12-04 1997-06-10 Miura Co Ltd Water-sealed vacuum pump operating method
JPH09296975A (en) * 1996-03-06 1997-11-18 Miura Co Ltd Vacuum cooling apparatus
JP2010144981A (en) * 2008-12-17 2010-07-01 Miura Co Ltd Cooling method and cooling device
JP2011131175A (en) * 2009-12-25 2011-07-07 Miura Co Ltd Cleaning device
JP2015203391A (en) * 2014-04-16 2015-11-16 三浦工業株式会社 Decompression device with water-sealing type vacuum pump
JP2017166413A (en) * 2016-03-16 2017-09-21 三浦工業株式会社 Operational method for water seal type vacuum pump and utilization device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248983A (en) * 1987-04-06 1988-10-17 Kubota Ltd Cavitation preventing device of liquid-sealed vacuum pump
JPH09151873A (en) * 1995-12-04 1997-06-10 Miura Co Ltd Water-sealed vacuum pump operating method
JPH09296975A (en) * 1996-03-06 1997-11-18 Miura Co Ltd Vacuum cooling apparatus
JP2010144981A (en) * 2008-12-17 2010-07-01 Miura Co Ltd Cooling method and cooling device
JP2011131175A (en) * 2009-12-25 2011-07-07 Miura Co Ltd Cleaning device
JP2015203391A (en) * 2014-04-16 2015-11-16 三浦工業株式会社 Decompression device with water-sealing type vacuum pump
JP2017166413A (en) * 2016-03-16 2017-09-21 三浦工業株式会社 Operational method for water seal type vacuum pump and utilization device

Also Published As

Publication number Publication date
JP7124677B2 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
KR100888384B1 (en) System and method for controlling an economizer circuit
JP5251557B2 (en) Cooling device and cooling method
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
JP2003028515A (en) Constant-temperature liquid circulating device
JP6331078B2 (en) Pressure reducing device using water-sealed vacuum pump
JP2018204860A (en) Vacuum cooler
JP7124677B2 (en) vacuum cooling system
JP7432103B2 (en) vacuum cooling device
JP6417872B2 (en) Vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP7167572B2 (en) vacuum cooling system
JP7354799B2 (en) vacuum cooling device
JP7223319B2 (en) vacuum cooling system
JP2020096539A (en) Vacuum cooling device
JP6369755B2 (en) Vacuum cooling device
JP5862446B2 (en) Food machine with vacuum cooling function
JP2006346149A (en) Cooking apparatus
JP2020099257A (en) Vacuum cooling device and vacuum cooling method
JP2022141466A (en) Vacuum cooling device
JP7137129B2 (en) food machine
JP2022174534A (en) Vacuum cooling device
JP2022153117A (en) Vacuum cooling device
JP2022159838A (en) Vacuum cooling device
JP2004357627A (en) Vacuum steam thawing machine
JP4605541B2 (en) Steam cooking equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7124677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150