JP7137129B2 - food machine - Google Patents

food machine Download PDF

Info

Publication number
JP7137129B2
JP7137129B2 JP2018166600A JP2018166600A JP7137129B2 JP 7137129 B2 JP7137129 B2 JP 7137129B2 JP 2018166600 A JP2018166600 A JP 2018166600A JP 2018166600 A JP2018166600 A JP 2018166600A JP 7137129 B2 JP7137129 B2 JP 7137129B2
Authority
JP
Japan
Prior art keywords
pressure
processing tank
time
vacuum pump
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018166600A
Other languages
Japanese (ja)
Other versions
JP2020038043A (en
Inventor
雅夫 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018166600A priority Critical patent/JP7137129B2/en
Publication of JP2020038043A publication Critical patent/JP2020038043A/en
Application granted granted Critical
Publication of JP7137129B2 publication Critical patent/JP7137129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Description

本発明は、真空ポンプを有する減圧手段と、エアフィルタを有する復圧手段とを備えた各種食品機械に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various food machines having pressure reducing means having a vacuum pump and pressure restoring means having an air filter.

減圧手段と復圧手段とを備えた食品機械として、たとえば真空冷却装置が知られている。真空冷却装置は、減圧手段により処理槽内を減圧することで、処理槽内の食品からの水分蒸発を促し、その気化潜熱で食品の冷却を図る装置である。冷却後には、復圧手段により、処理槽内が大気圧まで復圧される。減圧手段は、処理槽内からの排気路に真空ポンプを備え、復圧手段は、処理槽内への給気路にエアフィルタを備える。下記特許文献1に開示されるように、処理槽内および減圧系統の殺菌が可能な食品機械も知られている。 A vacuum cooling device, for example, is known as a food machine having pressure reducing means and pressure restoring means. A vacuum cooling device is a device that promotes the evaporation of moisture from food in the processing tank by decompressing the inside of the processing tank with a decompression means, and cools the food with the latent heat of vaporization. After cooling, the inside of the processing bath is restored to the atmospheric pressure by the pressure restoring means. The decompression means has a vacuum pump in the exhaust passage from the inside of the processing bath, and the pressure recovery means has an air filter in the air supply passage to the inside of the processing bath. Food machines capable of sterilizing the inside of the processing tank and the vacuum system are also known, as disclosed in US Pat.

特開2011-200468号公報Japanese Unexamined Patent Application Publication No. 2011-200468

減圧手段の真空ポンプは、ゴミ詰り等の偶発的な不具合および経年劣化により能力が低下するが、従来、この能力低下を客観的に自動で判定することはできなかった。日常の冷却運転時に、真空ポンプの能力低下を知ることができれば好適であるが、食品の量や温度、槽内に占める割合などで減圧時間が変わるため、真空ポンプの能力低下を簡易に知ることはできなかった。 The performance of the vacuum pump of the decompression means deteriorates due to accidental failure such as clogging with dust and deterioration over time. It would be preferable to be able to know when the vacuum pump is degraded during the daily cooling operation. I couldn't.

一方、復圧手段のエアフィルタは、使用に伴い目詰まりが生じ、復圧時間の増大や衛生面の観点から定期的な交換が望まれるが、装置の設置環境によって目詰まりの進行具合が異なる。エアフィルタの交換時期を簡易に知ることができれば好適であるが、従来、エアフィルタの目詰まりを客観的に自動で判定することはできなかった。前述した真空ポンプの場合と同様、槽内に占める食品の割合(逆にいえば槽内に残る空き容積)で復圧時間が変わるため、エアフィルタの目詰まりを簡易に知ることはできなかった。 On the other hand, the air filter of the pressure recovery means is clogged with use, and it is desirable to replace it periodically from the viewpoint of increased pressure recovery time and hygiene, but the progress of clogging varies depending on the installation environment of the device. . It would be preferable if it was possible to easily know when to replace the air filter, but conventionally, clogging of the air filter could not be determined objectively and automatically. As in the case of the vacuum pump mentioned above, the pressure recovery time varies depending on the ratio of food in the tank (in other words, the empty volume remaining in the tank), so clogging of the air filter could not be easily detected. .

本発明が解決しようとする課題は、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる食品機械を提供することにある。 The problem to be solved by the present invention is to provide a food machine that can objectively and automatically detect the deterioration of the vacuum pump and/or the clogging of the air filter.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内からの排気路に、真空ポンプが設けられた減圧手段と、前記処理槽内への給気路に、エアフィルタおよび給気弁が設けられた復圧手段と、前記各手段を制御する制御手段とを備え、前記処理槽内からの排気路に、前記真空ポンプの他、熱交換器および弁を備え、前記排気路の内、前記弁よりも前記処理槽側から前記処理槽内へ蒸気を供給する給蒸手段をさらに備え、前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、減圧操作として前記減圧手段により前記処理槽内を減圧する空気排除工程、前記給蒸手段により前記処理槽内を復圧する給蒸工程、前記処理槽内を殺菌温度以上で殺菌時間保持する殺菌工程、前記減圧手段により前記処理槽内を減圧する湯気取り工程、復圧操作として前記復圧手段により前記処理槽内を復圧する復圧工程、を順次に含んで実行し、前記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定することを特徴とする食品機械である。 The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is characterized in that a vacuum pump is provided in a processing tank in which food is stored and an exhaust path from the processing tank. depressurizing means; pressure recovery means having an air filter and an air supply valve provided in an air supply path to the processing tank; and control means for controlling each of the means, (a) steam supply means including a heat exchanger and a valve in addition to the vacuum pump, and for supplying steam to the processing tank from the side of the processing tank in the exhaust passage rather than the valve; is an air removal step of decompressing the inside of the processing tank by the decompression means as a decompression operation in a state where there is no content to reduce the inner volume of the processing tank, and a supply of pressure in the processing tank by the steam supply means. a steaming step, a sterilization step of holding the inside of the treatment tank at a sterilization temperature or higher for a sterilization time, a steam removal step of depressurizing the inside of the treatment tank by the decompression means, and a pressure recovery operation in which the pressure in the treatment tank is restored by the pressure restoration means. and a pressure recovery step, wherein the control means determines a decrease in the capacity of the vacuum pump based on the pressure reduction time in all or part of the air removal step. .

請求項1に記載の発明によれば、空気排除工程、給蒸工程、殺菌工程、湯気取り工程および復圧工程を順次に実行して、処理槽内および減圧系統(処理槽から弁までの区間)の殺菌が可能である。また、その殺菌運転において、空気排除工程での減圧時間に基づき真空ポンプの能力低下を判定することができる。殺菌運転は、処理槽内に槽内容積を減じる収容物がない状態でなされるので、前記判定は、食品の量や温度、槽内に占める割合などに左右されない。このようにして、真空ポンプの能力低下について、客観的に自動で簡易に知ることができる。According to the first aspect of the invention, the air removal process, the steaming process, the sterilization process, the steam removal process, and the pressure recovery process are sequentially executed, and the inside of the treatment tank and the decompression system (the section from the treatment tank to the valve) ) can be sterilized. Further, in the sterilization operation, it is possible to determine whether the vacuum pump is degraded based on the depressurization time in the air removal process. Since the sterilization operation is performed in a state in which there is no content in the treatment tank that would reduce the inner volume of the tank, the determination is not affected by the amount, temperature, proportion of the food in the tank, and the like. In this way, it is possible to objectively, automatically and easily know about the deterioration of the vacuum pump performance.

請求項2に記載の発明は、前記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定すると共に、前記復圧工程の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定することを特徴とする請求項1に記載の食品機械である。 According to a second aspect of the present invention , the control means determines a decrease in the capacity of the vacuum pump based on the depressurization time in all or part of the air removal process, 2. The food machine according to claim 1, wherein clogging of the air filter is determined based on the pressure recovery time in .

請求項2に記載の発明によれば、空気排除工程、給蒸工程、殺菌工程、湯気取り工程および復圧工程を順次に実行して、処理槽内および減圧系統(処理槽から弁までの区間)の殺菌が可能である。また、その殺菌運転において、空気排除工程での減圧時間に基づき真空ポンプの能力低下を判定すると共に、復圧工程での復圧時間に基づきエアフィルタの目詰まりを判定することができる。殺菌運転は、処理槽内に槽内容積を減じる収容物がない状態でなされるので、前記判定は、食品の量や温度、槽内に占める割合などに左右されない。このようにして、真空ポンプの能力低下、および、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる。 According to the second aspect of the invention, the air removal process, the steaming process, the sterilization process, the steam removal process and the pressure recovery process are sequentially executed to reduce the ) can be sterilized. In the sterilization operation, it is possible to determine whether the vacuum pump is degraded based on the pressure reduction time in the air removal process, and whether the air filter is clogged based on the pressure recovery time in the pressure recovery process. Since the sterilization operation is performed in a state in which there is no content in the treatment tank that would reduce the inner volume of the tank, the determination is not affected by the amount, temperature, proportion of the food in the tank, and the like. In this way, it is possible to objectively, automatically and easily find out whether the performance of the vacuum pump is degraded or whether the air filter is clogged.

請求項3に記載の発明は、前記減圧操作では、前記処理槽内を第一設定圧力まで減圧し、前記制御手段は、前記減圧操作中、前記処理槽内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、前記真空ポンプの能力が低下していると判定し、前記第一測定開始圧力は、大気圧かそれ未満で設定され、前記第一測定終了圧力は、前記第一測定開始圧力未満の圧力で、且つ、前記第一設定圧力かそれ以上で設定されることを特徴とする請求項1または請求項2に記載の食品機械である。 In the invention according to claim 3, in the depressurization operation, the inside of the processing tank is depressurized to a first set pressure, and the control means controls that the pressure in the treatment tank is reduced to the first measurement start pressure during the depressurization operation. to the first measurement end pressure is measured, and if the time is longer than the reference depressurization time, it is determined that the capacity of the vacuum pump is reduced, and the first measurement start pressure is atmospheric pressure or less, and the first measurement end pressure is set at a pressure less than the first measurement start pressure and at the first set pressure or more Item 2. A food machine according to item 2.

請求項3に記載の発明によれば、第一測定開始圧力から第一測定終了圧力までの減圧時間が基準減圧時間よりも長いか否かに基づき、真空ポンプの能力が低下しているか否かを容易に判定することができる。 According to the third aspect of the invention, whether or not the vacuum pump performance is reduced based on whether or not the pressure reduction time from the first measurement start pressure to the first measurement end pressure is longer than the reference pressure reduction time. can be easily determined.

請求項4に記載の発明は、大気圧と前記第一設定圧力との間で、複数の圧力域が設定され、前記制御手段は、前記圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定することを特徴とする請求項3に記載の食品機械である。 In the invention according to claim 4, a plurality of pressure ranges are set between the atmospheric pressure and the first set pressure, and the control means measures the time required to pass through each pressure range for each pressure range. 4. The food machine according to claim 3, wherein it is determined whether or not the time is longer than the reference depressurization time for the pressure range.

請求項4に記載の発明によれば、真空ポンプの能力低下を、複数の圧力域に分けて確認することができる。 According to the fourth aspect of the invention, it is possible to confirm the deterioration of the vacuum pump capacity by dividing it into a plurality of pressure ranges.

請求項5に記載の発明は、前記基準減圧時間は、前記真空ポンプへの給水温度および/または真空ポンプの回転数に基づき変更されることを特徴とする請求項1~4のいずれか1項に記載の食品機械である。 The invention according to claim 5 is characterized in that the reference depressurization time is changed based on the temperature of water supplied to the vacuum pump and/or the rotation speed of the vacuum pump. It is a food machine described in.

請求項5に記載の発明によれば、真空ポンプへの給水温度および/または真空ポンプの回転数を考慮して、より正確に、真空ポンプの能力判定を行うことができる。 According to the fifth aspect of the invention, it is possible to more accurately determine the capacity of the vacuum pump by considering the temperature of the water supply to the vacuum pump and/or the number of revolutions of the vacuum pump.

さらに、請求項6に記載の発明は、前記復圧操作の前、前記処理槽内を第二設定圧力まで減圧し、前記制御手段は、前記復圧操作中、前記処理槽内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、前記エアフィルタに目詰まりがあると判定し、前記第二測定開始圧力は、前記第二設定圧力かそれ以上で設定され、前記第二測定終了圧力は、前記第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定されることを特徴とする請求項2に記載の食品機械である。 Furthermore, the invention according to claim 6 reduces the pressure in the processing tank to a second set pressure before the pressure restoration operation, and the control means controls the pressure in the processing tank during the pressure restoration operation so that the pressure in the processing tank The time from the second measurement start pressure to the second measurement end pressure is measured, and if the time is longer than the reference pressure recovery time, it is determined that the air filter is clogged, and the second measurement start pressure is set at the second set pressure or higher, and the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at atmospheric pressure or less Item 2. A food machine according to item 2.

請求項6に記載の発明によれば、第二測定開始圧力から第二測定終了圧力までの復圧時間が基準復圧時間よりも長いか否かに基づき、エアフィルタに目詰まりがあるか否かを容易に判定することができる。 According to the sixth aspect of the invention, whether or not the air filter is clogged is determined based on whether or not the pressure recovery time from the second measurement start pressure to the second measurement end pressure is longer than the reference pressure recovery time. can be easily determined.

本発明の食品機械によれば、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる。 According to the food machine of the present invention, it is possible to easily and objectively know whether the vacuum pump is degraded and/or the air filter is clogged.

本発明の一実施例の食品機械を示す概略構成図である。1 is a schematic configuration diagram showing a food machine according to one embodiment of the present invention; FIG. 図1の食品機械の殺菌運転を示すフローチャートである。2 is a flow chart showing a sterilization operation of the food machine of FIG. 1; 図2の空気排除工程を示すフローチャートである。FIG. 3 is a flow chart showing the air evacuation process of FIG. 2; FIG. 図2の復圧工程を示すフローチャートである。3 is a flow chart showing a pressure recovery process of FIG. 2;

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の食品機械1を示す概略構成図である。
Specific embodiments of the present invention will now be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a food machine 1 of one embodiment of the present invention.

本実施例の食品機械1は、真空冷却装置であり、食品が収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出して処理槽2内を減圧する減圧手段3と、減圧された処理槽2内へ外気を導入して処理槽2内を復圧する復圧手段4と、減圧手段3の排気路9を介して処理槽2内へ蒸気を供給する給蒸手段5と、前記各手段3~5を制御する制御手段(図示省略)とを備える。 The food processing machine 1 of this embodiment is a vacuum cooling device, and includes a processing tank 2 in which food is stored, and decompression means 3 for reducing the pressure in the processing tank 2 by sucking and discharging the gas in the processing tank 2 to the outside. a pressure recovery means 4 for introducing outside air into the decompressed processing tank 2 to restore the pressure in the processing tank 2; and control means (not shown) for controlling the means 3-5.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドアで開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品を出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。 The processing tank 2 is a hollow container that can withstand the pressure reduction of the internal space, and can be opened and closed with a door. The processing tank 2 is typically formed in a substantially rectangular box shape, and the front opening can be opened and closed with a door. By opening the door, food can be taken in and out of the processing tank 2, and by closing the door, the opening of the processing tank 2 can be airtightly closed. Doors may be provided on both the front and back sides of the processing tank 2 .

処理槽2には、処理槽2内の圧力を検出する圧力センサ6と、処理槽2内の温度を検出する温度センサ7と、処理槽2内に収容される食品の温度を検出する品温センサ8とが設けられる。 The processing tank 2 includes a pressure sensor 6 for detecting the pressure in the processing tank 2, a temperature sensor 7 for detecting the temperature in the processing tank 2, and a food temperature sensor for detecting the temperature of the food contained in the processing tank 2. A sensor 8 is provided.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路9に、蒸気エゼクタ10、蒸気凝縮用の熱交換器11、逆止弁12、および水封式の真空ポンプ13を順に備える。 The decompression means 3 is a means for decompressing the inside of the processing bath 2 by sucking and discharging the gas (air or steam) in the processing bath 2 to the outside. In this embodiment, the decompression means 3 includes a steam ejector 10, a steam condensing heat exchanger 11, a check valve 12, and a water-sealed vacuum pump 13 in this order in an exhaust passage 9 from the processing tank 2. .

蒸気エゼクタ10は、吸引口10aが処理槽2に接続されて設けられ、入口10bから出口10cへ向けて、エゼクタ給蒸路14からの蒸気がノズルで噴出可能とされる。入口10bから出口10cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口10aを介して出口10cへ吸引排出される。エゼクタ給蒸路14に設けたエゼクタ給蒸弁15の開閉を操作することで、蒸気エゼクタ10の作動の有無を切り替えることができる。 The steam ejector 10 is provided with a suction port 10a connected to the processing tank 2, and steam from an ejector steam supply passage 14 can be ejected from the nozzle from an inlet 10b toward an outlet 10c. By jetting steam from the inlet 10b to the outlet 10c, the gas in the processing tank 2 is also sucked and discharged to the outlet 10c through the suction port 10a. By operating the opening/closing of the ejector steam supply valve 15 provided in the ejector steam supply path 14, the presence/absence of operation of the steam ejector 10 can be switched.

熱交換器11は、排気路9内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器11により、排気路9内の蒸気を、冷却水により冷却し凝縮させることができる。 The heat exchanger 11 is an indirect heat exchanger that exchanges heat between the fluid in the exhaust path 9 and the cooling water without mixing. The heat exchanger 11 allows the steam in the exhaust path 9 to be cooled and condensed with cooling water.

真空ポンプ13は、水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。真空ポンプ13には、封水給水弁16を介して水が供給可能とされる。封水給水弁16は、真空ポンプ13の発停と連動して開閉される。 The vacuum pump 13 is of a water ring type, and as is well known, is operated while being supplied with water called seal water. Water can be supplied to the vacuum pump 13 via a sealing water supply valve 16 . The sealing water supply valve 16 is opened and closed in conjunction with the starting and stopping of the vacuum pump 13 .

熱交換器11および真空ポンプ13への給水系統について説明すると、本実施例では、熱交換器11および真空ポンプ13には、常温水と冷水とを切り替えて供給可能とされる。冷水とは、チラー(図示省略)により所定温度に冷却を図られた水であり、常温水とは、そのような冷却を図られない水である。 To explain the water supply system to the heat exchanger 11 and the vacuum pump 13, in this embodiment, the heat exchanger 11 and the vacuum pump 13 can be supplied with normal temperature water and cold water by switching. Cold water is water that has been cooled to a predetermined temperature by a chiller (not shown), and room temperature water is water that is not cooled in such a manner.

図示例の場合、常温水と冷水の切り替えは、常温水給水路17に設けられた常温水給水弁18と、冷水給水路19に設けられた冷水給水弁20で行われる。常温水給水弁18より下流の常温水給水路17と、冷水給水弁20より下流の冷水給水路19とは、合流して共通給水路21とされている。そして、この共通給水路21は、熱交換器11への熱交給水路22と、真空ポンプ13への封水給水路23とに分岐されている。封水給水路23には、封水給水弁16が設けられている。 In the illustrated example, normal temperature water and cold water are switched by a normal temperature water supply valve 18 provided in the normal temperature water supply path 17 and a cold water supply valve 20 provided in the cold water supply path 19 . The room temperature water supply channel 17 downstream from the room temperature water supply valve 18 and the cold water supply channel 19 downstream from the cold water supply valve 20 join together to form a common water supply channel 21 . This common water supply line 21 branches into a heat exchange water supply line 22 to the heat exchanger 11 and a sealing water supply line 23 to the vacuum pump 13 . A sealed water supply valve 16 is provided in the sealed water supply path 23 .

熱交換器11は、熱交給水路22を介して水が供給され、熱交排水路24を介して水が排出される。熱交排水路24は、冷水戻し路25と排水出口路26とに分岐され、冷水戻し路25には冷水戻し弁27が設けられ、排水出口路26には排水出口弁28が設けられている。冷水戻し弁27と排水出口弁28とは択一的にいずれか一方が開けられるか、双方が閉じられた状態に制御される。 The heat exchanger 11 is supplied with water through a heat exchange water supply line 22 and discharged through a heat exchange discharge line 24 . The heat exchange drainage path 24 is branched into a cold water return path 25 and a drainage outlet path 26, the cold water return path 25 is provided with a cold water return valve 27, and the drainage outlet path 26 is provided with a drainage outlet valve 28. . Either one of the cold water return valve 27 and the drain outlet valve 28 is selectively opened, or both are controlled to be closed.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路29に、エアフィルタ30および給気弁31を順に備える。処理槽2内が減圧された状態で、給気弁31を開けると、外気がエアフィルタ30を介して処理槽2内へ導入され、処理槽2内を復圧することができる。給気弁31は、好ましくは開度調整可能な弁から構成される。 The pressure restoring means 4 is a means for introducing outside air into the decompressed processing tank 2 to restore the pressure inside the processing tank 2 . In this embodiment, the pressure recovery means 4 includes an air filter 30 and an air supply valve 31 in order in the air supply path 29 into the processing tank 2 . When the air supply valve 31 is opened while the inside of the processing tank 2 is depressurized, outside air is introduced into the processing tank 2 through the air filter 30, and the pressure inside the processing tank 2 can be restored. The air supply valve 31 is preferably composed of a valve whose degree of opening is adjustable.

給蒸手段5は、前述した排気路9を介して、処理槽2内へ蒸気を供給する手段である。本実施例では、給蒸手段5は、熱交換器11と逆止弁12との間から、排気路9内へ蒸気(飽和蒸気)を供給する。つまり、熱交換器11と逆止弁12との間の排気路9には、殺菌用給蒸路32が接続されており、この殺菌用給蒸路32から排気路9内へ蒸気を供給可能とされる。この蒸気供給の有無は、殺菌用給蒸路32に設けられた殺菌用給蒸弁33により切り替えられる。なお、図示例では、殺菌用給蒸弁33よりも上流側の殺菌用給蒸路32と、エゼクタ給蒸弁15よりも上流側のエゼクタ給蒸路14とは、共通給蒸路34とされている。 The steam supplying means 5 is means for supplying steam into the processing tank 2 through the exhaust path 9 described above. In this embodiment, the steam supply means 5 supplies steam (saturated steam) into the exhaust passage 9 from between the heat exchanger 11 and the check valve 12 . That is, the sterilization steam supply path 32 is connected to the exhaust path 9 between the heat exchanger 11 and the check valve 12, and steam can be supplied from the sterilization steam supply path 32 into the exhaust path 9. It is said that The presence or absence of this steam supply is switched by the sterilization steam supply valve 33 provided in the sterilization steam supply path 32 . In the illustrated example, the sterilization steam supply passage 32 on the upstream side of the sterilization steam supply valve 33 and the ejector steam supply passage 14 on the upstream side of the ejector steam supply valve 15 serve as a common steam supply passage 34. ing.

制御手段は、前記各センサ6~8の検出信号や経過時間などに基づき、前記各手段3~5などを制御する制御器である。具体的には、真空ポンプ13、エゼクタ給蒸弁15、殺菌用給蒸弁33、封水給水弁16、常温水給水弁18、冷水給水弁20、冷水戻し弁27、排水出口弁28、給気弁31の他、圧力センサ6、温度センサ7および品温センサ8などは、制御器に接続される。そして、制御器は、以下に述べるように、所定の手順(プログラム)に従い、処理槽2内の食品の冷却運転の他、処理槽2内および減圧系統(処理槽2から逆止弁12までの区間)の殺菌運転を実行可能とされる。 The control means is a controller that controls the means 3 to 5 based on the detection signals from the sensors 6 to 8, the elapsed time, and the like. Specifically, the vacuum pump 13, the ejector steam valve 15, the sterilizing steam valve 33, the seal water supply valve 16, the normal temperature water supply valve 18, the cold water supply valve 20, the cold water return valve 27, the drainage outlet valve 28, the supply In addition to the air valve 31, the pressure sensor 6, the temperature sensor 7 and the product temperature sensor 8 are connected to the controller. Then, as described below, the controller operates to cool the food in the processing tank 2, as well as to control the inside of the processing tank 2 and the decompression system (from the processing tank 2 to the check valve 12) in accordance with a predetermined procedure (program). section) can be sterilized.

また、制御手段は、真空ポンプ13の能力低下および/またはエアフィルタ30の目詰まりを判定する判定手段としても機能する。すなわち、食品機械1は、処理槽2内に槽内容積を減じる収容物がない状態で、減圧手段3により処理槽2内を減圧する減圧操作と、復圧手段4により処理槽2内を復圧する復圧操作とを実行可能とされるが、制御手段は、減圧操作中の全部または一部における減圧時間(より具体的には減圧開始圧力から減圧終了圧力までの全圧力域または一部圧力域を通過する減圧時間)に基づき、真空ポンプ13の能力低下を判定するか、および/または、復圧操作中の全部または一部における復圧時間(より具体的には復圧開始圧力から復圧終了圧力までの全圧力域または一部圧力域を通過する復圧時間)に基づき、エアフィルタ30の目詰まりを判定する。この判定処理は、本実施例では、殺菌運転において実行可能とされる。 The control means also functions as determination means for determining whether the vacuum pump 13 is degraded and/or the air filter 30 is clogged. That is, the food processing machine 1 performs a depressurization operation to depressurize the inside of the processing tank 2 by means of the decompression means 3 and restore the inside of the processing tank 2 by means of the pressure recovery means 4 in a state where there is no content in the processing tank 2 to reduce the internal volume of the tank. The control means controls the pressure reduction time during all or part of the pressure reduction operation (more specifically, the entire pressure range from the pressure reduction start pressure to the pressure reduction end pressure or a partial pressure Based on the pressure reduction time passing through the pressure reduction area), it is determined whether the vacuum pump 13 is degraded and/or the pressure recovery time during all or part of the pressure recovery operation (more specifically, the recovery time from the pressure recovery start pressure). Clogging of the air filter 30 is determined based on the pressure recovery time for passing through the entire pressure range or a partial pressure range up to the pressure end pressure. This determination process can be executed during the sterilization operation in this embodiment.

冷却運転は、処理槽2内に食品を収容した状態で実行される。冷却運転では、減圧手段3により処理槽2内を減圧して、処理槽2内の食品を所望温度まで冷却後、減圧手段3を停止して、復圧手段4により処理槽2内を大気圧まで復圧する。冷却運転では、減圧手段3により処理槽2内を減圧中、所望により給気弁31の開度を調整して、処理槽2内の減圧速度を調整してもよい。また、冷却運転では、復圧手段4により処理槽2内を復圧中、所望により給気弁31の開度を調整して、処理槽2内の復圧速度を調整してもよい。 The cooling operation is performed with food stored in the processing tank 2 . In the cooling operation, the inside of the processing tank 2 is decompressed by the decompression means 3, and after cooling the food in the processing tank 2 to a desired temperature, the decompression means 3 is stopped, and the inside of the processing tank 2 is returned to the atmospheric pressure by the pressure recovery means 4. pressurize up to In the cooling operation, while the inside of the processing tank 2 is being decompressed by the decompression means 3, the opening degree of the air supply valve 31 may be adjusted as desired to adjust the decompression rate in the processing tank 2. FIG. In the cooling operation, while the pressure in the processing tank 2 is being restored by the pressure restoring means 4, the opening degree of the air supply valve 31 may be adjusted as desired to adjust the speed of pressure restoration in the processing tank 2. FIG.

殺菌運転は、処理槽2内に食品を収容しない状態で実行される。本実施例の食品機械1では、殺菌運転において、真空ポンプ13の能力低下を判定するか、および/または、エアフィルタ30の目詰まりを判定する判定処理がなされるが、この判定処理を正確に行うためにも、殺菌運転は、処理槽2内に槽内容積を減じる収容物がない状態、より具体的には処理槽2内に少なくとも食品を収容しない状態でなされる。好ましくは、食品の他、食品容器やこれを載せるワゴンなどの器具が、処理槽2内に収容されない状態(つまり典型的には処理槽2内が空の状態)でなされる。また、冷却運転時に、処理槽2内からの排気口に吸気ストレーナを設けたり、処理槽2内に露避け板を設けたりしている場合でも、殺菌運転時には、これら吸気ストレーナや露避け板を取り外しておくのがよい。但し、場合により、センサ類などの小物は、処理槽2内容積に対して微々たるものであるため、処理槽2内に配置されていても構わない。 The sterilization operation is performed with no food in the processing tank 2 . In the food machine 1 of the present embodiment, in the sterilization operation, determination processing is performed to determine whether the vacuum pump 13 is degraded and/or whether the air filter 30 is clogged. In order to carry out the sterilization, the sterilization operation is performed in a state in which there is no content in the processing tank 2 that would reduce the internal volume of the tank, more specifically, in a state in which at least no food is contained in the processing tank 2 . Preferably, in addition to the food, food containers and utensils such as wagons for placing them are not accommodated in the processing tank 2 (ie, the processing tank 2 is typically empty). Further, even if an air intake strainer is provided at the exhaust port from the processing tank 2 or a dew shield plate is provided in the processing tank 2 during the cooling operation, these air intake strainer and dew shield plate are installed during the sterilization operation. It is better to remove it. However, in some cases, small items such as sensors may be arranged in the processing tank 2 because they are insignificant with respect to the inner volume of the processing tank 2 .

図2は、本実施例の食品機械1の殺菌運転を示すフローチャートである。また、図3は、殺菌運転における空気排除工程S1を示すフローチャートであり、図4は、殺菌運転における復圧工程S6を示すフローチャートである。 FIG. 2 is a flow chart showing the sterilization operation of the food machine 1 of this embodiment. 3 is a flow chart showing the air removal step S1 in the sterilization operation, and FIG. 4 is a flow chart showing the pressure recovery step S6 in the sterilization operation.

図2に示すように、殺菌運転では、空気排除工程S1、給蒸工程S2、殺菌工程S3、熱交冷却工程S4、湯気取り工程S5および復圧工程S6を順次に含んで実行する。以下、各工程について説明する。 As shown in FIG. 2, the sterilization operation includes and executes an air removal step S1, a steam supply step S2, a sterilization step S3, a heat exchange cooling step S4, a steam removal step S5 and a pressure recovery step S6 in sequence. Each step will be described below.

≪空気排除工程S1≫
空気排除工程S1では、減圧手段3により処理槽2内を減圧して、処理槽2内から空気を排除する。具体的には、図3に示すように、真空ポンプ13を作動させて、処理槽2内を減圧する(S11)。この際、給気弁31、エゼクタ給蒸弁15および殺菌用給蒸弁33は閉じられた状態にある。また、空気排除工程S1の開始時には、冷水給水弁20が閉じられた状態で、常温水給水弁18および封水給水弁16が開けられて、真空ポンプ13には常温水が供給される。さらに、冷水戻し弁27および排水出口弁28は閉じられた状態にあり、熱交換器11には通水されない。
<<Air exclusion step S1>>
In the air removal step S1, the inside of the processing tank 2 is depressurized by the decompression means 3 to remove the air from the inside of the processing tank 2. As shown in FIG. Specifically, as shown in FIG. 3, the vacuum pump 13 is operated to reduce the pressure in the processing bath 2 (S11). At this time, the air supply valve 31, the ejector steam supply valve 15 and the sterilization steam supply valve 33 are closed. At the start of the air removal step S1, the room temperature water supply valve 18 and the sealed water supply valve 16 are opened while the cold water supply valve 20 is closed, and room temperature water is supplied to the vacuum pump 13 . Furthermore, the cold water return valve 27 and the drain outlet valve 28 are closed, and the heat exchanger 11 is not supplied with water.

このようにして、真空ポンプ13に常温水を供給しつつ、処理槽2内を真空ポンプ13で減圧していくが、圧力センサ6の検出圧力が冷水切替圧力(たとえば200hPa)以下になると、真空ポンプ13への給水を常温水から冷水に切り替える(S12,S13)。具体的には、常温水給水弁18を閉じる一方、冷水給水弁20を開ければよい。 In this manner, while normal temperature water is supplied to the vacuum pump 13, the pressure inside the processing tank 2 is reduced by the vacuum pump 13. The water supply to the pump 13 is switched from room temperature water to cold water (S12, S13). Specifically, while the normal temperature water supply valve 18 is closed, the cold water supply valve 20 is opened.

その後、圧力センサ6の検出圧力が第一設定圧力(たとえば30hPa)以下になると、冷水給水弁20および封水給水弁16を閉じると共に真空ポンプ13を停止して、空気排除工程を終了する(S14,S15)。但し、真空ポンプ13の停止後(上記一連の初期減圧操作S11-S15の後)、所望により、圧力センサ6の検出圧力が所定復圧圧力(たとえば900hPa)になるまで、給蒸手段5により処理槽2内に蒸気を供給して復圧した後、その給蒸を停止した状態で、圧力センサ6の検出圧力が所定減圧圧力(たとえば30hPa)になるまで、減圧手段3により処理槽2内を減圧するなどしてもよい(S18)。いずれにしても、最終的には、真空ポンプ13を停止すると共に、真空ポンプ13への給水を停止して、空気排除工程を終了する。 After that, when the pressure detected by the pressure sensor 6 becomes equal to or lower than the first set pressure (for example, 30 hPa), the cold water supply valve 20 and the sealed water supply valve 16 are closed, the vacuum pump 13 is stopped, and the air removal step is completed (S14). , S15). However, after stopping the vacuum pump 13 (after the series of initial depressurization operations S11 to S15), if desired, the pressure detected by the pressure sensor 6 is processed by the steam supply means 5 until the pressure detected by the pressure sensor 6 reaches a predetermined pressure recovery pressure (for example, 900 hPa). After supplying steam into the tank 2 to restore the pressure, the inside of the processing tank 2 is evacuated by the decompression means 3 until the pressure detected by the pressure sensor 6 reaches a predetermined reduced pressure (for example, 30 hPa) while the steam supply is stopped. The pressure may be reduced (S18). In any case, finally, the vacuum pump 13 is stopped, the water supply to the vacuum pump 13 is stopped, and the air removal step is completed.

なお、処理槽2内に給蒸後の減圧時(前述した所定復圧圧力から所定減圧圧力までの減圧時)には、熱交換器11に、所定のタイミングで常温水または冷水を通してもよい。熱交換器11に常温水を通す場合、排水出口弁28を開けておくことで、熱交換器11で使用後の水は、排水出口路26へ排出される。一方、熱交換器11に冷水を通す場合、冷水戻し弁27を開けておくことで、熱交換器11で使用後の水は、冷水戻し路25を介して冷水タンク(冷水供給源)へ戻される。 When the processing tank 2 is depressurized after steaming (during depressurization from the above-mentioned predetermined repressurized pressure to a predetermined depressurized pressure), normal temperature water or cold water may be passed through the heat exchanger 11 at a predetermined timing. When normal temperature water is passed through the heat exchanger 11 , the water after use in the heat exchanger 11 is discharged to the drainage outlet path 26 by opening the drainage outlet valve 28 . On the other hand, when cold water is passed through the heat exchanger 11, by opening the cold water return valve 27, the water after being used in the heat exchanger 11 is returned to the cold water tank (cold water supply source) through the cold water return path 25. be

空気排除工程S1において、空気排除工程S1の全部または一部における減圧時間に基づき、真空ポンプ13の能力低下を判定することができる。本実施例では、前述したとおり、空気排除工程S1(初期減圧操作S11-S15)では、処理槽2内を大気圧から第一設定圧力まで減圧するが、その減圧時間に基づき、真空ポンプ13の能力低下を判定する。 In the air removal step S1, it is possible to determine whether the vacuum pump 13 is degraded based on the decompression time in all or part of the air removal step S1. In this embodiment, as described above, in the air removal step S1 (initial depressurization operation S11-S15), the inside of the processing tank 2 is depressurized from the atmospheric pressure to the first set pressure. Determining incapacity.

具体的には、図3に示すように、制御器は、真空ポンプ13を作動させて処理槽2内の減圧を開始する際、減圧時間の測定を開始し(S11)、処理槽2内が第一設定圧力に到達した際、減圧時間の測定を終了する(S14,S15)。つまり、処理槽2内を大気圧から第一設定圧力まで減圧する際、減圧の開始から終了までの減圧時間を測定する。この間、熱交換器11には通水しないので、熱交換器11による影響のない減圧時間を測定することができる。そして、このようにして測定された減圧時間(測定時間)が基準減圧時間を超えていれば、真空ポンプ13の能力が低下していると判定し、基準減圧時間以下であれば、真空ポンプ13の能力は低下していないと判定する(S16)。判定結果(特に真空ポンプ13の能力が低下している旨の判定結果)は、所定の出力機器に出力してお知らせする(S17)。たとえば、タッチパネルに表示したり、ランプを点灯させたり、あるいはブザーを鳴らしたりする。 Specifically, as shown in FIG. 3, when the vacuum pump 13 is operated to start reducing the pressure in the processing tank 2, the controller starts measuring the pressure reduction time (S11). When the pressure reaches the first set pressure, the pressure reduction time measurement is finished (S14, S15). That is, when depressurizing the inside of the processing tank 2 from the atmospheric pressure to the first set pressure, the depressurization time from the start to the end of depressurization is measured. Since no water is passed through the heat exchanger 11 during this period, the depressurization time without the influence of the heat exchanger 11 can be measured. If the depressurization time (measurement time) thus measured exceeds the reference depressurization time, it is determined that the performance of the vacuum pump 13 is degraded. is not lowered (S16). The determination result (particularly, the determination result indicating that the vacuum pump 13 is degraded) is output to a predetermined output device for notification (S17). For example, it displays on a touch panel, lights a lamp, or sounds a buzzer.

ところで、真空ポンプ13の能力判定のための時間測定について、ここでは、時間測定の開始時の圧力(第一測定開始圧力)は大気圧とされ、時間測定の終了時の圧力(第一測定終了圧力)は第一設定圧力とされたが、必ずしも、大気圧から第一設定圧力までの減圧時間で判定する必要はない。つまり、第一測定開始圧力は、大気圧かそれ未満で設定され、第一測定終了圧力は、第一測定開始圧力未満の圧力で、且つ、第一設定圧力かそれ以上で設定されるならば、適宜変更可能である。いずれにしても、処理槽2内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、真空ポンプ13の能力が低下していると判定して、その結果を出力してお知らせする。 By the way, regarding the time measurement for determining the performance of the vacuum pump 13, here, the pressure at the start of time measurement (first measurement start pressure) is assumed to be the atmospheric pressure, and the pressure at the end of time measurement (first measurement end pressure) pressure) is set to be the first set pressure, but it is not always necessary to judge by the decompression time from the atmospheric pressure to the first set pressure. That is, if the first measurement start pressure is set at or below atmospheric pressure, and the first measurement end pressure is set at a pressure below the first measurement start pressure and at or above the first set pressure, , can be changed as appropriate. In any case, the time required for the pressure in the processing tank 2 to decrease from the first measurement start pressure to the first measurement end pressure is measured. It judges that it is lowered, and outputs the result to inform you.

なお、大気圧と冷水切替圧力との間で、第一測定開始圧力および第一測定終了圧力を設定すれば、封水は常温水のままであるから、封水温度の影響が少ない判定が可能となる。同様に、冷水切替圧力と第一設定圧力との間で、第一測定開始圧力および第一測定終了圧力を設定すれば、封水は冷水のままであるから、封水温度の影響が少ない判定が可能となる。 If the first measurement start pressure and the first measurement end pressure are set between the atmospheric pressure and the cold water switching pressure, the seal water will remain at room temperature, so it is possible to make a judgment with little influence of the seal water temperature. becomes. Similarly, if the first measurement start pressure and the first measurement end pressure are set between the cold water switching pressure and the first set pressure, the sealing water remains cold water, so the determination is less affected by the sealing water temperature. becomes possible.

≪給蒸工程S2≫
給蒸工程S2では、給蒸手段5により、排気路9を介して処理槽2内へ蒸気を供給して、処理槽2内を所定の移行温度(または移行温度相当の飽和圧力(移行圧力))まで復圧する。具体的には、殺菌用給蒸弁33を開けて、逆止弁12の一次側から排気路9を逆流させて、処理槽2内へ蒸気を供給する。温度センサ7の検出温度が移行温度(たとえば84℃)以上になると、次工程へ移行する。なお、蒸気による復圧後でも、処理槽2内は大気圧未満であるように、移行温度が設定される。
<<Steam supply step S2>>
In the steam supply step S2, the steam supply means 5 supplies steam into the processing tank 2 through the exhaust path 9, and the inside of the processing tank 2 is brought to a predetermined transition temperature (or saturation pressure (transition pressure) corresponding to the transition temperature). ). Specifically, the sterilization steam supply valve 33 is opened to supply steam into the treatment bath 2 by causing the exhaust path 9 to flow backward from the primary side of the check valve 12 . When the temperature detected by the temperature sensor 7 becomes equal to or higher than the transition temperature (84° C., for example), the process proceeds to the next step. The transition temperature is set so that the internal pressure of the processing tank 2 is less than the atmospheric pressure even after the pressure is restored by the steam.

≪殺菌工程S3≫
殺菌工程S3では、給蒸手段5を制御して、処理槽2内を設定温度範囲(たとえば84~86℃)に維持する。具体的には、設定温度範囲の上限温度(たとえば86℃)を上回ると、殺菌用給蒸弁33を閉じる一方、下限温度(たとえば84℃)を下回ると、殺菌用給蒸弁33を開けて、処理槽2内を設定温度範囲に維持する。この間、温度センサ7の検出温度が殺菌温度(たとえば80℃)以上である時間をタイマで測定する。そして、温度センサ7の検出温度が殺菌温度以上である時間が殺菌時間(たとえば10分)に達したら、殺菌用給蒸弁33を閉じて、殺菌工程S3を終了する。殺菌工程S3において、処理槽2内と、処理槽2から逆止弁12までの領域を、蒸気で殺菌することができる。
<<Sterilization step S3>>
In the sterilization step S3, the steam supply means 5 is controlled to maintain the inside of the treatment bath 2 within a set temperature range (84 to 86° C., for example). Specifically, when the upper limit temperature (eg, 86° C.) of the set temperature range is exceeded, the sterilization steam supply valve 33 is closed, and when the temperature is below the lower limit temperature (eg, 84° C.), the sterilization steam supply valve 33 is opened. , the inside of the processing tank 2 is maintained within the set temperature range. During this time, the time during which the temperature detected by the temperature sensor 7 is equal to or higher than the sterilization temperature (80° C., for example) is measured by a timer. Then, when the time during which the temperature detected by the temperature sensor 7 is equal to or higher than the sterilization temperature reaches the sterilization time (for example, 10 minutes), the sterilization steam supply valve 33 is closed to end the sterilization step S3. In the sterilization step S3, the inside of the processing tank 2 and the area from the processing tank 2 to the check valve 12 can be sterilized with steam.

≪熱交冷却工程S4≫
熱交冷却工程S4は、給蒸工程S2および殺菌工程S3により昇温された熱交換器11の冷却を図る。具体的には、真空ポンプ13を停止したまま、常温水給水弁18および排水出口弁28を開けて、熱交換器11に常温水を通水する。熱交換器11に通水することで、熱交換器11の冷却が図られる。そして、熱交冷却時間だけ熱交換器11に通水したら、排水出口弁28を閉じて、熱交冷却工程S4を終了する。
<<Heat exchange cooling step S4>>
The heat exchanger cooling step S4 cools the heat exchanger 11 heated by the steaming step S2 and the sterilization step S3. Specifically, while the vacuum pump 13 is stopped, the room temperature water supply valve 18 and the drain outlet valve 28 are opened to supply room temperature water to the heat exchanger 11 . By passing water through the heat exchanger 11, the heat exchanger 11 is cooled. Then, when water is passed through the heat exchanger 11 for the heat exchanger cooling time, the drain outlet valve 28 is closed and the heat exchanger cooling step S4 is completed.

≪湯気取り工程S5≫
湯気取り工程S5は、処理槽2内に残る蒸気を外部へ排出する。具体的には、空気排除工程S1と同様に、常温水給水弁18および封水給水弁16を開けた状態で、真空ポンプ13を作動させて、処理槽2内を減圧する。この際、冷水戻し弁27および排水出口弁28は閉じられており、熱交換器11には通水されない。但し、場合により、排水出口弁28を開けて、熱交換器11に常温水を通水してもよい。
<<Steam removal step S5>>
In the steam removing step S5, the steam remaining in the processing tank 2 is discharged to the outside. Specifically, similarly to the air removal step S1, the vacuum pump 13 is operated to reduce the pressure in the processing tank 2 with the normal temperature water supply valve 18 and the sealed water supply valve 16 opened. At this time, the cold water return valve 27 and the drain outlet valve 28 are closed, and the heat exchanger 11 is not supplied with water. However, depending on the situation, the water at normal temperature may be passed through the heat exchanger 11 by opening the drain outlet valve 28 .

その後、圧力センサ6の検出圧力が冷水切替圧力以下になると、真空ポンプ13への給水を常温水から冷水に切り替える。具体的には、常温水給水弁18を閉じる一方、冷水給水弁20を開ければよい。この際、湯気取り工程S5では、冷水戻し弁27を開けて、熱交換器11には冷水を通し、熱交換器11で使用後の冷水は冷水タンクへ戻される。 Thereafter, when the pressure detected by the pressure sensor 6 becomes equal to or lower than the cold water switching pressure, the water supply to the vacuum pump 13 is switched from room temperature water to cold water. Specifically, while the normal temperature water supply valve 18 is closed, the cold water supply valve 20 is opened. At this time, in the steam removing step S5, the cold water return valve 27 is opened to pass cold water through the heat exchanger 11, and the cold water used in the heat exchanger 11 is returned to the cold water tank.

このようにして、処理槽2内を減圧していき、圧力センサ6の検出圧力が第二設定圧力(たとえば45hPa)以下になれば、真空ポンプ13を停止すると共に、封水給水弁16、冷水給水弁20および冷水戻し弁27を閉じて、次工程へ移行する。 In this way, the inside of the processing tank 2 is decompressed, and when the pressure detected by the pressure sensor 6 becomes equal to or lower than the second set pressure (for example, 45 hPa), the vacuum pump 13 is stopped, and the sealing water supply valve 16 and cold water are The water supply valve 20 and the cold water return valve 27 are closed, and the process proceeds to the next step.

≪復圧工程S6≫
復圧工程S6では、復圧手段4により、処理槽2内を大気圧まで復圧する。具体的には、図4に示すように、給気弁31を開けて(S61)、処理槽2内を大気圧まで復圧する(S66)。復圧工程S6での給気弁31の開度は、常に全開とされるなど、予め定められた開度とされる。
<<Restoration step S6>>
In the pressure recovery step S6, the pressure recovery means 4 recovers the pressure inside the processing tank 2 to the atmospheric pressure. Specifically, as shown in FIG. 4, the air supply valve 31 is opened (S61), and the inside of the processing bath 2 is restored to atmospheric pressure (S66). The degree of opening of the air supply valve 31 in the pressure recovery step S6 is set to a predetermined degree of opening, such as being always fully open.

復圧工程S6において、復圧工程S6の全部または一部における復圧時間に基づき、エアフィルタ30の目詰まりを判定することができる。本実施例では、前述したとおり、直前の工程(湯気取り工程S5)で、処理槽2内を第二設定圧力まで減圧しているが、その第二設定圧力から大気圧までの復圧中の所定圧力域を通過する復圧時間に基づき、エアフィルタ30の目詰まりを判定する。 In the pressure recovery step S6, clogging of the air filter 30 can be determined based on the pressure recovery time in all or part of the pressure recovery step S6. In the present embodiment, as described above, the inside of the processing tank 2 is depressurized to the second set pressure in the previous step (steam removal step S5). Clogging of the air filter 30 is determined based on the pressure recovery time required to pass through the predetermined pressure range.

具体的には、図4に示すように、制御器は、給気弁31の開放後、圧力センサ6の検出圧力を監視し、処理槽2内が第二測定開始圧力(たとえば50hPa)以上になると、復圧時間の測定を開始し(S62,S63)、処理槽2内が第二測定終了圧力に到達した際、復圧時間の測定を終了する(S64,S65)。つまり、処理槽2内を所定圧力(第二設定圧力)から大気圧まで復圧する過程で、第二測定開始圧力から第二測定終了圧力までの復圧時間を測定する。そして、このようにして測定された復圧時間(測定時間)が基準復圧時間を超えていれば、エアフィルタ30の目詰まりが発生していると判定し、基準復圧時間以下であれば、エアフィルタ30の目詰まりは発生していないと判定する(S67)。判定結果(特にエアフィルタ30の目詰まりが発生している旨の判定結果)は、所定の出力機器に出力してお知らせする(S68)。たとえば、タッチパネルに表示したり、ランプを点灯させたり、あるいはブザーを鳴らしたりする。 Specifically, as shown in FIG. 4, the controller monitors the pressure detected by the pressure sensor 6 after the air supply valve 31 is opened, and the inside of the processing tank 2 rises above the second measurement start pressure (for example, 50 hPa). Then, the pressure recovery time measurement is started (S62, S63), and when the inside of the processing tank 2 reaches the second measurement end pressure, the pressure recovery time measurement is terminated (S64, S65). That is, in the process of restoring the inside of the processing tank 2 from a predetermined pressure (second set pressure) to atmospheric pressure, the pressure restoration time from the second measurement start pressure to the second measurement end pressure is measured. If the pressure recovery time (measurement time) thus measured exceeds the reference pressure recovery time, it is determined that the air filter 30 is clogged. , it is determined that the air filter 30 is not clogged (S67). The determination result (particularly, the determination result indicating that the air filter 30 is clogged) is output to a predetermined output device for notification (S68). For example, display on a touch panel, light a lamp, or sound a buzzer.

ところで、エアフィルタ30の目詰まり判定のための時間測定について、ここでは、時間測定の開始時の圧力(第二測定開始圧力)は第二設定圧力よりも高い圧力とされ、時間測定の終了時の圧力(第二測定終了圧力)は大気圧よりも低い圧力とされたが、第二測定開始圧力を第二設定圧力としたり、第二測定終了圧力を大気圧としたりしてもよい。つまり、第二測定開始圧力は、第二設定圧力かそれ以上で設定され、第二測定終了圧力は、第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定されるならば、適宜変更可能である。いずれにしても、処理槽2内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、エアフィルタ30に目詰まりがあると判定して、その結果を出力してお知らせする。 By the way, regarding the time measurement for determining the clogging of the air filter 30, here, the pressure at the start of time measurement (second measurement start pressure) is higher than the second set pressure, and the pressure at the end of time measurement Although the pressure of (second measurement end pressure) is lower than the atmospheric pressure, the second measurement start pressure may be the second set pressure, or the second measurement end pressure may be the atmospheric pressure. That is, if the second measurement start pressure is set at the second set pressure or higher, and the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at or below atmospheric pressure , can be changed as appropriate. In any case, the time required for the pressure in the processing tank 2 to rise from the second measurement start pressure to the second measurement end pressure is measured, and if the time is longer than the reference pressure recovery time, the air filter 30 It judges that there is clogging, and outputs the result to notify the user.

なお、第二測定開始圧力を第二設定圧力よりも高い圧力とし、第二測定終了圧力を大気圧よりも低い圧力としておけば、復圧開始時の槽内圧力のバラツキや、大気圧の変化や、装置設置環境(標高)の影響も抑えた判定を実施することができる。 If the second measurement start pressure is set to a pressure higher than the second set pressure and the second measurement end pressure is set to a pressure lower than the atmospheric pressure, variations in the tank pressure at the start of pressure recovery and changes in the atmospheric pressure In addition, it is possible to perform determination while suppressing the influence of the device installation environment (altitude).

本実施例の食品機械1によれば、殺菌運転において、空気排除工程S1での減圧時間に基づき真空ポンプ13の能力低下を判定したり、復圧工程S6での復圧時間に基づきエアフィルタ30の目詰まりを判定したりすることができる。殺菌運転は、処理槽2内に槽内容積を減じる収容物がない状態でなされるので、前記判定は、食品の量や温度、槽内に占める割合などに左右されない。また、定期点検のタイミングではなく、毎日なされる(たとえば一日の終わりや所定のバッチ処理の後になされる)殺菌運転時に、真空ポンプ13の能力低下やエアフィルタ30の目詰まりを、容易に確認することができる。 According to the food machine 1 of this embodiment, in the sterilization operation, it is determined whether the ability of the vacuum pump 13 is lowered based on the pressure reduction time in the air removal process S1, and the air filter 30 is determined based on the pressure recovery time in the pressure recovery process S6. clogging can be determined. Since the sterilization operation is performed in a state in which there is no content that would reduce the internal volume of the processing tank 2, the above determination is not affected by the amount, temperature, proportion of the food in the tank, or the like. In addition, it is easy to check whether the vacuum pump 13 is degraded or the air filter 30 is clogged during the sterilization operation, which is performed every day (for example, at the end of the day or after a predetermined batch process), not at the timing of regular inspection. can do.

食品機械1の制御手段を管理センター(一または複数の食品機械1を遠隔監視する施設)のコンピュータと通信回線で接続可能としておき、管理センターの側で食品機械1の前記判定結果を監視可能としてもよい。その場合、管理センターでは、真空ポンプ13の能力低下を確認したり、エアフィルタ30の目詰まりを確認したりすると、サービスマンを派遣したり、ユーザにメンテナンスを要請したりすることができる。 The control means of the food machine 1 can be connected to a computer in a control center (a facility for remotely monitoring one or more food machines 1) via a communication line, and the control center side can monitor the judgment result of the food machine 1. good too. In this case, when the control center confirms that the vacuum pump 13 is degraded or that the air filter 30 is clogged, it can dispatch a service person or request maintenance from the user.

次に、前記実施例における真空ポンプ13の能力判定と、エアフィルタ30の目詰まり判定の変形例について説明する。 Next, a modification of the performance determination of the vacuum pump 13 and the clogging determination of the air filter 30 in the above embodiment will be described.

前記実施例では、第一測定開始圧力から第一測定終了圧力までの減圧時間が所定の基準減圧時間よりも長いか否かで、真空ポンプ13の能力低下を判定したが、その際、真空ポンプ13への封水温度や真空ポンプ13の回転数に基づき、基準減圧時間を変更しても良い。例えば、封水温度や回転数(周波数)による真空ポンプ13の排気能力曲線から、基準減圧時間を算出し、能力判定を行うことができる。その場合、真空ポンプ13への封水温度は、封水給水路23または真空ポンプ13に、封水温度センサを設置しておけばよい。また、真空ポンプ13の回転数は、真空ポンプ13を駆動するインバータの周波数から算出できる。真空ポンプ13への給水温度や真空ポンプ13の回転数を考慮することで、より正確に真空ポンプ13の能力判定を行うことができる。 In the above embodiment, the deterioration of the vacuum pump 13 is determined based on whether or not the pressure reduction time from the first measurement start pressure to the first measurement end pressure is longer than the predetermined reference pressure reduction time. The reference decompression time may be changed based on the temperature of the seal water to 13 and the rotation speed of the vacuum pump 13 . For example, it is possible to calculate the reference depressurization time from the pumping capacity curve of the vacuum pump 13 depending on the seal water temperature and the number of rotations (frequency), and perform the capacity determination. In this case, a seal water temperature sensor may be installed in the seal water supply path 23 or the vacuum pump 13 to check the temperature of the seal water to the vacuum pump 13 . Also, the rotation speed of the vacuum pump 13 can be calculated from the frequency of the inverter that drives the vacuum pump 13 . By considering the temperature of the water supply to the vacuum pump 13 and the rotation speed of the vacuum pump 13, the performance of the vacuum pump 13 can be determined more accurately.

また、前記実施例では、大気圧から第一設定圧力までの減圧時間(またはその間で設定される圧力域を通過する減圧時間)で、真空ポンプ13の能力低下を判定したが、大気圧と第一設定圧力との間で、複数の圧力域を設定してもよい。その場合、圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定すればよい。 Further, in the above-described embodiment, the deterioration of the ability of the vacuum pump 13 is determined by the pressure reduction time from the atmospheric pressure to the first set pressure (or the pressure reduction time passing through the pressure range set therebetween). A plurality of pressure ranges may be set between one set pressure. In that case, the time required to pass through each pressure range is measured, and it is determined whether or not the time is longer than the reference depressurization time for the pressure range.

たとえば、大気圧から500hPaまでの第一減圧時間(測定時間)と第一基準減圧時間とを比較し、500hPaから100hPaまでの第二減圧時間(測定時間)と第二基準減圧時間とを比較し、100hPaから30hPaまでの第三減圧時間(測定時間)と第三基準減圧時間とを比較し、どの領域で減圧速度が遅くなっているのかなどを判定させてもよい。つまり、真空ポンプ13の特性として、大気圧から所定圧力までの減圧時、どのように圧力が下がっていくかは決まっているので、それとの比較で、どの圧力域で能力低下が生じているのかなどを確認することができる。 For example, the first pressure reduction time (measurement time) from atmospheric pressure to 500 hPa is compared with the first reference pressure reduction time, and the second pressure reduction time (measurement time) from 500 hPa to 100 hPa is compared with the second reference pressure reduction time. , the third depressurization time (measurement time) from 100 hPa to 30 hPa and the third reference depressurization time may be compared to determine in which region the depressurization speed is slow. In other words, as a characteristic of the vacuum pump 13, it is determined how the pressure decreases when the pressure is reduced from the atmospheric pressure to a predetermined pressure. etc. can be confirmed.

本発明の食品機械1は、前記実施例の構成(制御を含む)に限らず適宜変更可能である。特に、(a)食品が収容される処理槽2と、(b)この処理槽2内からの排気路9に、真空ポンプ13が設けられた減圧手段3と、(c)処理槽2内への給気路29に、エアフィルタ30および給気弁31が設けられた復圧手段4と、(d)前記各手段3,4を制御する制御手段とを備え、(e)制御手段は、処理槽2内に槽内容積を減じる収容物がない状態で、減圧手段3により処理槽2内を減圧する減圧操作と、復圧手段4により処理槽2内を復圧する復圧操作とを実行可能とされ、減圧操作中の全部または一部における減圧時間に基づき、真空ポンプ13の能力低下を判定するか、および/または、復圧操作中の全部または一部における復圧時間に基づき、エアフィルタ30の目詰まりを判定するのであれば、その他の構成は適宜に変更可能である。 The food machine 1 of the present invention is not limited to the configuration (including control) of the above embodiment, and can be modified as appropriate. In particular, (a) a processing tank 2 in which food is stored, (b) a depressurizing means 3 having a vacuum pump 13 provided in an exhaust passage 9 from the processing tank 2, and (c) a food into the processing tank 2. (d) control means for controlling the means 3 and 4; and (e) the control means, Depressurizing operation for reducing the pressure in the processing tank 2 by the pressure reducing means 3 and pressure recovery operation for restoring the pressure in the processing tank 2 by the pressure restoring means 4 are executed in a state where there is no content to reduce the internal volume of the processing tank 2. Based on the depressurization time during all or part of the depressurization operation, the ability of the vacuum pump 13 is determined, and / or based on the depressurization time during all or part of the depressurization operation, the air Other configurations can be changed as appropriate so long as clogging of the filter 30 is determined.

たとえば、前記実施例では、殺菌運転における空気排除工程S1の初期減圧操作(S11-S15)で、真空ポンプ13の能力低下を判定すると共に、最終的な復圧工程S6で、エアフィルタ30の目詰まりを判定したが、真空ポンプ13の能力判定とエアフィルタ30の目詰まり判定との内、片方のみを実行可能としてもよい。 For example, in the above embodiment, in the initial depressurization operation (S11-S15) of the air removal step S1 in the sterilization operation, it is determined that the performance of the vacuum pump 13 has deteriorated, and in the final pressure recovery step S6, the air filter 30 Although clogging is determined, only one of the performance determination of the vacuum pump 13 and the clogging determination of the air filter 30 may be executed.

また、殺菌運転時の判定に限らず、専用のテスト運転で判定可能としてもよい。その場合、テスト運転では、殺菌運転における空気排除工程S1と同様に、大気圧から所定圧力までの減圧工程後、殺菌運転における復圧工程S6と同様に、所定圧力から大気圧まで復圧工程を実行可能とし、減圧工程において真空ポンプ13の能力を判定するか、および/または、復圧工程S6においてエアフィルタ30の目詰まりを判定すればよい。専用のテスト運転の場合、殺菌運転における給蒸工程S2、殺菌工程S3、熱交冷却工程S4および湯気取り工程S5は省略可能である。専用のテスト運転も、処理槽2内に槽内容積を減じる収容物がない状態でなされるのは言うまでもない。 Further, determination may be made not only during the sterilization operation, but also during a dedicated test operation. In that case, in the test operation, similarly to the air removal step S1 in the sterilization operation, after the pressure reduction step from the atmospheric pressure to the predetermined pressure, similarly to the pressure restoration step S6 in the sterilization operation, the pressure restoration step from the predetermined pressure to the atmospheric pressure. It is only necessary to determine the ability of the vacuum pump 13 in the depressurizing step and/or determine the clogging of the air filter 30 in the depressurizing step S6. In the case of a dedicated test operation, the steam supply step S2, the sterilization step S3, the heat exchanger cooling step S4, and the steam removal step S5 in the sterilization operation can be omitted. It goes without saying that the exclusive test operation is also carried out in a state in which there is no content in the processing bath 2 that reduces the inner volume of the bath.

また、前記実施例において、逆止弁12に代えて、遮断弁(電磁弁、電動弁の他、手動弁でもよい)を用いてもよい。いずれの場合も、前記逆止弁12の開閉と同様に、遮断弁を開閉(真空ポンプ13の発停と遮断弁の開閉を連動)させればよい。そして、この遮断弁の一次側(処理槽2側)において、排気路9に殺菌用給蒸路32を接続するのが好ましい。 Also, in the above embodiment, a shutoff valve (a solenoid valve, an electric valve, or a manual valve may be used) may be used instead of the check valve 12 . In either case, the shut-off valve may be opened and closed (starting/stopping of the vacuum pump 13 and opening/closing of the shut-off valve may be interlocked) in the same manner as the opening and closing of the check valve 12 described above. Then, it is preferable to connect the sterilization steam supply path 32 to the exhaust path 9 on the primary side (treatment tank 2 side) of the shutoff valve.

また、前記実施例において、減圧手段3は、真空ポンプ13を備えるのであれば、その他の構成は適宜に変更可能である。たとえば、前記実施例において、蒸気エゼクタ10の設置は省略可能である。また、前記実施例において、弁(逆止弁12または遮断弁)の位置は、熱交換器11と真空ポンプ13との間に限らず、たとえば処理槽2と熱交換器11との間としてもよい。いずれの場合も、弁よりも処理槽2側において、排気路9(あるいは処理槽2)に殺菌用給蒸路32を接続すればよい。なお、処理槽2と熱交換器11との間に弁(逆止弁12または遮断弁)を設け、処理槽2内と処理槽2から弁(逆止弁12または遮断弁)までの領域を蒸気で殺菌する場合、熱交冷却工程S4を省略してもよいし、湯気取り工程S5と同時にまたは湯気取り工程S5中に熱交冷却工程S4を開始し、熱交換器11の冷却を行ってもよい。 Further, in the above embodiment, if the decompression means 3 is provided with the vacuum pump 13, other configurations can be changed as appropriate. For example, in the above embodiment, the installation of the steam ejector 10 can be omitted. In the above-described embodiments, the position of the valve (check valve 12 or shutoff valve) is not limited to between the heat exchanger 11 and the vacuum pump 13, but may be between the processing tank 2 and the heat exchanger 11, for example. good. In either case, the sterilization steam supply path 32 may be connected to the exhaust path 9 (or the treatment tank 2) on the treatment tank 2 side of the valve. A valve (check valve 12 or cutoff valve) is provided between the processing tank 2 and the heat exchanger 11, and the area within the processing tank 2 and from the processing tank 2 to the valve (check valve 12 or cutoff valve) is separated. When sterilizing with steam, the heat exchanger cooling step S4 may be omitted, or the heat exchanger cooling step S4 may be started at the same time as or during the steam removing step S5 to cool the heat exchanger 11. good too.

また、前記実施例では、真空ポンプ13の能力低下の有無を判定したが、場合により、能力低下の度合いを判定してもよい。つまり、測定された減圧時間が、理想減圧時間と比較して、どの程度遅くなっているのかを判定して、結果を出力するようにしてもよい。 Further, in the above embodiment, it is determined whether or not the vacuum pump 13 is degraded, but depending on the situation, the degree of degraded performance may be determined. In other words, the measured decompression time may be compared with the ideal decompression time to determine how much the decompression time is delayed, and the result may be output.

同様に、前記実施例では、エアフィルタ30の目詰まりの有無を判定したが、場合により、目詰まりの度合いを判定してもよい。つまり、測定された復圧時間が、理想復圧時間と比較して、どの程度遅くなっているのかを判定して、結果を出力するようにしてもよい。 Similarly, in the above embodiment, whether or not the air filter 30 is clogged is determined, but depending on the situation, the degree of clogging may be determined. In other words, the measured pressure recovery time may be delayed compared to the ideal pressure recovery time, and the result may be output.

さらに、前記実施例では、真空冷却装置に適用した例について説明したが、真空ポンプ13を有する減圧手段3と、エアフィルタ30を有する復圧手段4とを備えるのであれば、真空冷却装置以外の各種食品機械1にも同様に適用可能である。 Furthermore, in the above-described embodiment, an example applied to a vacuum cooling device was described, but if the decompressing means 3 having the vacuum pump 13 and the pressure restoring means 4 having the air filter 30 are provided, the present invention can be applied to a cooling device other than the vacuum cooling device. It can also be applied to various food machines 1 in the same manner.

1 食品機械
2 処理槽
3 減圧手段
4 復圧手段
5 給蒸手段
6 圧力センサ
7 温度センサ
8 品温センサ
9 排気路
10 蒸気エゼクタ(10a:吸引口、10b:入口、10c:出口)
11 熱交換器
12 逆止弁
13 真空ポンプ
14 エゼクタ給蒸路
15 エゼクタ給蒸弁
16 封水給水弁
17 常温水給水路
18 常温水給水弁
19 冷水給水路
20 冷水給水弁
21 共通給水路
22 熱交給水路
23 封水給水路
24 熱交排水路
25 冷水戻し路
26 排水出口路
27 冷水戻し弁
28 排水出口弁
29 給気路
30 エアフィルタ
31 給気弁
32 殺菌用給蒸路
33 殺菌用給蒸弁
34 共通給蒸路
S1 空気排除工程
S2 給蒸工程
S3 殺菌工程
S4 熱交冷却工程
S5 湯気取り工程
S6 復圧工程
REFERENCE SIGNS LIST 1 food machine 2 treatment tank 3 decompression means 4 pressure recovery means 5 steam supply means 6 pressure sensor 7 temperature sensor 8 product temperature sensor 9 exhaust path 10 steam ejector (10a: suction port, 10b: inlet, 10c: outlet)
REFERENCE SIGNS LIST 11 heat exchanger 12 check valve 13 vacuum pump 14 ejector steam supply line 15 ejector steam supply valve 16 sealed water supply valve 17 normal temperature water supply path 18 normal temperature water supply valve 19 cold water supply path 20 cold water supply valve 21 common water supply path 22 heat AC water supply path 23 Sealed water supply path 24 Heat exchange drainage path 25 Cold water return path 26 Drainage outlet path 27 Cold water return valve 28 Drainage outlet valve 29 Air supply path 30 Air filter 31 Air supply valve 32 Sterilization steam supply path 33 Sterilization supply Steam valve 34 Common steam supply path S1 Air removal process S2 Steam supply process S3 Sterilization process S4 Heat exchange cooling process S5 Steam removal process S6 Pressure return process

Claims (6)

食品が収容される処理槽と、
この処理槽内からの排気路に、真空ポンプが設けられた減圧手段と、
前記処理槽内への給気路に、エアフィルタおよび給気弁が設けられた復圧手段と、
前記各手段を制御する制御手段とを備え
前記処理槽内からの排気路に、前記真空ポンプの他、熱交換器および弁を備え、
前記排気路の内、前記弁よりも前記処理槽側から前記処理槽内へ蒸気を供給する給蒸手段をさらに備え、
前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、減圧操作として前記減圧手段により前記処理槽内を減圧する空気排除工程、前記給蒸手段により前記処理槽内を復圧する給蒸工程、前記処理槽内を殺菌温度以上で殺菌時間保持する殺菌工程、前記減圧手段により前記処理槽内を減圧する湯気取り工程、復圧操作として前記復圧手段により前記処理槽内を復圧する復圧工程、を順次に含んで実行し、
前記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定す
ことを特徴とする食品機械。
a processing tank containing food;
a depressurizing means provided with a vacuum pump in the exhaust path from the inside of the processing tank;
a pressure recovery means provided with an air filter and an air supply valve in an air supply path into the processing tank;
and a control means for controlling each means ,
In addition to the vacuum pump, a heat exchanger and a valve are provided in the exhaust path from the inside of the processing tank,
further comprising steam supply means for supplying steam into the processing tank from the side of the processing tank in the exhaust path, rather than the valve;
The control means comprises an air removal step of decompressing the inside of the processing tank by the decompression means as a decompression operation in a state where there is no content to reduce the internal volume of the processing tank, and a steaming step of restoring the pressure, a sterilization step of holding the inside of the processing tank at a sterilization temperature or higher for a sterilization time, a steam removal step of reducing the pressure in the processing tank by the decompression means, and a pressure recovery operation by the pressure recovery means. sequentially including and executing a pressure restoring step for restoring the internal pressure,
The control means determines a decrease in the capacity of the vacuum pump based on the depressurization time in all or part of the air removal process.
A food machine characterized by:
記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定すると共に、前記復圧工程の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定する
ことを特徴とする請求項1に記載の食品機械。
The control means determines a decrease in the capacity of the vacuum pump based on the depressurization time in all or part of the air removal process, and the air 2. The food machine of claim 1, wherein the clogging of the filter is determined.
前記減圧操作では、前記処理槽内を第一設定圧力まで減圧し、
前記制御手段は、前記減圧操作中、前記処理槽内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、前記真空ポンプの能力が低下していると判定し、
前記第一測定開始圧力は、大気圧かそれ未満で設定され、
前記第一測定終了圧力は、前記第一測定開始圧力未満の圧力で、且つ、前記第一設定圧力かそれ以上で設定される
ことを特徴とする請求項1または請求項2に記載の食品機械。
In the decompression operation, the inside of the processing tank is decompressed to a first set pressure,
During the decompression operation, the control means measures the time required for the pressure in the processing tank to decrease from the first measurement start pressure to the first measurement end pressure, and if the time is longer than the reference decompression time, the Determining that the capacity of the vacuum pump is declining,
The first measurement start pressure is set at atmospheric pressure or less,
The food machine according to claim 1 or 2, wherein the first measurement end pressure is set to a pressure lower than the first measurement start pressure and equal to or higher than the first set pressure. .
大気圧と前記第一設定圧力との間で、複数の圧力域が設定され、
前記制御手段は、前記圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定する
ことを特徴とする請求項3に記載の食品機械。
A plurality of pressure ranges are set between the atmospheric pressure and the first set pressure,
4. The control means measures the time required to pass through each pressure range, and determines whether or not the measured time is longer than the reference depressurization time for the pressure range. Food machine as described.
前記基準減圧時間は、前記真空ポンプへの給水温度および/または真空ポンプの回転数に基づき変更される
ことを特徴とする請求項1~4のいずれか1項に記載の食品機械。
The food machine according to any one of claims 1 to 4, wherein the reference depressurization time is changed based on the temperature of water supplied to the vacuum pump and/or the rotation speed of the vacuum pump.
前記復圧操作の前、前記処理槽内を第二設定圧力まで減圧し、
前記制御手段は、前記復圧操作中、前記処理槽内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、前記エアフィルタに目詰まりがあると判定し、
前記第二測定開始圧力は、前記第二設定圧力かそれ以上で設定され、
前記第二測定終了圧力は、前記第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定される
ことを特徴とする請求項2に記載の食品機械。
Before the pressure recovery operation, the inside of the treatment tank is depressurized to a second set pressure,
During the pressure recovery operation, the control means measures the time required for the pressure in the treatment tank to rise from the second measurement start pressure to the second measurement end pressure, and if the time is longer than the reference pressure recovery time , determining that the air filter is clogged,
The second measurement start pressure is set at the second set pressure or higher,
The food machine according to claim 2 , wherein the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at or below atmospheric pressure.
JP2018166600A 2018-09-06 2018-09-06 food machine Active JP7137129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166600A JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166600A JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Publications (2)

Publication Number Publication Date
JP2020038043A JP2020038043A (en) 2020-03-12
JP7137129B2 true JP7137129B2 (en) 2022-09-14

Family

ID=69737731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166600A Active JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Country Status (1)

Country Link
JP (1) JP7137129B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183325A (en) 2010-03-10 2011-09-22 Miura Co Ltd Washing apparatus
JP2011200468A (en) 2010-03-26 2011-10-13 Miura Co Ltd Food machine
JP2016049496A (en) 2014-08-29 2016-04-11 日立工機株式会社 Centrifuge
JP2017166767A (en) 2016-03-17 2017-09-21 株式会社サムソン Vacuum cooling apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582693Y2 (en) * 1989-09-29 1998-10-08 三菱重工業株式会社 Control device for condenser of steam turbine plant
JPH0880340A (en) * 1994-09-12 1996-03-26 Chiyoda Manufacturing Co Ltd Detection of clogging of disinfecting filter for gas sterilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183325A (en) 2010-03-10 2011-09-22 Miura Co Ltd Washing apparatus
JP2011200468A (en) 2010-03-26 2011-10-13 Miura Co Ltd Food machine
JP2016049496A (en) 2014-08-29 2016-04-11 日立工機株式会社 Centrifuge
JP2017166767A (en) 2016-03-17 2017-09-21 株式会社サムソン Vacuum cooling apparatus

Also Published As

Publication number Publication date
JP2020038043A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
TWI500876B (en) Gas supplying apparatus, cylinder cabinet provided with the same, valve box, and substrate process apparatus
US9597608B2 (en) Cryopump system
TWI499722B (en) Cryogenic pump control device, cryogenic pump system and low temperature pump to determine the degree of vacuum
JP7137129B2 (en) food machine
JP6716272B2 (en) Water server, its operation control method and its operation control program
JP5786417B2 (en) Cleaning device
WO2007094141A1 (en) Cooling device
JP2010144981A (en) Cooling method and cooling device
JP2018204860A (en) Vacuum cooler
JP6417872B2 (en) Vacuum cooling device
JP4883463B2 (en) Steam sterilizer
JP6748456B2 (en) Vacuum cooling device
JP7124677B2 (en) vacuum cooling system
JP7432103B2 (en) vacuum cooling device
JP6369755B2 (en) Vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP6738559B2 (en) Air leak detector and steam sterilizer equipped with it
KR102009664B1 (en) Cooling apparatus and controlling method thereof
JP7167572B2 (en) vacuum cooling system
JP5332820B2 (en) Pressure vessel
JP7354799B2 (en) vacuum cooling device
JP7223319B2 (en) vacuum cooling system
JP7035541B2 (en) Vacuum defroster
JP6394299B2 (en) Vacuum cooling device
JP2020096539A (en) Vacuum cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7137129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150