JP2020038043A - Food machine - Google Patents

Food machine Download PDF

Info

Publication number
JP2020038043A
JP2020038043A JP2018166600A JP2018166600A JP2020038043A JP 2020038043 A JP2020038043 A JP 2020038043A JP 2018166600 A JP2018166600 A JP 2018166600A JP 2018166600 A JP2018166600 A JP 2018166600A JP 2020038043 A JP2020038043 A JP 2020038043A
Authority
JP
Japan
Prior art keywords
pressure
processing tank
time
vacuum pump
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166600A
Other languages
Japanese (ja)
Other versions
JP7137129B2 (en
Inventor
雅夫 蔵野
Masao Kurano
雅夫 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018166600A priority Critical patent/JP7137129B2/en
Publication of JP2020038043A publication Critical patent/JP2020038043A/en
Application granted granted Critical
Publication of JP7137129B2 publication Critical patent/JP7137129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Abstract

To provide a food machine that allows deterioration in capability of a vacuum pump 13 and/or clogging of an air filter 30 to be easily known automatically and objectively.SOLUTION: A food machine includes: a processing tank 2 in which food is stored; decompression means 3 equipped with a vacuum pump 13 in an exhaust passage 9 from the processing tank 2; pressure restoring means 4 equipped with an air filter 30 in an air supply passage 29 to the processing tank 2; and control means. In a state that there is no storage material that reduces tank volume in the processing tank 2, a decompression operation for decompressing the processing tank 2 with the decompression means 3 and a pressure restoring operation for restoring the pressure in the processing tank 2 with the pressure restoring means 4 can be performed. Deterioration in the capability of the vacuum pump 13 is determined on the basis of a decompression time in the decompression operation, and/or clogging of the air filter 30 is determined on the basis of a pressure restoring time in the pressure restoring operation.SELECTED DRAWING: Figure 1

Description

本発明は、真空ポンプを有する減圧手段と、エアフィルタを有する復圧手段とを備えた各種食品機械に関するものである。   TECHNICAL FIELD The present invention relates to various food machines provided with a pressure reducing means having a vacuum pump and a pressure reducing means having an air filter.

減圧手段と復圧手段とを備えた食品機械として、たとえば真空冷却装置が知られている。真空冷却装置は、減圧手段により処理槽内を減圧することで、処理槽内の食品からの水分蒸発を促し、その気化潜熱で食品の冷却を図る装置である。冷却後には、復圧手段により、処理槽内が大気圧まで復圧される。減圧手段は、処理槽内からの排気路に真空ポンプを備え、復圧手段は、処理槽内への給気路にエアフィルタを備える。下記特許文献1に開示されるように、処理槽内および減圧系統の殺菌が可能な食品機械も知られている。   As a food machine having a decompression unit and a decompression unit, for example, a vacuum cooling device is known. The vacuum cooling device is a device that promotes evaporation of water from food in the processing tank by depressurizing the inside of the processing tank with a decompression means, and cools the food with the latent heat of vaporization. After cooling, the inside of the processing tank is returned to the atmospheric pressure by the pressure recovery means. The pressure reducing means includes a vacuum pump in an exhaust path from inside the processing tank, and the pressure reducing means includes an air filter in an air supply path into the processing tank. As disclosed in Patent Document 1 below, a food machine capable of sterilizing the inside of a treatment tank and a decompression system is also known.

特開2011−200468号公報JP 2011-200488 A

減圧手段の真空ポンプは、ゴミ詰り等の偶発的な不具合および経年劣化により能力が低下するが、従来、この能力低下を客観的に自動で判定することはできなかった。日常の冷却運転時に、真空ポンプの能力低下を知ることができれば好適であるが、食品の量や温度、槽内に占める割合などで減圧時間が変わるため、真空ポンプの能力低下を簡易に知ることはできなかった。   The performance of the vacuum pump of the decompression means is reduced due to accidental troubles such as clogging of dust and deterioration over time. However, conventionally, it has not been possible to objectively and automatically determine the reduction in capacity. It is preferable to be able to know the decrease in the capacity of the vacuum pump during daily cooling operation.However, since the decompression time varies depending on the amount of food, the temperature, and the ratio of the food in the tank, it is easy to know the decrease in the capacity of the vacuum pump. Could not.

一方、復圧手段のエアフィルタは、使用に伴い目詰まりが生じ、復圧時間の増大や衛生面の観点から定期的な交換が望まれるが、装置の設置環境によって目詰まりの進行具合が異なる。エアフィルタの交換時期を簡易に知ることができれば好適であるが、従来、エアフィルタの目詰まりを客観的に自動で判定することはできなかった。前述した真空ポンプの場合と同様、槽内に占める食品の割合(逆にいえば槽内に残る空き容積)で復圧時間が変わるため、エアフィルタの目詰まりを簡易に知ることはできなかった。   On the other hand, the air filter of the pressure recovery means is clogged with use, and periodic replacement is desired from the viewpoint of an increase in pressure recovery time and hygiene, but the progress of clogging differs depending on the installation environment of the device. . It is preferable that the time for replacing the air filter can be easily known. However, conventionally, it has not been possible to objectively and automatically determine whether the air filter is clogged. As in the case of the above-mentioned vacuum pump, the pressure recovery time varies depending on the ratio of food in the tank (in other words, the free volume remaining in the tank), so that clogging of the air filter could not be easily known. .

本発明が解決しようとする課題は、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる食品機械を提供することにある。   The problem to be solved by the present invention is to provide a food machine capable of automatically and easily knowing about a reduced capacity of a vacuum pump and / or clogging of an air filter.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内からの排気路に、真空ポンプが設けられた減圧手段と、前記処理槽内への給気路に、エアフィルタおよび給気弁が設けられた復圧手段と、前記各手段を制御する制御手段とを備え、前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、前記減圧手段により前記処理槽内を減圧する減圧操作と、前記復圧手段により前記処理槽内を復圧する復圧操作とを実行可能とされ、前記減圧操作中の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定するか、および/または、前記復圧操作中の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定することを特徴とする食品機械である。   Means for Solving the Problems The present invention has been made to solve the above problems, and the invention according to claim 1 has a processing tank in which food is stored, and a vacuum pump is provided in an exhaust path from inside the processing tank. A pressure reducing means, a pressure recovery means provided with an air filter and an air supply valve in an air supply path into the processing tank, and a control means for controlling the respective means, the control means comprising: It is possible to execute a pressure reducing operation of reducing the pressure in the processing tank by the pressure reducing means and a pressure reducing operation of reducing the pressure in the processing tank by the pressure reducing means in a state in which there is no container that reduces the volume in the tank. Determining a reduction in the capacity of the vacuum pump based on the decompression time during all or part of the depressurization operation, and / or determining the air pressure based on the decompression time during all or part of the decompression operation. Determining filter clogging It is a food machine which is characterized.

請求項1に記載の発明によれば、処理槽内からの排気路に真空ポンプが設けられた減圧手段と、処理槽内への給気路にエアフィルタが設けられた復圧手段とを備え、処理槽内の減圧操作と復圧操作とを実行可能な食品機械において、減圧操作中の減圧時間に基づき真空ポンプの能力低下を判定するか、復圧操作中の復圧時間に基づきエアフィルタの目詰まりを判定することができる。この判定は、処理槽内に槽内容積を減じる収容物がない状態でなされるので、食品の量や温度、槽内に占める割合などに左右されない。このようにして、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる。   According to the first aspect of the present invention, there are provided a pressure reducing means provided with a vacuum pump in an exhaust path from inside the processing tank, and a pressure reducing means provided with an air filter in an air supply path into the processing tank. In a food machine capable of performing a decompression operation and a decompression operation in a processing tank, a decrease in the capacity of the vacuum pump is determined based on the decompression time during the decompression operation, or an air filter is determined based on the decompression time during the decompression operation. Can be determined. This determination is made in a state where there is no container in the processing tank that reduces the volume in the tank, and is not affected by the amount and temperature of the food, the ratio of the food in the tank, and the like. In this way, it is possible to automatically and easily know about a reduction in the capacity of the vacuum pump and / or clogging of the air filter.

請求項2に記載の発明は、前記処理槽内からの排気路に、前記真空ポンプの他、熱交換器および弁を備え、前記排気路の内、前記弁よりも前記処理槽側から前記処理槽内へ蒸気を供給する給蒸手段をさらに備え、前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、前記減圧操作として前記減圧手段により前記処理槽内を減圧する空気排除工程、前記給蒸手段により前記処理槽内を復圧する給蒸工程、前記処理槽内を殺菌温度以上で殺菌時間保持する殺菌工程、前記減圧手段により前記処理槽内を減圧する湯気取り工程、前記復圧操作として前記復圧手段により前記処理槽内を復圧する復圧工程、を順次に含んで実行し、前記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定するか、および/または、前記復圧工程の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定することを特徴とする請求項1に記載の食品機械である。   The invention according to claim 2 is provided with a heat exchanger and a valve in addition to the vacuum pump in an exhaust path from the inside of the processing tank, and the processing from the processing tank side of the exhaust path with respect to the valve. The apparatus further comprises a steam supply means for supplying steam into the tank, wherein the control means reduces the pressure in the processing tank by the pressure reducing means as the pressure reducing operation in a state where there is no container in the processing tank to reduce the volume in the tank. An air exclusion step, a steam supply step of restoring the pressure in the processing tank by the steam supply means, a sterilization step of maintaining the inside of the processing tank at a sterilization temperature or higher at a sterilization time, and a steam removing step of reducing the pressure in the processing tank by the pressure reducing means. Step, and a pressure-reducing step of reducing the pressure in the processing tank by the pressure-reducing means as the pressure-reducing operation. Of the vacuum pump 2. The food machine according to claim 1, wherein a clogging of the air filter is determined based on a pressure reduction time and / or a pressure recovery time in all or a part of the pressure recovery process. is there.

請求項2に記載の発明によれば、空気排除工程、給蒸工程、殺菌工程、湯気取り工程および復圧工程を順次に実行して、処理槽内および減圧系統(処理槽から弁までの区間)の殺菌が可能である。また、その殺菌運転において、空気排除工程での減圧時間に基づき真空ポンプの能力低下を判定するか、復圧工程での復圧時間に基づきエアフィルタの目詰まりを判定することができる。殺菌運転は、処理槽内に槽内容積を減じる収容物がない状態でなされるので、前記判定は、食品の量や温度、槽内に占める割合などに左右されない。このようにして、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる。   According to the second aspect of the present invention, the air elimination step, the steam supply step, the sterilization step, the steam removal step, and the decompression step are sequentially performed, and the inside of the processing tank and the pressure reducing system (the section from the processing tank to the valve) are executed. ) Sterilization is possible. Further, in the sterilization operation, it is possible to determine a decrease in the capacity of the vacuum pump on the basis of the pressure reduction time in the air removing step, or to determine whether the air filter is clogged based on the pressure recovery time in the pressure recovery step. Since the sterilization operation is performed in a state where there is no container in the processing tank that reduces the volume in the tank, the determination is not affected by the amount and temperature of the food, the ratio of the food in the tank, and the like. In this way, it is possible to automatically and easily know about a reduction in the capacity of the vacuum pump and / or clogging of the air filter.

請求項3に記載の発明は、前記減圧操作では、前記処理槽内を第一設定圧力まで減圧し、前記制御手段は、前記減圧操作中、前記処理槽内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、前記真空ポンプの能力が低下していると判定し、前記第一測定開始圧力は、大気圧かそれ未満で設定され、前記第一測定終了圧力は、前記第一測定開始圧力未満の圧力で、且つ、前記第一設定圧力かそれ以上で設定されることを特徴とする請求項1または請求項2に記載の食品機械である。   The invention according to claim 3 is that, in the depressurizing operation, the pressure in the processing tank is reduced to a first set pressure in the processing tank, and during the depressurizing operation, the pressure in the processing tank is increased to a first measurement start pressure. From measuring the time until it drops to the first measurement end pressure, if the time is longer than the reference decompression time, it is determined that the capacity of the vacuum pump is reduced, the first measurement start pressure is atmospheric pressure The first measurement end pressure is set at a pressure lower than the first measurement start pressure and the first set pressure or more. Item 3. A food machine according to item 2.

請求項3に記載の発明によれば、第一測定開始圧力から第一測定終了圧力までの減圧時間が基準減圧時間よりも長いか否かに基づき、真空ポンプの能力が低下しているか否かを容易に判定することができる。   According to the invention described in claim 3, whether or not the capacity of the vacuum pump is reduced is determined based on whether or not the pressure reduction time from the first measurement start pressure to the first measurement end pressure is longer than the reference pressure reduction time. Can be easily determined.

請求項4に記載の発明は、大気圧と前記第一設定圧力との間で、複数の圧力域が設定され、前記制御手段は、前記圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定することを特徴とする請求項3に記載の食品機械である。   According to a fourth aspect of the present invention, a plurality of pressure ranges are set between the atmospheric pressure and the first set pressure, and the control unit measures, for each of the pressure ranges, a time for passing through the pressure range. The food machine according to claim 3, wherein it is determined whether or not the time is longer than a reference decompression time for the pressure range.

請求項4に記載の発明によれば、真空ポンプの能力低下を、複数の圧力域に分けて確認することができる。   According to the fourth aspect of the invention, it is possible to confirm a decrease in the capacity of the vacuum pump in a plurality of pressure ranges.

請求項5に記載の発明は、前記基準減圧時間は、前記真空ポンプへの給水温度および/または真空ポンプの回転数に基づき変更されることを特徴とする請求項1〜4のいずれか1項に記載の食品機械である。   The invention according to claim 5 is characterized in that the reference decompression time is changed based on the temperature of water supplied to the vacuum pump and / or the number of revolutions of the vacuum pump. 2. A food machine according to item 1.

請求項5に記載の発明によれば、真空ポンプへの給水温度および/または真空ポンプの回転数を考慮して、より正確に、真空ポンプの能力判定を行うことができる。   According to the fifth aspect of the present invention, the capability of the vacuum pump can be more accurately determined in consideration of the temperature of water supplied to the vacuum pump and / or the number of rotations of the vacuum pump.

さらに、請求項6に記載の発明は、前記復圧操作の前、前記処理槽内を第二設定圧力まで減圧し、前記制御手段は、前記復圧操作中、前記処理槽内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、前記エアフィルタに目詰まりがあると判定し、前記第二測定開始圧力は、前記第二設定圧力かそれ以上で設定され、前記第二測定終了圧力は、前記第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定されることを特徴とする請求項1〜5のいずれか1項に記載の食品機械である。   Further, the invention according to claim 6, before the decompression operation, the pressure in the processing tank is reduced to a second set pressure, the control means, during the decompression operation, the pressure in the processing tank, Measure the time from the second measurement start pressure to the second measurement end pressure, if the time is longer than the reference pressure recovery time, determine that the air filter is clogged, the second measurement start pressure Is set at the second set pressure or higher, and the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at atmospheric pressure or lower. Item 6. The food machine according to any one of items 1 to 5.

請求項6に記載の発明によれば、第二測定開始圧力から第二測定終了圧力までの復圧時間が基準復圧時間よりも長いか否かに基づき、エアフィルタに目詰まりがあるか否かを容易に判定することができる。   According to the invention described in claim 6, whether the air filter is clogged is determined based on whether the pressure recovery time from the second measurement start pressure to the second measurement end pressure is longer than the reference pressure recovery time. Can be easily determined.

本発明の食品機械によれば、真空ポンプの能力低下、および/または、エアフィルタの目詰まりについて、客観的に自動で簡易に知ることができる。   ADVANTAGE OF THE INVENTION According to the foodstuff machine of this invention, it can objectively automatically and simply know about the reduced capacity of a vacuum pump and / or the clogging of an air filter.

本発明の一実施例の食品機械を示す概略構成図である。It is a schematic structure figure showing a food machine of one example of the present invention. 図1の食品機械の殺菌運転を示すフローチャートである。It is a flowchart which shows the sterilization operation of the food machine of FIG. 図2の空気排除工程を示すフローチャートである。It is a flowchart which shows the air elimination process of FIG. 図2の復圧工程を示すフローチャートである。3 is a flowchart illustrating a pressure recovery step in FIG. 2.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の食品機械1を示す概略構成図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a food machine 1 according to one embodiment of the present invention.

本実施例の食品機械1は、真空冷却装置であり、食品が収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出して処理槽2内を減圧する減圧手段3と、減圧された処理槽2内へ外気を導入して処理槽2内を復圧する復圧手段4と、減圧手段3の排気路9を介して処理槽2内へ蒸気を供給する給蒸手段5と、前記各手段3〜5を制御する制御手段(図示省略)とを備える。   The food machine 1 of the present embodiment is a vacuum cooling device, and includes a processing tank 2 in which food is stored, and a decompression unit 3 that suctions and discharges gas in the processing tank 2 to the outside to depressurize the processing tank 2. A decompression means 4 for introducing outside air into the decompressed processing tank 2 to decompress the inside of the processing tank 2, and a steam supply means 5 for supplying steam to the processing tank 2 via an exhaust passage 9 of the decompression means 3. And control means (not shown) for controlling the means 3 to 5.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドアで開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品を出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。   The processing tank 2 is a hollow container that can withstand reduced pressure in the internal space, and can be opened and closed by a door. The processing tank 2 is typically formed in a substantially rectangular box shape, and an opening at the front can be opened and closed by a door. The food can be taken in and out of the processing tank 2 by opening the door, and the opening of the processing tank 2 can be closed airtight by closing the door. The door may be provided on both the front and back of the processing tank 2.

処理槽2には、処理槽2内の圧力を検出する圧力センサ6と、処理槽2内の温度を検出する温度センサ7と、処理槽2内に収容される食品の温度を検出する品温センサ8とが設けられる。   The processing tank 2 has a pressure sensor 6 for detecting the pressure in the processing tank 2, a temperature sensor 7 for detecting the temperature in the processing tank 2, and a product temperature for detecting the temperature of the food contained in the processing tank 2. A sensor 8 is provided.

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路9に、蒸気エゼクタ10、蒸気凝縮用の熱交換器11、逆止弁12、および水封式の真空ポンプ13を順に備える。   The decompression unit 3 is a unit that sucks and discharges a gas (air or steam) in the processing tank 2 to the outside to reduce the pressure in the processing tank 2. In the present embodiment, the pressure reducing means 3 includes a steam ejector 10, a heat exchanger 11 for condensing steam, a check valve 12, and a water ring type vacuum pump 13 in an exhaust path 9 from inside the processing tank 2. .

蒸気エゼクタ10は、吸引口10aが処理槽2に接続されて設けられ、入口10bから出口10cへ向けて、エゼクタ給蒸路14からの蒸気がノズルで噴出可能とされる。入口10bから出口10cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口10aを介して出口10cへ吸引排出される。エゼクタ給蒸路14に設けたエゼクタ給蒸弁15の開閉を操作することで、蒸気エゼクタ10の作動の有無を切り替えることができる。   The steam ejector 10 is provided with a suction port 10a connected to the treatment tank 2, and is capable of ejecting steam from an ejector steam supply path 14 from an inlet 10b to an outlet 10c by a nozzle. By ejecting steam from the inlet 10b to the outlet 10c, the gas in the processing tank 2 is also suctioned and discharged to the outlet 10c via the suction port 10a. By operating the opening and closing of the ejector steam supply valve 15 provided in the ejector steam supply passage 14, the operation of the steam ejector 10 can be switched.

熱交換器11は、排気路9内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器11により、排気路9内の蒸気を、冷却水により冷却し凝縮させることができる。   The heat exchanger 11 is an indirect heat exchanger that exchanges heat without mixing the fluid in the exhaust passage 9 and the cooling water. By the heat exchanger 11, the steam in the exhaust path 9 can be cooled and condensed by the cooling water.

真空ポンプ13は、水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。真空ポンプ13には、封水給水弁16を介して水が供給可能とされる。封水給水弁16は、真空ポンプ13の発停と連動して開閉される。   The vacuum pump 13 is of a water seal type, and is operated while supplying water called water seal, as is well known. Water can be supplied to the vacuum pump 13 through a sealed water supply valve 16. The sealed water supply valve 16 is opened and closed in conjunction with the start and stop of the vacuum pump 13.

熱交換器11および真空ポンプ13への給水系統について説明すると、本実施例では、熱交換器11および真空ポンプ13には、常温水と冷水とを切り替えて供給可能とされる。冷水とは、チラー(図示省略)により所定温度に冷却を図られた水であり、常温水とは、そのような冷却を図られない水である。   A water supply system to the heat exchanger 11 and the vacuum pump 13 will be described. In the present embodiment, normal-temperature water and cold water can be supplied to the heat exchanger 11 and the vacuum pump 13 by switching. Cold water is water that has been cooled to a predetermined temperature by a chiller (not shown), and room temperature water is water that cannot be cooled as such.

図示例の場合、常温水と冷水の切り替えは、常温水給水路17に設けられた常温水給水弁18と、冷水給水路19に設けられた冷水給水弁20で行われる。常温水給水弁18より下流の常温水給水路17と、冷水給水弁20より下流の冷水給水路19とは、合流して共通給水路21とされている。そして、この共通給水路21は、熱交換器11への熱交給水路22と、真空ポンプ13への封水給水路23とに分岐されている。封水給水路23には、封水給水弁16が設けられている。   In the case of the illustrated example, switching between the normal temperature water and the cold water is performed by a normal temperature water supply valve 18 provided in the normal temperature water supply passage 17 and a cold water supply valve 20 provided in the cold water supply passage 19. The room temperature water supply passage 17 downstream from the room temperature water supply valve 18 and the cold water supply line 19 downstream from the cold water supply valve 20 are joined to form a common water supply passage 21. The common water supply channel 21 is branched into a heat exchange water supply channel 22 to the heat exchanger 11 and a sealed water supply channel 23 to the vacuum pump 13. The sealed water supply channel 23 is provided with a sealed water supply valve 16.

熱交換器11は、熱交給水路22を介して水が供給され、熱交排水路24を介して水が排出される。熱交排水路24は、冷水戻し路25と排水出口路26とに分岐され、冷水戻し路25には冷水戻し弁27が設けられ、排水出口路26には排水出口弁28が設けられている。冷水戻し弁27と排水出口弁28とは択一的にいずれか一方が開けられるか、双方が閉じられた状態に制御される。   The heat exchanger 11 is supplied with water through a heat exchange water supply channel 22 and discharged through a heat exchange drainage channel 24. The heat exchange drainage channel 24 is branched into a cold water return channel 25 and a drain outlet channel 26, the cold water return channel 25 is provided with a cold water return valve 27, and the drain outlet channel 26 is provided with a drain outlet valve 28. . Either one of the cold water return valve 27 and the drain outlet valve 28 is opened or both are closed.

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路29に、エアフィルタ30および給気弁31を順に備える。処理槽2内が減圧された状態で、給気弁31を開けると、外気がエアフィルタ30を介して処理槽2内へ導入され、処理槽2内を復圧することができる。給気弁31は、好ましくは開度調整可能な弁から構成される。   The pressure recovery means 4 is means for introducing outside air into the depressurized processing tank 2 to recover the pressure inside the processing tank 2. In this embodiment, the pressure recovery means 4 includes an air filter 30 and an air supply valve 31 in an air supply path 29 into the processing tank 2 in order. When the air supply valve 31 is opened while the pressure in the processing tank 2 is reduced, outside air is introduced into the processing tank 2 through the air filter 30, and the pressure in the processing tank 2 can be restored. The air supply valve 31 is preferably composed of a valve whose opening can be adjusted.

給蒸手段5は、前述した排気路9を介して、処理槽2内へ蒸気を供給する手段である。本実施例では、給蒸手段5は、熱交換器11と逆止弁12との間から、排気路9内へ蒸気(飽和蒸気)を供給する。つまり、熱交換器11と逆止弁12との間の排気路9には、殺菌用給蒸路32が接続されており、この殺菌用給蒸路32から排気路9内へ蒸気を供給可能とされる。この蒸気供給の有無は、殺菌用給蒸路32に設けられた殺菌用給蒸弁33により切り替えられる。なお、図示例では、殺菌用給蒸弁33よりも上流側の殺菌用給蒸路32と、エゼクタ給蒸弁15よりも上流側のエゼクタ給蒸路14とは、共通給蒸路34とされている。   The steam supply means 5 is a means for supplying steam into the processing tank 2 via the exhaust path 9 described above. In this embodiment, the steam supply means 5 supplies steam (saturated steam) into the exhaust path 9 from between the heat exchanger 11 and the check valve 12. That is, a sterilization steam supply passage 32 is connected to the exhaust passage 9 between the heat exchanger 11 and the check valve 12, and steam can be supplied from the sterilization steam supply passage 32 into the exhaust passage 9. It is said. Whether the steam is supplied or not is switched by a sterilizing steam supply valve 33 provided in the sterilizing steam supply path 32. In the illustrated example, the sterilization steam supply path 32 upstream of the sterilization steam supply valve 33 and the ejector steam supply path 14 upstream of the ejector steam supply valve 15 are a common steam supply path 34. ing.

制御手段は、前記各センサ6〜8の検出信号や経過時間などに基づき、前記各手段3〜5などを制御する制御器である。具体的には、真空ポンプ13、エゼクタ給蒸弁15、殺菌用給蒸弁33、封水給水弁16、常温水給水弁18、冷水給水弁20、冷水戻し弁27、排水出口弁28、給気弁31の他、圧力センサ6、温度センサ7および品温センサ8などは、制御器に接続される。そして、制御器は、以下に述べるように、所定の手順(プログラム)に従い、処理槽2内の食品の冷却運転の他、処理槽2内および減圧系統(処理槽2から逆止弁12までの区間)の殺菌運転を実行可能とされる。   The control means is a controller for controlling the means 3 to 5 and the like based on the detection signals of the sensors 6 to 8 and the elapsed time. Specifically, the vacuum pump 13, the ejector steam supply valve 15, the sterilization steam supply valve 33, the sealed water supply valve 16, the room temperature water supply valve 18, the cold water supply valve 20, the cold water return valve 27, the drain outlet valve 28, In addition to the air valve 31, the pressure sensor 6, the temperature sensor 7, the product temperature sensor 8, and the like are connected to the controller. Then, as described below, the controller performs the cooling operation of the food in the processing tank 2 and the processing tank 2 and the pressure reducing system (from the processing tank 2 to the check valve 12) in accordance with a predetermined procedure (program). Section) can be executed.

また、制御手段は、真空ポンプ13の能力低下および/またはエアフィルタ30の目詰まりを判定する判定手段としても機能する。すなわち、食品機械1は、処理槽2内に槽内容積を減じる収容物がない状態で、減圧手段3により処理槽2内を減圧する減圧操作と、復圧手段4により処理槽2内を復圧する復圧操作とを実行可能とされるが、制御手段は、減圧操作中の全部または一部における減圧時間(より具体的には減圧開始圧力から減圧終了圧力までの全圧力域または一部圧力域を通過する減圧時間)に基づき、真空ポンプ13の能力低下を判定するか、および/または、復圧操作中の全部または一部における復圧時間(より具体的には復圧開始圧力から復圧終了圧力までの全圧力域または一部圧力域を通過する復圧時間)に基づき、エアフィルタ30の目詰まりを判定する。この判定処理は、本実施例では、殺菌運転において実行可能とされる。   In addition, the control unit also functions as a determination unit that determines a reduction in the capacity of the vacuum pump 13 and / or clogging of the air filter 30. That is, in the food machine 1, in a state where there is no container in the processing tank 2 that reduces the internal volume of the processing tank 2, a depressurizing operation of depressurizing the processing tank 2 by the decompression means 3 and a decompression operation of the processing tank 2 by the decompression means 4. The decompression operation can be executed, but the control means controls the decompression time (more specifically, the entire pressure range from the decompression start pressure to the decompression end pressure or a partial pressure Based on the pressure reduction time passing through the region, it is determined whether or not the capacity of the vacuum pump 13 has decreased, and / or the pressure recovery time in all or a part of the pressure recovery operation (more specifically, the pressure recovery time from the pressure recovery start pressure). The clogging of the air filter 30 is determined based on the pressure recovery time during which the pressure passes through the entire pressure range or a partial pressure range up to the pressure end pressure. This determination process is executable in the sterilization operation in this embodiment.

冷却運転は、処理槽2内に食品を収容した状態で実行される。冷却運転では、減圧手段3により処理槽2内を減圧して、処理槽2内の食品を所望温度まで冷却後、減圧手段3を停止して、復圧手段4により処理槽2内を大気圧まで復圧する。冷却運転では、減圧手段3により処理槽2内を減圧中、所望により給気弁31の開度を調整して、処理槽2内の減圧速度を調整してもよい。また、冷却運転では、復圧手段4により処理槽2内を復圧中、所望により給気弁31の開度を調整して、処理槽2内の復圧速度を調整してもよい。   The cooling operation is performed in a state where the food is stored in the processing tank 2. In the cooling operation, the pressure in the processing tank 2 is reduced by the pressure reducing means 3, the food in the processing tank 2 is cooled to a desired temperature, the pressure reducing means 3 is stopped, and the inside of the processing tank 2 is Repressurize until In the cooling operation, while the inside of the processing tank 2 is being depressurized by the decompression means 3, the opening degree of the air supply valve 31 may be adjusted as required to adjust the decompression speed in the processing tank 2. In the cooling operation, while the pressure in the processing tank 2 is restored by the pressure recovery means 4, the opening degree of the air supply valve 31 may be adjusted as required to adjust the pressure recovery rate in the processing tank 2.

殺菌運転は、処理槽2内に食品を収容しない状態で実行される。本実施例の食品機械1では、殺菌運転において、真空ポンプ13の能力低下を判定するか、および/または、エアフィルタ30の目詰まりを判定する判定処理がなされるが、この判定処理を正確に行うためにも、殺菌運転は、処理槽2内に槽内容積を減じる収容物がない状態、より具体的には処理槽2内に少なくとも食品を収容しない状態でなされる。好ましくは、食品の他、食品容器やこれを載せるワゴンなどの器具が、処理槽2内に収容されない状態(つまり典型的には処理槽2内が空の状態)でなされる。また、冷却運転時に、処理槽2内からの排気口に吸気ストレーナを設けたり、処理槽2内に露避け板を設けたりしている場合でも、殺菌運転時には、これら吸気ストレーナや露避け板を取り外しておくのがよい。但し、場合により、センサ類などの小物は、処理槽2内容積に対して微々たるものであるため、処理槽2内に配置されていても構わない。   The sterilization operation is performed in a state where no food is stored in the processing tank 2. In the food machine 1 according to the present embodiment, in the sterilization operation, a determination process for determining a decrease in the capacity of the vacuum pump 13 and / or a determination process for determining whether the air filter 30 is clogged is performed. In order to perform the sterilization operation, the sterilization operation is performed in a state in which there is no container in the processing tank 2 that reduces the volume in the tank, more specifically, in a state in which at least food is not stored in the processing tank 2. Preferably, in addition to food, food containers and utensils such as wagons for loading the food containers are not stored in the processing tank 2 (that is, the processing tank 2 is typically empty). Further, even when an intake strainer is provided at an exhaust port from the inside of the processing tank 2 during the cooling operation or a dew avoiding plate is provided in the processing tank 2, these suction strainers and the dew avoiding plate are used during the sterilization operation. It is better to remove it. However, in some cases, small objects such as sensors are small relative to the internal volume of the processing tank 2, and may be arranged in the processing tank 2.

図2は、本実施例の食品機械1の殺菌運転を示すフローチャートである。また、図3は、殺菌運転における空気排除工程S1を示すフローチャートであり、図4は、殺菌運転における復圧工程S6を示すフローチャートである。   FIG. 2 is a flowchart illustrating a sterilization operation of the food machine 1 according to the present embodiment. FIG. 3 is a flowchart showing the air removing step S1 in the sterilization operation, and FIG. 4 is a flowchart showing the pressure recovery step S6 in the sterilization operation.

図2に示すように、殺菌運転では、空気排除工程S1、給蒸工程S2、殺菌工程S3、熱交冷却工程S4、湯気取り工程S5および復圧工程S6を順次に含んで実行する。以下、各工程について説明する。   As shown in FIG. 2, in the sterilization operation, an air exclusion step S1, a steam supply step S2, a sterilization step S3, a heat exchange cooling step S4, a steam removal step S5, and a decompression step S6 are sequentially performed. Hereinafter, each step will be described.

≪空気排除工程S1≫
空気排除工程S1では、減圧手段3により処理槽2内を減圧して、処理槽2内から空気を排除する。具体的には、図3に示すように、真空ポンプ13を作動させて、処理槽2内を減圧する(S11)。この際、給気弁31、エゼクタ給蒸弁15および殺菌用給蒸弁33は閉じられた状態にある。また、空気排除工程S1の開始時には、冷水給水弁20が閉じられた状態で、常温水給水弁18および封水給水弁16が開けられて、真空ポンプ13には常温水が供給される。さらに、冷水戻し弁27および排水出口弁28は閉じられた状態にあり、熱交換器11には通水されない。
{Air removal process S1}
In the air removing step S1, the inside of the processing tank 2 is depressurized by the pressure reducing means 3 to remove air from the inside of the processing tank 2. Specifically, as shown in FIG. 3, the inside of the processing tank 2 is depressurized by operating the vacuum pump 13 (S11). At this time, the air supply valve 31, the ejector vapor supply valve 15, and the sterilization vapor supply valve 33 are in a closed state. At the start of the air elimination step S1, the normal-temperature water supply valve 18 and the sealed water supply valve 16 are opened with the cold-water supply valve 20 closed, and normal-temperature water is supplied to the vacuum pump 13. Further, the cold water return valve 27 and the drain outlet valve 28 are in a closed state, and water is not passed through the heat exchanger 11.

このようにして、真空ポンプ13に常温水を供給しつつ、処理槽2内を真空ポンプ13で減圧していくが、圧力センサ6の検出圧力が冷水切替圧力(たとえば200hPa)以下になると、真空ポンプ13への給水を常温水から冷水に切り替える(S12,S13)。具体的には、常温水給水弁18を閉じる一方、冷水給水弁20を開ければよい。   In this manner, while the room temperature water is supplied to the vacuum pump 13, the inside of the processing tank 2 is depressurized by the vacuum pump 13. When the pressure detected by the pressure sensor 6 becomes lower than the cold water switching pressure (for example, 200 hPa), the vacuum The supply of water to the pump 13 is switched from room temperature water to cold water (S12, S13). More specifically, the cold water supply valve 20 may be opened while the normal temperature water supply valve 18 is closed.

その後、圧力センサ6の検出圧力が第一設定圧力(たとえば30hPa)以下になると、冷水給水弁20および封水給水弁16を閉じると共に真空ポンプ13を停止して、空気排除工程を終了する(S14,S15)。但し、真空ポンプ13の停止後(上記一連の初期減圧操作S11−S15の後)、所望により、圧力センサ6の検出圧力が所定復圧圧力(たとえば900hPa)になるまで、給蒸手段5により処理槽2内に蒸気を供給して復圧した後、その給蒸を停止した状態で、圧力センサ6の検出圧力が所定減圧圧力(たとえば30hPa)になるまで、減圧手段3により処理槽2内を減圧するなどしてもよい(S18)。いずれにしても、最終的には、真空ポンプ13を停止すると共に、真空ポンプ13への給水を停止して、空気排除工程を終了する。   Thereafter, when the pressure detected by the pressure sensor 6 becomes equal to or lower than the first set pressure (for example, 30 hPa), the cold water supply valve 20 and the sealed water supply valve 16 are closed, the vacuum pump 13 is stopped, and the air elimination step is completed (S14). , S15). However, after the vacuum pump 13 is stopped (after the series of initial pressure reduction operations S11 to S15), the processing is performed by the steam supply means 5 until the pressure detected by the pressure sensor 6 reaches a predetermined recompression pressure (for example, 900 hPa). After the steam is supplied into the tank 2 and the pressure is restored, the pressure in the processing tank 2 is reduced by the pressure reducing means 3 until the pressure detected by the pressure sensor 6 becomes a predetermined reduced pressure (for example, 30 hPa) while the steam supply is stopped. The pressure may be reduced (S18). In any case, finally, the vacuum pump 13 is stopped, and the supply of water to the vacuum pump 13 is stopped, thereby ending the air removing step.

なお、処理槽2内に給蒸後の減圧時(前述した所定復圧圧力から所定減圧圧力までの減圧時)には、熱交換器11に、所定のタイミングで常温水または冷水を通してもよい。熱交換器11に常温水を通す場合、排水出口弁28を開けておくことで、熱交換器11で使用後の水は、排水出口路26へ排出される。一方、熱交換器11に冷水を通す場合、冷水戻し弁27を開けておくことで、熱交換器11で使用後の水は、冷水戻し路25を介して冷水タンク(冷水供給源)へ戻される。   In addition, at the time of depressurization after the steam supply into the processing tank 2 (at the time of depressurization from the above-described predetermined decompression pressure to the predetermined decompression pressure), room temperature water or cold water may be passed through the heat exchanger 11 at a predetermined timing. When room temperature water is allowed to pass through the heat exchanger 11, the water used in the heat exchanger 11 is discharged to the drain outlet channel 26 by opening the drain outlet valve 28. On the other hand, when passing cold water through the heat exchanger 11, the water used in the heat exchanger 11 is returned to the cold water tank (cold water supply source) via the cold water return path 25 by opening the cold water return valve 27. It is.

空気排除工程S1において、空気排除工程S1の全部または一部における減圧時間に基づき、真空ポンプ13の能力低下を判定することができる。本実施例では、前述したとおり、空気排除工程S1(初期減圧操作S11−S15)では、処理槽2内を大気圧から第一設定圧力まで減圧するが、その減圧時間に基づき、真空ポンプ13の能力低下を判定する。   In the air elimination step S1, it is possible to determine a decrease in the capacity of the vacuum pump 13 based on the decompression time in all or part of the air elimination step S1. In the present embodiment, as described above, in the air elimination step S1 (initial pressure reduction operation S11-S15), the pressure in the processing tank 2 is reduced from the atmospheric pressure to the first set pressure. Judgment of performance deterioration.

具体的には、図3に示すように、制御器は、真空ポンプ13を作動させて処理槽2内の減圧を開始する際、減圧時間の測定を開始し(S11)、処理槽2内が第一設定圧力に到達した際、減圧時間の測定を終了する(S14,S15)。つまり、処理槽2内を大気圧から第一設定圧力まで減圧する際、減圧の開始から終了までの減圧時間を測定する。この間、熱交換器11には通水しないので、熱交換器11による影響のない減圧時間を測定することができる。そして、このようにして測定された減圧時間(測定時間)が基準減圧時間を超えていれば、真空ポンプ13の能力が低下していると判定し、基準減圧時間以下であれば、真空ポンプ13の能力は低下していないと判定する(S16)。判定結果(特に真空ポンプ13の能力が低下している旨の判定結果)は、所定の出力機器に出力してお知らせする(S17)。たとえば、タッチパネルに表示したり、ランプを点灯させたり、あるいはブザーを鳴らしたりする。   Specifically, as shown in FIG. 3, when starting the decompression in the processing tank 2 by operating the vacuum pump 13, the controller starts measuring the decompression time (S <b> 11). When the pressure reaches the first set pressure, the measurement of the decompression time is ended (S14, S15). That is, when the pressure in the processing tank 2 is reduced from the atmospheric pressure to the first set pressure, the pressure reduction time from the start to the end of the pressure reduction is measured. During this time, no water is passed through the heat exchanger 11, so that a decompression time that is not affected by the heat exchanger 11 can be measured. If the pressure reduction time (measurement time) measured in this way exceeds the reference pressure reduction time, it is determined that the performance of the vacuum pump 13 has decreased. It is determined that the capability of the user has not decreased (S16). The determination result (especially the determination result indicating that the capacity of the vacuum pump 13 is reduced) is output to a predetermined output device to notify the user (S17). For example, it displays on a touch panel, turns on a lamp, or sounds a buzzer.

ところで、真空ポンプ13の能力判定のための時間測定について、ここでは、時間測定の開始時の圧力(第一測定開始圧力)は大気圧とされ、時間測定の終了時の圧力(第一測定終了圧力)は第一設定圧力とされたが、必ずしも、大気圧から第一設定圧力までの減圧時間で判定する必要はない。つまり、第一測定開始圧力は、大気圧かそれ未満で設定され、第一測定終了圧力は、第一測定開始圧力未満の圧力で、且つ、第一設定圧力かそれ以上で設定されるならば、適宜変更可能である。いずれにしても、処理槽2内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、真空ポンプ13の能力が低下していると判定して、その結果を出力してお知らせする。   By the way, regarding the time measurement for determining the performance of the vacuum pump 13, the pressure at the start of the time measurement (first measurement start pressure) is set to the atmospheric pressure, and the pressure at the end of the time measurement (first measurement end). Pressure) is set to the first set pressure, but it is not always necessary to determine the pressure from the atmospheric pressure to the first set pressure. That is, if the first measurement start pressure is set at atmospheric pressure or less, and the first measurement end pressure is set at a pressure less than the first measurement start pressure and at the first set pressure or higher. Can be changed as appropriate. In any case, the time until the pressure in the processing tank 2 decreases from the first measurement start pressure to the first measurement end pressure is measured. If the time is longer than the reference decompression time, the capacity of the vacuum pump 13 is reduced. It is determined that it has decreased, and the result is output and notified.

なお、大気圧と冷水切替圧力との間で、第一測定開始圧力および第一測定終了圧力を設定すれば、封水は常温水のままであるから、封水温度の影響が少ない判定が可能となる。同様に、冷水切替圧力と第一設定圧力との間で、第一測定開始圧力および第一測定終了圧力を設定すれば、封水は冷水のままであるから、封水温度の影響が少ない判定が可能となる。   In addition, if the first measurement start pressure and the first measurement end pressure are set between the atmospheric pressure and the cold water switching pressure, the sealed water remains at room temperature, so that it is possible to determine that the influence of the sealed water temperature is small. Becomes Similarly, if the first measurement start pressure and the first measurement end pressure are set between the chilled water switching pressure and the first set pressure, the sealed water remains cold water, so that the influence of the sealed water temperature is small. Becomes possible.

≪給蒸工程S2≫
給蒸工程S2では、給蒸手段5により、排気路9を介して処理槽2内へ蒸気を供給して、処理槽2内を所定の移行温度(または移行温度相当の飽和圧力(移行圧力))まで復圧する。具体的には、殺菌用給蒸弁33を開けて、逆止弁12の一次側から排気路9を逆流させて、処理槽2内へ蒸気を供給する。温度センサ7の検出温度が移行温度(たとえば84℃)以上になると、次工程へ移行する。なお、蒸気による復圧後でも、処理槽2内は大気圧未満であるように、移行温度が設定される。
{Steam supply process S2}
In the steam supply step S2, steam is supplied into the processing tank 2 through the exhaust path 9 by the steam supply means 5, and a predetermined transition temperature (or a saturated pressure (transition pressure) corresponding to the transition temperature) is generated in the processing tank 2. ). Specifically, the steam supply valve 33 for sterilization is opened, the exhaust gas 9 flows backward from the primary side of the check valve 12, and steam is supplied into the processing tank 2. When the temperature detected by the temperature sensor 7 becomes equal to or higher than the transition temperature (for example, 84 ° C.), the process proceeds to the next step. Note that the transition temperature is set so that the inside of the processing tank 2 is lower than the atmospheric pressure even after the pressure recovery by the steam.

≪殺菌工程S3≫
殺菌工程S3では、給蒸手段5を制御して、処理槽2内を設定温度範囲(たとえば84〜86℃)に維持する。具体的には、設定温度範囲の上限温度(たとえば86℃)を上回ると、殺菌用給蒸弁33を閉じる一方、下限温度(たとえば84℃)を下回ると、殺菌用給蒸弁33を開けて、処理槽2内を設定温度範囲に維持する。この間、温度センサ7の検出温度が殺菌温度(たとえば80℃)以上である時間をタイマで測定する。そして、温度センサ7の検出温度が殺菌温度以上である時間が殺菌時間(たとえば10分)に達したら、殺菌用給蒸弁33を閉じて、殺菌工程S3を終了する。殺菌工程S3において、処理槽2内と、処理槽2から逆止弁12までの領域を、蒸気で殺菌することができる。
{Sterilization process S3}
In the sterilization step S3, the steam supply means 5 is controlled to maintain the inside of the processing tank 2 in a set temperature range (for example, 84 to 86 ° C). Specifically, when the temperature exceeds the upper limit temperature (for example, 86 ° C.) of the set temperature range, the sterilization steam supply valve 33 is closed, and when the temperature falls below the lower limit temperature (for example, 84 ° C.), the sterilization steam supply valve 33 is opened. , The inside of the processing tank 2 is maintained within the set temperature range. During this time, the time during which the temperature detected by the temperature sensor 7 is equal to or higher than the sterilization temperature (for example, 80 ° C.) is measured by a timer. When the time during which the temperature detected by the temperature sensor 7 is equal to or higher than the sterilization temperature has reached the sterilization time (for example, 10 minutes), the sterilization steam supply valve 33 is closed, and the sterilization process S3 ends. In the sterilization step S3, the inside of the processing tank 2 and the region from the processing tank 2 to the check valve 12 can be sterilized with steam.

≪熱交冷却工程S4≫
熱交冷却工程S4は、給蒸工程S2および殺菌工程S3により昇温された熱交換器11の冷却を図る。具体的には、真空ポンプ13を停止したまま、常温水給水弁18および排水出口弁28を開けて、熱交換器11に常温水を通水する。熱交換器11に通水することで、熱交換器11の冷却が図られる。そして、熱交冷却時間だけ熱交換器11に通水したら、排水出口弁28を閉じて、熱交冷却工程S4を終了する。
<< Heat exchange cooling process S4 >>
In the heat exchange cooling step S4, the heat exchanger 11 heated in the steam supply step S2 and the sterilization step S3 is cooled. Specifically, the normal-temperature water supply valve 18 and the drainage outlet valve 28 are opened while the vacuum pump 13 is stopped, and normal-temperature water is supplied to the heat exchanger 11. By passing water through the heat exchanger 11, the heat exchanger 11 is cooled. Then, when water is passed through the heat exchanger 11 for the heat exchange cooling time, the drain outlet valve 28 is closed, and the heat exchange cooling step S4 is completed.

≪湯気取り工程S5≫
湯気取り工程S5は、処理槽2内に残る蒸気を外部へ排出する。具体的には、空気排除工程S1と同様に、常温水給水弁18および封水給水弁16を開けた状態で、真空ポンプ13を作動させて、処理槽2内を減圧する。この際、冷水戻し弁27および排水出口弁28は閉じられており、熱交換器11には通水されない。但し、場合により、排水出口弁28を開けて、熱交換器11に常温水を通水してもよい。
{Steam removal process S5}
In the steam removing step S5, the steam remaining in the processing tank 2 is discharged to the outside. Specifically, as in the air elimination step S1, the vacuum pump 13 is operated with the room temperature water supply valve 18 and the sealed water supply valve 16 opened to reduce the pressure in the processing tank 2. At this time, the cold water return valve 27 and the drain outlet valve 28 are closed, and the water does not flow through the heat exchanger 11. However, in some cases, the room temperature water may be passed through the heat exchanger 11 by opening the drain outlet valve 28.

その後、圧力センサ6の検出圧力が冷水切替圧力以下になると、真空ポンプ13への給水を常温水から冷水に切り替える。具体的には、常温水給水弁18を閉じる一方、冷水給水弁20を開ければよい。この際、湯気取り工程S5では、冷水戻し弁27を開けて、熱交換器11には冷水を通し、熱交換器11で使用後の冷水は冷水タンクへ戻される。   Thereafter, when the pressure detected by the pressure sensor 6 becomes equal to or lower than the cold water switching pressure, the water supply to the vacuum pump 13 is switched from room temperature water to cold water. More specifically, the cold water supply valve 20 may be opened while the normal temperature water supply valve 18 is closed. At this time, in the steam removing step S5, the chilled water return valve 27 is opened, the chilled water is passed through the heat exchanger 11, and the chilled water used in the heat exchanger 11 is returned to the chilled water tank.

このようにして、処理槽2内を減圧していき、圧力センサ6の検出圧力が第二設定圧力(たとえば45hPa)以下になれば、真空ポンプ13を停止すると共に、封水給水弁16、冷水給水弁20および冷水戻し弁27を閉じて、次工程へ移行する。   In this manner, the pressure in the processing tank 2 is reduced, and when the pressure detected by the pressure sensor 6 becomes equal to or lower than the second set pressure (for example, 45 hPa), the vacuum pump 13 is stopped, and the water sealing valve 16 and the cold water The water supply valve 20 and the cold water return valve 27 are closed, and the process proceeds to the next step.

≪復圧工程S6≫
復圧工程S6では、復圧手段4により、処理槽2内を大気圧まで復圧する。具体的には、図4に示すように、給気弁31を開けて(S61)、処理槽2内を大気圧まで復圧する(S66)。復圧工程S6での給気弁31の開度は、常に全開とされるなど、予め定められた開度とされる。
{Pressure recovery step S6}
In the pressure recovery step S6, the pressure in the processing tank 2 is reduced to atmospheric pressure by the pressure recovery means 4. Specifically, as shown in FIG. 4, the air supply valve 31 is opened (S61), and the pressure inside the processing tank 2 is restored to the atmospheric pressure (S66). The opening degree of the air supply valve 31 in the pressure recovery step S6 is a predetermined opening degree, such as being always fully opened.

復圧工程S6において、復圧工程S6の全部または一部における復圧時間に基づき、エアフィルタ30の目詰まりを判定することができる。本実施例では、前述したとおり、直前の工程(湯気取り工程S5)で、処理槽2内を第二設定圧力まで減圧しているが、その第二設定圧力から大気圧までの復圧中の所定圧力域を通過する復圧時間に基づき、エアフィルタ30の目詰まりを判定する。   In the pressure recovery step S6, clogging of the air filter 30 can be determined based on the pressure recovery time in all or a part of the pressure recovery step S6. In the present embodiment, as described above, the pressure in the processing tank 2 is reduced to the second set pressure in the immediately preceding step (steam removing step S5), but during the pressure recovery from the second set pressure to the atmospheric pressure. The clogging of the air filter 30 is determined based on the pressure recovery time passing through the predetermined pressure range.

具体的には、図4に示すように、制御器は、給気弁31の開放後、圧力センサ6の検出圧力を監視し、処理槽2内が第二測定開始圧力(たとえば50hPa)以上になると、復圧時間の測定を開始し(S62,S63)、処理槽2内が第二測定終了圧力に到達した際、復圧時間の測定を終了する(S64,S65)。つまり、処理槽2内を所定圧力(第二設定圧力)から大気圧まで復圧する過程で、第二測定開始圧力から第二測定終了圧力までの復圧時間を測定する。そして、このようにして測定された復圧時間(測定時間)が基準復圧時間を超えていれば、エアフィルタ30の目詰まりが発生していると判定し、基準復圧時間以下であれば、エアフィルタ30の目詰まりは発生していないと判定する(S67)。判定結果(特にエアフィルタ30の目詰まりが発生している旨の判定結果)は、所定の出力機器に出力してお知らせする(S68)。たとえば、タッチパネルに表示したり、ランプを点灯させたり、あるいはブザーを鳴らしたりする。   Specifically, as shown in FIG. 4, after opening the air supply valve 31, the controller monitors the detection pressure of the pressure sensor 6, and the inside of the processing tank 2 becomes equal to or higher than the second measurement start pressure (for example, 50 hPa). Then, the measurement of the pressure recovery time is started (S62, S63), and when the inside of the processing tank 2 reaches the second measurement end pressure, the measurement of the pressure recovery time is ended (S64, S65). That is, in the process of returning the pressure in the processing tank 2 from the predetermined pressure (second set pressure) to the atmospheric pressure, the pressure recovery time from the second measurement start pressure to the second measurement end pressure is measured. If the pressure recovery time (measurement time) measured in this way exceeds the reference pressure recovery time, it is determined that clogging of the air filter 30 has occurred. It is determined that clogging of the air filter 30 has not occurred (S67). The determination result (particularly the determination result indicating that the air filter 30 is clogged) is output to a predetermined output device to notify the user (S68). For example, it displays on a touch panel, turns on a lamp, or sounds a buzzer.

ところで、エアフィルタ30の目詰まり判定のための時間測定について、ここでは、時間測定の開始時の圧力(第二測定開始圧力)は第二設定圧力よりも高い圧力とされ、時間測定の終了時の圧力(第二測定終了圧力)は大気圧よりも低い圧力とされたが、第二測定開始圧力を第二設定圧力としたり、第二測定終了圧力を大気圧としたりしてもよい。つまり、第二測定開始圧力は、第二設定圧力かそれ以上で設定され、第二測定終了圧力は、第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定されるならば、適宜変更可能である。いずれにしても、処理槽2内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、エアフィルタ30に目詰まりがあると判定して、その結果を出力してお知らせする。   By the way, regarding the time measurement for determining the clogging of the air filter 30, here, the pressure at the start of the time measurement (second measurement start pressure) is set to a pressure higher than the second set pressure, and at the end of the time measurement. (The second measurement end pressure) is lower than the atmospheric pressure. However, the second measurement start pressure may be the second set pressure, or the second measurement end pressure may be the atmospheric pressure. That is, if the second measurement start pressure is set at the second set pressure or higher, and the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at or below atmospheric pressure Can be changed as appropriate. In any case, the time until the pressure in the processing tank 2 rises from the second measurement start pressure to the second measurement end pressure is measured. If the time is longer than the reference pressure recovery time, the air filter 30 is checked. It is determined that there is a blockage, and the result is output and notified.

なお、第二測定開始圧力を第二設定圧力よりも高い圧力とし、第二測定終了圧力を大気圧よりも低い圧力としておけば、復圧開始時の槽内圧力のバラツキや、大気圧の変化や、装置設置環境(標高)の影響も抑えた判定を実施することができる。   If the second measurement start pressure is set to a pressure higher than the second set pressure and the second measurement end pressure is set to a pressure lower than the atmospheric pressure, the pressure in the tank at the time of starting the pressure recovery and the change in the atmospheric pressure are changed. Alternatively, it is possible to perform the determination while suppressing the influence of the device installation environment (altitude).

本実施例の食品機械1によれば、殺菌運転において、空気排除工程S1での減圧時間に基づき真空ポンプ13の能力低下を判定したり、復圧工程S6での復圧時間に基づきエアフィルタ30の目詰まりを判定したりすることができる。殺菌運転は、処理槽2内に槽内容積を減じる収容物がない状態でなされるので、前記判定は、食品の量や温度、槽内に占める割合などに左右されない。また、定期点検のタイミングではなく、毎日なされる(たとえば一日の終わりや所定のバッチ処理の後になされる)殺菌運転時に、真空ポンプ13の能力低下やエアフィルタ30の目詰まりを、容易に確認することができる。   According to the food machine 1 of the present embodiment, in the sterilization operation, a decrease in the capacity of the vacuum pump 13 is determined based on the decompression time in the air removal step S1, and the air filter 30 is determined based on the recompression time in the pressure recovery step S6. Can be determined. Since the sterilization operation is performed in a state where there is no container in the processing tank 2 that reduces the volume in the tank, the determination is not affected by the amount and temperature of the food, the ratio of the food in the tank, and the like. In addition, during the sterilization operation performed every day (for example, at the end of the day or after a predetermined batch process), not at the timing of the periodic inspection, it is easy to confirm the deterioration of the capacity of the vacuum pump 13 and the clogging of the air filter 30. can do.

食品機械1の制御手段を管理センター(一または複数の食品機械1を遠隔監視する施設)のコンピュータと通信回線で接続可能としておき、管理センターの側で食品機械1の前記判定結果を監視可能としてもよい。その場合、管理センターでは、真空ポンプ13の能力低下を確認したり、エアフィルタ30の目詰まりを確認したりすると、サービスマンを派遣したり、ユーザにメンテナンスを要請したりすることができる。   The control means of the food machine 1 can be connected to a computer of a management center (a facility for remotely monitoring one or a plurality of food machines 1) via a communication line, and the judgment result of the food machine 1 can be monitored by the management center. Is also good. In this case, when the management center confirms that the capacity of the vacuum pump 13 has deteriorated or confirms that the air filter 30 is clogged, it can dispatch a serviceman or request maintenance of the user.

次に、前記実施例における真空ポンプ13の能力判定と、エアフィルタ30の目詰まり判定の変形例について説明する。   Next, a description will be given of a modified example of the capability determination of the vacuum pump 13 and the determination of clogging of the air filter 30 in the above embodiment.

前記実施例では、第一測定開始圧力から第一測定終了圧力までの減圧時間が所定の基準減圧時間よりも長いか否かで、真空ポンプ13の能力低下を判定したが、その際、真空ポンプ13への封水温度や真空ポンプ13の回転数に基づき、基準減圧時間を変更しても良い。例えば、封水温度や回転数(周波数)による真空ポンプ13の排気能力曲線から、基準減圧時間を算出し、能力判定を行うことができる。その場合、真空ポンプ13への封水温度は、封水給水路23または真空ポンプ13に、封水温度センサを設置しておけばよい。また、真空ポンプ13の回転数は、真空ポンプ13を駆動するインバータの周波数から算出できる。真空ポンプ13への給水温度や真空ポンプ13の回転数を考慮することで、より正確に真空ポンプ13の能力判定を行うことができる。   In the above-described embodiment, whether or not the performance of the vacuum pump 13 has been reduced is determined based on whether the pressure reduction time from the first measurement start pressure to the first measurement end pressure is longer than a predetermined reference pressure reduction time. The reference decompression time may be changed based on the water sealing temperature of the pump 13 or the rotation speed of the vacuum pump 13. For example, a reference pressure reduction time can be calculated from a pumping capacity curve of the vacuum pump 13 according to the sealing water temperature and the number of rotations (frequency) to determine the capacity. In this case, the sealing water temperature to the vacuum pump 13 may be set in the sealing water supply channel 23 or the vacuum pump 13. Further, the rotation speed of the vacuum pump 13 can be calculated from the frequency of the inverter that drives the vacuum pump 13. By considering the temperature of water supplied to the vacuum pump 13 and the number of rotations of the vacuum pump 13, the capability of the vacuum pump 13 can be more accurately determined.

また、前記実施例では、大気圧から第一設定圧力までの減圧時間(またはその間で設定される圧力域を通過する減圧時間)で、真空ポンプ13の能力低下を判定したが、大気圧と第一設定圧力との間で、複数の圧力域を設定してもよい。その場合、圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定すればよい。   In the above-described embodiment, the decrease in the performance of the vacuum pump 13 is determined based on the decompression time from the atmospheric pressure to the first set pressure (or the decompression time passing through the pressure range set therebetween). A plurality of pressure ranges may be set between one set pressure. In that case, the time required to pass through the pressure range may be measured for each pressure range, and it may be determined whether the time is longer than the reference decompression time for the pressure range.

たとえば、大気圧から500hPaまでの第一減圧時間(測定時間)と第一基準減圧時間とを比較し、500hPaから100hPaまでの第二減圧時間(測定時間)と第二基準減圧時間とを比較し、100hPaから30hPaまでの第三減圧時間(測定時間)と第三基準減圧時間とを比較し、どの領域で減圧速度が遅くなっているのかなどを判定させてもよい。つまり、真空ポンプ13の特性として、大気圧から所定圧力までの減圧時、どのように圧力が下がっていくかは決まっているので、それとの比較で、どの圧力域で能力低下が生じているのかなどを確認することができる。   For example, the first decompression time (measurement time) from atmospheric pressure to 500 hPa is compared with the first reference decompression time, and the second decompression time (measurement time) from 500 hPa to 100 hPa is compared with the second reference decompression time. The third decompression time (measurement time) from 100 hPa to 30 hPa may be compared with the third reference decompression time to determine in which region the decompression speed is slower. In other words, as a characteristic of the vacuum pump 13, how the pressure decreases when the pressure is reduced from the atmospheric pressure to a predetermined pressure is determined. And so on.

本発明の食品機械1は、前記実施例の構成(制御を含む)に限らず適宜変更可能である。特に、(a)食品が収容される処理槽2と、(b)この処理槽2内からの排気路9に、真空ポンプ13が設けられた減圧手段3と、(c)処理槽2内への給気路29に、エアフィルタ30および給気弁31が設けられた復圧手段4と、(d)前記各手段3,4を制御する制御手段とを備え、(e)制御手段は、処理槽2内に槽内容積を減じる収容物がない状態で、減圧手段3により処理槽2内を減圧する減圧操作と、復圧手段4により処理槽2内を復圧する復圧操作とを実行可能とされ、減圧操作中の全部または一部における減圧時間に基づき、真空ポンプ13の能力低下を判定するか、および/または、復圧操作中の全部または一部における復圧時間に基づき、エアフィルタ30の目詰まりを判定するのであれば、その他の構成は適宜に変更可能である。   The food machine 1 of the present invention is not limited to the configuration (including control) of the above embodiment, and can be changed as appropriate. In particular, (a) the processing tank 2 in which food is stored, (b) the pressure reducing means 3 provided with the vacuum pump 13 in the exhaust path 9 from the processing tank 2, and (c) the processing tank 2. The air supply path 29 includes an air filter 30 and an air supply valve 31 provided with a pressure recovery means 4, and (d) control means for controlling each of the means 3 and 4. In the state where there is no container in the processing tank 2 for reducing the volume in the tank, a pressure reducing operation for reducing the pressure in the processing tank 2 by the pressure reducing means 3 and a pressure reducing operation for reducing the pressure in the processing tank 2 by the pressure reducing means 4 are executed. It is possible to determine a reduction in the capacity of the vacuum pump 13 based on the decompression time during all or a part of the depressurization operation, and / or to determine whether the air is decompressed based on the decompression time during the entire or part of the decompression operation. If it is determined that the filter 30 is clogged, the other components are appropriately changed. Possible it is.

たとえば、前記実施例では、殺菌運転における空気排除工程S1の初期減圧操作(S11−S15)で、真空ポンプ13の能力低下を判定すると共に、最終的な復圧工程S6で、エアフィルタ30の目詰まりを判定したが、真空ポンプ13の能力判定とエアフィルタ30の目詰まり判定との内、片方のみを実行可能としてもよい。   For example, in the above-described embodiment, a decrease in the capacity of the vacuum pump 13 is determined in the initial pressure reduction operation (S11-S15) in the air elimination step S1 in the sterilization operation, and the air filter 30 is checked in the final pressure recovery step S6. Although clogging is determined, only one of the capacity determination of the vacuum pump 13 and the clogging determination of the air filter 30 may be executed.

また、殺菌運転時の判定に限らず、専用のテスト運転で判定可能としてもよい。その場合、テスト運転では、殺菌運転における空気排除工程S1と同様に、大気圧から所定圧力までの減圧工程後、殺菌運転における復圧工程S6と同様に、所定圧力から大気圧まで復圧工程を実行可能とし、減圧工程において真空ポンプ13の能力を判定するか、および/または、復圧工程S6においてエアフィルタ30の目詰まりを判定すればよい。専用のテスト運転の場合、殺菌運転における給蒸工程S2、殺菌工程S3、熱交冷却工程S4および湯気取り工程S5は省略可能である。専用のテスト運転も、処理槽2内に槽内容積を減じる収容物がない状態でなされるのは言うまでもない。   Further, the determination can be made not only in the sterilization operation but also in a dedicated test operation. In this case, in the test operation, similar to the air removal step S1 in the sterilization operation, after the pressure reduction step from the atmospheric pressure to the predetermined pressure, the pressure reduction step from the predetermined pressure to the atmospheric pressure is performed in the same manner as the pressure recovery step S6 in the sterilization operation. It may be performed, and the capacity of the vacuum pump 13 may be determined in the pressure reduction step, and / or the clogging of the air filter 30 may be determined in the pressure recovery step S6. In the case of the dedicated test operation, the steam supply step S2, the sterilization step S3, the heat exchange cooling step S4, and the steam removing step S5 in the sterilization operation can be omitted. It goes without saying that the dedicated test operation is also performed in a state where there is no container in the processing tank 2 that reduces the volume in the tank.

また、前記実施例において、逆止弁12に代えて、遮断弁(電磁弁、電動弁の他、手動弁でもよい)を用いてもよい。いずれの場合も、前記逆止弁12の開閉と同様に、遮断弁を開閉(真空ポンプ13の発停と遮断弁の開閉を連動)させればよい。そして、この遮断弁の一次側(処理槽2側)において、排気路9に殺菌用給蒸路32を接続するのが好ましい。   Further, in the above-described embodiment, a shutoff valve (a manual valve may be used instead of a solenoid valve or an electric valve) may be used instead of the check valve 12. In either case, the shut-off valve may be opened and closed (the start / stop of the vacuum pump 13 and the open / close of the shut-off valve are linked) as in the case of the opening and closing of the check valve 12. In addition, it is preferable to connect the sterilization steam supply path 32 to the exhaust path 9 on the primary side (the processing tank 2 side) of the shutoff valve.

また、前記実施例において、減圧手段3は、真空ポンプ13を備えるのであれば、その他の構成は適宜に変更可能である。たとえば、前記実施例において、蒸気エゼクタ10の設置は省略可能である。また、前記実施例において、弁(逆止弁12または遮断弁)の位置は、熱交換器11と真空ポンプ13との間に限らず、たとえば処理槽2と熱交換器11との間としてもよい。いずれの場合も、弁よりも処理槽2側において、排気路9(あるいは処理槽2)に殺菌用給蒸路32を接続すればよい。なお、処理槽2と熱交換器11との間に弁(逆止弁12または遮断弁)を設け、処理槽2内と処理槽2から弁(逆止弁12または遮断弁)までの領域を蒸気で殺菌する場合、熱交冷却工程S4を省略してもよいし、湯気取り工程S5と同時にまたは湯気取り工程S5中に熱交冷却工程S4を開始し、熱交換器11の冷却を行ってもよい。   In the above-described embodiment, other configurations can be appropriately changed as long as the decompression unit 3 includes the vacuum pump 13. For example, in the above embodiment, the installation of the steam ejector 10 can be omitted. Further, in the above-described embodiment, the position of the valve (the check valve 12 or the shut-off valve) is not limited to between the heat exchanger 11 and the vacuum pump 13, but may be, for example, between the processing tank 2 and the heat exchanger 11. Good. In any case, the sterilization steam supply path 32 may be connected to the exhaust path 9 (or the processing tank 2) on the processing tank 2 side of the valve. In addition, a valve (a check valve 12 or a shutoff valve) is provided between the processing tank 2 and the heat exchanger 11, and a region between the processing tank 2 and the processing tank 2 to the valve (the check valve 12 or the shutoff valve) is provided. When sterilizing with steam, the heat exchange cooling step S4 may be omitted, or the heat exchange cooling step S4 is started simultaneously with or during the steam removing step S5 to cool the heat exchanger 11. Is also good.

また、前記実施例では、真空ポンプ13の能力低下の有無を判定したが、場合により、能力低下の度合いを判定してもよい。つまり、測定された減圧時間が、理想減圧時間と比較して、どの程度遅くなっているのかを判定して、結果を出力するようにしてもよい。   Further, in the above embodiment, the presence or absence of the decrease in the performance of the vacuum pump 13 is determined. However, the degree of the decrease in the performance may be determined in some cases. In other words, it is also possible to determine how much the measured decompression time is later than the ideal decompression time and output the result.

同様に、前記実施例では、エアフィルタ30の目詰まりの有無を判定したが、場合により、目詰まりの度合いを判定してもよい。つまり、測定された復圧時間が、理想復圧時間と比較して、どの程度遅くなっているのかを判定して、結果を出力するようにしてもよい。   Similarly, in the above-described embodiment, the presence / absence of clogging of the air filter 30 is determined, but the degree of clogging may be determined in some cases. That is, it is also possible to determine how much the measured pressure recovery time is later than the ideal pressure recovery time and output the result.

さらに、前記実施例では、真空冷却装置に適用した例について説明したが、真空ポンプ13を有する減圧手段3と、エアフィルタ30を有する復圧手段4とを備えるのであれば、真空冷却装置以外の各種食品機械1にも同様に適用可能である。   Furthermore, in the above-described embodiment, an example in which the present invention is applied to a vacuum cooling device has been described. However, if the pressure reducing device 3 having the vacuum pump 13 and the pressure reducing device 4 having the air filter 30 are provided, a device other than the vacuum cooling device may be used. The present invention is similarly applicable to various food machines 1.

1 食品機械
2 処理槽
3 減圧手段
4 復圧手段
5 給蒸手段
6 圧力センサ
7 温度センサ
8 品温センサ
9 排気路
10 蒸気エゼクタ(10a:吸引口、10b:入口、10c:出口)
11 熱交換器
12 逆止弁
13 真空ポンプ
14 エゼクタ給蒸路
15 エゼクタ給蒸弁
16 封水給水弁
17 常温水給水路
18 常温水給水弁
19 冷水給水路
20 冷水給水弁
21 共通給水路
22 熱交給水路
23 封水給水路
24 熱交排水路
25 冷水戻し路
26 排水出口路
27 冷水戻し弁
28 排水出口弁
29 給気路
30 エアフィルタ
31 給気弁
32 殺菌用給蒸路
33 殺菌用給蒸弁
34 共通給蒸路
S1 空気排除工程
S2 給蒸工程
S3 殺菌工程
S4 熱交冷却工程
S5 湯気取り工程
S6 復圧工程
DESCRIPTION OF SYMBOLS 1 Food machine 2 Processing tank 3 Decompression means 4 Decompression means 5 Steam supply means 6 Pressure sensor 7 Temperature sensor 8 Product temperature sensor 9 Exhaust path 10 Steam ejector (10a: suction port, 10b: inlet, 10c: outlet)
DESCRIPTION OF SYMBOLS 11 Heat exchanger 12 Check valve 13 Vacuum pump 14 Ejector supply line 15 Ejector supply valve 16 Sealed water supply valve 17 Room temperature water supply line 18 Room temperature water supply valve 19 Cold water supply line 20 Cold water supply valve 21 Common water supply line 22 Heat Water supply channel 23 sealed water supply channel 24 heat exchange drain channel 25 chilled water return channel 26 drain outlet channel 27 chilled water return valve 28 drain outlet valve 29 air supply channel 30 air filter 31 air supply valve 32 sterilization steam supply channel 33 sterilization supply Steam valve 34 Common steam supply path S1 Air elimination process S2 Steam supply process S3 Sterilization process S4 Heat exchange cooling process S5 Steam removal process S6 Repressurization process

Claims (6)

食品が収容される処理槽と、
この処理槽内からの排気路に、真空ポンプが設けられた減圧手段と、
前記処理槽内への給気路に、エアフィルタおよび給気弁が設けられた復圧手段と、
前記各手段を制御する制御手段とを備え、
前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、前記減圧手段により前記処理槽内を減圧する減圧操作と、前記復圧手段により前記処理槽内を復圧する復圧操作とを実行可能とされ、前記減圧操作中の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定するか、および/または、前記復圧操作中の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定する
ことを特徴とする食品機械。
A processing tank in which food is stored,
A pressure reducing means provided with a vacuum pump in an exhaust path from inside the processing tank;
A pressure recovery means provided with an air filter and an air supply valve in an air supply path into the processing tank,
Control means for controlling each of the means,
The control means includes a pressure reducing operation for reducing the pressure in the processing tank by the pressure reducing means in a state where there is no container in the processing tank for reducing the volume in the tank, and a pressure reducing operation for reducing the pressure in the processing tank by the pressure reducing means. Pressure operation can be performed, and based on the decompression time during all or a part of the depressurization operation, a decrease in the capacity of the vacuum pump is determined, and / or during all or part of the decompression operation. A food machine characterized in that clogging of the air filter is determined based on a pressure recovery time.
前記処理槽内からの排気路に、前記真空ポンプの他、熱交換器および弁を備え、
前記排気路の内、前記弁よりも前記処理槽側から前記処理槽内へ蒸気を供給する給蒸手段をさらに備え、
前記制御手段は、前記処理槽内に槽内容積を減じる収容物がない状態で、前記減圧操作として前記減圧手段により前記処理槽内を減圧する空気排除工程、前記給蒸手段により前記処理槽内を復圧する給蒸工程、前記処理槽内を殺菌温度以上で殺菌時間保持する殺菌工程、前記減圧手段により前記処理槽内を減圧する湯気取り工程、前記復圧操作として前記復圧手段により前記処理槽内を復圧する復圧工程、を順次に含んで実行し、
前記制御手段は、前記空気排除工程の全部または一部における減圧時間に基づき、前記真空ポンプの能力低下を判定するか、および/または、前記復圧工程の全部または一部における復圧時間に基づき、前記エアフィルタの目詰まりを判定する
ことを特徴とする請求項1に記載の食品機械。
In the exhaust path from inside the processing tank, in addition to the vacuum pump, a heat exchanger and a valve are provided,
The exhaust path further includes a steam supply unit that supplies steam from the processing tank side to the processing tank side with respect to the valve,
The control means includes an air elimination step in which the pressure in the processing tank is reduced by the pressure reducing means as the pressure reducing operation in a state where there is no container in the processing tank to reduce the volume in the processing tank; A steam supply step of restoring the pressure, a sterilization step of maintaining the inside of the treatment tank at a sterilization temperature or higher at a sterilization time, a steam removing step of depressurizing the inside of the treatment tank by the decompression means, and the treatment by the decompression means as the decompression operation. A pressure-reducing step for restoring the pressure in the tank,
The control unit determines whether the capacity of the vacuum pump is reduced based on the pressure reducing time in all or a part of the air removing step, and / or based on the pressure reducing time in all or a part of the pressure reducing step. The food machine according to claim 1, wherein clogging of the air filter is determined.
前記減圧操作では、前記処理槽内を第一設定圧力まで減圧し、
前記制御手段は、前記減圧操作中、前記処理槽内の圧力が、第一測定開始圧力から第一測定終了圧力に下がるまでの時間を測定し、その時間が基準減圧時間よりも長ければ、前記真空ポンプの能力が低下していると判定し、
前記第一測定開始圧力は、大気圧かそれ未満で設定され、
前記第一測定終了圧力は、前記第一測定開始圧力未満の圧力で、且つ、前記第一設定圧力かそれ以上で設定される
ことを特徴とする請求項1または請求項2に記載の食品機械。
In the decompression operation, the pressure in the processing tank is reduced to a first set pressure,
The control means, during the decompression operation, measures the time until the pressure in the processing tank decreases from the first measurement start pressure to the first measurement end pressure, and if the time is longer than a reference decompression time, the Judging that the capacity of the vacuum pump is decreasing,
The first measurement start pressure is set at or below atmospheric pressure,
The food machine according to claim 1 or 2, wherein the first measurement end pressure is set at a pressure lower than the first measurement start pressure and at or above the first set pressure. .
大気圧と前記第一設定圧力との間で、複数の圧力域が設定され、
前記制御手段は、前記圧力域ごとに、その圧力域を通過する時間を測定し、その時間が当該圧力域に対する基準減圧時間よりも長いか否かを判定する
ことを特徴とする請求項3に記載の食品機械。
A plurality of pressure ranges are set between the atmospheric pressure and the first set pressure,
The control means measures, for each of the pressure ranges, a time required to pass through the pressure range, and determines whether or not the time is longer than a reference depressurization time for the pressure range. Food machine as described.
前記基準減圧時間は、前記真空ポンプへの給水温度および/または真空ポンプの回転数に基づき変更される
ことを特徴とする請求項1〜4のいずれか1項に記載の食品機械。
The food machine according to any one of claims 1 to 4, wherein the reference decompression time is changed based on a temperature of water supplied to the vacuum pump and / or a rotation speed of the vacuum pump.
前記復圧操作の前、前記処理槽内を第二設定圧力まで減圧し、
前記制御手段は、前記復圧操作中、前記処理槽内の圧力が、第二測定開始圧力から第二測定終了圧力に上がるまでの時間を測定し、その時間が基準復圧時間よりも長ければ、前記エアフィルタに目詰まりがあると判定し、
前記第二測定開始圧力は、前記第二設定圧力かそれ以上で設定され、
前記第二測定終了圧力は、前記第二測定開始圧力を超える圧力で、且つ、大気圧かそれ未満で設定される
ことを特徴とする請求項1〜5のいずれか1項に記載の食品機械。
Before the decompression operation, the inside of the processing tank is reduced to a second set pressure,
The control means measures the time until the pressure in the processing tank increases from the second measurement start pressure to the second measurement end pressure during the pressure recovery operation, and if the time is longer than the reference pressure recovery time. Determining that the air filter is clogged,
The second measurement start pressure is set at the second set pressure or more,
The food machine according to any one of claims 1 to 5, wherein the second measurement end pressure is set at a pressure exceeding the second measurement start pressure and at or below atmospheric pressure. .
JP2018166600A 2018-09-06 2018-09-06 food machine Active JP7137129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166600A JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166600A JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Publications (2)

Publication Number Publication Date
JP2020038043A true JP2020038043A (en) 2020-03-12
JP7137129B2 JP7137129B2 (en) 2022-09-14

Family

ID=69737731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166600A Active JP7137129B2 (en) 2018-09-06 2018-09-06 food machine

Country Status (1)

Country Link
JP (1) JP7137129B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352303U (en) * 1989-09-29 1991-05-21
JPH0880340A (en) * 1994-09-12 1996-03-26 Chiyoda Manufacturing Co Ltd Detection of clogging of disinfecting filter for gas sterilizer
JP2011183325A (en) * 2010-03-10 2011-09-22 Miura Co Ltd Washing apparatus
JP2011200468A (en) * 2010-03-26 2011-10-13 Miura Co Ltd Food machine
JP2016049496A (en) * 2014-08-29 2016-04-11 日立工機株式会社 Centrifuge
JP2017166767A (en) * 2016-03-17 2017-09-21 株式会社サムソン Vacuum cooling apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352303U (en) * 1989-09-29 1991-05-21
JPH0880340A (en) * 1994-09-12 1996-03-26 Chiyoda Manufacturing Co Ltd Detection of clogging of disinfecting filter for gas sterilizer
JP2011183325A (en) * 2010-03-10 2011-09-22 Miura Co Ltd Washing apparatus
JP2011200468A (en) * 2010-03-26 2011-10-13 Miura Co Ltd Food machine
JP2016049496A (en) * 2014-08-29 2016-04-11 日立工機株式会社 Centrifuge
JP2017166767A (en) * 2016-03-17 2017-09-21 株式会社サムソン Vacuum cooling apparatus

Also Published As

Publication number Publication date
JP7137129B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
TWI500876B (en) Gas supplying apparatus, cylinder cabinet provided with the same, valve box, and substrate process apparatus
TWI542963B (en) Method and apparatus for controlling a processing system
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
JP2020038043A (en) Food machine
JP6845990B2 (en) Food machinery
JP5786417B2 (en) Cleaning device
KR102009660B1 (en) Cooling apparatus and controlling method thereof
JP2018204860A (en) Vacuum cooler
JP5427120B2 (en) Environmental test equipment
JP6417872B2 (en) Vacuum cooling device
JP2010144981A (en) Cooling method and cooling device
JP2008039335A (en) Heat pump defrosting circuit, heat pump water heater, and defrosting method for heat pump water heater
JP4736126B2 (en) Steam cooking equipment
JPH11137227A (en) Operation control device of vacuum cooling device
JP4883463B2 (en) Steam sterilizer
JP7167572B2 (en) vacuum cooling system
JP6738559B2 (en) Air leak detector and steam sterilizer equipped with it
JP7124677B2 (en) vacuum cooling system
JP6369755B2 (en) Vacuum cooling device
JP7432103B2 (en) vacuum cooling device
JP2020098039A (en) Vacuum cooling device
JP7276704B2 (en) vacuum cooling system
JP7376846B2 (en) vacuum cooling device
KR102232997B1 (en) Draft beer dispenser washing machine
JP7232400B2 (en) vacuum cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7137129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150