JP7167572B2 - vacuum cooling system - Google Patents

vacuum cooling system Download PDF

Info

Publication number
JP7167572B2
JP7167572B2 JP2018171722A JP2018171722A JP7167572B2 JP 7167572 B2 JP7167572 B2 JP 7167572B2 JP 2018171722 A JP2018171722 A JP 2018171722A JP 2018171722 A JP2018171722 A JP 2018171722A JP 7167572 B2 JP7167572 B2 JP 7167572B2
Authority
JP
Japan
Prior art keywords
temperature
pressure
processing tank
food
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171722A
Other languages
Japanese (ja)
Other versions
JP2020039327A (en
Inventor
拓也 松本
雅夫 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018171722A priority Critical patent/JP7167572B2/en
Publication of JP2020039327A publication Critical patent/JP2020039327A/en
Application granted granted Critical
Publication of JP7167572B2 publication Critical patent/JP7167572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Description

本発明は、処理槽内を減圧して食品を冷却する真空冷却装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum cooling apparatus that cools food by decompressing the inside of a processing tank.

従来、下記特許文献1に開示されるように、食品を収容し得る冷却庫(2)と、冷却庫に接続され冷却庫内の気体を排出し得る真空排気手段(3)と、冷却庫内の真空状態を解除する外気導入手段(21)とを備えた真空冷却装置が知られている。この装置では、冷却庫内に温度センサ(8)および圧力センサ(9)が設けられ、温度センサからの連続的検出信号に基づいて、冷却庫内の圧力を制御するように構成されている。具体的には、冷却庫内の食品の温度(品温)が、現在の品温(T1)より所定以上低い温度(T2)となるように、冷却庫内の圧力が調整される。また、冷却庫内の温度と、冷却庫内に配置された食品の温度との差が設定範囲内となるように、圧力調整されてもよい。 Conventionally, as disclosed in Patent Document 1 below, a refrigerator (2) that can store food, a vacuum exhaust means (3) that is connected to the refrigerator and can discharge the gas in the refrigerator, and the inside of the refrigerator There is known a vacuum cooling device provided with outside air introducing means (21) for releasing the vacuum state of the air. This device is provided with a temperature sensor (8) and a pressure sensor (9) in the refrigerator, and is configured to control the pressure in the refrigerator based on continuous detection signals from the temperature sensor. Specifically, the pressure in the cooler is adjusted so that the temperature (product temperature) of the food in the cooler becomes a temperature (T2) lower than the current product temperature (T1) by a predetermined amount or more. Further, the pressure may be adjusted so that the difference between the temperature inside the cooler and the temperature of the food placed in the cooler is within a set range.

特開2002-355020号公報(請求項1、段落0024、0027、図1)Japanese Patent Application Laid-Open No. 2002-355020 (claim 1, paragraphs 0024 and 0027, FIG. 1)

真空冷却装置により食品を真空冷却する場合、処理槽(冷却庫)内の圧力を低下させるに従って、品温(処理槽内の食品温度)は、槽内圧力換算温度(処理槽内圧力における飽和温度)に追従する形で下がっていくことになる。ところが、ある程度冷却が進むと、特に液物食品の場合、品温が槽内圧力換算温度に追従できず、乖離し、突沸を生じさせるおそれがある。突沸が生じると、食品の飛散により、歩留まりが低下するおそれがある。 When food is vacuum-cooled by a vacuum cooling device, as the pressure in the processing tank (cooling chamber) is lowered, the product temperature (food temperature in the processing tank) changes to the pressure conversion temperature in the tank (saturation temperature at the pressure in the processing tank ) will fall. However, when cooling progresses to a certain extent, particularly in the case of liquid foods, the product temperature cannot follow the pressure-converted temperature in the tank, and may deviate from the temperature to cause bumping. When bumping occurs, there is a risk that the yield will decrease due to scattering of food.

前記特許文献1に開示される装置では、品温を徐々に下げるように槽内圧力が調整されるが、その際、品温ないし槽内温度が現在の品温より設定温度低い温度となる圧力に調整される。ところが、前記設定温度は固定されており、冷却開始から終了まで一定とされる。この場合、冷却が進むほど、冷却されにくくなり、冷却が完了しなかったり、冷却時間が長くなり過ぎたりするおそれがある。 In the apparatus disclosed in Patent Document 1, the pressure in the tank is adjusted so as to gradually lower the product temperature. adjusted to However, the set temperature is fixed and remains constant from the start to the end of cooling. In this case, as the cooling progresses, the cooling becomes more difficult, and there is a risk that the cooling will not be completed or the cooling time will be too long.

そこで、本発明が解決しようとする課題は、突沸を防止しつつ、食品の冷却を迅速に図ることができる真空冷却装置を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vacuum cooling apparatus capable of rapidly cooling food while preventing bumping.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサと、前記各手段を制御する制御手段とを備え、前記制御手段は、前記品温センサの検出温度と前記圧力センサの検出圧力における飽和温度との温度差が設定温度差になるように、前記処理槽内の圧力を調整しつつ前記処理槽内を減圧し、前記処理槽内を減圧して食品を冷却中、前記品温センサの検出温度を監視し、この検出温度の設定時間内の温度下降幅が設定値未満になると、前記設定温度差を増加させることを特徴とする真空冷却装置である。 The present invention has been made to solve the above problems, and the invention according to claim 1 comprises a processing tank in which food is stored, a depressurizing means for sucking and discharging the gas in the processing tank to the outside, pressure restoring means for introducing outside air into the decompressed processing tank, a pressure sensor for detecting the pressure in the processing tank, a food temperature sensor for detecting the temperature of the food contained in the processing tank, and the and a control means for controlling each means, wherein the control means controls the temperature difference between the temperature detected by the product temperature sensor and the saturation temperature of the pressure detected by the pressure sensor to be a set temperature difference. The inside of the processing tank is decompressed while adjusting the pressure of , and the temperature detected by the product temperature sensor is monitored while the food is cooled by decompressing the inside of the processing tank. The vacuum cooling device is characterized in that the set temperature difference is increased when the temperature becomes less than the set value .

請求項1に記載の発明によれば、品温と槽内圧力換算温度との温度差を設定温度差に抑えることで、食品からの水分蒸発を所定の速度に制御し、突沸を抑制しつつ食品の冷却を図ることができる According to the first aspect of the invention, by suppressing the temperature difference between the product temperature and the tank internal pressure conversion temperature to the set temperature difference, the moisture evaporation from the food is controlled at a predetermined rate, and bumping is suppressed. Food can be cooled .

請求項1に記載の発明によれば、処理槽内を減圧して食品を冷却中、品温の低下具合を監視しつつ、それに応じて前記設定温度差を変化させるので、食品に応じた真空冷却を図ることができる。 According to the first aspect of the invention, while the food is being cooled by decompressing the inside of the processing tank, the degree of decrease in the temperature of the food is monitored, and the set temperature difference is changed accordingly. Cooling can be achieved.

本発明の真空冷却装置によれば、突沸を防止しつつ、食品の冷却を迅速に図ることができる。 According to the vacuum cooling device of the present invention, food can be rapidly cooled while preventing bumping.

本発明の一実施例の真空冷却装置を示す概略図であり、一部を断面にして示している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a vacuum cooling device according to one embodiment of the present invention, partly in cross section; 図1の真空冷却装置による冷却運転の一例を示すグラフであり、品温TFと槽内圧力換算温度TSとの変化を示しており、縦軸は温度T、横軸は運転開始からの経過時間tを示している。It is a graph showing an example of the cooling operation by the vacuum cooling device of FIG. 1, showing the change in the product temperature TF and the tank internal pressure conversion temperature TS, the vertical axis is the temperature T, the horizontal axis is the elapsed time from the start of operation t.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の真空冷却装置1を示す概略図であり、一部を断面にして示している。
Specific embodiments of the present invention will now be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a vacuum cooling device 1 according to one embodiment of the present invention, and shows a part thereof in cross section.

本実施例の真空冷却装置1は、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出して処理槽2内を減圧する減圧手段3と、減圧された処理槽2内へ外気を導入して処理槽2内を復圧する復圧手段4と、これら各手段3,4を制御して処理槽2内の食品Fを冷却する制御手段(図示省略)とを備える。 The vacuum cooling device 1 of the present embodiment includes a processing tank 2 containing food F, a decompression means 3 for decompressing the processing tank 2 by sucking and discharging the gas in the processing tank 2 to the outside, and A pressure restoring means 4 for introducing outside air into the processing tank 2 to restore the pressure inside the processing tank 2, and a control means (not shown) for controlling these means 3 and 4 to cool the food F in the processing tank 2. Prepare.

処理槽2は、内部空間の減圧に耐える中空容器であり、ドアで開閉可能とされる。処理槽2は、典型的には略矩形の箱状に形成され、正面の開口部がドアで開閉可能とされる。ドアを開けることで、処理槽2に食品Fを出し入れすることができ、ドアを閉じることで、処理槽2の開口部を気密に閉じることができる。ドアは、処理槽2の正面および背面の双方に設けられてもよい。なお、図示例では、食品Fは、ホテルパンや番重のような食品容器に入れられて、処理槽2内に収容されている。 The processing tank 2 is a hollow container that can withstand the pressure reduction of the internal space, and can be opened and closed with a door. The processing tank 2 is typically formed in a substantially rectangular box shape, and the front opening can be opened and closed with a door. By opening the door, the food F can be taken in and out of the processing tank 2, and by closing the door, the opening of the processing tank 2 can be airtightly closed. Doors may be provided on both the front and back sides of the processing tank 2 . In the illustrated example, the food F is placed in a food container such as a hotel pan or a tray and stored in the treatment tank 2 .

減圧手段3は、処理槽2内の気体(空気や蒸気)を外部へ吸引排出して、処理槽2内を減圧する手段である。本実施例では、減圧手段3は、処理槽2内からの排気路5に、蒸気エゼクタ6、蒸気凝縮用の熱交換器7、逆止弁8、および水封式の真空ポンプ9を順に備える。 The decompression means 3 is a means for decompressing the inside of the processing bath 2 by sucking and discharging the gas (air or steam) in the processing bath 2 to the outside. In this embodiment, the decompression means 3 includes a steam ejector 6, a heat exchanger 7 for steam condensation, a check valve 8, and a water-sealed vacuum pump 9 in the exhaust path 5 from the processing tank 2 in this order. .

蒸気エゼクタ6は、吸引口6aが処理槽2に接続されて設けられ、入口6bから出口6cへ向けて、エゼクタ給蒸路10からの蒸気がノズルで噴出可能とされる。入口6bから出口6cへ向けて蒸気を噴出させることで、処理槽2内の気体も吸引口6aを介して出口6cへ吸引排出される。エゼクタ給蒸路10に設けたエゼクタ給蒸弁11の開閉を操作することで、蒸気エゼクタ6の作動の有無を切り替えることができる。 The steam ejector 6 is provided with a suction port 6a connected to the processing tank 2, and steam from the ejector steam supply passage 10 can be ejected from the nozzle from the inlet 6b toward the outlet 6c. By jetting steam from the inlet 6b to the outlet 6c, the gas in the processing tank 2 is also sucked and discharged to the outlet 6c through the suction port 6a. By operating the opening/closing of the ejector steam supply valve 11 provided in the ejector steam supply path 10, the presence/absence of operation of the steam ejector 6 can be switched.

熱交換器7は、排気路5内の流体と冷却水とを混ぜることなく熱交換する間接熱交換器である。熱交換器7により、排気路5内の蒸気を、冷却水により冷却し凝縮させることができる。熱交換器7には、熱交給水路12を介して冷却水が供給され、熱交排水路13を介して冷却水が排出される。熱交給水路12には、熱交給水弁14が設けられている。熱交排水路13は、図示しないが、冷水タンク(冷水供給源)への戻し路と外部への排水出口路とに分岐されており、冷水タンクへの戻し路にチラー水弁(図示省略)が設けられ、外部への排水出口路に熱交排水弁(図示省略)が設けられている。チラー水弁および熱交排水弁により、熱交換器7を通過後の水を、冷水タンクへ戻すか、排水出口路へ排出するか、あるいはいずれも行わずに熱交換器7の通水を阻止するか(つまり熱交換器7の冷却水出口側を閉じるか)を切り替えることができる。熱交換器7に冷水を供給する場合、熱交排水弁を閉じると共にチラー水弁を開けることで、熱交換器7を通過後の冷水は冷水タンクへ戻される。一方、熱交換器7に常温水を供給する場合、チラー水弁を閉じると共に熱交排水弁を開けることで、熱交換器7を通過後の常温水は排水出口路へ排出される。 The heat exchanger 7 is an indirect heat exchanger that exchanges heat between the fluid in the exhaust path 5 and the cooling water without mixing. The heat exchanger 7 allows the steam in the exhaust line 5 to be cooled and condensed with cooling water. Cooling water is supplied to the heat exchanger 7 through a heat exchange water supply line 12 and discharged through a heat exchange water discharge line 13 . A heat exchange water supply valve 14 is provided in the heat exchange water supply path 12 . Although not shown, the heat exchange drainage path 13 is branched into a return path to the cold water tank (cold water supply source) and a drainage outlet path to the outside. is provided, and a heat exchanger drain valve (not shown) is provided in the drain outlet path to the outside. After passing through the heat exchanger 7, the chiller water valve and the heat exchanger drain valve either return the water to the cold water tank, discharge it to the drain outlet, or prevent the flow of water through the heat exchanger 7 without doing either. (that is, whether the cooling water outlet side of the heat exchanger 7 is closed) can be switched. When cold water is supplied to the heat exchanger 7, the cold water after passing through the heat exchanger 7 is returned to the cold water tank by closing the heat exchange drain valve and opening the chiller water valve. On the other hand, when normal temperature water is supplied to the heat exchanger 7, by closing the chiller water valve and opening the heat exchanger drain valve, the normal temperature water after passing through the heat exchanger 7 is discharged to the drainage outlet passage.

真空ポンプ9は、本実施例では水封式であり、周知のとおり、封水と呼ばれる水が供給されつつ運転される。そのために、真空ポンプ9の給水口9aには、封水給水路15を介して水が供給される。封水給水路15には封水給水弁16が設けられており、封水給水弁16を開けることで、真空ポンプ9に封水を供給することができる。封水給水弁16を開けた状態で真空ポンプ9を作動させると、真空ポンプ9は、吸気口9bから気体を吸入し、排気口9cへ排気および排水する。真空ポンプ9は、オンオフ制御されてもよいし、出力を調整可能とされてもよい。本実施例では、真空ポンプ9は、インバータを用いて、モータの駆動周波数ひいては回転数を変更可能とされる。 The vacuum pump 9 is of a water ring type in this embodiment, and as is well known, is operated while being supplied with water called seal water. Therefore, water is supplied to the water supply port 9 a of the vacuum pump 9 through the sealed water supply path 15 . A sealed water supply valve 16 is provided in the sealed water supply path 15 , and sealing water can be supplied to the vacuum pump 9 by opening the sealed water supply valve 16 . When the vacuum pump 9 is operated with the sealed water supply valve 16 open, the vacuum pump 9 sucks gas from the intake port 9b and exhausts and drains the gas from the exhaust port 9c. The vacuum pump 9 may be on/off controlled, or its output may be adjustable. In this embodiment, the vacuum pump 9 uses an inverter to change the driving frequency of the motor and thus the number of revolutions.

ところで、図示例の場合、封水給水路15は、上流側において熱交給水路12と共通管路17とされており、その共通管路17に熱交給水弁14が設けられている。この場合、熱交給水弁14を開けると、熱交換器7に通水可能とされ、さらに封水給水弁16を開けると、真空ポンプ9に給水される。本実施例では、熱交換器7および真空ポンプ9への給水として、常温水と冷水(チラーで冷却された水)とを切替可能とされている。 By the way, in the illustrated example, the sealing water supply line 15 and the heat exchange water supply line 12 are shared with the heat exchange water supply line 17 on the upstream side, and the heat exchange water supply valve 14 is provided in the common line 17 . In this case, when the heat exchange water supply valve 14 is opened, water is allowed to flow through the heat exchanger 7, and when the seal water supply valve 16 is opened, the vacuum pump 9 is supplied with water. In this embodiment, water supply to the heat exchanger 7 and the vacuum pump 9 can be switched between normal temperature water and cold water (water cooled by a chiller).

復圧手段4は、減圧された処理槽2内へ外気を導入して、処理槽2内を復圧する手段である。本実施例では、復圧手段4は、処理槽2内への給気路18に、エアフィルタ19および給気弁20を順に備える。処理槽2内が減圧された状態で、給気弁20を開けると、外気がエアフィルタ19を介して処理槽2内へ導入され、処理槽2内を復圧することができる。給気弁20は、好ましくは開度調整可能な弁から構成される。 The pressure restoring means 4 is a means for introducing outside air into the decompressed processing tank 2 to restore the pressure inside the processing tank 2 . In this embodiment, the pressure recovery means 4 includes an air filter 19 and an air supply valve 20 in the air supply path 18 leading to the processing tank 2 . When the air supply valve 20 is opened while the inside of the processing tank 2 is depressurized, outside air is introduced into the processing tank 2 through the air filter 19, and the pressure inside the processing tank 2 can be restored. The air supply valve 20 preferably consists of a valve whose degree of opening is adjustable.

処理槽2には、さらに、処理槽2内の圧力を検出する圧力センサ21と、処理槽2内に収容される食品Fの温度(品温)を検出する品温センサ22とが設けられる。 The processing tank 2 is further provided with a pressure sensor 21 for detecting the pressure inside the processing tank 2 and a product temperature sensor 22 for detecting the temperature (product temperature) of the food F contained in the processing tank 2 .

制御手段は、前記各センサ21,22の検出信号や経過時間などに基づき、前記各手段3,4を制御する制御器(図示省略)である。具体的には、真空ポンプ9、エゼクタ給蒸弁11、熱交給水弁14、チラー水弁(図示省略)、熱交排水弁(図示省略)、封水給水弁16、給気弁20の他、圧力センサ21および品温センサ22などは、制御器に接続されている。そして、制御器は、以下に述べるように、所定の手順(プログラム)に従い、処理槽2内の食品Fの真空冷却を図る。 The control means is a controller (not shown) that controls the means 3 and 4 based on the detection signals of the sensors 21 and 22, the elapsed time, and the like. Specifically, the vacuum pump 9, ejector steam supply valve 11, heat exchange water supply valve 14, chiller water valve (not shown), heat exchange water discharge valve (not shown), sealing water supply valve 16, air supply valve 20, etc. , pressure sensor 21 and product temperature sensor 22 are connected to the controller. Then, the controller attempts to vacuum-cool the food F in the processing tank 2 according to a predetermined procedure (program), as described below.

以下、本実施例の真空冷却装置1の運転方法の具体例について説明する。
図2は、本実施例の真空冷却装置1による冷却運転の一例を示すグラフであり、品温TFと槽内圧力換算温度TSとの変化を示しており、縦軸は温度T、横軸は運転開始からの経過時間tを示している。
A specific example of the operating method of the vacuum cooling device 1 of this embodiment will be described below.
FIG. 2 is a graph showing an example of the cooling operation by the vacuum cooling device 1 of the present embodiment, showing changes in the product temperature TF and the in-tank pressure conversion temperature TS, where the vertical axis is the temperature T and the horizontal axis is Elapsed time t from the start of operation is shown.

運転開始前、給気弁20は開けられた状態にある一方、エゼクタ給蒸弁11、熱交給水弁14および封水給水弁16は閉じられた状態にあり、真空ポンプ9は停止している。その状態で、処理槽2内に食品Fが収容され、処理槽2のドアは気密に閉じられる。そして、スタートボタンが押されるなど運転開始が指示されると、制御器は、給気弁20を閉じると共に減圧手段3を作動させて、品温TFが予め設定された冷却目標温度になるまで、処理槽2内を減圧して食品の冷却を図る。この際、本実施例では、急冷制御S1の後、温度差一定制御S2を実施して、食品Fを冷却目標温度まで冷却する。 Before the start of operation, the air supply valve 20 is open, the ejector steam supply valve 11, the heat exchange water supply valve 14, and the seal water supply valve 16 are closed, and the vacuum pump 9 is stopped. . In this state, the food F is stored in the processing tank 2, and the door of the processing tank 2 is airtightly closed. When the start button is pushed or the like is instructed to start operation, the controller closes the air supply valve 20 and operates the decompression means 3 until the product temperature TF reaches the preset cooling target temperature. The inside of the processing tank 2 is decompressed to cool the food. At this time, in this embodiment, after the rapid cooling control S1, the constant temperature difference control S2 is performed to cool the food F to the cooling target temperature.

急冷制御S1では、槽内圧力換算温度TS(処理槽2内圧力における飽和温度)が品温TF(処理槽2内の食品温度であり、処理槽2内への投入時においてたとえば70~80℃)を下回るまで、処理槽2内を減圧する。槽内圧力換算温度TSが品温TFよりも高い状況下では、食品Fの沸騰や突沸は生じないので、急冷制御S1では、たとえば給気弁20を全閉とした状態で、減圧手段3により、処理槽2内の圧力を迅速に低下させるのがよい。 In the rapid cooling control S1, the tank internal pressure conversion temperature TS (saturation temperature at the internal pressure of the processing tank 2) is the product temperature TF (the temperature of the food in the processing tank 2). ), the inside of the processing tank 2 is depressurized. Under conditions where the pressure conversion temperature TS in the tank is higher than the product temperature TF, boiling and bumping of the food F do not occur. , the pressure in the treatment tank 2 should be quickly lowered.

制御器は、予め登録された所定の演算式(またはテーブル)に基づき、圧力センサ21の検出圧力から飽和温度としての槽内圧力換算温度TSを求めることができる。そして、槽内圧力換算温度TSが品温TFを下回るまで急冷制御S1を行った後、温度差一定制御S2に移行する。 The controller can obtain the tank internal pressure conversion temperature TS as the saturation temperature from the pressure detected by the pressure sensor 21 based on a predetermined arithmetic expression (or table) registered in advance. Then, after the rapid cooling control S1 is performed until the in-tank pressure conversion temperature TS falls below the product temperature TF, the temperature difference constant control S2 is performed.

温度差一定制御S2では、品温TFと槽内圧力換算温度TSとの温度差ΔTが設定温度差(たとえば2℃)になるように、処理槽2内の圧力を調整しつつ処理槽2内を減圧する。つまり、品温センサ22の検出温度TFと圧力センサ21の検出圧力における飽和温度TSとの温度差ΔTが設定温度差になるように、処理槽2内の圧力を調整しつつ処理槽2内を減圧する。処理槽2内の圧力の調整は、典型的には、減圧手段3を作動させた状態で、復圧手段4による給気量を調整すればよい。つまり、減圧手段3(少なくとも真空ポンプ9)を作動させた状態で、給気弁20の開度を調整すればよい。但し、これに代えてまたはこれに加えて、減圧手段3による減圧能力を調整してもよい。 In the temperature difference constant control S2, the pressure inside the processing bath 2 is adjusted so that the temperature difference ΔT between the product temperature TF and the inside pressure converted temperature TS becomes a set temperature difference (for example, 2° C.). is decompressed. That is, the pressure in the processing bath 2 is adjusted so that the temperature difference ΔT between the temperature TF detected by the product temperature sensor 22 and the saturation temperature TS at the pressure detected by the pressure sensor 21 becomes the set temperature difference. Reduce pressure. The pressure in the processing tank 2 is typically adjusted by adjusting the amount of air supplied by the pressure recovery means 4 while the decompression means 3 is in operation. In other words, the opening degree of the air supply valve 20 may be adjusted while the pressure reducing means 3 (at least the vacuum pump 9) is in operation. However, instead of or in addition to this, the decompression capability of the decompression means 3 may be adjusted.

温度差一定制御S2において、槽内圧力換算温度TSが品温TFよりも設定温度低くなるように、処理槽2内の圧力を調整すると、品温TFが低下してくるので、その品温TFの低下に合わせて、槽内圧力(槽内圧力換算温度TS)を低下させていけばよい。品温TFと槽内圧力換算温度TSとの温度差ΔTを設定温度差に抑えることで、食品Fからの水分蒸発を所定の速度に制御し、突沸を抑制しつつ食品Fの冷却を図ることができる。つまり、仮に前記温度差ΔTを考慮せずに減圧した場合、品温TFが槽内圧力換算温度TSに追従できず、温度差ΔT(圧力差)が大きくなると、突然一気に蒸発が起こる突沸を生じさせるおそれがあるが、温度差ΔTを設定温度差に抑えることで、突沸の発生を抑制することができる。 In the temperature difference constant control S2, if the pressure in the processing tank 2 is adjusted so that the pressure conversion temperature TS in the tank is lower than the product temperature TF, the product temperature TF will decrease. The pressure in the tank (temperature TS converted to pressure in the tank) should be lowered in accordance with the decrease in . By suppressing the temperature difference ΔT between the product temperature TF and the pressure conversion temperature TS in the tank to the set temperature difference, the evaporation of water from the food F is controlled at a predetermined rate, and the food F is cooled while suppressing bumping. can be done. In other words, if the pressure is reduced without considering the temperature difference ΔT, the product temperature TF cannot follow the tank internal pressure conversion temperature TS, and when the temperature difference ΔT (pressure difference) increases, bumping occurs in which evaporation occurs suddenly. However, by suppressing the temperature difference ΔT to the set temperature difference, the occurrence of bumping can be suppressed.

なお、急冷制御S1から温度差一定制御S2へ移行する際、真空ポンプ9の回転数を下げるのが好ましい。たとえば、急冷制御S1では、真空ポンプ9の電源周波数を第一周波数(たとえば60Hz)とするが、温度差一定制御S2への移行に伴い、第一周波数よりも低い第二周波数(たとえば50Hz)とする。 It is preferable to lower the rotation speed of the vacuum pump 9 when shifting from the rapid cooling control S1 to the constant temperature difference control S2. For example, in the rapid cooling control S1, the power supply frequency of the vacuum pump 9 is set to the first frequency (for example, 60 Hz). do.

また、急冷制御S1と温度差一定制御S2とを含む一連の冷却運転において、熱交換器7および真空ポンプ9への給水や、蒸気エゼクタ6の作動は、たとえば次のように制御される。すなわち、冷却運転の開始時には、熱交換器7の通水を停止した状態で、真空ポンプ9に常温水を供給しつつ、真空ポンプ9により処理槽2内を減圧する。この段階では、エゼクタ給蒸弁11は閉じられており、蒸気エゼクタ6は作動していない。その後、品温センサ22の検出温度が通水開始温度(たとえば60℃)以下になると、熱交換器7の通水を開始する。この際、熱交換器7および真空ポンプ9には、冷水が供給される。その後、品温センサ22の検出温度がエゼクタ作動温度(たとえば30℃)以下で且つ圧力センサ21の検出圧力がエゼクタ作動圧力(たとえば45hPa)以下になると、エゼクタ給蒸弁11を開けて、蒸気エゼクタ6を作動させる。そして、品温センサ22の検出温度が冷却目標温度(たとえば10℃)になると、処理槽2内の減圧を停止する。具体的には、エゼクタ給蒸弁11、熱交給水弁14および封水給水弁16を閉じて、蒸気エゼクタ6および真空ポンプ9を停止すると共に、熱交換器7の通水を停止する。その後、給気弁20を開けて、処理槽2内を大気圧まで復圧すればよい。 In a series of cooling operations including rapid cooling control S1 and constant temperature difference control S2, water supply to heat exchanger 7 and vacuum pump 9 and operation of steam ejector 6 are controlled as follows, for example. That is, at the start of the cooling operation, the inside of the processing tank 2 is decompressed by the vacuum pump 9 while the normal temperature water is being supplied to the vacuum pump 9 in a state where the water supply to the heat exchanger 7 is stopped. At this stage, the ejector steam valve 11 is closed and the steam ejector 6 is not operating. After that, when the temperature detected by the product temperature sensor 22 becomes equal to or lower than the water flow start temperature (for example, 60° C.), water flow through the heat exchanger 7 is started. At this time, cold water is supplied to the heat exchanger 7 and the vacuum pump 9 . After that, when the temperature detected by the product temperature sensor 22 is equal to or lower than the ejector operating temperature (eg, 30° C.) and the pressure detected by the pressure sensor 21 is equal to or lower than the ejector operating pressure (eg, 45 hPa), the ejector steam supply valve 11 is opened to open the steam ejector. 6 is activated. Then, when the temperature detected by the product temperature sensor 22 reaches the cooling target temperature (for example, 10° C.), the pressure reduction in the processing bath 2 is stopped. Specifically, the ejector steam supply valve 11, the heat exchange water supply valve 14, and the seal water supply valve 16 are closed, the steam ejector 6 and vacuum pump 9 are stopped, and water supply to the heat exchanger 7 is stopped. After that, the air supply valve 20 is opened to restore the pressure in the processing bath 2 to the atmospheric pressure.

温度差一定制御S2中、品温センサ22の検出温度を監視し、この検出温度の設定時間Δt内の品温の温度下降幅が設定値未満になると、前記設定温度差を所定温度(たとえば0.5~1℃)増加させるのがよい。 During the temperature difference constant control S2, the temperature detected by the product temperature sensor 22 is monitored, and when the temperature drop of the product temperature within the set time Δt of the detected temperature becomes less than the set value, the set temperature difference is set to a predetermined temperature (for example, 0 .5-1°C) should be increased.

たとえば、品温TFと槽内圧力換算温度TSとの温度差ΔTが第一温度差ΔT1(たとえば2℃)となるように圧力制御中、品温TFの低下速度が遅くなり、設定時間Δt(たとえば1分)内の品温TFの温度下降幅が設定値(たとえば1℃)未満になると、前記温度差ΔTを第一温度差ΔT1よりも大きな第二温度差ΔT2(たとえば3℃)となるように圧力制御することで、品温TFの低下を促すことができる。その後、再び、品温TFの低下速度が遅くなり、設定時間Δt内の品温TFの温度下降幅が設定値未満になると、前記温度差ΔTを第二温度差ΔT2よりも大きな第三温度差ΔT3(たとえば4℃)となるように圧力制御して、品温TFの低下を促すということを繰り返せばよい。 For example, during pressure control so that the temperature difference ΔT between the product temperature TF and the in-tank pressure conversion temperature TS becomes the first temperature difference ΔT1 (for example, 2°C), the rate of decrease in the product temperature TF slows down, and the set time Δt ( When the temperature drop width of the product temperature TF within 1 minute) becomes less than a set value (eg 1°C), the temperature difference ΔT becomes a second temperature difference ΔT2 (eg 3°C) larger than the first temperature difference ΔT1. A decrease in the product temperature TF can be promoted by controlling the pressure in such a manner. After that, the rate of decrease of the product temperature TF slows down again, and when the temperature drop width of the product temperature TF within the set time Δt becomes less than the set value, the temperature difference ΔT is set to a third temperature difference larger than the second temperature difference ΔT2. It suffices to repeat pressure control so as to achieve ΔT3 (for example, 4° C.) to promote a decrease in the product temperature TF.

このようにして、冷えにくい食品でも、設定温度差を増加させつつ食品Fの冷却を図ることができる。そのため、冷えにくい食品でも、冷却が完了しなかったり、冷却時間が長くなり過ぎたりするおそれがない。 In this way, even if the food is difficult to cool, the food F can be cooled while increasing the set temperature difference. Therefore, even if the food is hard to cool, there is no possibility that the cooling will not be completed or that the cooling time will be too long.

本発明の真空冷却装置1は、前記実施例の構成(制御を含む)に限らず適宜変更可能である。特に、食品Fが収容される処理槽2と、この処理槽2内の気体を外部へ吸引排出する減圧手段3と、減圧された処理槽2内へ外気を導入する復圧手段4と、処理槽2内の圧力を検出する圧力センサ21と、処理槽2内に収容された食品Fの温度を検出する品温センサ22と、前記各手段3,4を制御する制御手段とを備え、制御手段は、品温センサ22の検出温度TFと圧力センサ21の検出圧力における飽和温度TSとの温度差ΔTが設定温度差になるように、処理槽2内の圧力を調整しつつ処理槽2内を減圧し、処理槽2内の減圧が進むに伴い、前記設定温度差ΔTを増加させるのであれば、その他の構成は適宜に変更可能である。 The vacuum cooling device 1 of the present invention is not limited to the configuration (including control) of the above embodiment, and can be modified as appropriate. In particular, a processing tank 2 containing food F, a depressurizing means 3 for sucking and discharging the gas in the processing tank 2 to the outside, a pressure restoring means 4 for introducing outside air into the decompressed processing tank 2, and a processing Equipped with a pressure sensor 21 for detecting the pressure in the tank 2, a product temperature sensor 22 for detecting the temperature of the food F contained in the processing tank 2, and a control means for controlling the means 3 and 4. The means adjusts the pressure in the processing tank 2 so that the temperature difference ΔT between the temperature TF detected by the product temperature sensor 22 and the saturation temperature TS at the pressure detected by the pressure sensor 21 becomes the set temperature difference. is reduced and the set temperature difference .DELTA.T is increased as the pressure in the processing tank 2 is reduced.

たとえば、前記実施例において、減圧手段3の構成は、適宜変更可能である。たとえば、前記実施例では、減圧手段3として蒸気エゼクタ6を備えたが、場合により蒸気エゼクタ6の設置を省略してもよい。 For example, in the above embodiment, the configuration of the decompression means 3 can be changed as appropriate. For example, in the above embodiment, the steam ejector 6 is provided as the decompression means 3, but installation of the steam ejector 6 may be omitted depending on the case.

さらに、前記実施例では、真空冷却装置1は、冷却専用機として説明したが、真空冷却機能を有するのであれば、適宜に変更可能である。たとえば、蒸気による加熱手段を備えることで、蒸煮冷却装置や飽和蒸気調理装置のように構成されてもよい。あるいは、冷凍機やファンを用いた冷風冷却手段を備えることで、冷風真空複合冷却装置のように構成されてもよい。 Furthermore, in the above embodiment, the vacuum cooling device 1 has been described as a dedicated cooling machine, but it can be modified appropriately as long as it has a vacuum cooling function. For example, by providing heating means using steam, it may be configured like a steaming cooling device or a saturated steam cooking device. Alternatively, by providing cold air cooling means using a refrigerator or a fan, it may be configured like a cold air/vacuum combined cooling device.

1 真空冷却装置
2 処理槽
3 減圧手段
4 復圧手段
5 排気路
6 蒸気エゼクタ(6a:吸引口、6b:入口、6c:出口)
7 熱交換器
8 逆止弁
9 真空ポンプ(9a:給水口、9b:吸気口、9c:排気口)
10 エゼクタ給蒸路
11 エゼクタ給蒸弁
12 熱交給水路
13 熱交排水路
14 熱交給水弁
15 封水給水路
16 封水給水弁
17 共通管路
18 給気路
19 エアフィルタ
20 給気弁
21 圧力センサ
22 品温センサ
F 食品
S1 急冷制御
S2 温度差一定制御
REFERENCE SIGNS LIST 1 vacuum cooling device 2 treatment tank 3 decompression means 4 pressure recovery means 5 exhaust path 6 steam ejector (6a: suction port, 6b: inlet, 6c: outlet)
7 heat exchanger 8 check valve 9 vacuum pump (9a: water supply port, 9b: intake port, 9c: exhaust port)
10 Ejector Steam Supply Line 11 Ejector Steam Supply Valve 12 Heat Exchanger Water Supply Line 13 Heat Exchanger Drainage Line 14 Heat Exchanger Water Supply Valve 15 Sealed Water Supply Line 16 Sealed Water Supply Valve 17 Common Line 18 Air Supply Line 19 Air Filter 20 Air Supply Valve 21 Pressure sensor 22 Product temperature sensor F Food S1 Rapid cooling control S2 Constant temperature difference control

Claims (1)

食品が収容される処理槽と、この処理槽内の気体を外部へ吸引排出する減圧手段と、減圧された前記処理槽内へ外気を導入する復圧手段と、前記処理槽内の圧力を検出する圧力センサと、前記処理槽内に収容された食品の温度を検出する品温センサと、前記各手段を制御する制御手段とを備え、
前記制御手段は、前記品温センサの検出温度と前記圧力センサの検出圧力における飽和温度との温度差が設定温度差になるように、前記処理槽内の圧力を調整しつつ前記処理槽内を減圧し、
前記処理槽内を減圧して食品を冷却中、前記品温センサの検出温度を監視し、この検出温度の設定時間内の温度下降幅が設定値未満になると、前記設定温度差を増加させる
ことを特徴とする真空冷却装置。
A processing tank containing food, decompression means for sucking and discharging the gas in the processing tank to the outside, pressure recovery means for introducing outside air into the decompressed processing tank, and detecting the pressure in the processing tank. a pressure sensor, a temperature sensor for detecting the temperature of the food contained in the processing tank, and a control means for controlling each means,
The control means adjusts the pressure in the processing bath so that the temperature difference between the temperature detected by the product temperature sensor and the saturated temperature at the pressure detected by the pressure sensor becomes a set temperature difference. depressurize,
The temperature detected by the product temperature sensor is monitored while the food is cooled by decompressing the inside of the processing tank, and the set temperature difference is increased when the temperature drop range of the detected temperature within the set time is less than the set value.
A vacuum cooling device characterized by:
JP2018171722A 2018-09-13 2018-09-13 vacuum cooling system Active JP7167572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171722A JP7167572B2 (en) 2018-09-13 2018-09-13 vacuum cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171722A JP7167572B2 (en) 2018-09-13 2018-09-13 vacuum cooling system

Publications (2)

Publication Number Publication Date
JP2020039327A JP2020039327A (en) 2020-03-19
JP7167572B2 true JP7167572B2 (en) 2022-11-09

Family

ID=69796703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171722A Active JP7167572B2 (en) 2018-09-13 2018-09-13 vacuum cooling system

Country Status (1)

Country Link
JP (1) JP7167572B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069289A (en) 2002-06-10 2004-03-04 Miura Co Ltd Vacuum cooling method
JP2010181042A (en) 2009-02-03 2010-08-19 Miura Co Ltd Cooling device and cooling method
JP2013146197A (en) 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069289A (en) 2002-06-10 2004-03-04 Miura Co Ltd Vacuum cooling method
JP2010181042A (en) 2009-02-03 2010-08-19 Miura Co Ltd Cooling device and cooling method
JP2013146197A (en) 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device

Also Published As

Publication number Publication date
JP2020039327A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5251557B2 (en) Cooling device and cooling method
TWI595199B (en) Refrigeration device
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
KR20180118108A (en) Vacuum cooling device
JP7167572B2 (en) vacuum cooling system
JP2018204860A (en) Vacuum cooler
WO2007094141A1 (en) Cooling device
JP7223319B2 (en) vacuum cooling system
JP2009063250A (en) Cooling apparatus
JP2009008372A (en) Cooling system
JP2008170016A (en) Cooling device
JP6748456B2 (en) Vacuum cooling device
JP3495290B2 (en) Steam cooling method and device
JP7124677B2 (en) vacuum cooling system
JP2006346149A (en) Cooking apparatus
JP2020096539A (en) Vacuum cooling device
JP7376846B2 (en) vacuum cooling device
JP7432103B2 (en) vacuum cooling device
JP7354799B2 (en) vacuum cooling device
JP7137131B2 (en) vacuum cooling system
JP2022141466A (en) Vacuum cooling device
JP5370670B2 (en) Operation method of cooking device
JP5407378B2 (en) Cooling device and cooling method
JP2000249441A (en) Vacuum cooling apparatus where cooling up to predetermined time is securely achieved
JP7232400B2 (en) vacuum cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221010

R150 Certificate of patent or registration of utility model

Ref document number: 7167572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150