JP2004357627A - Vacuum steam thawing machine - Google Patents

Vacuum steam thawing machine Download PDF

Info

Publication number
JP2004357627A
JP2004357627A JP2003161917A JP2003161917A JP2004357627A JP 2004357627 A JP2004357627 A JP 2004357627A JP 2003161917 A JP2003161917 A JP 2003161917A JP 2003161917 A JP2003161917 A JP 2003161917A JP 2004357627 A JP2004357627 A JP 2004357627A
Authority
JP
Japan
Prior art keywords
pressure
steam
processing tank
thawed
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003161917A
Other languages
Japanese (ja)
Inventor
Nobuaki Yanagihara
伸章 柳原
Akira Wakasa
暁 若狭
Tetsushi Nakai
哲志 中井
Masatoshi Miura
正敏 三浦
Hironori Matsumoto
宏典 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2003161917A priority Critical patent/JP2004357627A/en
Publication of JP2004357627A publication Critical patent/JP2004357627A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum steam thawing machine capable of carrying out high-quality thawing in a short time. <P>SOLUTION: This vacuum steam thawing machine is equipped with a treating tank 1 which can store a material to be thawed and hermetically seal the material, depressurizing means 3 and 4 for depressing the interior of the treating tank, steam-supplying means 8 and 9 for supplying steam to the interior of the depressurized treating tank, a pressure sensor 3 for measuring pressure in the treating tank and a means (a control part) 19 for determining a treating amount or a surface temperature of the material to be thawed by a pressure-raising rate in the treating tank in steam supply by the steam supplying means or a pressure-lowering rate in the treating tank accompanying steam condensation by the material to be thawed. The vacuum steam thawing machine is constituted so that reduction of pressure by subsequent pressure-reducing means and feed of steam by the steam-supplying means are controlled based on the determined treated amount of the material to be thawed or the surface temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍物を解凍するための真空蒸気解凍機(低圧蒸気式解凍装置)に関するものである。
【0002】
【従来の技術】
冷凍物を解凍するための装置として、真空蒸気解凍機が知られている。真空蒸気解凍機は、冷凍物が収容された処理槽内を真空にして、その中に蒸気を供給することにより、蒸気の凝縮潜熱により解凍させる装置である。例えば下記特許文献1に示されるように、処理槽内を真空状態にした後、飽和蒸気を一定温度に制御しつつ供給して、冷凍製品を所定温度まで上昇させて解凍するものである。
【0003】
【特許文献1】
特開平10−179019号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の真空蒸気解凍機は、処理量の判定ができなかった。また、運転時間が固定されている場合には、処理量が少ないと過解凍になり、逆に処理量が多いと解凍不足になるおそれがあった。また、運転時間が変更できても、被解凍物の量に応じて変えるものではなかった。処理量の変化に制御が追随していないため、解凍時間が長くかかる場合があった。このようなことから、従来の真空蒸気解凍機では、ドリップ(旨み成分)が大量に出て、品質を著しく損ねるおそれがあった。
【0005】
さらに、従来の真空蒸気解凍機では、温度センサにて被解凍物の温度を検知して制御していた。その温度センサは、被解凍物へ刺し込んで使用されるが、冷凍物のため、温度センサを刺すのに苦労するものであった。なお、被解凍物に温度センサを刺さずに、処理槽内に単に温度センサを設置することも考えられるが、そのような方法では、設置箇所周辺の温度に左右され、信頼性が劣るものであった。
【0006】
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、短時間で高品質な解凍を実現する真空蒸気解凍機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の真空蒸気解凍機は、下記構成要件(A)から(E)を備えることを特徴とする。
(A)被解凍物を収容して密閉可能な処理槽。
(B)処理槽内を減圧する減圧手段。
(C)減圧した処理槽内へ蒸気を供給する給蒸手段。
(D)処理槽内の圧力を測定する圧力センサ。
(E)給蒸手段による蒸気供給時の処理槽内の圧力上昇速度、又は被解凍物による蒸気凝縮に伴う処理槽内の圧力低下速度により、被解凍物の処理量又は表面温度を判定する手段。
【0008】
そして、好ましくは上記構成に加えて、減圧手段による減圧と給蒸手段による蒸気供給が複数回行われる真空蒸気解凍機であって、前記判定された被解凍物の処理量又は表面温度に基づいて、その後の減圧手段による減圧と給蒸手段による蒸気供給が制御されることを特徴とする真空蒸気解凍機である。
【0009】
また、好ましくは上記構成に加えて、前記判定された被解凍物の処理量又は表面温度に基づいて、運転時間、減圧量若しくは給蒸量、減圧若しくは給蒸の動作タイミング、減圧若しくは給蒸の動作回数等の内、いずれか一以上を決定してその後の運転がなされることを特徴とする真空蒸気解凍機である。ここで、前記被解凍物の処理量又は表面温度の判定と、それに基づく運転調整が、運転中に複数回行われるものであってもよい。
【0010】
また、本発明の真空蒸気解凍機は、下記構成要件(A)から(C)を備え、減圧手段による減圧と給蒸手段による蒸気供給が複数回行われ、被解凍物の処理量(前記の自動判定によるものであってもよいし、手動設定によるものであってもよい)に基づいて減圧手段による減圧と給蒸手段による蒸気供給が制御されることを特徴とする。
(A)被解凍物を収容して密閉可能な処理槽。
(B)処理槽内を減圧する減圧手段。
(C)減圧した処理槽内へ蒸気を供給する給蒸手段。
【0011】
なお、本発明は、上記いずれかの構成に加えて、減圧手段は、処理槽に吸入口を接続された蒸気エゼクタと、この蒸気エゼクタの出口に熱交換器を介して接続された真空ポンプとを備えていることを特徴とする真空蒸気解凍機とすることもできる。
【0012】
また、本発明は、上記いずれかの構成に加えて、処理槽への蒸気の供給は、一定圧力及び一定流量で行われることを特徴とする真空蒸気解凍機である。
【0013】
【発明の実施の形態】
以下、本発明の真空蒸気解凍機について、実施例に基づき更に詳細に説明する。
図1は、本発明の真空蒸気解凍機の一実施例を示す概略構造図である。
【0014】
この図に示すように、本発明の真空蒸気解凍機は、被解凍物(解凍処理したい冷凍物)が収容されて密閉可能な耐圧性容器からなる処理槽1と、この処理槽1内を減圧する減圧手段(3,4)と、減圧した処理槽1内へ蒸気を供給する給蒸手段(8,9)と、処理槽1内の圧力を測定する圧力センサ2とを主要部として備える。
【0015】
減圧手段としては、真空ポンプ、蒸気エゼクタ(ejector)、又は水エゼクタなどを用いることができる。これらは、複数種類のものを組み合わせて用いることもできる。本実施例では、蒸気エゼクタ3と真空ポンプ4を組み合わせて減圧手段を構成している。この場合、蒸気エゼクタ3は、処理槽1に吸入口を接続されており、その蒸気エゼクタ3の出口には、熱交換器5と逆止弁6を介して真空ポンプ4が接続されている。従って、真空ポンプ4を駆動させつつ蒸気エゼクタ3の入口から出口へ向けて蒸気を噴射させ、熱交換器5による冷却、凝縮作用を行わせることで、吸入口が接続された処理槽1内の空気を吸い出して排出し、処理槽1内を減圧することができる。
【0016】
そのために、蒸気エゼクタ3の入口には、エゼクタ給蒸弁7を介して、ボイラ8,9からの蒸気が供給可能とされる。また、蒸気エゼクタ3の出口には、熱交換器5と逆止弁6を介して、水封式真空ポンプ4が接続される。この真空ポンプ4には、封水給水弁10を介して水が供給され、真空ポンプ4からの排水は、排水口へ排出される。また、熱交換器5にも、ストレーナ11と熱交給水弁12を介して冷却用の水が供給され、排水口へ排水される。なお、真空ポンプ4へ給水用の封水給水弁10は、真空ポンプ4に連動して開かれる。
【0017】
給蒸手段は、減圧した処理槽内へボイラ9からの蒸気を供給(給蒸)する手段である。この給蒸ラインには、減圧給蒸弁13や蒸気オリフィス14などからなる蒸気圧調整手段が設けられている。本実施例では、減圧給蒸弁13及び蒸気オリフィス14の双方を備え、ボイラ9からの蒸気の圧力と流量を調整可能である。これにより、処理槽1内へ供給する蒸気を、一定圧力及び一定流量とすることができる。こうした一定圧力及び一定流量の給蒸により、安定かつ正確な解凍を行うことができる。この一定圧力及び一定流量の給蒸手段としては、この実施例に限定されるものではなく、ボイラ9の供給圧力を一定に制御し、ボイラ9の出口側にオリフィス14などの定流量手段を設けることによっても実現できる。
【0018】
ところで、一般のボイラ8による蒸気には、管内のサビや防錆剤が混入するおそれが残る。ところが、処理槽1内へ供給された蒸気は、直接に被解凍物に接触するものであり、しかもその被解凍物が冷凍食品の場合もある。従って、処理槽1内には、よりクリーンな蒸気を供給するのが望ましい。そこで、本実施例では、ボイラ8からの蒸気を熱源として、ステンレス熱交換器15により純水や軟水を加熱して、安全でクリーンな蒸気を利用可能としている。すなわち、二次ボイラ(リボイラ)9を用いて、処理槽1内へクリーン蒸気を供給するのである。
【0019】
具体的には、図1に示すように、一次ボイラ8からの蒸気の熱を利用して、二次ボイラ9にて純水又は軟水を蒸気変換してクリーン蒸気とし、そのクリーン蒸気をストレーナ16などを介して処理槽1へ供給するのである。さらに、図示例では、蒸気エゼクタ3の入口へ供給される蒸気も、二次ボイラ9からの蒸気を利用している。つまり、二次ボイラ9からの蒸気は、蒸気エゼクタ3の入口への給蒸と、給蒸手段による処理槽1への給蒸の双方に利用可能である。その切換えは、エゼクタ給蒸弁7や減圧給蒸弁13の開閉にて行うことができる。なお、一次ボイラ8だけを用いて、そのボイラの蒸気をエゼクタ3や処理槽1への供給へ利用可能であり、処理槽1へはクリーン蒸気を供給し、エゼクタ3へは一次ボイラ8の蒸気を供給するように構成可能なことも勿論である。
【0020】
ところで、処理槽1には、その減圧状態を破壊可能に、外気を導入可能とされている。本実施例では、処理槽1は、外気導入弁17とフィルター18を介して、外気に連通可能とされている。従って、外気導入弁17を開くと、処理槽1内は大気圧下に開放され、フィルター18を介して処理槽1内に外気を導入して、復圧可能である。外気導入弁17の開き具合によって、処理槽1内を徐々に昇圧することができる。
【0021】
また、真空蒸気解凍機には、減圧手段、給蒸手段(蒸気圧調整手段)及び外気導入手段などを制御する制御器19が備えられており、この制御器19は圧力センサ2からの検出圧力に基づいて、前記各手段を制御する。つまり、圧力センサ2、真空ポンプ4、エゼクタ給蒸弁7、封水給水弁10、熱交給水弁12、減圧給蒸弁13、外気導入弁17などは、制御器19に接続されており、その制御器にて次に述べるような運転が可能とされる。
【0022】
図2は、本実施例の真空蒸気解凍機の運転フローの一例を示す図であり、処理槽1内の圧力変化を示している。また、図3は、その運転を実行するためのフローチャートであり、(a)はメイン処理、(b)はそのメイン処理中の第二圧力域での保持処理、(c)はメイン処理中の給蒸−減圧パルス処理を示している。
【0023】
本実施例の真空蒸気解凍機にて被解凍物を解凍しようとする際には、被解凍物を処理槽1内へ収容して、処理槽1を密閉する。その後、減圧手段を用いて、図2に示すように、第一圧力域P1まで処理槽内を減圧する(ST1)。つまり、エゼクタ給蒸弁7、封水給水弁10及び熱交給水弁12を開いて、蒸気エゼクタ3及び真空ポンプ4を駆動することで、処理槽1内を減圧するのである。
【0024】
なお、第一圧力域P1や後述の第二圧力域P2は、ある圧力範囲としてもよいし、ある所定圧力としてもよい。図示例では、第一圧力P1として、現在のハード的な制約をも考慮して、例えば8hPaが採用される。また、第二圧力域P2は、あまり高くすると温度が上がり、雑菌が繁殖するおそれが出てくることなどを考慮して、例えば18〜22hPaが採用される。なお、第一圧力域P1、第二圧力域P2(その上限圧力P2U及び下限圧力P2L)は、適宜に変更可能なことは言うまでもない。
【0025】
第一圧力P1まで減圧した後、減圧手段を停止し、給蒸手段にて処理槽1内に蒸気を供給する(ST2)。つまり、エゼクタ給蒸弁7などを閉じる一方、減圧給蒸弁13を開いて、処理槽1内へ蒸気を供給する。これにより処理槽1内の圧力は上昇するが、ここでは第二圧力域P2(18〜22hPa)の上限圧力P2U(22hPa)まで蒸気供給する。そして、その第二圧力域P2にて、所定時間T1保持する(ST3)。そのために、第二圧力域P2(図示例ではその上限圧力P2U)に最初に達した時点から、タイマのカウントを開始し、そのタイマが所定時間T1に達するまで、処理槽内の圧力を第二圧力域P2に保持する(ST31〜ST37)。
【0026】
この際、まず第二圧力域の上限圧力P2U(22hPa)まで蒸気供給した後、減圧給蒸弁13を閉めて、処理槽1内への蒸気供給をストップさせる。そのまま放置すれば、処理槽1内の蒸気は、被解凍物によって凝縮する。これにより、減圧手段を用いなくても、処理槽1内の圧力は、徐々に低下する。第二圧力域の下限圧力P2L(18hPa)を下回ると、再度、給蒸手段を駆動して、処理槽1内に蒸気を供給する。そして、第二圧力域の上限圧力P2U(22hPa)まで達すると、蒸気供給をストップするということを繰り返す。
【0027】
具体的には、図3(a)及び(b)に示すように、大気圧から第一圧力P1まで減圧した後(ST1)、第二圧力域上限圧力P2Uまで蒸気供給する(ST2(=ST32+ST33))。第二圧力域上限圧力P2Uに達すると、蒸気供給を停止する(ST34)。上述したように、蒸気の凝縮に伴って、処理槽1内の圧力は徐々に低下する。第二圧力域下限圧力P2Lを下回ると(ST35)、所定時間T1が経過していない限り(ST36)、再び第二圧力域上限圧力P2Uまで蒸気供給される(ST32,ST33)。このように、圧力センサ2からの出力を利用して、処理槽1内の圧力が所定時間T1(例えば15分)、第二圧力域の上限圧力P2Uと下限圧力P2Lの間に保持されるように、制御器19は給蒸手段を制御する。第二圧力域P2で所定時間T1保持することで、解凍時間を速めることができる。しかもそれを運転当初にて行う場合には、被解凍物の温度が低いので、被解凍物の表面の焼けも防止される。
【0028】
第二圧力域P2で所定時間T1保持した後(ST3)、再び第一圧力P1まで減圧し(ST4)、その第一圧力P1にて所定時間T2(例えば2分)保持する(ST5)。第一圧力P1で所定時間保持した後(ST5)、次に述べる給蒸−減圧パルス制御がなされる(ST6)。この給蒸−減圧パルス制御は、図3(c)に示すように、まず第二圧力域(ここではその上限圧力P2U)まで蒸気を供給する(ST61)。第二圧力域上限圧力P2Uに達した後、第一圧力P1まで減圧し(ST62)、その第一圧力P1にて所定時間T2(例えば2分)保持する(ST63)。このような第二圧力域P2までの蒸気供給、第一圧力域P1までの減圧、そして第一圧力域P1での保持というサイクルが、所定回数だけ繰り返される(ST64)。そして、その給蒸−減圧パルスを所定回数だけ実行した後(ST6)、第一圧力域P1にて保持することで(ST7)、被解凍物は保冷されることになる。
【0029】
ところで、制御器19においては、給蒸手段による蒸気供給時の処理槽1内の圧力上昇速度、又は被解凍物による蒸気凝縮に伴う処理槽1内の圧力低下速度により、処理槽1内に入れられた被解凍物の処理量(若しくは表面温度)を判定することができる。なお、これら速度は、圧力センサ2の出力値の変化と、それに要した時間から把握可能である。
【0030】
例えば、運転当初の減圧手段による第一圧力P1までの減圧後、第二圧力域P2までの蒸気供給時において、処理槽1内の圧力上昇速度を把握することで、処理量の判定が可能である。同じ材料で単に重量が異なる被解凍物を想定すると、被解凍物の処理量が多い場合には、供給した蒸気は冷やされて凝縮され易いので、処理槽1内の圧力上昇速度は遅くなる。つまり、図2において、第一圧力P1から第二圧力域P2までの線L1は、水平方向に対する立ち上がり角度が小さくなり、水平方向に寝てくることになる。逆に、被解凍物の処理量が少ない場合には、処理槽1内の圧力上昇速度は速くなり、前記線L1は水平方向に対する立ち上がり角度が大きくなり、垂直方向に立ってくることになる。つまり、速く設定圧力まで処理槽内圧力が上昇することになる。
【0031】
被解凍物の処理量などを判定するには、第一圧力P1から第二圧力域P2までの圧力上昇速度だけでなく、第二圧力域P2で保持する際の第二圧力域上限圧力P2Uから同下限圧力P2Lまでの蒸気凝縮に伴う圧力低下速度を利用することもできる。また、例えば第一圧力P1から第二圧力域P2までの圧力上昇速度を利用する場合でも、運転当初の減圧後すぐの蒸気供給工程を利用してもよいし、給蒸−減圧パルス処理におけるいずれかの蒸気供給工程を利用できるなど、いずれの工程を利用するかは適宜に設定される。
【0032】
第二圧力域P2で保持する際の第二圧力域上限圧力P2Uから同下限圧力P2Lまでの蒸気凝縮に伴う圧力低下速度を利用する場合には、被解凍物の表面温度を推定することができる。すなわち、蒸気供給を停止させると、解凍物へ蒸気が凝縮し続けるため、処理槽内圧力は下がっていくが、その傾きを見ることにより、表面温度が上昇しているかを判断することができる。表面温度が低い場合、処理槽内の蒸気を多く凝縮させることができるため、処理槽内圧力は速く下がっていく。逆に、表面温度が上昇すると、処理槽内温度と表面温度との温度差が小さくなるため、凝縮する量が少なくなり、処理槽内圧力の低下が遅くなる。その処理槽内圧力の低下する時間(傾き)がある状態になると、表面温度が上昇したと判定し、第二圧力域での保持時間T1や、パルス回数を変化させることができる。
また、表面温度の判定は、前記給蒸−減圧パルス処理における第一圧力P1から第二圧力P2までの圧力上昇速度を利用して判定できる。
【0033】
このようにして、被解凍物の処理量が判定されるが、その判定された被解凍物の推定処理量に基づいて、その後の減圧手段による減圧と給蒸手段による蒸気供給が制御される。つまり、制御器は、判定された被解凍物の処理量に基づいて、運転時間、減圧量若しくは給蒸量(第一圧力域や第二圧力域の圧力)、減圧若しくは給蒸の動作タイミング(動作時期、第一圧力域での保持時間T2、第二圧力域での保持時間T1)、減圧若しくは給蒸の動作回数(給蒸−減圧パルス処理のパルス数)などの内、いずれか一以上を決定してその後の運転を制御することになる。
【0034】
本実施例においては、第二圧力域P2での保持時間T1と、給蒸−減圧パルス処理のパルス回数を決定するようにしている。但し、上述したように、第二圧力域P2での保持工程の保持圧力や、給蒸−減圧パルス工程における第二圧力を可変にすることなども考えられる。
【0035】
被解凍物の処理量の判定と、それに基づく運転調整は、運転中に複数回行うようにしてもよい。例えば、運転初期の蒸気供給時の圧力上昇速度にて、第二圧力域P2での保持時間を決定すると共に、その後の給蒸−減圧パルスの回数を決定するが、その給蒸−減圧パルス制御における蒸気供給時の圧力上昇速度にて、それを補正することも可能である。
【0036】
運転フローは、図2に限らず適宜に変更されることは言うまでもない。特に、運転当初の第一圧力P1まで減圧後、第二圧力域P2まで給蒸する工程の部分は、図2と同様にして、それ以降の工程部分を適宜変更することが考えられる。例えば、第二圧力域P2の上限圧力P2Uと下限圧力P2Lを段階的に変化させたり、第二圧力域P2の圧力を時間が経つにつれ第一圧力P1に近づけるよう低下させたりすることが考えられる。
【0037】
具体的には、図4に示すように、減圧手段により第一圧力P1まで減圧後、給蒸手段により第二圧力域P2まで蒸気供給し、その第二圧力域P2の上限圧力P2Uと下限圧力P2Lの範囲内に保持されるように、蒸気供給と、蒸気凝縮による圧力低下が繰り返し行われるのであるが、第二圧力域P2の上限圧力P2Uと下限圧力P2Lが段階的に変化される。つまり、減圧給蒸弁をオンオフさせる設定圧力を段階的に変化していくのである。図示例では、第二圧力域P2の上限圧力P2U及び下限圧力P2Lが、時間が経つにつれ第一圧力P1に近づくよう徐々に低下する。例えば、初めは22hPaまで給蒸し、給蒸停止後18hPaになると再度給蒸するという設定を用い、次に、18hPaまで給蒸し、給蒸停止後14hPaまで下がると再度給蒸するという設定を用いる、というように第二圧力域P2を徐々に低下させて第一圧力P1へ近づけていくのである。
【0038】
また、運転当初の第一圧力P1まで減圧後、第二圧力域P2まで給蒸して一定時間保持した後、第一圧力P1まで減圧する工程は、図2と同様であるが、その後の工程を次のように変化させることも考えられる。つまり、図2においては、第二圧力P2まで給蒸後すぐに減圧していたが、図5に示すように設定圧力でキープさせ、しかもそのキープの圧力を段階的に下げていくのである。
【0039】
言い換えると、運転当初の第一圧力P1までの減圧後に、次のようなサイクルを行うものといえる。すなわち、第一圧力P1から第二圧力域P2まで蒸気供給し、その第二圧力域P2の上限圧力P2Uと下限圧力P2Lの範囲内に保持されるように、第二圧力域P2で保持した後、減圧手段により第一圧力域P1まで減圧することを繰り返すのである。そして、図4の例では、そのサイクルごとに、第二圧力域P2を変更している(P21,P22,P23)。つまり、第二圧力域P2の上限圧力P2Uと下限圧力P2Lを、サイクルが変わるごとに第一圧力側に徐々に低下するようにしている。
【0040】
さらに、第二圧力域P2の圧力変動量を変更するようにしてもよい。例えば、前記サイクルが変わるごとに、第二圧力域P2の上限圧力P2Uと下限圧力P2Lとの差が異なってもよい。
【0041】
また、処理槽1内へ外気の導入を行ってもよい。上述した図5の実施例では、給蒸時の全圧(処理槽内の空気分圧+蒸気分圧)を段階的に下げると共に、これに伴って、処理槽1内の蒸気分圧も段階的に下がったが、図6に示すように、蒸気分圧は徐々に下げるが、全圧を徐々に上げるようにしてもよい。
【0042】
この場合の時間と処理槽内蒸気分圧との関係は、図6(a)に示され、時間と処理槽内全圧との関係は、図6(b)に示される。図6(a)に示すように、処理槽内の蒸気分圧は、図5と同様に低下する設定としている。しかも、ここでは、各サイクル中における第二圧力域P2での保持工程中においても、徐々に圧力を低下させ、直線状に第二圧力域P2を低下させている。さらに、本実施例では、図6(b)に示すように、処理槽内の全圧を上昇させている。
【0043】
その理由は、処理槽内を減圧させることにより、被解凍物を包んでいるパックが膨れて伝熱障害となるのを防ぐためである。図6(b)に示すように、途中から空気を導入すると、処理槽内の全圧は高くなるが、蒸気の分圧(比率)は低くなる。そうすることにより、被解凍物のパックの膨らみを抑え、かつ入熱量を抑えることができるため、被解凍物の表面温度を最適温度にコントロールすることができる。処理槽内蒸気分圧の目標値を変化させることで、被解凍物の表面温度を最適にコントロールすることができる。
【0044】
前記各実施例の真空蒸気解凍機によれば、減圧時および給蒸時の処理槽内圧力を圧力センサにてモニタすることにより、被解凍物の品温(芯温、表面温度)をモニタせずに解凍できる。また、処理層内の圧力にて制御を行うので、周辺雰囲気に左右されず、温度センサによる場合よりも信頼性が高い。しかも、被解凍物は、例えば−30℃に冷凍されており、温度センサを刺しにくいが、圧力による場合にはそのような不都合が回避される。なお、圧力による制御は、被解凍物の処理量だけでなく、大きさや種類なども考慮して設定可能とできる。
【0045】
また、前記各実施例の真空蒸気解凍機によれば、解凍物の品温を上げ過ぎず、品質を維持させ、かつ解凍時間を短縮させることができる。特に、所定圧力における圧力キープや、給蒸−減圧パルス制御により達成される。また、表面温度をできるだけ速く上昇できるので、解凍時間が短縮できる。例えば、−30℃を0℃まで鶏肉100kgを解凍する場合、120分にて解凍可能である。しかも、余分な熱を加えないで、解凍後のドリップを抑制でき、品質を維持させて解凍できる。
【0046】
なお、本発明は、真空蒸気解凍機に限らず、蒸気を凝縮させて伝熱させる他の装置にも適用可能である。また、解凍といっても、0℃までの解凍に限らず、例えば−3℃までの解凍などに適用することも可能である。
【0047】
本発明は、上記実施例に限定されるものではない。上記実施例では、減圧を停止して、給蒸を行うように構成しているが、給蒸中に減圧する、すなわち減圧しながら給蒸するように構成することができる。こうすることにより、第一圧力P1に近い圧力でキープでき、より低い温度で解凍を行うことができる。また解凍物の表面温度は処理槽内の飽和温度以下にキープされるため、第二圧力域P2の設定を変更することにより、前記表面温度の上限をコントロールすることができる。
【0048】
【発明の効果】
以上詳述したように、本発明の真空蒸気解凍機によれば、短時間で高品質な解凍を実現することができる。
【図面の簡単な説明】
【図1】本発明の真空蒸気解凍機の一実施例を示す概略構造図である。
【図2】図1の真空蒸気解凍機の運転フローの一例を示す図であり、処理槽内の圧力変化を示している。
【図3】図2の運転を実行するためのフローチャートであり、(a)はメイン処理、(b)はそのメイン処理中の第二圧力域での保持処理、(c)はメイン処理中の給蒸−減圧パルス処理を示している。
【図4】図2の運転フローの変形例を示す図である。
【図5】図2の運転フローの他の変形例を示す図である。
【図6】図5の運転フローの変形例を示す図である。
【符号の説明】
1 処理槽
2 圧力センサ
3 蒸気エゼクタ
4 真空ポンプ
5 熱交換器
7 エゼクタ給蒸弁
8,9 ボイラ
13 減圧給蒸弁
17 外気導入弁
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a vacuum steam thawing machine (low-pressure steam thawing apparatus) for thawing a frozen product.
[0002]
[Prior art]
A vacuum steam thawing machine is known as an apparatus for thawing a frozen product. The vacuum steam thawing machine is a device that evacuates the inside of a processing tank in which a frozen product is stored, and supplies the steam into the processing tank to thaw by the latent heat of condensation of the steam. For example, as shown in Patent Literature 1 below, after the inside of a treatment tank is evacuated, saturated steam is supplied at a controlled temperature, and the frozen product is raised to a predetermined temperature and thawed.
[0003]
[Patent Document 1]
JP-A-10-179019
[Problems to be solved by the invention]
However, the conventional vacuum steam thawing machine could not determine the throughput. In addition, when the operation time is fixed, there is a possibility that if the processing amount is small, over-thawing occurs, and if the processing amount is large, the thawing is insufficient. Further, even if the operation time can be changed, it does not change according to the amount of the material to be thawed. Since the control does not follow the change in the processing amount, the thawing time may be long. For this reason, in the conventional vacuum steam thawing machine, a large amount of drip (taste component) is generated, and there is a possibility that the quality is significantly impaired.
[0005]
Further, in the conventional vacuum steam thawing machine, the temperature of the object to be thawed is detected and controlled by a temperature sensor. The temperature sensor is used by piercing the object to be thawed, but it is difficult to pierce the temperature sensor because of the frozen material. In addition, it is conceivable to simply install a temperature sensor in the treatment tank without sticking the temperature sensor into the object to be thawed. However, such a method is affected by the temperature around the installation location and has low reliability. there were.
[0006]
The present invention has been made in view of the above circumstances, and a main object thereof is to provide a vacuum steam thawing machine that realizes high-quality thawing in a short time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a vacuum steam thawing machine according to the present invention includes the following constituent features (A) to (E).
(A) A treatment tank capable of containing an object to be thawed and hermetically sealed.
(B) Decompression means for decompressing the inside of the processing tank.
(C) Steam supply means for supplying steam into the depressurized processing tank.
(D) A pressure sensor for measuring the pressure in the processing tank.
(E) Means for determining the processing amount or surface temperature of the object to be defrosted based on the rate of pressure increase in the processing tank during steam supply by the steam supply means or the rate of pressure decrease in the processing tank due to vapor condensation by the object to be defrosted. .
[0008]
And preferably, in addition to the above configuration, a vacuum steam thawing machine in which the decompression by the decompression means and the steam supply by the steam supply means are performed a plurality of times, based on the determined processing amount or surface temperature of the object to be defrosted. A vacuum steam thawing machine characterized in that the pressure reduction by the pressure reducing means and the steam supply by the steam supply means are controlled thereafter.
[0009]
In addition, preferably, in addition to the above configuration, based on the determined processing amount or surface temperature of the object to be defrosted, the operation time, the reduced pressure amount or the amount of steam supply, the operation timing of the reduced pressure or the steam supply, the operation time of the reduced pressure or the steam supply. A vacuum steam thawing machine characterized in that any one or more of the number of operations is determined and the subsequent operation is performed. Here, the determination of the processing amount or surface temperature of the object to be thawed and the operation adjustment based on the determination may be performed a plurality of times during operation.
[0010]
Further, the vacuum steam thawing machine of the present invention includes the following constitutional requirements (A) to (C), in which the pressure reduction by the pressure reducing means and the steam supply by the steam supply means are performed plural times, and the processing amount of the material to be thawed (the above-mentioned amount). The decompression by the decompression unit and the supply of steam by the steam supply unit are controlled based on automatic determination or manual setting.
(A) A treatment tank capable of containing an object to be thawed and hermetically sealed.
(B) Decompression means for decompressing the inside of the processing tank.
(C) Steam supply means for supplying steam into the depressurized processing tank.
[0011]
In addition, in the present invention, in addition to any one of the above configurations, the pressure reducing means includes a steam ejector having a suction port connected to the treatment tank, and a vacuum pump connected to an outlet of the steam ejector via a heat exchanger. And a vacuum steam thawing machine characterized by comprising:
[0012]
Further, according to the present invention, there is provided a vacuum steam thawing machine characterized in that the supply of steam to the processing tank is performed at a constant pressure and a constant flow rate in addition to any one of the above configurations.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the vacuum steam thawing machine of the present invention will be described in more detail based on embodiments.
FIG. 1 is a schematic structural view showing one embodiment of the vacuum steam thawing machine of the present invention.
[0014]
As shown in this figure, a vacuum steam thawing machine according to the present invention comprises a processing tank 1 comprising a sealable pressure-resistant container in which an object to be thawed (frozen material to be thawed) is housed, and the inside of this processing tank 1 is decompressed. A pressure reducing means (3, 4), a steam supply means (8, 9) for supplying steam into the depressurized processing tank 1, and a pressure sensor 2 for measuring a pressure in the processing tank 1 as main parts.
[0015]
As the decompression means, a vacuum pump, a steam ejector, a water ejector, or the like can be used. These can be used in combination of a plurality of types. In the present embodiment, the steam ejector 3 and the vacuum pump 4 are combined to constitute a pressure reducing means. In this case, the suction port of the steam ejector 3 is connected to the processing tank 1, and a vacuum pump 4 is connected to the outlet of the steam ejector 3 via a heat exchanger 5 and a check valve 6. Therefore, by injecting steam from the inlet to the outlet of the steam ejector 3 while driving the vacuum pump 4 to perform cooling and condensation by the heat exchanger 5, the inside of the processing tank 1 to which the suction port is connected is formed. Air can be sucked out and discharged to reduce the pressure inside the processing tank 1.
[0016]
Therefore, the steam from the boilers 8 and 9 can be supplied to the inlet of the steam ejector 3 via the ejector steam supply valve 7. A water ring vacuum pump 4 is connected to an outlet of the steam ejector 3 via a heat exchanger 5 and a check valve 6. Water is supplied to the vacuum pump 4 through a sealed water supply valve 10, and drainage from the vacuum pump 4 is discharged to a drain port. Further, cooling water is also supplied to the heat exchanger 5 via the strainer 11 and the heat exchange water supply valve 12, and is drained to a drain port. The sealed water supply valve 10 for supplying water to the vacuum pump 4 is opened in conjunction with the vacuum pump 4.
[0017]
The steam supply unit is a unit that supplies (steams) the steam from the boiler 9 into the decompressed processing tank. The steam supply line is provided with a steam pressure adjusting means including a reduced pressure steam supply valve 13 and a steam orifice 14. In the present embodiment, both the reduced-pressure steam supply valve 13 and the steam orifice 14 are provided, and the pressure and the flow rate of the steam from the boiler 9 can be adjusted. Thereby, the steam supplied into the processing tank 1 can be set to a constant pressure and a constant flow rate. Such a constant-pressure and constant-flow steam supply enables stable and accurate thawing. This constant pressure and constant flow rate steam supply means is not limited to this embodiment. The supply pressure of the boiler 9 is controlled to be constant, and a constant flow rate means such as the orifice 14 is provided at the outlet side of the boiler 9. It can also be realized by:
[0018]
By the way, there is a possibility that rust and rust preventives in the pipes may be mixed in the steam generated by the general boiler 8. However, the steam supplied into the processing tank 1 directly contacts the object to be thawed, and the object to be thawed may be a frozen food. Therefore, it is desirable to supply cleaner steam to the processing tank 1. Therefore, in the present embodiment, pure water or soft water is heated by the stainless steel heat exchanger 15 using the steam from the boiler 8 as a heat source, and safe and clean steam can be used. That is, clean steam is supplied into the processing tank 1 using the secondary boiler (reboiler) 9.
[0019]
Specifically, as shown in FIG. 1, using the heat of the steam from the primary boiler 8, the secondary boiler 9 converts pure water or soft water into clean steam, and converts the clean steam into a strainer 16. It is supplied to the processing tank 1 via such as. Further, in the illustrated example, the steam supplied to the inlet of the steam ejector 3 also uses the steam from the secondary boiler 9. That is, the steam from the secondary boiler 9 can be used for both steam supply to the inlet of the steam ejector 3 and steam supply to the treatment tank 1 by the steam supply means. The switching can be performed by opening and closing the ejector steam supply valve 7 and the reduced pressure steam supply valve 13. In addition, using only the primary boiler 8, the steam of the boiler can be used for supply to the ejector 3 and the processing tank 1, clean steam is supplied to the processing tank 1, and steam of the primary boiler 8 is supplied to the ejector 3. Of course, it can be configured to supply.
[0020]
By the way, outside air can be introduced into the processing tank 1 so that the reduced pressure state can be broken. In this embodiment, the processing tank 1 can communicate with the outside air via the outside air introduction valve 17 and the filter 18. Therefore, when the outside air introduction valve 17 is opened, the inside of the processing tank 1 is opened to the atmospheric pressure, and outside air is introduced into the processing tank 1 through the filter 18 so that the pressure can be restored. Depending on the degree of opening of the outside air introduction valve 17, the pressure inside the processing tank 1 can be gradually increased.
[0021]
Further, the vacuum steam thawing machine is provided with a controller 19 for controlling a pressure reducing means, a steam supplying means (steam pressure adjusting means), an outside air introducing means and the like, and the controller 19 detects the detected pressure from the pressure sensor 2. Based on the above, each means is controlled. That is, the pressure sensor 2, the vacuum pump 4, the ejector steam supply valve 7, the sealed water supply valve 10, the heat exchange water supply valve 12, the reduced pressure steam supply valve 13, the outside air introduction valve 17, and the like are connected to the controller 19, The controller enables the following operation.
[0022]
FIG. 2 is a diagram illustrating an example of an operation flow of the vacuum steam thawing machine according to the present embodiment, and illustrates a pressure change in the processing tank 1. FIGS. 3A and 3B are flowcharts for executing the operation. FIG. 3A is a main process, FIG. 3B is a holding process in the second pressure range during the main process, and FIG. 3 shows a steam supply-pressure reduction pulse process.
[0023]
When the object to be thawed is to be thawed by the vacuum steam thawing machine of this embodiment, the object to be thawed is accommodated in the processing tank 1 and the processing tank 1 is sealed. Thereafter, as shown in FIG. 2, the pressure in the processing tank is reduced to the first pressure range P1 using a pressure reducing means (ST1). That is, the inside of the processing tank 1 is depressurized by opening the ejector steam supply valve 7, the sealed water supply valve 10, and the heat exchange water supply valve 12, and driving the steam ejector 3 and the vacuum pump 4.
[0024]
In addition, the first pressure range P1 and a second pressure range P2 described later may be a certain pressure range or a certain predetermined pressure. In the illustrated example, for example, 8 hPa is adopted as the first pressure P1 in consideration of current hardware restrictions. Further, in the second pressure range P2, for example, 18 to 22 hPa is adopted in consideration of the fact that if the temperature is too high, the temperature rises and there is a possibility that various bacteria may propagate. It is needless to say that the first pressure range P1 and the second pressure range P2 (the upper limit pressure P2U and the lower limit pressure P2L) can be appropriately changed.
[0025]
After reducing the pressure to the first pressure P1, the pressure reducing means is stopped, and steam is supplied into the processing tank 1 by the steam supply means (ST2). That is, while the ejector steam supply valve 7 and the like are closed, the decompression steam supply valve 13 is opened, and steam is supplied into the processing tank 1. As a result, the pressure in the processing tank 1 increases, but in this case, steam is supplied to the upper limit pressure P2U (22 hPa) of the second pressure range P2 (18 to 22 hPa). Then, in the second pressure range P2, a predetermined time T1 is maintained (ST3). For this purpose, the timer starts counting from the time point when the pressure reaches the second pressure range P2 (the upper limit pressure P2U in the illustrated example) for the first time, and the pressure in the processing tank is kept at the second level until the timer reaches the predetermined time T1. The pressure is maintained in the pressure range P2 (ST31 to ST37).
[0026]
At this time, after the steam is first supplied to the upper limit pressure P2U (22 hPa) of the second pressure range, the reduced-pressure steam supply valve 13 is closed, and the supply of the steam into the processing tank 1 is stopped. If left as it is, the vapor in the processing tank 1 is condensed by the material to be thawed. Thus, the pressure in the processing tank 1 gradually decreases without using the pressure reducing means. When the pressure falls below the lower limit pressure P2L (18 hPa) of the second pressure range, the steam supply means is driven again to supply steam into the processing tank 1. Then, when the pressure reaches the upper limit pressure P2U (22 hPa) of the second pressure range, the process of stopping the steam supply is repeated.
[0027]
Specifically, as shown in FIGS. 3A and 3B, after the pressure is reduced from the atmospheric pressure to the first pressure P1 (ST1), steam is supplied to the second pressure range upper limit pressure P2U (ST2 (= ST32 + ST33). )). When the pressure reaches the second pressure range upper limit pressure P2U, the steam supply is stopped (ST34). As described above, the pressure in the processing tank 1 gradually decreases as the vapor condenses. When the pressure falls below the second pressure range lower limit pressure P2L (ST35), unless the predetermined time T1 has elapsed (ST36), steam is again supplied to the second pressure range upper limit pressure P2U (ST32, ST33). Thus, using the output from the pressure sensor 2, the pressure in the processing tank 1 is maintained between the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range for a predetermined time T1 (for example, 15 minutes). Next, the controller 19 controls the steam supply means. By holding the predetermined time T1 in the second pressure range P2, the thawing time can be shortened. In addition, when the operation is performed at the beginning of the operation, the temperature of the object to be defrosted is low, so that the surface of the object to be defrosted is also prevented from burning.
[0028]
After maintaining for a predetermined time T1 in the second pressure range P2 (ST3), the pressure is reduced again to the first pressure P1 (ST4), and maintained at the first pressure P1 for a predetermined time T2 (for example, 2 minutes) (ST5). After maintaining the first pressure P1 for a predetermined time (ST5), the following steam supply-pressure reduction pulse control is performed (ST6). In this steam supply-pressure reduction pulse control, as shown in FIG. 3C, first, steam is supplied to a second pressure range (here, the upper limit pressure P2U) (ST61). After reaching the second pressure range upper limit pressure P2U, the pressure is reduced to the first pressure P1 (ST62), and is maintained at the first pressure P1 for a predetermined time T2 (for example, 2 minutes) (ST63). Such a cycle of the steam supply to the second pressure range P2, the pressure reduction to the first pressure range P1, and the holding in the first pressure range P1 is repeated a predetermined number of times (ST64). Then, after the steaming-decompression pulse is executed a predetermined number of times (ST6), it is kept in the first pressure range P1 (ST7), so that the material to be thawed is kept cool.
[0029]
By the way, in the controller 19, the pressure is increased in the processing tank 1 when the steam is supplied by the steam supply means, or the pressure is reduced in the processing tank 1 due to the vapor condensation by the thawing material. The processing amount (or surface temperature) of the obtained thawing object can be determined. Note that these speeds can be grasped from a change in the output value of the pressure sensor 2 and the time required for the change.
[0030]
For example, after the pressure is reduced to the first pressure P1 by the pressure reducing means at the beginning of the operation, when the steam is supplied to the second pressure range P2, the processing amount can be determined by grasping the rate of pressure increase in the processing tank 1. is there. Assuming that the materials to be thawed are simply different in weight from the same material, when the amount of the processed material to be thawed is large, the supplied steam is cooled and easily condensed, so that the rate of pressure increase in the processing tank 1 becomes slow. That is, in FIG. 2, the line L1 from the first pressure P1 to the second pressure range P2 has a small rising angle with respect to the horizontal direction, and lies in the horizontal direction. Conversely, when the processing amount of the material to be thawed is small, the pressure rising speed in the processing tank 1 increases, and the line L1 has a large rising angle with respect to the horizontal direction and stands in the vertical direction. That is, the pressure in the processing tank quickly increases to the set pressure.
[0031]
In order to determine the processing amount of the material to be thawed, not only the pressure rising speed from the first pressure P1 to the second pressure range P2, but also the second pressure range upper limit pressure P2U when holding in the second pressure range P2. It is also possible to use the pressure reduction rate accompanying the vapor condensation up to the lower limit pressure P2L. Further, for example, even when the pressure increasing speed from the first pressure P1 to the second pressure range P2 is used, the steam supply step immediately after the pressure reduction at the beginning of the operation may be used, or any of the steam supply and the pressure reduction pulse processing. Which process is used is appropriately set, for example, such a steam supply process can be used.
[0032]
In the case of using the pressure decrease rate accompanying the vapor condensation from the upper limit pressure P2U of the second pressure range to the lower limit pressure P2L when the pressure is held in the second pressure range P2, the surface temperature of the material to be defrosted can be estimated. . That is, when the steam supply is stopped, the pressure in the processing tank decreases because the steam continues to be condensed into the defrosted product. By observing the slope, it can be determined whether the surface temperature has increased. When the surface temperature is low, a large amount of vapor in the processing tank can be condensed, so that the pressure in the processing tank rapidly decreases. Conversely, when the surface temperature rises, the temperature difference between the inside temperature of the processing tank and the surface temperature becomes small, so that the amount of condensed water decreases and the decrease in the pressure inside the processing tank becomes slow. When there is a time (slope) in which the pressure in the processing tank decreases, it is determined that the surface temperature has increased, and the holding time T1 in the second pressure range and the number of pulses can be changed.
In addition, the determination of the surface temperature can be performed by using the pressure increasing speed from the first pressure P1 to the second pressure P2 in the steam supply-decompression pulse processing.
[0033]
In this manner, the processing amount of the object to be defrosted is determined. Based on the determined estimated processing amount of the object to be defrosted, the subsequent pressure reduction by the pressure reducing means and the steam supply by the steam supply means are controlled. In other words, the controller determines the operation time, the pressure reduction amount or the steam supply amount (the pressure in the first pressure range or the second pressure range), the operation timing of the pressure reduction or the steam supply ( One or more of the operation timing, the holding time T2 in the first pressure range, the holding time T1 in the second pressure range), the number of decompression or steaming operations (the number of pulses of steaming-decompression pulse processing), and the like. Is determined and the subsequent operation is controlled.
[0034]
In the present embodiment, the holding time T1 in the second pressure range P2 and the number of pulses of the steam supply-pressure reduction pulse processing are determined. However, as described above, it is conceivable to make the holding pressure in the holding step in the second pressure range P2 or the second pressure in the steaming-decompression pulse step variable.
[0035]
The determination of the processing amount of the object to be thawed and the operation adjustment based on the determination may be performed a plurality of times during operation. For example, the holding time in the second pressure range P2 is determined based on the pressure increase rate at the time of steam supply at the beginning of the operation, and the number of subsequent steaming-decompression pulses is determined. It is also possible to correct this with the pressure rise rate at the time of steam supply in.
[0036]
It goes without saying that the operation flow is not limited to FIG. In particular, in the step of supplying steam to the second pressure range P2 after reducing the pressure to the first pressure P1 at the beginning of the operation, it is conceivable to appropriately change the subsequent steps in the same manner as in FIG. For example, it is conceivable that the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2 are changed stepwise, or the pressure of the second pressure range P2 is reduced so as to approach the first pressure P1 over time. .
[0037]
Specifically, as shown in FIG. 4, after the pressure is reduced to the first pressure P1 by the pressure reducing means, steam is supplied to the second pressure range P2 by the steam supply means, and the upper limit pressure P2U and the lower limit pressure of the second pressure range P2. The supply of steam and the reduction in pressure due to the condensation of steam are repeatedly performed so as to be maintained within the range of P2L, but the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2 are changed stepwise. That is, the set pressure for turning on and off the reduced pressure steam supply valve is changed stepwise. In the illustrated example, the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2 gradually decrease over time so as to approach the first pressure P1. For example, a setting is used in which steam is initially supplied to 22 hPa, and then steamed again at 18 hPa after the stop of steaming, and then steamed to 18 hPa, and then steamed again to 14 hPa after the steaming is stopped. Thus, the second pressure range P2 is gradually decreased to approach the first pressure P1.
[0038]
Further, after the pressure is reduced to the first pressure P1 at the beginning of the operation, the steam is supplied to the second pressure range P2, and after maintaining for a certain time, the process of reducing the pressure to the first pressure P1 is the same as that in FIG. It is also conceivable to change it as follows. That is, in FIG. 2, the pressure is reduced immediately after the supply of steam to the second pressure P2. However, as shown in FIG. 5, the pressure is kept at the set pressure, and the pressure of the keep is gradually reduced.
[0039]
In other words, it can be said that the following cycle is performed after the pressure is reduced to the first pressure P1 at the beginning of the operation. That is, after the steam is supplied from the first pressure P1 to the second pressure range P2, and is maintained in the second pressure range P2 so as to be maintained within the range of the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2. The process of reducing the pressure to the first pressure range P1 by the pressure reducing means is repeated. In the example of FIG. 4, the second pressure range P2 is changed for each cycle (P21, P22, P23). That is, the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2 are gradually reduced to the first pressure side each time the cycle changes.
[0040]
Further, the pressure fluctuation amount of the second pressure range P2 may be changed. For example, each time the cycle changes, the difference between the upper limit pressure P2U and the lower limit pressure P2L of the second pressure range P2 may be different.
[0041]
Further, outside air may be introduced into the processing tank 1. In the embodiment of FIG. 5 described above, the total pressure (the partial pressure of air in the processing tank + the partial pressure of steam) during the steam supply is reduced stepwise, and accordingly, the partial pressure of the steam in the processing tank 1 is also reduced. As shown in FIG. 6, the steam partial pressure is gradually reduced, but the total pressure may be gradually increased.
[0042]
FIG. 6A shows the relationship between the time and the partial pressure of the vapor in the processing tank in this case, and FIG. 6B shows the relationship between the time and the total pressure in the processing tank. As shown in FIG. 6A, the vapor partial pressure in the processing tank is set to decrease similarly to FIG. In addition, here, the pressure is gradually decreased even during the holding step in the second pressure area P2 in each cycle, and the second pressure area P2 is decreased linearly. Further, in the present embodiment, as shown in FIG. 6B, the total pressure in the processing tank is increased.
[0043]
The reason for this is to prevent the pack surrounding the material to be thawed from expanding and causing heat transfer obstruction by reducing the pressure in the processing tank. As shown in FIG. 6B, when air is introduced from the middle, the total pressure in the processing tank increases, but the partial pressure (ratio) of the steam decreases. By doing so, the swelling of the pack of the object to be defrosted can be suppressed and the amount of heat input can be suppressed, so that the surface temperature of the object to be defrosted can be controlled to the optimum temperature. By changing the target value of the vapor partial pressure in the processing tank, the surface temperature of the object to be thawed can be optimally controlled.
[0044]
According to the vacuum steam thawing machine of each of the above-mentioned embodiments, the product temperature (core temperature, surface temperature) of the material to be thawed is monitored by monitoring the pressure in the processing tank at the time of depressurization and steam supply with a pressure sensor. Can be thawed without. Further, since the control is performed by the pressure in the processing layer, the reliability is higher than the case of using a temperature sensor, without being affected by the surrounding atmosphere. In addition, the object to be thawed is frozen at, for example, -30 ° C., so that it is difficult to pierce the temperature sensor. In addition, the control based on the pressure can be set in consideration of not only the processing amount of the object to be thawed but also the size and type.
[0045]
Further, according to the vacuum steam thawing machine of each of the embodiments, the product temperature of the thawed product is not excessively increased, the quality can be maintained, and the thawing time can be shortened. In particular, this is achieved by pressure keeping at a predetermined pressure or by steam supply and pressure reduction pulse control. In addition, since the surface temperature can be raised as quickly as possible, the thawing time can be reduced. For example, when thawing 100 kg of chicken from -30 ° C to 0 ° C, it can be thawed in 120 minutes. In addition, dripping after thawing can be suppressed without adding excessive heat, and thawing can be performed while maintaining quality.
[0046]
Note that the present invention is not limited to a vacuum steam thawing machine, and is applicable to other devices that condense steam and transfer heat. Also, thawing is not limited to thawing up to 0 ° C, but can be applied to thawing up to -3 ° C, for example.
[0047]
The present invention is not limited to the above embodiment. In the above embodiment, the decompression is stopped and the steam supply is performed. However, the pressure may be reduced during the steam supply, that is, the steam may be supplied while the pressure is reduced. By doing so, it is possible to keep at a pressure close to the first pressure P1, and to perform thawing at a lower temperature. Further, since the surface temperature of the defrosted product is kept below the saturation temperature in the treatment tank, the upper limit of the surface temperature can be controlled by changing the setting of the second pressure range P2.
[0048]
【The invention's effect】
As described above, according to the vacuum steam thawing machine of the present invention, high-quality thawing can be realized in a short time.
[Brief description of the drawings]
FIG. 1 is a schematic structural view showing one embodiment of a vacuum steam thawing machine of the present invention.
FIG. 2 is a view showing one example of an operation flow of the vacuum steam thawing machine in FIG. 1, and shows a pressure change in a processing tank.
FIGS. 3A and 3B are flowcharts for executing the operation of FIG. 2; FIG. 3A is a main process, FIG. 3B is a holding process in a second pressure range during the main process, and FIG. 3 shows a steam supply-pressure reduction pulse process.
FIG. 4 is a diagram showing a modification of the operation flow of FIG. 2;
FIG. 5 is a diagram showing another modification of the operation flow of FIG. 2;
FIG. 6 is a diagram showing a modification of the operation flow of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing tank 2 Pressure sensor 3 Steam ejector 4 Vacuum pump 5 Heat exchanger 7 Ejector steam supply valve 8, 9 Boiler 13 Reduced pressure steam supply valve 17 Outside air introduction valve

Claims (6)

被解凍物を収容して密閉可能な処理槽と、
処理槽内を減圧する減圧手段と、
減圧した処理槽内へ蒸気を供給する給蒸手段と、
処理槽内の圧力を測定する圧力センサと、
給蒸手段による蒸気供給時の処理槽内の圧力上昇速度、又は被解凍物による蒸気凝縮に伴う処理槽内の圧力低下速度により、被解凍物の処理量又は表面温度を判定する手段と
を備えることを特徴とする真空蒸気解凍機。
A treatment tank that can accommodate the material to be thawed and that can be sealed;
Decompression means for decompressing the inside of the processing tank,
Steam supply means for supplying steam into the depressurized processing tank,
A pressure sensor for measuring the pressure in the processing tank,
Means for determining the processing amount or surface temperature of the object to be defrosted, based on the rate of pressure increase in the processing tank during steam supply by the steam supply means or the rate of pressure decrease in the processing tank due to vapor condensation by the object to be defrosted. A vacuum steam thawing machine characterized in that:
減圧手段による減圧と給蒸手段による蒸気供給が複数回行われる真空蒸気解凍機であって、
前記判定された被解凍物の処理量又は表面温度に基づいて、その後の減圧手段による減圧と給蒸手段による蒸気供給が制御される
ことを特徴とする請求項1に記載の真空蒸気解凍機。
A vacuum steam thawing machine in which the pressure reduction by the pressure reducing means and the steam supply by the steam supply means are performed a plurality of times,
The vacuum steam thawing machine according to claim 1, wherein the subsequent reduction in pressure by the pressure reducing means and the supply of steam by the steam supply means are controlled based on the determined processing amount or surface temperature of the object to be thawed.
前記判定された被解凍物の処理量又は表面温度に基づいて、運転時間、減圧量若しくは給蒸量、減圧若しくは給蒸の動作タイミング、減圧若しくは給蒸の動作回数等の内、いずれか一以上を決定してその後の運転がなされる
ことを特徴とする請求項2に記載の真空蒸気解凍機。
Based on the processing amount or surface temperature of the determined object to be defrosted, the operation time, the amount of pressure reduction or steaming, the operation timing of pressure reduction or steaming, the number of times of operation of pressure reduction or steaming, etc., at least one of which The vacuum steam thawing machine according to claim 2, wherein the following operation is performed.
前記被解凍物の処理量又は表面温度の判定と、それに基づく運転調整が、運転中に複数回行われる
ことを特徴とする請求項3に記載の真空蒸気解凍機。
The vacuum steam thawing machine according to claim 3, wherein the determination of the processing amount or the surface temperature of the object to be thawed and the operation adjustment based thereon are performed a plurality of times during operation.
被解凍物を収容して密閉可能な処理槽と、
処理槽内を減圧する減圧手段と、
減圧した処理槽内へ蒸気を供給する給蒸手段とを備え、
減圧手段による減圧と給蒸手段による蒸気供給が複数回行われ、被解凍物の処理量に基づいて減圧手段による減圧と給蒸手段による蒸気供給が制御される
ことを特徴とする真空蒸気解凍機。
A treatment tank that can accommodate the material to be thawed and that can be sealed;
Decompression means for decompressing the inside of the processing tank,
Steam supply means for supplying steam into the depressurized processing tank,
A vacuum steam thawing machine characterized in that pressure reduction by the pressure reducing means and steam supply by the steam supplying means are performed a plurality of times, and pressure reduction by the pressure reducing means and steam supply by the steam supplying means are controlled based on the throughput of the material to be thawed. .
処理槽への蒸気の供給は、一定圧力及び一定流量で行われることを特徴とする請求項1から請求項5までのいずれかに記載の真空蒸気解凍機。The vacuum steam thawing machine according to any one of claims 1 to 5, wherein the supply of steam to the processing tank is performed at a constant pressure and a constant flow rate.
JP2003161917A 2003-06-06 2003-06-06 Vacuum steam thawing machine Pending JP2004357627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161917A JP2004357627A (en) 2003-06-06 2003-06-06 Vacuum steam thawing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161917A JP2004357627A (en) 2003-06-06 2003-06-06 Vacuum steam thawing machine

Publications (1)

Publication Number Publication Date
JP2004357627A true JP2004357627A (en) 2004-12-24

Family

ID=34054206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161917A Pending JP2004357627A (en) 2003-06-06 2003-06-06 Vacuum steam thawing machine

Country Status (1)

Country Link
JP (1) JP2004357627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550696B2 (en) 2005-09-26 2009-06-23 Ajinomoto Co., Inc. Thawing method and apparatus for articles to be thawed
CN103583668A (en) * 2013-11-06 2014-02-19 上海海洋大学 Process and equipment for unfreezing tunas
EP3000326B1 (en) 2009-11-25 2019-04-24 GEA Food Solutions Bakel B.V. Method for defrosting of raw frozen meat-products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550696B2 (en) 2005-09-26 2009-06-23 Ajinomoto Co., Inc. Thawing method and apparatus for articles to be thawed
EP3000326B1 (en) 2009-11-25 2019-04-24 GEA Food Solutions Bakel B.V. Method for defrosting of raw frozen meat-products
CN103583668A (en) * 2013-11-06 2014-02-19 上海海洋大学 Process and equipment for unfreezing tunas

Similar Documents

Publication Publication Date Title
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
JP5251557B2 (en) Cooling device and cooling method
KR20050081870A (en) Method and apparatus for defrost
JP2007229379A (en) Steam heating apparatus
EP1980156B1 (en) A method for pasteurising and restoring the refrigerant cycle in a freezing machine for making crushed-ice drinks and the like and a machine for implementing the method
JP2004357627A (en) Vacuum steam thawing machine
JP6362467B2 (en) Vacuum cooling device
JP2004357629A (en) Vacuum steam thawing machine
JP2004218958A (en) Vacuum cooling method
WO2007094141A1 (en) Cooling device
JP2018204860A (en) Vacuum cooler
JP6417872B2 (en) Vacuum cooling device
JP7371428B2 (en) Sterilizer
JP7223319B2 (en) vacuum cooling system
JP5370670B2 (en) Operation method of cooking device
JP5407378B2 (en) Cooling device and cooling method
JP2004218957A (en) Vacuum cooling method
JP3780948B2 (en) Operation method of vacuum thawing equipment
JP7124677B2 (en) vacuum cooling system
JP6369755B2 (en) Vacuum cooling device
JP7432103B2 (en) vacuum cooling device
JP7035541B2 (en) Vacuum defroster
JP7167572B2 (en) vacuum cooling system
JP6394299B2 (en) Vacuum cooling device
JP2020096539A (en) Vacuum cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519