JP2020099129A - 車両用の電源システム - Google Patents

車両用の電源システム Download PDF

Info

Publication number
JP2020099129A
JP2020099129A JP2018236128A JP2018236128A JP2020099129A JP 2020099129 A JP2020099129 A JP 2020099129A JP 2018236128 A JP2018236128 A JP 2018236128A JP 2018236128 A JP2018236128 A JP 2018236128A JP 2020099129 A JP2020099129 A JP 2020099129A
Authority
JP
Japan
Prior art keywords
voltage
relay
converter
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018236128A
Other languages
English (en)
Inventor
貴大 波多野
Takahiro Hatano
貴大 波多野
内田 健司
Kenji Uchida
健司 内田
貴志 浅見
Takashi Asami
貴志 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018236128A priority Critical patent/JP2020099129A/ja
Publication of JP2020099129A publication Critical patent/JP2020099129A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】システムメインリレーの溶着を検出する。【解決手段】正極側リレーおよび負極側リレーがオフした状態で蓄電装置の電圧とコンデンサの電圧との差分が所定電圧となるようにシステムメインリレーとコンバータとを制御し、蓄電装置の電圧とコンデンサの電圧との差分が所定電圧となったときにコンバータを停止した状態で正極側リレーおよび負極側リレーのうちのいずれか一方のリレーがオンし他方のリレーがオフするようにシステムメインリレーとコンバータとを制御する第1オン制御を実行し、第1オン制御を実行してから所定時間が経過したときにコンバータを停止した状態で一方のリレーおよび他方のリレーがオンするようにコンバータとシステムメインリレーとを制御し、第1オン制御を実行してから所定時間が経過する前に蓄電装置の電圧とコンデンサの電圧とが等しくなったときに他方のリレーが溶着していると判断する。【選択図】図2

Description

本発明は、車両用の電源システムに関する。
従来、この種の車両用の電源システムとしては、蓄電装置と、システムメインリレーと、コンデンサと、低電圧蓄電装置(補機バッテリ)と、コンバータ(双方向DC/DCコンバータ)と、を備えるものが提案されている(例えば、特許文献1参照)。システムメインリレーは、蓄電装置の正極母線とコンデンサに接続される電力ラインの正極母線との接続および接続の解除を行なう正極側リレーと、蓄電装置の負極母線と電力ラインの負極母線との接続および接続の解除を行なう負極側リレーと、を備える。コンデンサは、電力ラインに接続されている。低電圧蓄電装置は、蓄電装置より定格電圧が低く構成されている。コンバータは、電力ラインと低電圧蓄電装置との間で電圧の変更を伴って電力をやりとりする。この装置では、コンバータを昇圧動作させてコンデンサをプリチャージした後、システムメインリレーを閉じるように制御し、その後、コンバータを降圧動作させて、蓄電装置の電流の挙動とコンデンサの電圧の挙動とに基づいて蓄電装置およびシステムメインリレーを含む回路の開路故障を検出している。
特開2007−318849号公報
上述の車両用の電源システムでは、システムメインリレー(正極側リレー、負極側リレー)が溶着すると、蓄電装置からコンデンサ側へ電力を適正に供給することができなくなり、車両の走行に支障をきたす場合がある。そのため、システムメインリレーの溶着を検出することが望まれている。
本発明の車両用の電源システムは、電力ラインと低電圧蓄電装置との間で電圧の変更を伴って電力をやりとりするコンバータを備えるシステムにおいて、システムメインリレーの溶着を検出することを主目的とする。
本発明の車両用の電源システムは、上述の主目的を達成するために以下の手段を採った。
本発明の車両用の電源システムは、
車両に搭載される車両用の電源システムであって、
蓄電装置と、
前記蓄電装置の正極母線と電力ラインの正極母線との接続および接続の解除を行なう正極側リレーと、前記蓄電装置の負極母線と前記電力ラインの負極母線との接続および接続の解除を行なう負極側リレーと、を有するシステムメインリレーと、
前記電力ラインの前記正極母線と前記電力ラインの前記負極母線とに接続されるコンデンサと、
前記蓄電装置より定格電圧の低い低電圧蓄電装置と、
前記電力ラインと前記低電圧蓄電装置との間で電圧の変更を伴って電力をやりとりするコンバータと、
前記システムメインリレーと前記コンバータとを制御する制御装置と、
を備え、
前記制御装置は、
前記正極側リレーおよび前記負極側リレーがオフした状態で、前記蓄電装置の電圧と前記コンデンサの電圧との差分が所定電圧となるように前記システムメインリレーと前記コンバータとを制御し、
前記蓄電装置の電圧と前記コンデンサの電圧との差分が前記所定電圧となったときには、前記コンバータを停止した状態で、前記正極側リレーおよび前記負極側リレーのうちのいずれか一方のリレーがオンし他方のリレーがオフするように前記システムメインリレーと前記コンバータとを制御する第1オン制御を実行し、
前記第1オン制御を実行してから所定時間が経過したときには、前記コンバータを停止した状態で、前記一方のリレーおよび前記他方のリレーがオンするように前記コンバータと前記システムメインリレーとを制御し、
前記第1オン制御を実行してから前記所定時間が経過する前に、前記蓄電装置の電圧と前記コンデンサの電圧とが等しくなったときには、前記他方のリレーが溶着していると判断する、
ことを要旨とする。
この本発明の車両用の電源システムでは、正極側リレーおよび負極側リレーがオフした状態で、蓄電装置の電圧とコンデンサの電圧との差分が所定電圧となるようにシステムメインリレーとコンバータとを制御する。続いて、蓄電装置の電圧とコンデンサの電圧との差分が所定電圧となったときには、コンバータを停止した状態で、正極側リレーおよび負極側リレーのうちのいずれか一方のリレーがオンし他方のリレーがオフするようにシステムメインリレーとコンバータとを制御する第1オン制御を実行する。さらに、第1オン制御を実行してから所定時間が経過したときには、コンバータを停止した状態で、一方のリレーおよび他方のリレーがオンするようにコンバータとシステムメインリレーとを制御する。そして、第1オン制御を実行してから所定時間が経過する前に、蓄電装置の電圧とコンデンサの電圧とが等しくなったときには、他方のリレーが溶着していると判断する。この結果、電力ラインと低電圧蓄電装置との間で電圧の変更を伴って電力をやりとりするコンバータを備えるシステムにおいて、システムメインリレーの溶着を検出することができる。
こうした本発明の車両用電源システムにおいて、前記第1オン制御を実行してから前記所定時間が経過して、前記コンバータを停止した状態で、前記一方のリレーおよび前記他方のリレーがオンするように前記コンバータと前記システムメインリレーとを制御してから、前記所定時間が経過する前に、前記蓄電装置の電圧と前記コンデンサの電圧とが等しくなったときには、前記他方のリレーが正常であると判断し、前記所定時間が経過しても前記蓄電装置の電圧と前記コンデンサの電圧とが等しくないときには、前記システムメインリレーに異常が生じていると判断してもよい。
本発明の一実施例としての車両用の電源システムが搭載された電気自動車20の構成の概略を示す構成図である。 電子制御ユニット70により実行される診断ルーチンの一例を示すフローチャートである。 低電圧側コンデンサ48の電圧VLと、DCDCコンバータ64の状態と、負極側リレーSMRGへの制御信号と、正極側リレーSMRBへの制御信号と、正極側リレーSMRBの溶着判断の実行の状態と、の時間変化の一例を示すタイミングチャートである。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての車両用の電源システムが搭載された電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、バッテリ36と、昇圧コンバータ40と、システムメインリレー38と、高電圧側コンデンサ46と、低電圧側コンデンサ48と、補機バッテリ62と、DCDCコンバータ64と、電子制御ユニット70と、を備える。実施例では、バッテリ36と、システムメインリレー(SMR)38と、低電圧側コンデンサ48と、補機バッテリ62と、DCDCコンバータ64と、電子制御ユニット70と、が「車両用の電源システム」に対応する。
モータ32は、同期発電電動機として構成されており、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を備える。このモータ32の回転子は、駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。
インバータ34は、モータ32に接続されると共に高電圧側電力ライン42に接続されている。このインバータ34は、6つのトランジスタと、6つのダイオードと、を有する周知のインバータ回路として構成されている。
バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン44に接続されている。
昇圧コンバータ40は、高電圧側電力ライン42と低電圧側電力ライン44とに接続されており、2つのトランジスタと、2つのダイオードと、リアクトルと、を有する周知の昇降圧コンバータ回路として構成されている。昇圧コンバータ40は、低電圧側電力ライン44からの電力を昇圧して高電圧側電力ライン42へ供給したり、高電圧側電力ライン42からの電力を昇圧して低電圧側電力ライン44へ供給している。
システムメインリレー38は、低電圧側電力ライン44とバッテリ36との接続および接続の解除を行なう。システムメインリレー38は、低電圧側電力ライン44の正極母線に設けられた正極側リレーSMRBと、低電圧側電力ライン44の負極母線に設けられた負極側リレーSMRGと、を備える。
高電圧側コンデンサ46は、高電圧側電力ライン42の正極母線と負極母線とに接続されている。低電圧側コンデンサ48は、低電圧側電力ライン44の正極母線と負極母線とに接続されている。
補機バッテリ62は、例えば、定格電圧がバッテリ36より低い鉛蓄電池として構成されており、図示しない補機に電力を供給する。補機バッテリ62は、低電圧側電力ライン44にDCDCコンバータ64を介して接続されている。DCDCコンバータ64は、補機バッテリ62と低電圧側電力ライン44との間で電圧の変更を伴って電力をやりとりするように構成されている。即ち、DCDCコンバータ64は、補機バッテリ62からの電力を昇圧して低電圧側電力ライン44へ供給したり、低電圧側電力ライン44からの電力を降圧して補機バッテリ62へ供給している。
電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に、処理プログラムを記憶するROM74やデータを一時的に記憶するRAM7、図示しないフラッシュメモ、図示しない入出力ポート、図示しない通信ポートなどを備える。
電子制御ユニット70には、各種センサからの信号が入力ポートを介して入力されている。電子制御ユニット70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ(例えばレゾルバ)32aからの回転位置θm,バッテリ36の端子間に取り付けられた電圧センサ36aからの電圧VB,バッテリ36の出力端子に取り付けられた電流センサ36bからの電流IBを挙げることができる。また、高電圧側コンデンサ46の端子間に取り付けられた電圧センサ46aからの高電圧側コンデンサ46(高電圧側電力ライン42)の電圧VH,低電圧側コンデンサ48の端子間に取り付けられた電圧センサ48aからの低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLも挙げることができる。電子制御ユニット70は、車両の駆動制御装置としても機能するため、走行制御に必要な情報も入力されている。これらの情報としては、例えば、図示しないが、イグニッションスイッチからのイグニッション信号や,シフトレバーの操作位置を検出するシフトポジションセンサからのシフトポジション,アクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサからのアクセル開度Acc,ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサからのブレーキペダルポジション,車速センサからの車速Vなどを挙げることができる。
電子制御ユニット70からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット70から出力される信号としては、例えば、インバータ34のトランジスタへのスイッチング制御信号,昇圧コンバータ40のトランジスタへのスイッチング制御信号、システムメインリレー38の正極側リレーSMRB、負極側リレーSMRGへの制御信号、DCDCコンバータ64への駆動制御信号などを挙げることができる。
こうして構成された実施例の電気自動車20では、電子制御ユニット70は、以下の走行制御を行なう。走行制御では、システムメインリレー38(正極側リレーSMRB、負極側リレーSMRG)をオンした状態で、アクセル開度Accと車速Vとに基づいて駆動軸26に要求される要求トルクTd*を設定し、設定した要求トルクTd*をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34の各トランジスタのスイッチング制御を行なう。また、走行制御では、モータ32をトルク指令Tm*で駆動できるように高電圧側電力ライン42の目標電圧VH*を設定し、高電圧側電力ライン42の電圧VHが目標電圧VH*となるように昇圧コンバータ40の2つのトランジスタのスイッチング制御を行なう。
次に、こうして構成された実施例の電気自動車20の動作、特にシステムメインリレー38の正極側リレーSMRBの溶着などの異常診断を行なう際に動作について説明する。図2は、電子制御ユニット70により実行される診断ルーチンの一例を示すフローチャートである。本ルーチンは、図示しないイグニッションスイッチがオンされたときなど車両のシステム起動の指示がなされたときに実行される。実施例の電気自動車20では、システム停止する際には、システムメインリレー38の正極側リレーSMRB、負極側リレーSMRGへオフの制御信号を出力し、昇圧コンバータ40,インバータ34は駆動を停止している。本ルーチンの実行を開始したときには、負極側リレーSMRGは正常であり、オフしている。正極側リレーSMRBは、溶着などの異常が生じているか否かが不明であるため、異常が生じているか否かに応じてオンまたはオフしている。
本ルーチンが実行されると、電子制御ユニット70のCPU72は、補機バッテリ62からの電力をバッテリ36の電圧VBから所定電圧VLrefを減じた電圧V1の電力へ変換して、低電圧側電力ライン44へ供給し、低電圧側コンデンサ48が充電されて低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLが電圧V1となるまでDCDCコンバータ64を駆動する(ステップS100)。所定電圧VLrefは、バッテリ36の電圧VBより低く、且つ、電圧VBと電圧VLの差分ΔV(=|VB−VL|)を所定電圧VLrefとした状態でシステムメインリレー38をオンしたときにシステムメインリレー38に流れる電流がシステムメインリレー38に当てる影響が少ない許容電流未満の電圧である。なお、DCDCコンバータ64を駆動した後は、差分ΔVが所定電圧VLrefとなったときに、DCDCコンバータ64を停止する。
続いて、正極側リレーSMRBへオフの制御信号を出力すると共に負極側リレーSMRGへオンの制御信号を出力して(ステップS110)、電圧センサ36aからバッテリ36の電圧VBを入力すると共に、低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLを入力し(ステップS120)、低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLが電圧VBと等しいかか否かを判定する(ステップS130)。電圧VLが電圧VBと等しくないときには、ステップS110を実行したときからの経過時間tが所定時間trefを超えているか否かを判定する(ステップS140)。経過時間tが所定時間trefを超えていないときには、ステップS120へ戻り、電圧センサ36aからバッテリ36の電圧VBと低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLとを入力し(ステップS120)、低電圧側コンデンサ48(低電圧側電力ライン44)の電圧VLが電圧VBと等しいか否かを判定する(ステップS130)。つまり、ステップS120〜S140で、ステップS110を実行してから所定時間tref以内に電圧VLが電圧VBと等しくなるか否かを判定している。ここで、所定時間trefは、正極側リレーSMRB、負極側リレーSMRGが共にオンしているときに、バッテリ36からの電力で低電圧側コンデンサ48が充電されて、低電圧側コンデンサ48の電圧VLが電圧VBまで上昇するのに要する時間以上の時間として、予め実験や解析などで求めた時間である。
ステップS110で、差分ΔVを所定電圧VLrefとした状態で正極側リレーSMRBへオフの制御信号を出力すると共に負極側リレーSMRGへオンの制御信号を出力しているから、正極側リレーSMRB、負極側リレーSMRGが共に正常であるときには、正極側リレーSMRBがオフすると共に負極側リレーSMRGがオンする。このとき、低電圧側コンデンサ48の電圧VLは維持され、電圧VLと電圧VBは等しくならない。正極側リレーSMRBが溶着しているときには、正極側リレーSMRBへオフの制御信号を出力しても正極側リレーSMRBがオンとなることから、正極側リレーSMRBと負極側リレーSMRGとがオンとなり、低電圧側コンデンサ48が電圧VLと電圧VBとが等しくなる。したがって、ステップS120〜S140は、正極側リレーSMRBに溶着が生じているか否かを判断する処理となっている。
ステップS120〜S140で、ステップS110を実行してから所定時間tref以内に電圧VLが電圧VBと等しくなったと判定されたときには、正極側リレーSMRBが溶着していると判断し(ステップS150)、負極側リレーSMRGへオフの制御信号を出力して負極側リレーSMRGをオフし(ステップS160)、電気自動車20をシステム起動せずにレディオフとして(ステップS170)、本ルーチンを終了する。これにより、正極側リレーSMRBに溶着が生じていると判断したときには、電気自動車20を走行できない状態とすることができる。
ステップS120〜S140で、ステップS110を実行してから所定時間tref以内に電圧VLが電圧VBと等しくならないと判定されたときには、続いて、正極側リレーSMRBへオンの制御信号を出力して(ステップS180)、ステップS120〜S140と同様のステップS190〜S210で、ステップS180を実行してから所定時間tref以内に電圧VLが電圧VBと等しくなるか否かを判定する。ステップS180の実行前に負極側リレーSMRGをオンしていることから、正極側リレーSMRBが溶着とは異なる異常もなく正常であるときには、ステップS180で正極側リレーSMRBがオンとなると、低電圧側コンデンサ48がバッテリ36からの電力で充電されて電圧VLが上昇し電圧VBと等しくなる。正極側リレーSMRBに溶着とは異なる何らかの駆動異常があってステップS180で正極側リレーSMRBへオンの制御信号を出力してもオンとならないときには、電圧VLが電圧VBと等しくならない。したがって、ステップS190〜S210は、正極側リレーSMRBに溶着とは異なる何らかの駆動異常があるか否かを判断する処理となっている。
ステップS190〜S210でステップS180を実行してから所定時間tref以内に電圧VLが電圧VBと等しくなったときには、正極側リレーSMRBが正常であると判断して(ステップS220)、電気自動車20をシステム起動してレディオンとして(ステップS230)、本ルーチンを終了する。これにより、正極側リレーSMRBが正常であるときには、電気自動車20を走行できる状態とすることができる。
ステップS190〜S210でステップS180を実行してから所定時間tref以内に電圧VLが電圧VBと等しくならないときには、正極側リレーSMRBに溶着とは異なる何らかの駆動異常があり、システムメインリレー(SMR)38に駆動異常が生じていると判断して(ステップS240)、電気自動車20をシステム起動せずにレディオフとして(ステップS250)、本ルーチンを終了する。正極側リレーSMRBに溶着とは異なる何らかの駆動異常が生じているときに、電気自動車20のシステムを起動して走行可能な状態とすることは適正ではない。実施例では、正極側リレーSMRBに溶着とは異なる何らかの駆動異常が生じているときに電気自動車20をシステム起動しないことから、正極側リレーSMRBに駆動異常が生じているときに適正に対処することができる。
図3は、低電圧側コンデンサ48の電圧VLと、DCDCコンバータ64の状態と、負極側リレーSMRGへの制御信号と、正極側リレーSMRBへの制御信号と、正極側リレーSMRBの溶着判断の実行の状態と、の時間変化の一例を示すタイミングチャートである。図中、電圧VLの時間変化において、正極側リレーSMRBが正常であるときを実線で示し、正極側リレーSMRBが溶着しているときを一点鎖線で示している。
システム起動指示がなされたときには、DCDCコンバータ64を駆動する(ステップS100、時刻t11)。DCDCコンバータ64を駆動して低電圧側コンデンサ48が充電されて電圧VLが上昇して電圧V1となると、DCDCコンバータ64を停止する(時刻t12)。続いて、正極側リレーSMRBへオフの制御信号を出力すると共に負極側リレーSMRGへオンの制御信号を出力すると(ステップS110、時刻t13)、正極側リレーSMRBが正常であるときには、実線で示すように、時刻t13から所定時間trefを経過した時刻t14でも電圧VLが上昇せず差分ΔVを所定電圧VLrefで維持し、時刻t14で溶着していない判断して、ステップS180以降へ進む。ステップS180では、正極側リレーSMRBへオンの制御信号を送信する(時刻t15)。正極側リレーSMRBが正常であるときには、実線で示すように、時刻t14から所定時間trefを経過した時刻t15で電圧VLが上昇して電圧VBとなる。電圧VLが電圧VBと等しくなると、ステップS220で正極側リレーSMRBが正常と判断される。
正極側リレーSMRBに溶着が生じているときには、図3の一点鎖線で示すように、時刻t13から所定時間trefを経過した時刻t14までに電圧VLが上昇して電圧VBと等しくなる。したがって、時刻t14で正極側リレーSMRBが溶着していると判断される(ステップS150)。こうした処理により、正極側リレーSMRBの溶着を判断することができる。
以上説明した実施例の車両用の電源システムを搭載した電気自動車20によれば、正極側リレーSMRBおよび負極側リレーSMRGがオフした状態で、バッテリ36の電圧VBと低電圧側コンデンサ48の電圧VLとの差分ΔVが所定電圧VLrefとなるようにシステムメインリレー38(正極側リレーSMRB、負極側リレーSMRG)とDCDCコンバータ64とを制御し、差分ΔVが所定電圧VLrefとなったときには、DCDCコンバータ64を停止した状態で、正極側リレーSMRBがオフし負極側リレーSMRGをオンするようにシステムメインリレー38とDCDCコンバータ64とを制御し、正極側リレーSMRBがオフし負極側リレーSMRGをオンするようにシステムメインリレー38を制御してから所定時間trefが経過したときには、DCDCコンバータ64を停止した状態で、正極側リレーSMRBがオンするようにシステムメインリレー38とをDCDCコンバータ64とを制御し、正極側リレーSMRBがオフし負極側リレーSMRGをオンするようにシステムメインリレー38を制御してから所定時間tref以内に電圧VLと電圧VBとが等しくなったときには、正極側リレーSMRBが溶着していると判断することにより、低電圧側電力ライン44と補機バッテリ62との間で電圧の変更を伴って電力をやりとりするDCDCコンバータ64を備えるシステムにおいて、正極側リレーSMRBの溶着を検出することができる。
実施例の車両用の電源システムを搭載した電気自動車20では、ステップS100でDCDCコンバータ64を駆動した後に、ステップS110で正極側リレーSMRBへオフの制御信号を出力し、負極側リレーSMRGへオンの制御信号を出力することで、正極側リレーSMRBに溶着が生じているか否かを判定している。しかしながら、ステップS110で正極側リレーSMRBへオンの制御信号を出力し、負極側リレーSMRGへオフの制御信号を出力することにより、負極側リレーSMRGに溶着が生じているか否かを判定することができる。この場合、ステップS180で負極側リレーSMRGへオンの制御信号を出力することにより、負極側リレーSMRGが正常であるか否かを判断することができる。
実施例の車両の電源システムを搭載した電気自動車20では、ステップS130,S200で、低電圧側コンデンサ48の電圧VLとバッテリ36の電圧VBとを比較している。しかしながら、昇圧コンバータ40の2つのトランジスタのうち高電圧側電力ライン42の正極側電力ラインに接続される上アームのトランジスタをオンとすると低電圧側コンデンサ48の電圧VLと電圧センサ46aからの高電圧側コンデンサ46の電圧VHとがほぼ等しくなる。したがって、ステップS130,S200で、昇圧コンバータ40の上アームのトランジスタをオンとして低電圧側コンデンサ48の電圧として電圧センサ46aからの電圧VHと電圧VBとを比較してもよい。
実施例の車両の電源システムを搭載した電気自動車20では、ステップS100で、電圧VLが電圧VBより低くなるようにDCDCコンバータ64を駆動している。しかしながら、差分ΔVが所定電圧VLrefとなればよいから、電圧VLが電圧VBより所定電圧VLref高くなるようにDCDCコンバータ64を駆動してもよい。
実施例の車両の電源システムを搭載した電気自動車20では、DCDCコンバータ64を、補機バッテリ62からの電力を昇圧して低電圧側電力ライン44へ供給したり、低電圧側電力ライン44からの電力を降圧して補機バッテリ62へ供給するように構成している。しかしながら、DCDCコンバータ64を、低電圧側電力ライン44からの電力を降圧して補機バッテリ62へ供給しないものとし、補機バッテリ62からの電力を昇圧して低電圧側電力ライン44へ供給するものとしてもよい。
実施例では、車両用の電源システムをモータ32とインバータ34と昇圧コンバータ40とを備える電気自動車20に搭載される形態としている。しかしながら、昇圧コンバータ40を備えない電気自動車20に搭載される形態としても構わない。また、モータ32とインバータ34と昇圧コンバータ40とに加えてエンジンも備えるハイブリッド自動車の形態としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、バッテリ36が「蓄電装置」に相当し、システムメインリレー38が「システムメインリレー」に相当し、低電圧側コンデンサ48が「コンデンサ」に相当し、補機バッテリ62が「低電圧蓄電装置」に相当し、DCDCコンバータ64が「コンバータ」に相当し、電子制御ユニット70が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、車両用の電源システムの製造産業などに利用可能である。
20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、36b 電流センサ、34 インバータ、36 バッテリ、36a,46a,48a 電圧センサ、40 昇圧コンバータ、42 高電圧側電力ライン、44 低電圧側電力ライン、46 高電圧側コンデンサ、48 低電圧側コンデンサ、62 補機バッテリ、64 DCDCコンバータ、70 電子制御ユニット、72 CPU、74 ROM、76 RAM、SMRB 正極側リレー、SMRG 負極側リレー。

Claims (1)

  1. 車両に搭載される車両用の電源システムであって、
    蓄電装置と、
    前記蓄電装置の正極母線と電力ラインの正極母線との接続および接続の解除を行なう正極側リレーと、前記蓄電装置の負極母線と前記電力ラインの負極母線との接続および接続の解除を行なう負極側リレーと、を有するシステムメインリレーと、
    前記電力ラインの前記正極母線と前記電力ラインの前記負極母線とに接続されるコンデンサと、
    前記蓄電装置より定格電圧の低い低電圧蓄電装置と、
    前記電力ラインと前記低電圧蓄電装置との間で電圧の変更を伴って電力をやりとりするコンバータと、
    前記システムメインリレーと前記コンバータとを制御する制御装置と、
    を備え、
    前記制御装置は、
    前記正極側リレーおよび前記負極側リレーがオフした状態で、前記蓄電装置の電圧と前記コンデンサの電圧との差分が所定電圧となるように前記システムメインリレーと前記コンバータとを制御し、
    前記蓄電装置の電圧と前記コンデンサの電圧との差分が前記所定電圧となったときには、前記コンバータを停止した状態で、前記正極側リレーおよび前記負極側リレーのうちのいずれか一方のリレーがオンし他方のリレーがオフするように前記システムメインリレーと前記コンバータとを制御する第1オン制御を実行し、
    前記第1オン制御を実行してから所定時間が経過したときには、前記コンバータを停止した状態で、前記一方のリレーおよび前記他方のリレーがオンするように前記コンバータと前記システムメインリレーとを制御し、
    前記第1オン制御を実行してから前記所定時間が経過する前に、前記蓄電装置の電圧と前記コンデンサの電圧とが等しくなったときには、前記他方のリレーが溶着していると判断する、
    車両用の電源システム。
JP2018236128A 2018-12-18 2018-12-18 車両用の電源システム Pending JP2020099129A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236128A JP2020099129A (ja) 2018-12-18 2018-12-18 車両用の電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236128A JP2020099129A (ja) 2018-12-18 2018-12-18 車両用の電源システム

Publications (1)

Publication Number Publication Date
JP2020099129A true JP2020099129A (ja) 2020-06-25

Family

ID=71106165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236128A Pending JP2020099129A (ja) 2018-12-18 2018-12-18 車両用の電源システム

Country Status (1)

Country Link
JP (1) JP2020099129A (ja)

Similar Documents

Publication Publication Date Title
US11476508B2 (en) Power supply system and control method thereof
JP5477339B2 (ja) 電動車両
US11435388B2 (en) Electric vehicle and control method for electric vehicle
JP6939599B2 (ja) 電動車両
US10974611B2 (en) Motor-driven vehicle
US10804715B2 (en) Electrically driven vehicle
JP2015220825A (ja) 車両
US11121558B2 (en) Charging device
JP4529851B2 (ja) 電源回路の異常検知装置
JP2016116262A (ja) 駆動装置
JP2015162977A (ja) 電動車両
JP2013034328A (ja) 電気自動車
JP2020099129A (ja) 車両用の電源システム
JP2020202656A (ja) 車両の電源システム
JP2016080351A (ja) 自動車
JP2020145867A (ja) 電源システム
JP6269633B2 (ja) 車両
JP2023167684A (ja) 電源システムおよび電源システムにおけるリレーの状態判定方法
JP2019122062A (ja) 電動車両
JP2022128677A (ja) 電源装置
JP2013017302A (ja) 昇圧コンバータの制御装置
JP2020056703A (ja) リレー溶着検出装置
JP2016163534A (ja) 電源装置
JP2020156135A (ja) 車両
US11104240B2 (en) Electrified vehicle