JP2020098377A - 電源回路 - Google Patents

電源回路 Download PDF

Info

Publication number
JP2020098377A
JP2020098377A JP2018235157A JP2018235157A JP2020098377A JP 2020098377 A JP2020098377 A JP 2020098377A JP 2018235157 A JP2018235157 A JP 2018235157A JP 2018235157 A JP2018235157 A JP 2018235157A JP 2020098377 A JP2020098377 A JP 2020098377A
Authority
JP
Japan
Prior art keywords
transistor
voltage
power supply
gate
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018235157A
Other languages
English (en)
Other versions
JP7182452B2 (ja
Inventor
一之 宮島
Kazuyuki Miyajima
一之 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2018235157A priority Critical patent/JP7182452B2/ja
Publication of JP2020098377A publication Critical patent/JP2020098377A/ja
Application granted granted Critical
Publication of JP7182452B2 publication Critical patent/JP7182452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

【課題】出力電圧の設定を自由に行え、入力電圧の変動や出力電流の変動に対して安定した出力電圧を出力できる電源回路を提供する。【解決手段】トランジスタMN1と、ツェナーダイオードZD1と、ツェナーダイオードZD1の電圧を分圧する分圧回路20Aと、分圧回路20Aで得られる分圧電圧によってゲートが制御されるトランジスタMN2とを有する電源回路である。分圧回路20Aは、トランジスタMN1のソースに一端が接続された抵抗R1と、抵抗R1の他端がエミッタに接続されベースとコレクタが共通接続されたトランジスタQ1と、トランジスタQ1のコレクタと接地端子3の間に接続された抵抗R2と、トランジスタQ1のベースにベースが接続されエミッタがトランジスタMN2のゲートに接続されコレクタが接地端子に接続されたトランジスタQ2と、ゲートが前記トランジスタQ2のエミッタに接続されドレインが入力端子1に接続されソースがトランジスタQ1のエミッタに接続されたトランジスタMN3とを備える。【選択図】図1

Description

本発明は、複合電源ICなどの内部に形成される電源回路にかかり、特に低耐圧の素子を使用した増幅回路やロジック回路などに電圧を供給する電源回路に関する。
複合電源ICにおいては、数10Vの高耐圧の素子と5V以下の低耐圧の素子を組み合わせて回路が構成されている。このような複合電源ICでは、低耐圧の回路内の素子の耐圧以下の電圧を供給するために、複合電源IC内部にローカルな電源回路を持つ場合が多い。通常このような電源回路は、複合電源IC内部の基準電圧生成回路などにも電圧を供給する都合上、電源投入時には他の回路に先んじて動作を開始する必要があり、外部の基準電圧回路等から参照電圧の供給を受けることが出来ない。
従来からこのような回路の構成例として図5に示すような電源回路10Eがある。この電源回路10Eには、ツェナーダイオードZD1と、このツェナーダイオードZD1に一定の電流を流す電流源としてのデプレッション型NchMOSトランジスタMN1が、電圧VDDが入力する入力端子1と接地端子3との間に直列接続されている。このトランジスタMN1はそのドレインが入力端子1に接続されゲートとソースがツェナーダイオードZD1に接続されている。そして、このツェナーダイオードZD1とトランジスタMN1の共通接続点のノードN1に、同じくドレインが入力端子1に接続されたデプレッション型NchMOSトランジスタMN2のゲートが接続され、そのソースが電源回路10Eの出力端子2となっている。C1はトランジスタMN2のゲート電圧の安定化のためのキャパシタ、RLは負荷抵抗である。
このように構成することにより、電源回路10Eの出力端子2に得られる出力電圧Voutは、式(1)のようになる。VdzはツェナーダイオードZD1のカソード・アノード間電圧、VthndはトランジスタMN2の閾値電圧(<0)である。なお、以下における説明でも、デプレッション型MOSトランジスタの閾値電圧は閾値電圧Vthndであるとする。
Figure 2020098377
ここでトランジスタMN1,MN2にデプレッション型を使用している理由は、入力端子1の電圧VDDが低い場合でも、出力端子2の電圧Voutを一定に保つためである。エンハンスメント型MOSトランジスタで構成した場合、出力端子2の電圧Voutが入力端子1の電圧VDDによらず一定になるためには、出力端子2の電圧Voutと入力端子1の電圧VDDの間に、エンハンスメント型MOSトランジスタの閾値電圧分の電位差が必要となる。これに対して、図5の電源回路10Eの場合は、デプレッション型MOSトランジスタMN2の閾値電圧が負であるため、その閾値電圧分の電位差が不要となり、より低い入力電圧VDDであっても、出力電圧Voutの値を一定にすることができる。
図5の出力端子2の電圧Voutは式(1)にあるように、ツェナーダイオードZD1の電圧Vdzで決まる。この電圧Vdzはその複合電源ICの製造プロセスの条件により決まり、回路構成で容易に変更できない。このため、出力電圧Voutとして必要な電圧がツェナーダイオードZD1の電圧Vdzと合わない場合は、図6の電源回路10Fに示すように、抵抗R1,R2による分圧回路20Fによって電圧Vdzを分圧することで必要な電圧を得ることになる。
しかし、図6に示すように電源回路10Fを構成したとき、入力端子1の電圧VDDが急激に増加または減少した場合、トランジスタMN2のドレイン・ゲート間の寄生容量Cdg(MN2)を通してその電圧VDDの変動が抵抗R1、R2の共通接続点N2に伝わり、トランジスタMN2のゲート電圧Vgが変動して、その影響で出力端子2の電圧Voutも一時的に上昇または低下する。
出力端子2に接続される負荷抵抗RLの値が急激に変動して出力電流が変動した場合も同様であり、トランジスタMN2のゲート・ソース間の寄生容量Cgs(MN2)の影響でトランジスタMN2のゲート電圧Vgが変動して、出力端子2の電圧Voutが大きく変動する。
本発明の目的は、複合電源IC内部のツェナーダイオードを用いた電源回路において、出力電圧の設定を自由に行え、且つ入力電圧の変動や出力電流の変動に対して安定した出力電圧を出力できる電源回路を提供することである。
上記目的を達成するために、請求項1にかかる発明は、ドレインが入力端子に接続されゲートとソースが共通接続されたデプレッション型の第1MOSトランジスタと、該第1MOSトランジスタのソースと接地端子の間に接続されたツェナーダイオードと、該ツェナーダイオードの電圧を分圧する分圧回路と、ドレインが前記入力端子に接続されソースが出力端子に接続されゲートに前記分圧回路で生成された電圧が印加されるデプレッション型の第2MOSトランジスタとを有する電源回路において、前記分圧回路は、前記第1MOSトランジスタのソースに一端が接続された第1抵抗と、エミッタに前記第1抵抗の他端が接続されベースとコレクタが共通接続された第1バイポーラトランジスタと、該第1バイポーラトランジスタのコレクタと前記接地端子の間に接続された第2抵抗と、該第1バイポーラトランジスタのベースにベースが接続されエミッタが前記第2MOSトランジスタのゲートに接続されコレクタが接地端子に接続された第2バイポーラトランジスタと、ゲートが前記第1バイポーラトランジスタのエミッタに接続されドレインが前記入力端子に接続されソースが前記第2バイポーラトランジスタのエミッタに接続されたデプレッション型の第3MOSトランジスタとを備えることを特徴とする。
請求項2にかかる発明は、請求項1に記載の電源回路において、前記第1バイポーラトランジスタのベースにベースが接続されコレクタが前記接地端子に接続された第3バイポーラトランジスタと、前記入力端子と前記第3バイポーラトランジスタのエミッタとの間に接続される第3抵抗とデプレッション型の第4MOSトランジスタの直列回路とを備え、前記第4MOSトランジスタのゲートが前記第1MOSトランジスタのソースに接続され、前記第3MOSトランジスタのゲートが前記第1バイポーラトランジスタのエミッタから前記第3バイポーラトランジスタのエミッタに接続替えされていることを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載の電源回路において、前記第2バイポーラトランジスタのコレクタ電流を前記第2バイポーラトランジスタのエミッタから引き抜くカレントミラー回路を備えることを特徴とする。
請求項4にかかる発明は、請求項2又は3のいずれか1つに記載の電源回路において、前記第3バイポーラトランジスタのエミッタと前記第3MOSトランジスタのゲートとの間に挿入した第4抵抗と、ドレインが前記第3MOSトランジスタのゲートに接続されゲートが前記接地端子に接続されソースが第5抵抗を介して前記接地端子に接続されたデプレッション型の第7MOSトランジスタとを備えることを特徴とする。
本発明の電源回路によれば、ツェナーダイオードの電圧に対して自由に出力電圧を設定可能で、低い電源電圧で動作し、しかも従来の電源回路に比べ電源電圧の変動や出力電流の変動に対してより安定した出力電圧を供給することができる。
本発明の第1実施例の電源回路の回路図である。 本発明の第2実施例の電源回路の回路図である。 本発明の第3実施例の電源回路の回路図である。 本発明の第4実施例の電源回路の回路図である。 従来の電源回路の回路図である。 従来の別の電源回路の回路図である。
<第1実施例>
図1に第1実施例の電源回路10Aを示す。この電源回路10Aは分圧回路20Aを備えている。この分圧回路20Aは、ベース・コレクタ間が短絡され抵抗R1とR2の間に挿入されたPNP型バイポーラトランジスタQ1と、ベースがトランジスタQ1のベースに接続されエミッタがトランジスタMN2のゲートに接続されコレクタが接地端子3に接続されたPNP型バイポーラトランジスタQ2と、ゲートがトランジスタQ1のエミッタに接続されドレインが入力端子1に接続されソースがトランジスタQ2のエミッタに接続されたデプレッション型NMOSトランジスタMN3とを有する。
このように分圧回路20Aを挿入することにより、抵抗R1,R2,トランジスタQ1を流れる電流をI1とし、Vbe(Q1)をトランジスタQ1のベース・エミッタ間電圧とすると、
Figure 2020098377
であり、電流I1はVbe(Q2)をトランジスタQ2のベース・エミッタ間電圧とすると、
Figure 2020098377
である。
よって、Vbe(Q1)=Vbe(Q2)とすると、
Figure 2020098377
となる。したがって、出力端子2の電圧Voutは以下の式(2)のようになる。
Figure 2020098377
入力端子1の電圧VDDが急激に上昇した場合、トランジスタMN2のドレイン・ゲート間の寄生容量Cdg(MN2)によりトランジスタMN2のゲート電圧を引き上げるが、このとき、トランジスタQ2のベース・エミッタ間電圧Vbe(Q2)が変化して、トランジスタQ2のエミッタ電流が増加する。この結果、トランジスタMN2の寄生容量Cdg(MN2)から流入した電流はトランジスタQ2のコレクタを介して接地端子3に流れて、トランジスタMN3のゲート電圧を引き下げる。
一方、入力端子1の電圧VDDが低下した際には、トランジスタQ2のコレクタ電流が減り、トランジスタMN3からの電流が増加してトランジスタMN2のゲート電圧を引き上げる。
負荷抵抗RLに流れる電流が急激に増加または減少した場合においても、同様に作用してトランジスタMN2のゲート端子の電圧を一定に保つことができる。
トランジスタQ2が追加された場合のトランジスタQ2のエミッタの出力抵抗Roe(Q2)は以下の式(6)のように表される。gm(Q2)はトランジスタQ2のトランスコンダクタンス、β(Q2)はトランジスタQ2の電流増幅率である。
Figure 2020098377
ここで、gm(Q2)は、
Figure 2020098377
である。qは電子電荷(1.6×10-19)、kはボルツマン定数(1.38×10-23)、Tは温度(kelvin)である。
よって、β(Q2)=100、R2=100kΩ、トランジスタQ2のコレクタ電流Ic(Q2)=10μAとすると、Roe(Q2)=3.6kΩ(但し、温度は25℃)になる。図6の従来回路では、Vdz=5Vで抵抗R1及びR2に流れる電流を10μA、ノードN2の電圧を4Vとした場合、抵抗R1=100kΩ、抵抗R2=400kΩとなるので、これと比べて本実施例ではトランジスタMN2のゲート端子の抵抗値を下げ電圧変動を小さく抑えることが可能となる。
<第2実施例>
図2に第2実施例の電源回路10Bを示す。この電源回路10Bは、図1の電源回路10Aの特性を向上させるためのものであり、図1の電源回路10Aにおける分圧回路20Aを分圧回路20Bに置き換えたものである。分圧回路20Bは、分圧回路20Aに対して、ゲートがノードN1に接続されドレインが入力端子1に接続されたデプレッション型のNMOSトランジスタMN4と、ベースがトランジスタQ1のベースに接続されコレクタが接地端子3に接続されエミッタがトランジスタMN3のゲートに接続されたPNP型のバイポーラトランジスタQ3と、そのトランジスタQ3のエミッタとトランジスタMN4のソースの間に接続された抵抗R3とを追加している。
図1の電源回路10Aでは、入力端子1の電圧VDDが変動した際、トランジスタMN3のゲート・ドレイン間の寄生容量により抵抗R1とトランジスタQ1のエミッタの接続点の電圧が変動する。
そこで、図2の電源回路10Bでは、トランジスタMN3のゲートをトランジスタQ3のエミッタに接続することにより、トランジスタQ1のエミッタに、トランジスタMN3のゲート・ドレイン間の寄生容量による電流が流れないようにしている。また、トランジスタMN4のゲートもツェナーダイオードDZ1のカソードに接続することにより、トランジスタMN4のゲート・ドレイン間の寄生容量の影響も軽減している。
このように構成することにより、入力端子1の電圧VDDの変動に対して抵抗R1及びR2に流れる電流の変動がより軽減され、出力端子2の電圧Voutをより安定させることが可能となる。
<第3実施例>
図3に第3実施例の電源回路10Cを示す。この電源回路10Cは図2の分圧回路20Bにおいて、トランジスタQ2のベース電流により抵抗R2に流れる電流が変動することを抑えるための構成である。図2の分圧回路20Bにおいては、トランジスタQ2のエミッタ電流が変動すると、そのトランジスタQ2のベース電流により、抵抗R2で発生する電圧が変化し、これが出力端子2の電圧Voutに現れる。
そこで図3の分圧回路20Cにおいては、トランジスタQ2のコレクタ電流をエンハンスメント型のNMOSトランジスタMN5,MN6からなるカレントミラー回路でおり折り返し、トランジスタQ2のエミッタ電流(つまりベース電流)から引き抜く。
このような構成にすることで、トランジスタQ2の電流増率β(Q2)を上げ、トランジスタQ2のベース電流を減少させることで、トランジスタQ2のエミッタ電流が変化した際の抵抗R2で発生する電圧の変動を軽減している。
<第4実施例>
図4に第4実施例の電源回路10Dを示す図1〜図3の電源回路10A〜10Cにおいては、トランジスタQ2とトランジスタQ3のエミッタ電圧が等しく、分圧回路20A〜20Cの定常状態において、トランジスタMN3のドレイン電流Id(MN3)は以下の式(8)で表される。β(MN3)はトランジスタMN3のトランスコンダクタンス係数である。VthndはトランジスタMN3の閾値電圧(<0)である。
Figure 2020098377
上式(8)より、トランジスタMN3のドレイン電流Id(MN3)はトランジスタMN3のトランスコンダクタンス係数β(MN3)や閾値電圧Vthndのばらつき、つまり温度や製造ばらつき等の影響を受けやすい。
そこで図4の電源回路10Dの分圧回路20Dは、トランジスタMN3のドレイン電流の変動を軽減することを目的とするもので、トランジスタMN3のゲートとトランジスタQ3のエミッタの間に接続された抵抗R4と、ゲートが接地されソースが抵抗R5を介して接地端子3に接続されドレインがトランジスタMN4のゲートに接続されたデプレッション型NMOSトランジスタMN7とを追加している。
ここで、トランジスタQ3とQ2のベース・エミッタ間電圧が等しく、抵抗R4とR5の値が等しいとすると、トランジスタMN3のドレイン電流Id(MN3)は、以下の式(9)のようになる。Vgs(MN3)はトランジスタMN3のゲート・ソース間電圧である。
Figure 2020098377
また、Id(MN7)をトランジスタMN7のドレイン電流、Vth(MN7)をトランジスタMN7の閾値電圧とし、β(MN7)をトランジスタMN7のトランスコンダクタンス係数とすると、
Figure 2020098377
である。
トランジスタMN7はデプレッション型であるため、Vth(MN7)=Vthndである。よって、R4=R5とすると、
Figure 2020098377
となる。よって、式(9)は、
Figure 2020098377
となる。
トランジスタMN7のトランスコンダクタンス係数β(MN7)が十分に大きい場合には、
Figure 2020098377
となるため。式(12)は以下の式(14)のようになる。
Figure 2020098377
上式(14)により、図4の電源回路10Dにおいては、トランジスタMN3のドレイン電流Id(MN3)に対するトランジスタMN3の閾値電圧Vth(MN3)の影響が軽減され、より安定したトランジスタMN3のドレイン電流Id(MN3)を得ることが可能となる。
<まとめ>
以上、本発明の電源回路10A〜10Dによれば、抵抗R1,R2の比率を設定することで、ツェナーダイオードDZ1の電圧Vdzを分圧して自由な出力電圧Voutを設定可能である。また、トランジスタMN2にデプレッション型MOSを使用しているので、低い電源電圧VDDで動作する。さらに、トランジスタMN2のゲート電圧が安定化されるので、従来の電源回路10Fに比べ電源電圧VDDの変動、出力電流の変動に対して安定した出力電圧Voutを供給することができる。
10A〜10E:電源回路
20A〜20D,20F:分圧回路

Claims (4)

  1. ドレインが入力端子に接続されゲートとソースが共通接続されたデプレッション型の第1MOSトランジスタと、該第1MOSトランジスタのソースと接地端子の間に接続されたツェナーダイオードと、該ツェナーダイオードの電圧を分圧する分圧回路と、ドレインが前記入力端子に接続されソースが出力端子に接続されゲートに前記分圧回路で生成された電圧が印加されるデプレッション型の第2MOSトランジスタとを有する電源回路において、
    前記分圧回路は、前記第1MOSトランジスタのソースに一端が接続された第1抵抗と、エミッタに前記第1抵抗の他端が接続されベースとコレクタが共通接続された第1バイポーラトランジスタと、該第1バイポーラトランジスタのコレクタと前記接地端子の間に接続された第2抵抗と、該第1バイポーラトランジスタのベースにベースが接続されエミッタが前記第2MOSトランジスタのゲートに接続されコレクタが接地端子に接続された第2バイポーラトランジスタと、ゲートが前記第1バイポーラトランジスタのエミッタに接続されドレインが前記入力端子に接続されソースが前記第2バイポーラトランジスタのエミッタに接続されたデプレッション型の第3MOSトランジスタとを備えることを特徴とする電源回路。
  2. 請求項1に記載の電源回路において、
    前記第1バイポーラトランジスタのベースにベースが接続されコレクタが前記接地端子に接続された第3バイポーラトランジスタと、前記入力端子と前記第3バイポーラトランジスタのエミッタとの間に接続される第3抵抗とデプレッション型の第4MOSトランジスタの直列回路とを備え、
    前記第4MOSトランジスタのゲートが前記第1MOSトランジスタのソースに接続され、前記第3MOSトランジスタのゲートが前記第1バイポーラトランジスタのエミッタから前記第3バイポーラトランジスタのエミッタに接続替えされていることを特徴とする電源回路。
  3. 請求項1又は2に記載の電源回路において、
    前記第2バイポーラトランジスタのコレクタ電流を前記第2バイポーラトランジスタのエミッタから引き抜くカレントミラー回路を備えることを特徴とする電源回路。
  4. 請求項2又は3のいずれか1つに記載の電源回路において、
    前記第3バイポーラトランジスタのエミッタと前記第3MOSトランジスタのゲートとの間に挿入した第4抵抗と、ドレインが前記第3MOSトランジスタのゲートに接続されゲートが前記接地端子に接続されソースが第5抵抗を介して前記接地端子に接続されたデプレッション型の第7MOSトランジスタとを備えることを特徴とする電源回路。
JP2018235157A 2018-12-17 2018-12-17 電源回路 Active JP7182452B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235157A JP7182452B2 (ja) 2018-12-17 2018-12-17 電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235157A JP7182452B2 (ja) 2018-12-17 2018-12-17 電源回路

Publications (2)

Publication Number Publication Date
JP2020098377A true JP2020098377A (ja) 2020-06-25
JP7182452B2 JP7182452B2 (ja) 2022-12-02

Family

ID=71105997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235157A Active JP7182452B2 (ja) 2018-12-17 2018-12-17 電源回路

Country Status (1)

Country Link
JP (1) JP7182452B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115202427A (zh) * 2021-04-09 2022-10-18 上海艾为电子技术股份有限公司 一种稳压电路及电源管理芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219656A (ja) * 1994-02-08 1995-08-18 Oki Electric Ind Co Ltd 定電圧回路
JP2003280749A (ja) * 2002-03-20 2003-10-02 Sanyo Electric Co Ltd 電源回路
JP2008129977A (ja) * 2006-11-24 2008-06-05 Yokogawa Electric Corp 電圧シフト回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219656A (ja) * 1994-02-08 1995-08-18 Oki Electric Ind Co Ltd 定電圧回路
JP2003280749A (ja) * 2002-03-20 2003-10-02 Sanyo Electric Co Ltd 電源回路
JP2008129977A (ja) * 2006-11-24 2008-06-05 Yokogawa Electric Corp 電圧シフト回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115202427A (zh) * 2021-04-09 2022-10-18 上海艾为电子技术股份有限公司 一种稳压电路及电源管理芯片
CN115202427B (zh) * 2021-04-09 2023-12-12 上海艾为电子技术股份有限公司 一种稳压电路及电源管理芯片

Also Published As

Publication number Publication date
JP7182452B2 (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
CN110362144B (zh) 基于指数补偿的低温漂高电源抑制比带隙基准电路
JP2008108009A (ja) 基準電圧発生回路
US20090096510A1 (en) Reference voltage generating circuit for use of integrated circuit
TW201931046A (zh) 包括帶隙參考電路的電路
TW201805754A (zh) 寬電源範圍精準啓動電流源
US11662761B2 (en) Reference voltage circuit
US11709519B2 (en) Reference voltage circuit
TWI716323B (zh) 電壓產生器
JP7182452B2 (ja) 電源回路
US7042205B2 (en) Reference voltage generator with supply voltage and temperature immunity
JP6740122B2 (ja) アクティブインダクタ及び増幅回路
JP6864516B2 (ja) レギュレータ回路
KR101443178B1 (ko) 전압제어회로
CN115079762B (zh) 低压差线性稳压器电路
US20160342172A1 (en) Low-voltage current mirror circuit and method
CN115314009A (zh) 应用于射频功率放大器的偏置电路
CN112558672A (zh) 基准电流源及包含基准电流源的芯片
CN114690842A (zh) 一种用于偏置双极型晶体管的电流源电路
CN115185329B (zh) 一种带隙基准结构
JP2015114815A (ja) 基準電圧回路
US11476812B2 (en) Amplifying apparatus
CN113934252B (zh) 用于能隙参考电压电路的降压电路
JP2019144922A (ja) レギュレータ回路
JP2011170443A (ja) 基準電圧生成回路及び半導体装置
JP6933620B2 (ja) 電源回路

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20200220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7182452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150