JP2020092491A - 電力変換装置、駆動装置およびパワーステアリング装置 - Google Patents

電力変換装置、駆動装置およびパワーステアリング装置 Download PDF

Info

Publication number
JP2020092491A
JP2020092491A JP2018226967A JP2018226967A JP2020092491A JP 2020092491 A JP2020092491 A JP 2020092491A JP 2018226967 A JP2018226967 A JP 2018226967A JP 2018226967 A JP2018226967 A JP 2018226967A JP 2020092491 A JP2020092491 A JP 2020092491A
Authority
JP
Japan
Prior art keywords
inverter
neutral point
drive
failure
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018226967A
Other languages
English (en)
Other versions
JP7151432B2 (ja
Inventor
香織 鍋師
Kaori NABESHI
香織 鍋師
北村 高志
Takashi Kitamura
高志 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2018226967A priority Critical patent/JP7151432B2/ja
Publication of JP2020092491A publication Critical patent/JP2020092491A/ja
Application granted granted Critical
Publication of JP7151432B2 publication Critical patent/JP7151432B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】故障箇所の特定診断時におけるトルク抜けを回避する。【解決手段】電力変換装置の一態様は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、上記巻線の一端に接続される第1インバータと、上記一端に対する他端に接続される第2インバータと、上記第1インバータと並列で上記巻線の上記一端に接続され、かつ、上記一端同士の接続・非接続を切替える第1中性点リレー回路と、上記第2インバータと並列で上記巻線の上記他端に接続され、かつ、上記他端同士の接続・非接続を切替える第2中性点リレー回路と、上記第1インバータおよび上記第2中性点リレー回路を制御する第1制御回路と、上記第2インバータおよび上記第1中性点リレー回路を制御する第2制御回路と、を備える。【選択図】 図1

Description

本発明は、電力変換装置、駆動装置およびパワーステアリング装置に関する。
従来、2つのインバータによりモータの電力を変換するインバータ駆動システムが知られている。また、モータの各巻線の両端それぞれにインバータが接続され各巻線について独立に電力を供給するタイプのインバータ駆動システムも知られている。
例えば特許文献1には2つのインバータ部を有する電力変換装置が開示されている。特許文献1では、故障検出手段によりスイッチング素子の故障が検出される。そして、スイッチング素子に故障が生じた場合、回転電機(モータ)の駆動継続のため、スイッチング素子のオンオフ作動制御が正常時制御から故障時制御に切り替えられて回転電機が駆動される。
特開2014−192950号公報
しかし、従来の装置では、故障箇所を特定する診断の間にトルク抜けが起きてしまう場合があった。
そこで、本発明は、故障箇所の特定診断時におけるトルク抜けを回避することを目的とする。
本発明に係る電力変換装置の一態様は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、上記巻線の一端に接続される第1インバータと、上記一端に対する他端に接続される第2インバータと、上記第1インバータと並列で上記巻線の上記一端に接続され、かつ、上記一端同士の接続・非接続を切替える第1中性点リレー回路と、上記第2インバータと並列で上記巻線の上記他端に接続され、かつ、上記他端同士の接続・非接続を切替える第2中性点リレー回路と、上記第1インバータおよび上記第2中性点リレー回路を制御する第1制御回路と、上記第2インバータおよび上記第1中性点リレー回路を制御する第2制御回路と、を備える。
また、本発明に係る駆動装置の一態様は、上記電力変換装置と、上記電力変換装置によって変換された電力が供給されるモータと、を備える。
また、本発明に係るパワーステアリング装置の一態様は、上記電力変換装置と、上記電力変換装置によって変換された電力が供給されるモータと、上記モータによって駆動されるパワーステアリング機構と、を備える。
本発明によれば、電源の一方における異常時に他方の電源で電力供給を継続することが可能である。
図1は、本実施形態によるモータ駆動ユニットの回路構成を模式的に示す図である。 図2は、正常時におけるモータ駆動ユニットの動作を示す図である。 図3は、正常時におけるモータの各相の各コイルに流れる電流値を示す図である。 図4は、故障検出の際に制御回路で実行される処理手順を表すフローチャートである。 図5は、仮駆動中の出力調整を示す図である。 図6は、異常検出と駆動パターンとの対応関係を示す図である。 図7は、故障パターンのパターン1が生じた状態を示す図である。 図8は、延焼防止状態に移行した状態を示す図である。 図9は、故障パターンがパターン1の場合における仮駆動の状態を示す図である。 図10は、故障パターンのパターン2が生じた状態を示す図である。 図11は、故障パターンがパターン2の場合における仮駆動の状態を示す図である。 図12は、インバータ内での中性点形成の変形例を示す図である。 図13は、故障パターンのパターン3が生じた状態を示す図である。 図14は、故障パターンがパターン3の場合における仮駆動の状態を示す図である。 図15は、故障パターンのパターン4が生じた状態を示す図である。 図16は、故障パターンがパターン4の場合における仮駆動の状態を示す図である。 図17は、故障パターンのパターン5が生じた状態を示す図である。 図18は、故障パターンがパターン5の場合における仮駆動の状態を示す図である。 図19は、2相駆動でモータの各相の各コイルに流れる電流値を示す図である。 図20は、故障パターンのパターン6が生じた状態を示す図である。 図21は、故障パターンがパターン6の場合における仮駆動の状態を示す図である。 図22は、モータ駆動ユニットのハードウェア構成を模式的に示す図である。 図23は、第1実装基板および第2実装基板のハードウェア構成を模式的に示す図である。 図24は、実装基板のハードウェア構成の変形例を模式的に示す図である。 図25は、本実施形態によるパワーステアリング装置の構成を模式的に示す図である。
以下、添付の図面を参照しながら、本開示の電力変換装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。
(モータ駆動ユニット1000の構造)
図1は、本実施形態によるモータ駆動ユニット1000の回路構成を模式的に示す図である。
モータ駆動ユニット1000は、インバータ111、112と、中性点リレー回路121、122と、モータ200と、制御回路301、302と、インバータ駆動回路311、312と、スイッチ駆動回路313、314と、を備える。
本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200を備えない、モータ200を駆動するための装置であってもよい。モータ200を備えないモータ駆動ユニット1000は、本発明の電力変換装置の一例に相当する。
モータ200は、例えば三相交流モータである。モータ200は、U相、V相およびW相のコイルを有する。コイルの巻き方は、例えば集中巻きまたは分布巻きである。
モータ駆動ユニット1000は電源に接続される。電源は、それぞれ独立した第1電源403と第2電源404を備える。電源403、404は所定の電源電圧(例えば12V)を生成する。電源403、404として、例えば直流電源が用いられる。ただし、電源403、404は、AC−DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。図1では、一例として、第1インバータ111用の第1電源403および第2インバータ112用の第2電源404が示されるが、モータ駆動ユニット1000は、第1インバータ111および第2インバータ112に共通の単一電源に接続されてもよい。また、モータ駆動ユニット1000は、内部に電源を備えていてもよい。
モータ駆動ユニット1000が備える2つのインバータ111、112は共通のグランドに接続される。このため、2つの電源403、404から供給される電流は、2つのインバータ111、112のどちら側からでもグランドへと流れることができる。
モータ駆動ユニット1000はコンデンサ105を備える。コンデンサ105は、いわゆる平滑コンデンサであり、モータ200で発生する環流電流を吸収することで電源電圧を安定化させてトルクリップルを抑制する。コンデンサ105は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。
モータ駆動ユニット1000は、2つのインバータ111、112によって、電源403、404からの電力をモータ200に供給する電力に変換することが可能である。例えば、モータ駆動ユニット1000は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。
2つのインバータ111、112のうち第1インバータ111は、モータ200のコイルの一端210に接続され、第2インバータ112は、モータ200のコイルの他端220に接続される。本明細書において、部品(構成要素)同士の「接続」とは、特に断らない限り電気的な接続を意味する。
各インバータ111、112は、3個のレグを有するブリッジ回路を備える。各インバータ111、112に備えられた3個のレグは、モータ200のU相、V相、W相の巻線それぞれに接続される。各レグは、電源とモータ200との間に接続されたハイサイドスイッチ素子113およびモータ200とグランドとの間に接続されたローサイドスイッチ素子114を備える。図示の煩雑を避けるため2つのインバータ111、112の1つについて符号が付されるが、各インバータ111、112にハイサイドスイッチ素子113およびローサイドスイッチ素子114が3つずつ備えられる。スイッチ素子としては、例えば電界効果トランジスタ(MOSFETなど)または絶縁ゲートバイポーラトランジスタ(IGBT)が用いられる。なお、スイッチ素子がIGBTである場合には、スイッチ素子と逆並列にダイオード(フリーホイール)が接続される。
中性点リレー回路121、122は、インバータ111、112と並列に、モータ200のコイルに接続される。中性点リレー回路121、122は、モータ200のコイル同士の接続・非接続を切替えることが可能である。言い換えると中性点リレー回路121、122は、インバータ111、112およびモータ200のコイルに接続され、3相の巻線に対する中性点を形成する。各中性点リレー回路121、122は、一端がノードに共通に接続され、かつ、他端がモータ200の各相のコイルに接続される3個のスイッチ素子を備える。上述したスイッチ素子としては、例えば、MOSFETなどの半導体スイッチ素子またはメカニカルリレーが用いられる。
モータ駆動ユニット1000は、更に、インバータ111、112と電源との接続・非接続を切替える分離スイッチ115と、インバータ111、112とグランドとの接続・非接続を切替える分離スイッチ116とを備える。
制御回路301、302は例えばCPUであり、例えばパワーステアリング装置の制御用コンピュータなどといった外部装置からモータ200の目標トルクなどが入力される。
制御回路301、302は、図示を省略した角度センサなどで検出されるモータ200の回転信号と、上記目標トルクや後述する電位センサの検出結果などに基づいて目標電流値を設定し、インバータ111、112によるモータ200の駆動を制御する。制御回路301、302はインバータ駆動回路311、312を介してインバータ111、112の駆動を制御する。具体的には、制御回路301、302は、インバータ111、112に備えられた各スイッチ素子におけるオンオフ動作を制御するためのPWM信号を目標電流値に従って生成し、そのPWM信号をインバータ駆動回路311、312に与えることでインバータ111、112の駆動を制御する。
インバータ駆動回路311、312は、例えばゲートドライバである。インバータ駆動回路311、312は、インバータ111、112における各スイッチ素子のオンオフ動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、生成した制御信号を各スイッチ素子に与える。
制御回路301、302は、スイッチ駆動回路313、314を介して、分離スイッチ115、116および中性点リレー回路121、122の動作を制御する。2つの制御回路301、302による制御対象の分担については後述する。スイッチ駆動回路313、314は、制御回路301、302からの、各中性点リレー回路121、122のオン・オフの状態を決定する信号に従って、各中性点リレー回路121、122における各スイッチ素子をオン・オフする制御信号を生成し、生成した制御信号を各スイッチ素子に与える。
なお、制御回路301、302は、インバータ駆動回路311、312やスイッチ駆動回路313、314の機能を有してもよい。その場合、インバータ駆動回路311、312やスイッチ駆動回路313、314は省かれる。
モータ駆動ユニット1000は、更に電位センサを備える。電位センサとしては、U相電位センサ411と、V相電位センサ412と、W相電位センサ413と、供給電位センサ414と、電源電位センサ415と、グランド電位センサ416と、中性点電位センサ417が備えられる。なお、図示の煩雑を避けるため、図1の左方側のインバータ111周辺のみに電位センサが図示されるが、電位センサは図2の右方側のインバータ112周辺にも同様に備えられる。
U相電位センサ411は、インバータ111、112のU相用のレグとモータ200のU相の巻線とを繋ぐ接続ライン上の電位を検出する。V相電位センサ412は、インバータ111、112のV相用のレグとモータ200のV相の巻線とを繋ぐ接続ライン上の電位を検出する。W相電位センサ413は、インバータ111、112のW相用のレグとモータ200のW相の巻線とを繋ぐ接続ライン上の電位を検出する。なお、図示は省略されるが、UVW各相については、電流センサも備えられており、UVW各相における電流値も検出される。
供給電位センサ414は、電源側の分離スイッチ115とインバータ111、112とを繋ぐ接続ライン上の電位を検出する。電源電位センサ415は、電源403、404と電源側の分離スイッチ115とを繋ぐ接続ライン上の電位を検出する。グランド電位センサ416は、グランド側の分離スイッチ116とインバータ111、112とを繋ぐ接続ライン上の電位を検出する。中性点電位センサ417は、中性点リレー回路121、122内の電位を検出する。
グランド電位センサ416で電位が検出されることにより、グランド分離用の分離スイッチ116における故障とインバータ111、112内のスイッチ素子における故障とが切り分けられる。また、電源電位センサ415によって電源403、404の電圧が検出されることにより、電源403、404の故障と回路系の故障とが切り分けられる。
U相電位センサ411、V相電位センサ412、W相電位センサ413および中性点電位センサ417は、インバータ111、112および中性点リレー回路121、122それぞれの内部電位を検出する検出器の一例に相当する。
モータ駆動ユニット1000は、モータ200のコイル(巻線)の一端210側に対応した第1系統と、モータ200のコイル(巻線)の他端220側に対応した第2系統とを備える。即ち、モータ駆動ユニット1000は、インバータと中性点リレー回路と上記検出器とを備えた回路系を、モータ200の巻線の一端210と他端220とのそれぞれに備える。第1系統のインバータ111には第1系統の電源403から電力が供給され、第系統インバータ112には第2系統の電源404から電力が供給される。
第1系統のインバータ111と、分離スイッチ115、116は、第1系統の制御回路301によって動作が制御され、第2系統のインバータ112と、分離スイッチ115、116は、第2系統の制御回路302によって動作が制御される。電源と制御回路を含んだ駆動系が、電源も含めて冗長化されるので、後述するように、一方の系統における電源の故障時にも、他方の系統によって電力供給が継続される。
また、第1系統の各電位センサ411〜417の検出値は第1系統の制御回路301に入力され、第2系統の各電位センサ411〜417の検出値は第2系統の制御回路302に入力される。
これらに対し、第1系統の中性点リレー回路121については、第2系統の制御回路302によって動作が制御され、第2系統の中性点リレー回路122については、第1系統の制御回路301によって動作が制御される。
即ち、第1系統の制御回路301は、モータ200の巻線の一端210側の検出器に接続され、当該一端210側のインバータ111およびモータ200の巻線の他端220側の性点リレー回路122を制御する。第2系統の制御回路302は、モータ200の巻線の他端220側の検出器に接続され、当該他端220側のインバータ112およびモータ200の巻線の一端210側の性点リレー回路121を制御する。
また、2つの制御回路301、302は相互に通信可能であり、2つの制御回路301、302の協働によって2つのインバータ111、112の動作を制御する場合がある。但し制御回路301、302の相互通信の速度は、インバータ駆動回路311、312およびスイッチ駆動回路313、314を介して各スイッチ素子の動作を制御する速度や、各電位センサ411〜417から検出値を取得する速度に較べると低速である。
制御回路301、302によるインバータ111、112の駆動制御には正常時の制御および故障時の制御がある。
制御回路301、302は、インバータ111、112の制御を正常時の制御と故障時の制御との間で切替えることができる。ここで正常とは、電源403、404と、制御回路301、302と、インバータ111、112と、中性点リレー回路121、122と、分離スイッチ115、116と、モータ200のいずれもが正しく機能する状態を指す。そして、故障とは、これらのいずれかで機能が失われた状態を指す。
以下、モータ駆動ユニット1000の動作の具体例を説明し、主としてインバータ111、112の動作の具体例を説明する。
(正常時の制御)
図2は、正常時におけるモータ駆動ユニット1000の動作を示す図である。
正常時において、制御回路301、302は、2つの中性点リレー回路121、122の双方をオフする。これにより、モータ200の各相のコイルは互いに非接続となる。「中性点リレー回路121(122)がオフする」とは、中性点リレー回路121(122)に備えられた3つのスイッチ素子が全てオフすることを意味する。
第1系統の中性点リレー回路121がオフすると、モータ200の各相のコイルの一端210同士は絶縁され、第2系統の中性点リレー回路122がオフすると、モータ200の各相のコイルの他端220同士は絶縁される。
また、制御回路301、302は、分離スイッチ115、116をいずれもオンする。これにより、2つのインバータ111、112が電源403、404およびグランドと接続される。
この接続状態において、制御回路301、302は、2つのインバータ111、112それぞれのスイッチ素子に対してPWM制御を行い三相通電制御することによってモータ200を駆動する。図2には、特定時点でモータ200の1つの相に流れる電流の経路が一例として示されており、この例では2つの系統のうち第2系統の電源404から第2系統のインバータ112へと供給された電流がモータ200の巻線を通り、第1系統のインバータ111からグランドに流れる。電流は、第1系統側から供給されて第2系統側に流れる場合もあるし、図2に示された相以外の相の巻線に流れる場合もある。
図3は、正常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。
図3には、正常時の三相通電制御に従ってインバータ111、112が制御されたときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)が例示される。図3の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。なお、インバータ111、112は、図3に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することも可能である。
図3に示される電流波形において、電流の向きを考慮した三相のコイルに流れる電流の総和は電気角毎に「0」となる。ただし、インバータ111、112の回路構成によれば、三相のコイルに流れる電流は独立に制御される。このため、インバータ111、112は電流の総和が「0」以外の値となる駆動動作を行うことも可能である。
(故障の検出)
例えばパワーステアリング機構などでは、モータ駆動ユニット1000に故障が生じた場合でも、故障時の制御によってモータ200の駆動を継続することが求められる。このため、制御回路301、302は、正常時の制御中に各電位センサ411〜417から得られる各箇所の電位検出値やインバータ駆動回路311、312およびスイッチ駆動回路313、314から得られる各スイッチ素子の応答結果を解析し、故障の兆候を検出する。つまり、制御回路301,302は、電源403、404からモータ200に至る駆動システムについて故障の兆候を検出する故障検出部としての機能を有する。また、本実施形態では、制御回路301,302は、上記駆動システム内の複数箇所それぞれにおける状態値(例えば電位検出値や応答結果)の異常を検出することで当該駆動システムにおける故障の兆候を検出する。
このような解析は、故障の発生を速やかに検出することができるが、この解析によって検出されるのは故障発生の兆候であって、誤検出の場合が有り得る。そのため、故障検出後は、故障が生じた箇所を確認する処理が行われ、誤検出であった場合には正常時の制御が実行される。
故障箇所の確認処理は、2つの制御回路301、302の協働による動作制御が必要な場合もあるため時間を要する。このため、本実施形態では、確認処理の間にモータ200のトルク抜けが生じないための工夫が施される。
図4は、故障検出の際に制御回路301、302で実行される処理手順を表すフローチャートである。
モータ200は、先ず、正常時の制御で駆動され (ステップS101)、上述したように電位検出値などの解析によって故障の兆候の検出が行われる(ステップS102)。故障の兆候が検出されない場合には(ステップS102;NO)、正常時の制御によるモータ200の駆動が継続される。
故障の兆候が検出された場合には(ステップS102;YES)、故障がモータ駆動ユニット1000内の他の箇所に広がることを防止するため、インバータ111、112の全てのスイッチ素子が一時的にオフされる(ステップS103)。以下、このように全てのスイッチ素子がオフになった状態を延焼防止状態と称する場合がある。
そして、故障時にモータ200の駆動を継続するために実行されるインバータ111、112の動作(駆動パターン)が、延焼防止状態の間に、複数種類(ここでは一例として3種類)の動作(駆動パターン)から選定されて(ステップS104)実行される(ステップS105〜S107)。ここで選定された駆動パターンによるモータ200の駆動を、以下では仮駆動と称する。仮駆動における駆動パターンは、故障の兆候が見られた際の制御における駆動パターンであり、正常時の制御における駆動パターンとは異なる駆動パターンである。なお、以下「故障時用の動作(仮駆動の駆動パターン)」とは、故障の兆候が見られてから故障が確定するまでの駆動パターンを指し、後述する故障が確定した後の「故障回避動作(リカバリ駆動の駆動パターン)」とは定義が異なるものとして説明する。
駆動パターンの選定については後で詳述するが、本実施形態では、駆動パターンの1つとして、一方の中性点リレー回路121、122で中性点が形成されるY1駆動(ステップS105)が採用される。また、本実施形態では、駆動パターンとして、一方のインバータ111、112内のスイッチ素子によって当該インバータ111、112が中性点化されるY3駆動(ステップS106)と、UVW3相のうち2相で駆動が行われる2相駆動(ステップS107)も採用される。本発明の電力変換装置では、これら3つの駆動パターンのうち少なくとも2つを含んだ複数種類の動作から故障時用の動作(仮駆動の駆動パターン)が選択されて実行されることが望ましい。
インバータ111、112は、制御回路301、302が故障時用の動作(仮駆動の駆動パターン)を選択する間、全てのスイッチ素子がオフの延焼防止状態になるのでモータ200に電流が流れないが、駆動パターンの選定は、各電位センサ411〜417から得られる各箇所の電位検出値に基づいて短時間に行われるのでモータ200のトルク抜けは回避される。
本実施形態では、上記3つの駆動パターンのいずれかによってモータ200が駆動されながら、モータ駆動ユニット1000における故障箇所の確認が行われる。つまり、制御回路301、302は、故障の兆候が検出された場合、インバータ111、112に故障時用の動作を実行させることでモータ200へ電力を供給させながら、電源403、404からモータ200に至る駆動システムにおける故障の有無を確認する。上述した様に確認処理には時間を要するが、仮駆動によってモータ200の駆動が継続されるためトルク抜けは回避される。このような仮駆動の継続時間は例えば数十msである。
仮駆動における駆動パターンは、故障の兆候が検出された場合に、モータ200の駆動を継続しつつ、より正確な故障診断を行うことが可能な駆動パターンである。このような仮駆動では、故障の兆候がある箇所を停止してモータ駆動ユニット1000を安全な状態に維持した状態で故障有無および故障箇所の確認を行う。このため、モータ駆動ユニット1000には、一部の機能を使わずに駆動継続できる冗長性が必要になる。中性点リレー回路121、122がインバータ111、112についた回路構造がそのような冗長性の一例である。
確認処理の結果として、故障箇所が見つからなかった場合(ステップS108:NO)は、故障検出が誤検出であったのでステップS101に戻り、正常時の制御によってモータ200が駆動される。つまり、制御回路301、302は、故障確認の結果として故障の非存在が確認された場合、インバータ111、112に正常時の動作を実行させる。一方、確認処理の結果、故障箇所が確定した場合(ステップS108:YES)は、ステップS109に進み、リカバリ駆動によってモータ200の駆動が継続される。
このリカバリ駆動は、確定した故障箇所の利用を回避した駆動である。言い換えると、制御回路301、302は、故障の存在が確認された場合、インバータ111、112に、当該故障を生じた箇所の利用を回避した故障回避動作を実行させることでモータ200へ電力を供給させる。
リカバリ駆動と仮駆動とでは駆動制御が異なっていてもよいが、本実施形態では、リカバリ駆動と仮駆動とで同一の駆動制御が実行される。これにより、制御の変更が少なくて済む。なお、本発明の電力変換装置では、仮駆動が常に例えばY1駆動で、リカバリ駆動がY1駆動とY3駆動と2相駆動から選択されてもよい。
リカバリ駆動によるモータ200の駆動は故障箇所の利用を回避した駆動であるため、モータ駆動ユニット1000の全体を利用する正常時の制御によるモータ200の駆動に較べて出力の上限が低下する。リカバリ駆動に移行した場合に急激な出力変化が生じることは避けたいので、本実施形態では仮駆動中に出力が調整される。
図5は、仮駆動中の出力調整を示す図である。
モータ駆動ユニット1000は、仮駆動に移行した直後は、正常時の駆動における出力と同等の高い出力を一時的に維持する。そして、仮駆動の継続中に出力を次第に低下させ、リカバリ駆動における出力上限以内の低出力に到達させる。その後、その低出力でリカバリ駆動が継続される。このような出力調整により、出力の急激な変化が回避され、モータ200の円滑な駆動やパワーステアリング装置における滑らかなパワーアシストが実現する。
(駆動パターンの選択)
以下、駆動パターンの選定方法について詳細に説明する。
上述した様に、制御回路301、302は、正常時の制御中に各電位センサ411〜417から得られる各箇所の電位検出値やインバータ駆動回路311、312およびスイッチ駆動回路313、314から得られる各スイッチ素子の応答結果を解析し、故障の兆候を検出する。本実施形態では、電位検出値や応答結果の検出箇所とレジスタのビットが対応付けられており、制御回路301、302は、レジスタのビットのうち状態値(例えば電位検出値や応答結果)の異常を検出した箇所に対応したビットを立てる。そして、制御回路301、302は、故障時用の動作(仮駆動)として、複数種類の動作(駆動パターン)のうちレジスタの値に対応した動作を実行させる。
図6は、異常検出と駆動パターンとの対応関係を示す図である。
図6に示す対応表の左端列には、制御回路301、302が状態値の異常として検出する検出条件が示される。検出条件としては、ローサイドスイッチ素子114における制御の応答異常と、ハイサイドスイッチ素子113における制御の応答異常と、UVW各相における電位検出値の異常(相電位値異常)と、インバータ駆動回路311、312における上記以外の応答異常(PrDr制御異常その他)が含まれる。また、検出条件としては、供給電位センサ414における電位検出値の異常(VR値異常)と、UVW各相における電流検出値の異常(相電流値異常)も含まれる。さらに、検出条件としては、グランド電位センサ416における電位検出値の異常(Vg値異常)と、中性点電位センサ417における電位検出値の異常(Vn値異常)も含まれる。
対応表の左から2列目に示されるように、ローサイドスイッチ素子114における制御の応答異常には、レジスタの第0ビットが割り当てられる。ハイサイドスイッチ素子113における制御の応答異常には、レジスタの第1ビットが割り当てられる。UVW各相における電位検出値の異常には、レジスタの第2ビットが割り当てられる。インバータ駆動回路311、312における上記以外の応答異常には、レジスタの第3ビットが割り当てられる。供給電位センサ414における電位検出値の異常には、レジスタの第4ビットが割り当てられる。UVW各相における電流検出値の異常には、レジスタの第5ビットが割り当てられる。グランド電位センサ416における電位検出値の異常には、レジスタの第6ビットが割り当てられる。中性点電位センサ417における電位検出値の異常には、レジスタの第7ビットが割り当てられる。
本実施形態のモータ駆動ユニット1000では、一例としてパターン0からパターン6までの7種類の故障パターンが想定される。発生原因が同一で発生箇所が回路的に対称な箇所である複数の故障については同一の故障パターンであり、発生原因が異なるか、あるいは発生箇所が回路的に非対称な箇所である複数の故障については異なる故障パターンである。具体的な故障パターンについては後で詳述する。
想定される7種類の故障パターンに対し、故障箇所の利用が回避されるように、Y1駆動とY3駆動と2相駆動とのいずれかの駆動パターンが割り当てられる。図6に示す対応表の上端の2行には、故障パターンに対する駆動パターンの割り当てが示される。
図6の対応表に示された数値「1」は、想定された故障パターンで故障が生じた場合に検出される異常を表し、数値「0」は、故障パターンと異常とが対応しないことを表す。例えばパターン3の場合には、ローサイドスイッチ素子114における制御の応答異常と、ハイサイドスイッチ素子113における制御の応答異常が検出される。
図6の対応表の左端列に示された検出条件のいずれかについて異常が検出された場合、対応表の左から2列目に示された割当ビットが立てられる。そして、レジスタの値が31以下であると仮駆動の駆動パターンとしてY1駆動が選定され、レジスタの値が32以上127以下であると仮駆動の駆動パターンとして2相駆動が選定され、レジスタの値が128以上であると仮駆動の駆動パターンとしてY3駆動が選定される。このようにレジスタが用いられて駆動パターンが選定されることにより、フローチャートによる選定よりも短時間で選定が行われる。制御回路301、302が、自己の制御下にあるインバータ111、112と相手側の制御下にある中性点リレー回路121、122とについて内部電位を得るので、駆動パターンの速やかな選定が可能となり、トルク抜けを回避することができる。
なお、図6の対応表に数値「1」で示された対応関係により、検出された異常から故障パターンを特定することができるので、複数種類の故障パターンそれぞれを区別した故障の兆候検出が行われてもよい。このような故障の兆候検出が行われる場合は、複数種類の動作(駆動パターン)のうち故障パターンに応じた動作(駆動パターン)が選択されて実行される。
また、図6の対応表の左端列に示された検出条件のうち、レジスタの第0ビットから第4ビットが割り当てられた検出条件については、駆動パターンの選定に用いられるとともに、正常駆動中における故障の兆候検出にも用いられる。即ち、レジスタの第0ビットから第4ビットが割り当てられた検出条件のいずれかについて正常駆動中に異常が検出された場合には、モータ駆動ユニット1000のどこかに故障が生じたものとして延焼防止状態となる。
(具体的な故障パターン)
以下、具体的な故障パターンを例示し、対応する具体的な駆動パターンについて説明する。
図7は、故障パターンのパターン1が生じた状態を示す図である。
故障パターンのパターン1では、モータ駆動ユニット1000のいずれかの分離スイッチ115、116がオフ故障となる。図6の対応表にも示すように、パターン1では、分離スイッチ115、116に故障が生じた系統の供給電位センサ414で電位検出値が異常となる。また、図6の対応表には示されていないが、電源電位センサ415で電位検出値が異常となる場合もある。
このような異常が制御回路301、302による解析で検出されると、上述したようにモータ駆動ユニット1000は延焼防止状態に移行する。
図8は、延焼防止状態に移行した状態を示す図である。
延焼防止状態では、モータ駆動ユニット1000が備える両系統のインバータ111、112で全てのスイッチ素子がオフとなる。また、モータ駆動ユニット1000が備える全ての分離スイッチ115、116もオフとなる。更に、中性点リレー回路121、122については正常時の制御で全てのスイッチ素子がオフであり、延焼防止状態でも全てのスイッチ素子がオフのままとなる。
このような延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン1である場合は、図6に示すように、駆動パターンとしてY1駆動が選定される。
図9は、故障パターンがパターン1の場合における仮駆動の状態を示す図である。
上述したように、本実施形態のモータ駆動ユニット1000は、インバータとして、モータ200の巻線の一端210に接続された第1系統のインバータ111と、当該巻線の他端220に接続された第2系統のインバータ112とを備える。そして、制御回路301、302は、電源403、404からモータ200に至る駆動システムにおける故障の兆候を検出するに当たり、第1系統のインバータ111に関わる故障の兆候と第2系統のインバータ112に関わる故障の兆候とを区別して検出する。
Y1駆動は、中性点リレー回路121、122によって中性点が形成される駆動パターンであり、第1系統のインバータ111を分離する分離スイッチ115、116に故障が生じた場合には、第1系統の中性点リレー回路121によって中性点が形成される。また、第2系統のインバータ112を分離する分離スイッチ115、116に故障が生じた場合には、第2系統の中性点リレー回路122によって中性点が形成される。即ち、制御回路301、302は、故障時用の動作(仮駆動の駆動パターン)として、複数種類の動作のうち故障に関わるインバータ111、112に応じた動作を選択して実行させる。
第1系統および第2系統の回路系の一方に故障の兆候が生じた場合は、制御回路301、302のうち、当該一方の回路系のインバータ111、112を制御する制御回路301、302が故障時用の動作(仮駆動の駆動パターン)を速やかに選択する。その後、当該回路系における故障の有無は、制御回路301、302の協働によって確認する。
図9に示す例では、第1系統の分離スイッチ115、116でオフ故障が生じるので、第1系統の中性点リレー回路121によって中性点が形成される。このように中性点が形成されると、制御回路301、302は、正常な第2系統のインバータ112によって三相通電制御を行い、モータ200の駆動を継続する。
このような仮駆動によるモータ200の駆動中に、故障の兆候が検出された系統(一例として図9では第1系統)について、2つの分離スイッチ115、116やインバータ111の各スイッチ素子に対する個別の制御が行われる。そして、応答結果や電位検出値によって各スイッチ素子における故障の有無が個別に確認される。このような個別の確認によって故障箇所が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ちY1駆動)でリカバリ駆動が行われる。
次に、故障パターンのパターン2について説明する。
図10は、故障パターンのパターン2が生じた状態を示す図である。
故障パターンのパターン2では、モータ駆動ユニット1000が備える中性点リレー回路121、122のスイッチ素子がオン故障となる。図10に示す例では、第1系統の中性点リレー回路121でスイッチ素子のオン故障が生じる。図6の対応表にも示すように、パターン2では、ローサイドスイッチ素子114における制御の応答異常や、ハイサイドスイッチ素子113における制御の応答異常が生じる。
このような異常が制御回路301、302による解析で検出されるとモータ駆動ユニット1000は延焼防止状態に移行する。そして、延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン2である場合は、中性点電位センサ417でも電位検出値が異常となるので、図6に示すように、駆動パターンとしてY3駆動が選定される。
図11は、故障パターンがパターン2の場合における仮駆動の状態を示す図である。
Y3駆動は、インバータ111、112内で中性点が形成される駆動パターンであり、第1系統の中性点リレー回路121で電位検出値の異常が生じた(即ち第1系統で故障の兆候が検出された)場合には、第1系統のインバータ111で中性点が形成される。また、第2系統の中性点リレー回路122で電位検出値の異常が生じた(即ち第2系統で故障の兆候が検出された)場合には、第2系統のインバータ112で中性点が形成される。
即ち、中性点電位センサ417により中性点リレー回路121、122について異常な内部電位が検出された場合、当該中性点リレー回路121、122と同じ回路系に備えられたインバータ111、112によって中性点が形成されて故障時用の動作(仮駆動の駆動パターン)に移行する。
また、中性点が形成された系統の分離スイッチ115、116はオフとなり、インバータ111、112が電源およびグランドから分離される。
インバータ111、112内での中性点形成としては、3つのハイサイドスイッチ素子113がオンとなる中性点形成と3つのローサイドスイッチ素子114がオンとなる中性点形成が可能である。ハイサイドスイッチ素子に較べてローサイドスイッチ素子114の方がオン状態を維持するための電力が少なくて済むので、本実施形態におけるY3駆動では、グランドと巻線との間に接続されたローサイドスイッチ素子114によってインバータ111、112が中性点化される。
図11に示す例では、第1系統の中性点リレー回路121でオン故障が生じるので、第1系統のインバータ111内で中性点が形成される。このように中性点が形成されると、制御回路301、302は、正常な第2系統のインバータ112によって三相通電制御を行い、モータ200の駆動を継続する。
このような仮駆動によるモータ200の駆動中に、故障の兆候が検出された系統(一例として図11では第1系統)について、中性点リレー回路121の各スイッチ素子に対する個別の制御が行われる。そして、応答結果や電位検出値によって各スイッチ素子における故障の有無が個別に確認される。このような個別の確認によって故障箇所が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ちY3駆動)でリカバリ駆動が行われる。
なお、インバータ111、112内での中性点形成としては、以下の変形例が考えられる。
図12は、インバータ111、112内での中性点形成の変形例を示す図である。
図12に示す変形例でも、第1系統の中性点リレー回路121で電位検出値の異常が生じ、第1系統のインバータ111内で中性点が形成される。しかし、インバータ111のハイサイドスイッチ素子113もローサイドスイッチ素子114もオン状態には固定されず、PWM制御が行われることで中性点における電位が制御される。
次に、故障パターンのパターン3について説明する。
図13は、故障パターンのパターン3が生じた状態を示す図である。
故障パターンのパターン3では、モータ駆動ユニット1000が備えるインバータ111、112のスイッチ素子がオン故障となる。図13に示す例では、第1系統のインバータ111でオン故障が生じ、ハイサイドスイッチ素子113の1つでオン故障が生じる。図6の対応表にも示すように、パターン3では、ローサイドスイッチ素子114における制御の応答異常、あるいは、ハイサイドスイッチ素子113における制御の応答異常が生じる。
このような異常が、インバータ駆動回路311、312を介して制御回路301、302によって検出されるとモータ駆動ユニット1000は延焼防止状態に移行する。そして、延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン3である場合は、図6に示すように、駆動パターンとしてY1駆動が選定される。
モータ駆動ユニット1000には、電位センサとして中性点電位センサ417が備えられるので、制御回路301、302は、駆動パターン選定の段階で、パターン2とパターン3とを区別することができる。この結果、仮駆動としてY1駆動とY3駆動とのうち適切な駆動パターンを選定することができる。
図14は、故障パターンがパターン3の場合における仮駆動の状態を示す図である。
上述したように、Y1駆動は、中性点リレー回路121、122によって中性点が形成される駆動パターンであり、第1系統のインバータ111に故障が生じた場合には、第1系統の中性点リレー回路121によって中性点が形成される。また、第2系統のインバータ112に故障が生じた場合には、第2系統の中性点リレー回路122によって中性点が形成される。また、中性点が形成された系統の分離スイッチ115、116はオフとなり、インバータ111、112が電源およびグランドから分離される。
図14に示す例では、第1系統のインバータ111内のスイッチ素子でオン故障が生じるので、第1系統の中性点リレー回路121によって中性点が形成される。このように中性点が形成されると、制御回路301、302は、正常な第2系統のインバータ112によって三相通電制御を行い、モータ200の駆動を継続する。
このような仮駆動によるモータ200の駆動中に、故障の兆候が検出された系統(一例として図14では第1系統)について、インバータ111内の各スイッチ素子に対する個別の制御が行われる。そして、応答結果や電位検出値によって各スイッチ素子における故障の有無が個別に確認される。即ち、制御回路301、302は、故障の有無の確認として、インバータ111内の複数のスイッチ素子における故障の有無を個別に確認する。このような個別の確認によって故障箇所が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ちY1駆動)でリカバリ駆動が行われる。
次に、故障パターンのパターン4について説明する。
図15は、故障パターンのパターン4が生じた状態を示す図である。
故障パターンのパターン4では、モータ駆動ユニット1000が備えるインバータ111、112のスイッチ素子がオフ故障となる。図15に示す例では、第1系統のインバータ111でオフ故障が生じ、ハイサイドスイッチ素子113の1つでオフ故障が生じる。図6の対応表にも示すように、パターン4では、U相電位センサ411、V相電位センサ412、およびW相電位センサ413のうち、スイッチ素子にオフ故障が生じた相の電位センサで電位検出値が異常となる。図15に示す例では、U相の電位検出値に異常が生じる。
このような異常が制御回路301、302によって検出されるとモータ駆動ユニット1000は延焼防止状態に移行する。そして、延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン4である場合は、図6に示すように、駆動パターンとしてY1駆動が選定される。
図16は、故障パターンがパターン4の場合における仮駆動の状態を示す図である。
上述したように、Y1駆動は、中性点リレー回路121、122によって中性点が形成される駆動パターンであり、第1系統のインバータ111に故障が生じた場合には、第1系統の中性点リレー回路121によって中性点が形成される。また、第2系統のインバータ112に故障が生じた場合には、第2系統の中性点リレー回路122によって中性点が形成される。即ち、電位センサ411〜413によりインバータ111、112について異常な内部電位が検出された場合、当該インバータ111、112と同じ回路系に備えられた中性点リレー回路121、122によって中性点が形成されて故障時用の動作(仮駆動の駆動パターン)に移行する。また、中性点が形成された系統の分離スイッチ115、116はオフとなり、インバータ111、112が電源およびグランドから分離される。
図16に示す例では、第1系統のインバータ111内のスイッチ素子でオフ故障が生じるので、第1系統の中性点リレー回路121によって中性点が形成される。このように中性点が形成されると、制御回路301、302は、正常な第2系統のインバータ112によって三相通電制御を行い、モータ200の駆動を継続する。
このような仮駆動によるモータ200の駆動中に、故障の兆候が検出された系統(一例として図16では第1系統)について、インバータ111内の各スイッチ素子に対する個別の制御が行われる。そして、応答結果や電位検出値によって各スイッチ素子における故障の有無が個別に確認される。即ち、制御回路301、302は、故障の有無の確認として、インバータ111内の複数のスイッチ素子における故障の有無を個別に確認する。このような個別の確認によって故障箇所が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ちY1駆動)でリカバリ駆動が行われる。
次に、故障パターンのパターン5について説明する。
図17は、故障パターンのパターン5が生じた状態を示す図である。
故障パターンのパターン5では、モータ200の巻線に断線故障が生じる。図17に示す例では、モータ200の巻線のうちU相の巻線に断線故障が生じる。図6の対応表にも示すように、パターン5では、U相電位センサ411、V相電位センサ412、およびW相電位センサ413のうち、断線故障が生じた相の電位センサで電位検出値が異常となる。
このような異常が制御回路301、302によって検出されるとモータ駆動ユニット1000は延焼防止状態に移行する。そして、延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン5である場合は、UVW各相のうち断線故障が生じた相について電流検出値も異常(電流ゼロ)となるので、図6に示すように、駆動パターンとして2相駆動が選定される。
図18は、故障パターンがパターン5の場合における仮駆動の状態を示す図である。
2相駆動は、UVW相のうち2相のみが用いられる駆動パターンであり、断線故障が生じた相を避けた2相が用いられる。U相の巻線で断線故障が生じた場合にはV相とW相の2相が用いられ、V相の巻線で断線故障が生じた場合にはU相とW相の2相が用いられ、W相の巻線で断線故障が生じた場合にはU相とV相の2相が用いられる。つまり、制御回路301、302は、電源403、404からモータ200に至る駆動システムにおける故障の兆候を検出するに当たり、モータ200の各相に関わる故障の兆候を区別して検出する。そして、制御回路301、302は、故障時用の動作として、複数種類の動作のうち故障に関わる相に応じた動作を選択して実行させる。
図18に示す例では、U相の巻線で断線故障が生じるので、制御回路301、302は、U相の利用を避けたV相とW相の2相による駆動制御を行いモータ200の駆動を継続する。
図19は、2相駆動でモータ200の各相の各コイルに流れる電流値を示す図である。
2相駆動では、故障の兆候が検出された例えばU相では常に電流値がゼロとなり、その他のV相とW相の2相では例えば正弦波の電流波形で電流が流れる。
このような仮駆動によるモータ200の駆動中に、故障の兆候が検出された相(一例として図18ではU相)について電流検出値が再び解析されて断線故障の有無が確認される。このような再解析によって断線故障の存在が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ち2相駆動)でリカバリ駆動が行われる。
次に、故障パターンのパターン6について説明する。
図20は、故障パターンのパターン6が生じた状態を示す図である。
故障パターンのパターン6では、モータ200の巻線にグランドとの短絡故障が生じる。図20に示す例では、モータ200の巻線のうちU相の巻線に短絡故障が生じる。図6の対応表にも示すように、パターン6では、ハイサイドスイッチ素子113における制御の応答異常が生じる。
このような異常が制御回路301、302によって検出されるとモータ駆動ユニット1000は延焼防止状態に移行する。そして、延焼防止状態で制御回路301、302は上記のように仮駆動の駆動パターンを選定する。故障パターンがパターン6である場合は、グランド電位センサ416の電位検出値にも異常が生じるので、図6に示すように、駆動パターンとして2相駆動が選定される。
図21は、故障パターンがパターン6の場合における仮駆動の状態を示す図である。
上述した様に2相駆動は、UVW相のうち2相のみが用いられる駆動パターンであり、断線故障が生じた相を避けた2相が用いられる。図21に示す例では、U相の巻線で断線故障が生じるので、制御回路301、302は、U相の利用を避けたV相とW相の2相による駆動制御を行いモータ200の駆動を継続する。
このような仮駆動によるモータ200の駆動中に、制御回路301、302は、故障の兆候が検出された相(一例として図21ではU相)での一時的な通電制御などを行いながら、当該相の通電時におけるグランド電位センサ416の電位検出値を確認する。このような電位検出値の確認によって、当該相における短絡故障の有無が確認される。そして短絡故障の存在が確定した場合には、仮駆動の駆動パターンと同じ駆動パターン(即ち2相駆動)でリカバリ駆動が行われる。
以上説明した故障パターンの他に、本実施形態では、2つの制御回路301、302の一方が故障する故障パターンも想定される。この故障パターンは、一方の制御回路が相手の制御回路から通信の応答を得られなくなることで故障検出される。そして、この故障パターンでは、相手側のインバータが制御不能になったものとして、相手側の系統の中性点リレー回路121、122によって中性点が形成されてY1駆動による仮駆動が行われる。即ち、制御回路301、302は相互に通信し、一方が他方の通信不能を検知した場合には、当該一方が制御する中性点リレー回路121、122で中性点を形成させて故障時用の動作(仮駆動の駆動パターン)に移行する。
なお、上記実施形態では2つの制御回路301、302によってインバータ111、112の制御や故障の検出が行われるが、本発明にいう制御部は、例えば1つのCPUであってもよい。
(モータ駆動ユニット1000のハードウェア構成)
次に、モータ駆動ユニット1000のハードウェア構成について説明する。
図22は、モータ駆動ユニット1000のハードウェア構成を模式的に示す図である。
モータ駆動ユニット1000は、ハードウェア構成として、上述したモータ200と、第1実装基板1001と、第2実装基板1002と、ハウジング1003と、コネクタ1004、1005とを備える。
モータ200からは、コイルの一端210と他端220が突き出して実装基板1001、1002に向かって延びる。コイルの一端210と他端220との双方は、第1実装基板1001および第2実装基板1002の一方に接続されると共に、一端210と他端220との双方が第1実装基板1001および第2実装基板1002の当該一方を貫通して他方に接続される。具体的には、コイルの一端210と他端220との双方が例えば第2実装基板1002に接続される。また、コイルの一端210と他端220との双方が、第2実装基板1002を貫通して第1実装基板1001に接続される。
第1実装基板1001と第2実装基板1002とは基板面が互いに対向する。その基板面が対向した方向に、モータ200の回転軸が延びる。第1実装基板1001と第2実装基板1002とモータ200は、ハウジング1003内に収容されることで互いの位置が固定される。
第1実装基板1001には、第1電源403からの電源コードが接続されるコネクタ1004が取り付けられる。第2実装基板1002には、第2電源404からの電源コードが接続されるコネクタ1005が取り付けられる。
図23は、第1実装基板1001および第2実装基板1002のハードウェア構成を模式的に示す図である。
第1実装基板1001には、コイルの一端210側の第1インバータ111および他端220側の第2中性点リレー回路121が実装される。また、第1実装基板1001とは別の第2実装基板1002には、コイルの他端220側の第2インバータ112および一端210側の第1中性点リレー回路122が実装される。第1系統と第2系統とに冗長化された各系統の回路が2枚の実装基板1001、1002に振り分けられるので、2枚の実装基板について回路規模が同程度の効率的な素子配置が可能となる。
第1実装基板1001には、第1の制御回路301も実装される。第2実装基板1002には、第2の制御回路302も実装される。各制御回路301、302が、各制御回路301、302による制御対象のインバータ111、112および中性点リレー回路121、122と同一の実装基板上に実装されるので制御のための配線が基板内に納まる。よって効率的な素子配置が可能である。
第1実装基板1001上の第1インバータ111と第2実装基板1002上の第1中性点リレー回路122は、第1実装基板1001と第2実装基板1002との対向方向で見た場合に互いに重なり合う位置に実装される。また、第1実装基板1001上の第2中性点リレー回路121と第2実装基板1002上の第2インバータ112は、第1実装基板1001と第2実装基板1002との対向方向で見た場合に互いに重なり合う位置に実装される。このような回路配置により、コイルの一端210と他端220に対する配線経路が簡素化された効率的な素子配置が可能となる。
第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の第1インバータ111と第2実装基板1002上の第2インバータ112とが互いに対称な配置である。また、第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の第2中性点リレー回路121と第2実装基板1002上の第1中性点リレー回路122とが互いに対称な配置である。このような対称な配置により、2枚の実装基板1001、1002について基板設計が共通化できる。
(変形例)
図24は、実装基板のハードウェア構成の変形例を模式的に示す図である。
図24に示された変形例では、1枚の両面実装基板1006が備えられる。両面実装基板1006の表裏両面のうち一方の面にコイルの一端210側の第1インバータ111および他端220側の第2中性点リレー回路121が実装される。一方の面に対する他方の面にコイルの他端220側の第2インバータ112および一端210側の第1中性点リレー回路122が実装される。表裏両面のうち一方の面には、第1の制御回路301も実装される。他方の面には第2の制御回路302も実装される。第1系統と第2系統とに冗長化された各系統の回路が両面実装基板の表裏両面に振り分けられるので、表裏両面について回路規模が均された効率的な素子配置が可能となる。
両面実装基板1006の表裏両面における具体的な回路配置は、一方の面における回路配置が、図23に示された第1実装基板1001上の回路配置と同様であり、他方の面における回路配置が、図23に示された第2実装基板1002上の回路配置と同様である。このため、コイルの一端210と他端220に対する配線経路が簡素化された効率的な素子配置が可能であるとともに、両面実装基板1006の表裏両面について基板設計が共通化できる。
(パワーステアリング装置の実施形態)
自動車等の車両は一般的に、パワーステアリング装置を備える。パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などから構成される。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。
上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図25は、本実施形態によるパワーステアリング装置2000の構成を模式的に示す図である。
電動パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。
また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。
ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力供給装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。
ECU542としては、例えば図1などに示された制御回路301、302が用いられる。また、電力供給装置545としては、例えば図1などに示されたインバータ111、112が用いられる。また、モータ543としては、例えば図1などに示されたモータ200が用いられる。ECU542、モータ543および電力供給装置545が、一般的に「機電一体型モータ」と称されるユニットを構成する場合には、当該ユニットとしては、例えば図22に示されたハードウェア構成のモータ駆動ユニット1000が好適に用いられる。図25に示された各要素のうち、ECU542、モータ543および電力供給装置545を除いた要素で構成された機構は、モータ543によって駆動されるパワーステアリング機構の一例に相当する。
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。
パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図25には、ピニオンアシスト型のパワーステアリング装置2000が示される。ただし、パワーステアリング装置2000は、ラックアシスト型、コラムアシスト型等にも適用される。
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御することができる。
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサによって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。
パワーステアリング装置2000によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型モータに、上記実施形態のモータ駆動ユニット1000が利用されることにより、正常時および故障時のいずれにおいても適切な電流制御が可能となる。この結果、正常時および故障時のいずれにおいてもパワーステアリング装置におけるパワーアシストが継続される。
なお、ここでは、本発明の電力変換装置および駆動装置における使用方法の一例としてパワーステアリング装置が挙げられるが、本発明の電力変換装置および駆動装置の使用方法は上記に限定されず、ポンプ、コンプレッサなど広範囲に使用可能である。
上述した実施形態及び変形例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
111 :第1インバータ
112 :第2インバータ
115、116 :分離スイッチ
121 :第2中性点リレー回路
122 :第1中性点リレー回路
200 :モータ
301、302 :制御回路
311、312 :インバータ駆動回路
313、314 :スイッチ駆動回路
403、404 :電源
411 :U相電位センサ
412 :V相電位センサ
413 :W相電位センサ
414 :供給電位センサ
415 :電源電位センサ
416 :グランド電位センサ
417 :中性点電位センサ
1000 :モータ駆動ユニット
1001、1002、1007 :実装基板
1006 :両面実装基板
2000 :パワーステアリング装置

Claims (12)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、
    前記巻線に接続されるインバータと、
    前記インバータおよび前記巻線に接続され、前記n相の巻線に対する中性点を形成する中性点回路と、
    前記インバータおよび前記中性点回路それぞれの内部電位を検出する検出器と、
    を備えた回路系を、前記巻線の一端と他端とのそれぞれに備え、
    前記巻線の一端側の検出器に接続され、当該一端側のインバータおよび前記巻線の他端側の中性点回路を制御する第1制御回路と、
    前記巻線の他端側の検出器に接続され、当該他端側のインバータおよび前記巻線の一端側の中性点回路を制御する第2制御回路と、
    を更に備える電力変換装置。
  2. 前記回路系が、前記インバータとグランドとの接続・非接続を切替えるスイッチ素子を更に備え、
    前記検出器が、前記スイッチ素子と前記インバータとを接続する接続ラインの電位も検出する請求項1記載の電力変換装置。
  3. 前記回路系の一方に故障の兆候が生じた場合は、前記第1制御回路および前記第2制御回路のうち、当該一方の回路系のインバータを制御する制御回路が故障時用の動作を選択し、その後、当該回路系における故障の有無は、前記第1制御回路および前記第2制御回路の協働によって確認する請求項1または2に記載の電力変換装置。
  4. 前記回路系のそれぞれが、互いに独立な電源から電力を供給される請求項1から3のいずれか1項に記載の電力変換装置。
  5. 前記検出器が、前記電源の電圧も検出する請求項4記載の電力変換装置。
  6. 前記検出器により前記インバータについて異常な内部電位が検出された場合、当該インバータと同じ回路系に備えられた前記中性点回路によって中性点が形成されて故障時用の動作に移行する請求項1から5のいずれか1項に記載の電力変換装置。
  7. 前記検出器により前記中性点回路について異常な内部電位が検出された場合、当該中性点回路と同じ回路系に備えられた前記インバータによって中性点が形成されて故障時用の動作に移行する請求項1から6のいずれか1項に記載の電力変換装置。
  8. 前記第1制御回路および前記第2制御回路は相互に通信し、一方が他方の通信不能を検知した場合には、当該一方が制御する中性点回路で中性点を形成させて故障時用の動作に移行する請求項1から7のいずれか1項に記載の電力変換装置。
  9. 前記一端側のインバータおよび前記他端側の中性点回路が第1基板上に実装され、
    前記他端側のインバータおよび前記一端側の中性点回路が、前記第1基板とは別の第2基板上に実装される請求項1から8のいずれか1項に記載の電力変換装置。
  10. 前記一端側のインバータおよび前記他端側の中性点回路が基板の第1面上に実装され、
    前記他端側のインバータおよび前記一端側の中性点回路が、前記第1面の裏側の第2面上に実装される請求項1から8のいずれか1項に記載の電力変換装置。
  11. 請求項1から10のいずれか1項に記載の電力変換装置と、
    前記電力変換装置によって変換された電力が供給されるモータと、
    を備える駆動装置。
  12. 請求項1から10のいずれか1項に記載の電力変換装置と、
    前記電力変換装置によって変換された電力が供給されるモータと、
    前記モータによって駆動されるパワーステアリング機構と、
    を備えるパワーステアリング装置。
JP2018226967A 2018-12-04 2018-12-04 電力変換装置、駆動装置およびパワーステアリング装置 Active JP7151432B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018226967A JP7151432B2 (ja) 2018-12-04 2018-12-04 電力変換装置、駆動装置およびパワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226967A JP7151432B2 (ja) 2018-12-04 2018-12-04 電力変換装置、駆動装置およびパワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2020092491A true JP2020092491A (ja) 2020-06-11
JP7151432B2 JP7151432B2 (ja) 2022-10-12

Family

ID=71013934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226967A Active JP7151432B2 (ja) 2018-12-04 2018-12-04 電力変換装置、駆動装置およびパワーステアリング装置

Country Status (1)

Country Link
JP (1) JP7151432B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275914A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 自動運転支援装置
CN117724386A (zh) * 2024-02-18 2024-03-19 天津德科智控股份有限公司 Eps系统mcu与foc芯片组合使用通信装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2014192950A (ja) * 2013-03-26 2014-10-06 Denso Corp 電力変換装置
JP2017077048A (ja) * 2015-10-13 2017-04-20 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
WO2018042657A1 (ja) * 2016-09-05 2018-03-08 三菱電機株式会社 電動パワーステアリング装置
JP2018046625A (ja) * 2016-09-13 2018-03-22 日立オートモティブシステムズ株式会社 モータ制御装置
WO2018180237A1 (ja) * 2017-03-29 2018-10-04 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2014192950A (ja) * 2013-03-26 2014-10-06 Denso Corp 電力変換装置
JP2017077048A (ja) * 2015-10-13 2017-04-20 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
WO2018042657A1 (ja) * 2016-09-05 2018-03-08 三菱電機株式会社 電動パワーステアリング装置
JP2018046625A (ja) * 2016-09-13 2018-03-22 日立オートモティブシステムズ株式会社 モータ制御装置
WO2018180237A1 (ja) * 2017-03-29 2018-10-04 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275914A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 自動運転支援装置
CN117724386A (zh) * 2024-02-18 2024-03-19 天津德科智控股份有限公司 Eps系统mcu与foc芯片组合使用通信装置及方法
CN117724386B (zh) * 2024-02-18 2024-04-19 天津德科智控股份有限公司 Eps系统mcu与foc芯片组合使用通信装置及方法

Also Published As

Publication number Publication date
JP7151432B2 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP7010281B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7238777B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7136110B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7014183B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6947184B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7070575B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
US11476777B2 (en) Power conversion device, driving device, and power steering device
JP7151432B2 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019150913A1 (ja) 駆動装置およびパワーステアリング装置
JP7010282B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7424312B2 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JPWO2019026492A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JPWO2018180238A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019151308A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019159836A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JPWO2019150911A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019150912A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019159835A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
CN112636624A (zh) 电力转换装置、驱动装置以及助力转向装置
WO2019044105A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019044106A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151