WO2019044106A1 - 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 - Google Patents

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019044106A1
WO2019044106A1 PCT/JP2018/022136 JP2018022136W WO2019044106A1 WO 2019044106 A1 WO2019044106 A1 WO 2019044106A1 JP 2018022136 W JP2018022136 W JP 2018022136W WO 2019044106 A1 WO2019044106 A1 WO 2019044106A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
side switching
phase
low side
neutral point
Prior art date
Application number
PCT/JP2018/022136
Other languages
English (en)
French (fr)
Inventor
貴 小池上
雄飛 中田
貴宏 菊一
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019044106A1 publication Critical patent/WO2019044106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device that converts power supplied to an electric motor, a motor drive unit, and an electric power steering device.
  • Electric motors such as brushless DC motors and AC synchronous motors (hereinafter simply referred to as “motors") are generally driven by three-phase current.
  • Complex control techniques such as vector control are used to accurately control the three-phase current waveform.
  • a high degree of mathematical operation is required, and a digital operation circuit such as a microcontroller (microcomputer) is used.
  • Vector control technology is utilized in applications such as washing machines, motor-assisted bicycles, motor-driven scooters, motor-driven power steering devices, electric vehicles, industrial equipment, etc. where motor load fluctuation is large.
  • another motor control method such as a pulse width modulation (PWM) method is adopted.
  • PWM pulse width modulation
  • an electronic control unit (ECU: Electrical Control Unit) is used for a vehicle.
  • the ECU includes a microcontroller, a power supply, an input / output circuit, an AD converter, a load drive circuit, a ROM (Read Only Memory), and the like.
  • An electronic control system is built around the ECU.
  • the ECU processes a signal from the sensor to control an actuator such as a motor.
  • the ECU controls an inverter in the power conversion device while monitoring the rotational speed and torque of the motor. Under control of the ECU, the power converter converts drive power supplied to the motor.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters and converts power supplied to a three-phase motor.
  • Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND").
  • One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding.
  • Each inverter comprises a bridge circuit composed of three legs, each of which includes a high side switching element and a low side switching element.
  • the control unit switches motor control from normal control to abnormal control when it detects a failure of the switching element in the two inverters.
  • abnormal mainly means a failure of the switching element.
  • control at normal time means control in a state where all switching elements are normal
  • control at abnormal time means control in a state where a failure occurs in a switching element.
  • the winding is performed by turning the switching element on and off according to a predetermined rule.
  • the neutral point of is constructed.
  • the rule for example, when an open fault in which the high side switching element is always off occurs, in the bridge circuit of the inverter, the other one of the three high side switching elements other than the faulty switching element is turned off, And, the three low side switching elements are turned on. In that case, the neutral point is configured on the low side.
  • the neutral point is configured on the high side.
  • the neutral point of the three-phase winding is configured in the failure inverter at the time of abnormality. Even if a failure occurs in the switching element, motor driving can be continued using the normal inverter.
  • Patent Document 2 discloses an apparatus for driving a motor having a Y-connected winding with one inverter. Patent Document 2 discloses that a signal detected in a predetermined energization pattern is collated with a predetermined abnormality type correspondence table to detect a disconnection and a short circuit of a wiring.
  • An embodiment of the present disclosure provides a power conversion device capable of identifying which one of a plurality of switching elements has failed when a failure occurs in the switching elements.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of each phase winding, a second inverter connected to the other end of each phase winding, and a control circuit for controlling the operation of the first and second inverters;
  • each of the first and second inverters includes a plurality of low side switching devices and a plurality of high side switching devices, and the power conversion device configures a neutral point on the low side of the first inverter
  • the first driving circuit further includes a first driving circuit that supplies a control signal for turning on the low side switching element of the first inverter to the low side switching element of the first inverter, and the first driving circuit The circuit supplies, to the low side switching element of the first inverter, a control signal of a voltage larger than a control signal for turning on the low side switching element of the first inverter when the first inverter
  • the control circuit configures a first neutral point on the low side of the first inverter, and performs a first diagnosis to diagnose presence or absence of a failure of the first and second inverters, and a high side of the first inverter.
  • a second neutral point is configured to execute a second diagnosis for diagnosing the presence or absence of a failure of the first and second inverters, and the control circuit performs the first diagnosis prior to the second diagnosis. Run.
  • FIG. 1 is a circuit diagram showing a circuit configuration of a power conversion device 100 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram showing another circuit configuration of the power conversion device 100 according to the exemplary embodiment 1.
  • FIG. 3 is a circuit diagram showing still another circuit configuration of the power conversion device 100 according to the exemplary embodiment 1.
  • FIG. 4 is a circuit diagram showing still another circuit configuration of the power conversion device 100 according to the exemplary embodiment 1.
  • FIG. FIG. 5 is a block diagram showing a typical configuration of motor drive unit 400 including power conversion device 100. Referring to FIG. FIG. FIG.
  • FIG. 6 shows a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase, and W-phase windings of motor 200 when power converter 100 is controlled according to three-phase energization control.
  • FIG. FIG. 7 is a schematic view showing the flow of current in the power conversion device 100 when the FETs of the two switching circuits 110 and the first inverter 120 are in the first state.
  • FIG. 8 is a diagram showing a current waveform obtained by plotting current values flowing in U-phase, V-phase and W-phase windings of motor 200 when power conversion device 100 is controlled in the first state.
  • FIG. 9 is a schematic diagram showing the flow of current in the power conversion device 100 when the FETs of the two switching circuits 110 and the first inverter 120 are in the third state.
  • FIG. 10 is a diagram illustrating an example of an operation of forming a neutral point on the low side and performing failure diagnosis.
  • FIG. 11 is a diagram showing FETs included in the first and second inverters 120 and 130.
  • FIG. 12 is a diagram showing the relationship between the switching element turned on in the second inverter 130 and the switching element to be diagnosed when the neutral point is configured on the low side.
  • FIG. 13 is a diagram for explaining failure diagnosis when the FETs 132H and 133L are turned on.
  • FIG. 14 is a diagram for explaining failure diagnosis when the FETs 133H and 131L are turned on.
  • FIG. 15 is a diagram illustrating an example of an operation of forming a neutral point on the high side and performing failure diagnosis.
  • FIG. 16 is a diagram showing the relationship between the switching element turned on in the second inverter 130 and the switching element to be diagnosed when the neutral point is configured on the high side.
  • FIG. 17 is a diagram for explaining failure diagnosis when the FETs 132H and 133L are turned on.
  • FIG. 18 is a diagram for explaining failure diagnosis when the FETs 133H and 131L are turned on.
  • FIG. 19 is a diagram illustrating an example of an operation of forming a neutral point on the low side and performing failure diagnosis.
  • FIG. 20 is a diagram showing a relationship between a switching element to be turned on in the first inverter 120 and a switching element to be diagnosed when the neutral point is configured on the low side of the second inverter 130.
  • FIG. 21 is a diagram for explaining failure diagnosis when the FETs 122H and 123L are turned on.
  • FIG. 22 is a diagram for explaining failure diagnosis when the FETs 123H and 121L are turned on.
  • FIG. 23 is a diagram showing an example of an operation of forming a neutral point on the high side and performing failure diagnosis.
  • FIG. 24 is a diagram showing the relationship between the switching element to be turned on in the first inverter 120 and the switching element to be diagnosed when the neutral point is configured on the high side of the second inverter 130.
  • FIG. 21 is a diagram for explaining failure diagnosis when the FETs 122H and 123L are turned on.
  • FIG. 22 is a diagram for explaining failure diagnosis when the FETs 123H and 121L are turned on.
  • FIG. 25 is a diagram for explaining failure diagnosis when the FETs 122H and 123L are turned on.
  • FIG. 26 is a diagram for explaining failure diagnosis when the FETs 123H and 121L are turned on.
  • FIG. 27 is a circuit diagram schematically showing power conversion device 100 including sub drive circuit 160L.
  • FIG. 28 is a circuit diagram schematically showing a circuit configuration of sub drive circuit 160L.
  • FIG. 29 is a circuit diagram schematically showing power conversion device 100 including sub drive circuit 160R.
  • FIG. 30 is a circuit diagram schematically showing power conversion device 100 including sub drive circuit 170L.
  • FIG. 31 is a circuit diagram schematically showing a circuit configuration of sub drive circuit 170L.
  • FIG. 32 is a circuit diagram schematically showing power conversion device 100 including sub drive circuit 170R.
  • FIG. 33 is a schematic view showing a typical configuration of an electric power steering apparatus 500 according to the second embodiment.
  • FIG. 1 schematically shows a circuit configuration of a power conversion device 100 according to the present embodiment.
  • the power converter 100 includes two switching circuits 110, a first inverter 120 and a second inverter 130.
  • the power converter 100 can convert power supplied to various motors.
  • the motor 200 is a three-phase alternating current motor.
  • the motor 200 includes a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3, and is connected to the first inverter 120 and the second inverter 130.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • “connection” between components (components) mainly means electrical connection.
  • the first inverter 120 has terminals U_L, V_L and W_L corresponding to each phase
  • the second inverter 130 has terminals U_R, V_R and W_R corresponding to each phase.
  • the terminal U_L of the first inverter 120 is connected to one end of the U-phase winding M1, the terminal V_L is connected to one end of the V-phase winding M2, and the terminal W_L is connected to one end of the W-phase winding M3.
  • the terminal U_R of the second inverter 130 is connected to the other end of the U-phase winding M1, the terminal V_R is connected to the other end of the V-phase winding M2, and the terminal W_R is , W phase is connected to the other end of the winding M3.
  • Such connections with the motor are different from so-called star connections and delta connections.
  • the two switching circuits 110 have switch elements 111, 112, 113 and 114.
  • the switching circuit 110 on the GND side provided with the switch elements 111 and 112 is referred to as the “GND side switching circuit”, and the power source side provided with the switch elements 113 and 114.
  • the switching circuit 110 is referred to as a "power supply side switching circuit”. That is, the GND side switching circuit has the switch elements 111 and 112, and the power source side switching circuit has the switch elements 113 and 114.
  • the first inverter 120 and the second inverter 130 can be electrically connected to the power supply 101 and GND by two switching circuits 110.
  • the switch element 111 switches connection / non-connection between the first inverter 120 and GND.
  • the switch element 112 switches connection / disconnection between the second inverter 130 and GND.
  • the switch element 113 switches connection / non-connection between the power supply 101 and the first inverter 120.
  • the switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
  • the on and off of the switch elements 111, 112, 113 and 114 may be controlled by, for example, a microcontroller or a dedicated driver.
  • the switch elements 111, 112, 113 and 114 can interrupt current in both directions.
  • thyristors, semiconductor switches such as analog switch ICs, and mechanical relays can be used as the switch elements 111, 112, 113, and 114.
  • a combination of a diode and an insulated gate bipolar transistor (IGBT) may be used.
  • the switch element according to the present disclosure includes a semiconductor switch such as a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed.
  • switch elements 111, 112, 113 and 114 will be described, and the switch elements 111, 112, 113 and 114 will be denoted as FETs 111, 112, 113 and 114, respectively.
  • the FETs 111 and 112 have parasitic diodes 111D and 112D, respectively, and the parasitic diodes 111D and 112D are disposed to face the first and second inverters 120 and 130, respectively. More specifically, the FET 111 is arranged such that a forward current flows in the parasitic diode 111D toward the first inverter 120, and the FET 112 is such that a forward current flows in the parasitic diode 112D toward the second inverter 130. Be placed.
  • the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter in the power supply side switching circuit and the GND side switching circuit.
  • FIG. 2 schematically shows another circuit configuration of the power conversion device 100 according to the present embodiment.
  • the power supply side switching circuit 110 may further include a switch element (FET) 115 and a switch element (FET) 116 for reverse connection protection.
  • the FETs 113, 114, 115 and 116 have parasitic diodes, and the parasitic diodes in the FETs are arranged such that the directions of the parasitic diodes are opposite to each other.
  • the FET 113 is disposed such that a forward current flows toward the power supply 101 in the parasitic diode
  • the FET 115 is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode .
  • the FET 114 is disposed such that a forward current flows toward the power supply 101 in the parasitic diode, and the FET 116 is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supply 101 is reversely connected, the reverse current can be cut off by the two FETs for reverse connection protection.
  • the power supply 101 generates a predetermined power supply voltage.
  • a DC power supply is used as the power supply 101.
  • the power supply 101 may be an AC-DC converter and a DC-DC converter, or may be a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 120, 130, or may be provided with a first power supply for the first inverter 120 and a second power supply for the second inverter 130. Good.
  • a coil 102 is provided between the power supply 101 and the power supply side switching circuit.
  • the coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
  • a capacitor 103 is connected between the power supply 101 and each inverter. In the illustrated example, the capacitor 103 is connected between the coil 102 and the power supply side switching circuit 110.
  • the capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
  • the first inverter 120 (sometimes referred to as "bridge circuit L") includes a bridge circuit configured of three legs. Each leg has a low side switching element and a high side switching element.
  • the switching elements 121L, 122L and 123L shown in FIG. 1 are low side switching elements, and the switching elements 121H, 122H and 123H are high side switching elements.
  • an FET or an IGBT can be used as the switching element.
  • FET or an IGBT
  • a switching element may be described with FET.
  • the switching elements 121L, 122L and 123L are described as FETs 121L, 122L and 123L.
  • the first inverter 120 includes three shunt resistors 121R, 122R and 123R as current sensors (see FIG. 5) for detecting the current flowing in the windings of the U-phase, V-phase and W-phase.
  • Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switching elements included in the three legs of the first inverter 120 and the ground.
  • shunt resistor 121R is electrically connected between FET 121L and FET 111
  • shunt resistor 122R is electrically connected between FET 122L and FET 111
  • shunt resistor 123R is between FET 123L and FET 111. Electrically connected.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 130 (sometimes referred to as "bridge circuit R") includes a bridge circuit composed of three legs.
  • the FETs 131L, 132L and 133L shown in FIG. 1 are low side switching devices, and the FETs 131H, 132H and 133H are high side switching devices.
  • the second inverter 130 includes three shunt resistors 131R, 132R and 133R. The shunt resistors are connected between the three low side switching elements included in the three legs and the ground.
  • Each FET of the first and second inverters 120, 130 may be controlled by, for example, a microcontroller or a dedicated driver.
  • FIG. 1 illustrates a configuration in which one shunt resistor is disposed in each leg in each inverter.
  • the first and second inverters 120 and 130 may have six or less shunt resistors.
  • six or less shunt resistors may be connected between the six or less low-side switching elements of the six legs of the first and second inverters 120 and 130 and the GND.
  • the first and second inverters 120, 130 can have 2n or less shunt resistors.
  • 2n or less of shunt resistors may be connected between 2n or less of the low-side switching elements of the 2n legs of the first and second inverters 120 and 130 and GND.
  • 3 and 4 schematically show still another circuit configuration of the power conversion device 100 according to the present embodiment.
  • shunt resistors 121R, 122R and 123R may be disposed between the first inverter 120 and one end of the windings M1, M2 and M3.
  • the shunt resistors 121R, 122R are disposed between the first inverter 120 and one end of the windings M1, M2, and the shunt resistor 123R is formed between the second inverter 130 and the other end of the winding M3. It can be placed in between. In such a configuration, it is sufficient if three shunt resistors are arranged for the U, V and W phases, and at least two shunt resistors may be arranged.
  • only one shunt resistor common to the windings of each phase may be disposed in each inverter.
  • One shunt resistor is electrically connected, for example, between the node N1 (connection point of each leg) on the low side of the first inverter 120 and the FET 111, and the other one shunt resistor is, for example, the second inverter It can be electrically connected between node N 2 on the low side of 130 and FET 112.
  • one shunt resistor is electrically connected, for example, between the node N3 on the high side of the first inverter 120 and the FET 113, and the other one shunt resistor is, for example, It is electrically connected between the node N 4 on the high side of the 2-inverter 130 and the FET 114.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications, and the like.
  • FIG. 5 schematically shows a typical block configuration of a motor drive unit 400 including the power conversion device 100. As shown in FIG.
  • Motor drive unit 400 includes power converter 100 and motor 200.
  • the power converter 100 includes a control circuit 300.
  • Control circuit 300 may be provided as a component other than power conversion device 100.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • the control circuit 300 is connected to the power converter 100, and drives the motor 200 by controlling the power converter 100.
  • control circuit 300 can realize closed loop control by controlling the target position, rotational speed, current and the like of the rotor.
  • Control circuit 300 may include a torque sensor instead of the angle sensor. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC.
  • the angle sensor 320 detects the rotation angle of the rotor of the motor 200 (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the microcontroller 340.
  • the input circuit 330 receives the motor current value (hereinafter referred to as "actual current value”) detected by the current sensor 150, and converts the level of the actual current value to the input level of the microcontroller 340 as necessary. And outputs the actual current value to the microcontroller 340.
  • the microcontroller 340 controls the switching operation (turn on or turn off) of each FET in the first and second inverters 120 and 130 of the power conversion device 100.
  • the microcontroller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350. Further, the microcontroller 340 can control on and off of each FET in the two switching circuits 110 of the power conversion device 100.
  • the drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each FET in the first and second inverters 120 and 130 according to the PWM signal, and supplies the control signal to the gate of each FET. Further, the drive circuit 350 generates a control signal (gate control signal) for controlling ON and OFF of each FET in the two switching circuits 110 according to an instruction from the microcontroller 340, and applies a control signal to the gate of each FET. Can.
  • the Drive circuit 350 includes a booster circuit 370.
  • the booster circuit 370 boosts the voltage supplied from the power supply 101. For example, when the output voltage of the power supply 101 is 12 V, the booster circuit 370 boosts the voltage to 18 V or 24 V. The boosted voltage can be used to control the switching operation of each FET in the first and second inverters 120 and 130, and to control the on and off of each FET in the two switching circuits 110.
  • the drive circuit 350 may be a charge pump system or a bootstrap system. Further, the booster circuit 370 may be a charge pump system.
  • the drive circuit 350 includes a voltage detection circuit 380.
  • the voltage detection circuit 380 detects, for example, the voltage between the source and the drain of each FET provided in the first and second inverters 120 and 130. Also, for example, as described later, the voltages of the U phase, the V phase, and the W phase are detected.
  • the microcontroller may execute control of the FETs of the two switching circuits 110.
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the control circuit 300 may not have the drive circuit 350.
  • the ROM 360 is, for example, a writable memory, a rewritable memory, or a read only memory.
  • the ROM 360 stores a control program including instructions for causing the microcontroller 340 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • the power converter 100 has control during normal and abnormal states.
  • the control circuit 300 (mainly the microcontroller 340) can switch control of the power conversion device 100 from normal control to abnormal control.
  • the on / off state of each FET in the two switching circuits 110 is determined according to the failure pattern of the FET. In addition, the on / off state of each FET in the failure inverter is also determined.
  • the FET 121L when the FET 121L is turned on, the FET 131L is turned off, and when the FET 121L is turned off, the FET 131L is turned on.
  • the FET 121H when the FET 121H is turned on, the FET 131H is turned off, and when the FET 121H is turned off, the FET 131H is turned on.
  • the current output from the power supply 101 flows to GND through the high side switching element, the winding, and the low side switching element.
  • FIG. 6 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the U-phase, V-phase and W-phase windings of the motor 200 when the power conversion device 100 is controlled according to three-phase current control. doing.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted every 30 ° of electrical angle.
  • I pk represents the maximum current value (peak current value) of each phase.
  • Table 1 shows the current value flowing to the terminal of each inverter for each electrical angle in the sine wave of FIG. Specifically, Table 1 shows current values at every electrical angle of 30 ° that flow to terminals U_L, V_L and W_L of first inverter 120 (bridge circuit L), and terminals of second inverter 130 (bridge circuit R) It shows the current value flowing in U_R, V_R and W_R and at an electrical angle of 30 °.
  • the direction of current flowing from the terminal of the bridge circuit L to the terminal of the bridge circuit R is defined as a positive direction.
  • the direction of the current shown in FIG. 6 follows this definition.
  • the direction of current flowing from the terminal of the bridge circuit R to the terminal of the bridge circuit L is defined as a positive direction. Therefore, the phase difference between the current of the bridge circuit L and the current of the bridge circuit R is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * is I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • a current of size I 2 flows from bridge circuit L to bridge circuit R in U-phase winding M1, and from bridge circuit R to bridge circuit L in V-phase winding M2.
  • a current of Ipk flows, and a current of size I 2 flows from the bridge circuit L to the bridge circuit R in the W-phase winding M3.
  • a current of size I 1 flows from bridge circuit L to bridge circuit R in U-phase winding M 1 , and from bridge circuit R to bridge circuit L in V-phase winding M 2 A current of I 1 flows. No current flows in the W-phase winding M3.
  • a current of magnitude I pk flows from bridge circuit L to bridge circuit R in U-phase winding M 1, and from bridge circuit R to bridge circuit L in V-phase winding M 2 A current of 2 flows, and a current of size I 2 flows from the bridge circuit R to the bridge circuit L in the W-phase winding M 3.
  • a current of size I 1 flows from bridge circuit L to bridge circuit R in U-phase winding M 1 , and from bridge circuit R to bridge circuit L in W-phase winding M 3 A current of I 1 flows. No current flows in the V-phase winding M2.
  • a current of size I 2 flows from bridge circuit L to bridge circuit R in U-phase winding M 1, and from bridge circuit L to bridge circuit R in V-phase winding M 2 A current of I 2 flows, and a current of size I pk flows from the bridge circuit R to the bridge circuit L in the W-phase winding M 3.
  • a current of size I 2 flows from bridge circuit R to bridge circuit L in U-phase winding M 1, and from bridge circuit L to bridge circuit R in V-phase winding M 2
  • a current of Ipk flows, and a current of size I 2 flows from the bridge circuit R to the bridge circuit L in the W-phase winding M3.
  • a current of magnitude I 1 flows from bridge circuit R to bridge circuit L in U-phase winding M1, and from bridge circuit L to bridge circuit R in V-phase winding M2. A current of I 1 flows. No current flows in the W-phase winding M3.
  • a current of size Ipk flows from bridge circuit R to bridge circuit L in U-phase winding M1, and from bridge circuit L to bridge circuit R in V-phase winding M2 A current of 2 flows, and a current of size I 2 flows from the bridge circuit L to the bridge circuit R in the W-phase winding M 3.
  • a current of size I 1 flows from bridge circuit R to bridge circuit L in U-phase winding M 1 , and from bridge circuit L to bridge circuit R in W-phase winding M 3 I 1 Current flows. No current flows in the V-phase winding M2.
  • a current of size I 2 flows from bridge circuit R to bridge circuit L in U-phase winding M 1, and from bridge circuit R to bridge circuit L in V-phase winding M 2 A current of I 2 flows, and a current of size I pk flows from the bridge circuit L to the bridge circuit R in the W-phase winding M 3.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuits L and R by PWM control such that the current waveform shown in FIG. 6 is obtained.
  • abnormality mainly means that a failure has occurred in the FET.
  • the failure of the FET can be roughly divided into “open failure” and “short failure”.
  • Open fault refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and "short fault” is in the source-drain of FET Refers to a short circuit failure.
  • a random failure occurs in which one FET randomly fails among the plurality of FETs.
  • the present disclosure is mainly directed to a control method of power converter 100 when a random failure occurs.
  • the present disclosure also covers a control method of the power conversion apparatus 100 when a plurality of FETs fail in a chained manner.
  • a chained failure means, for example, a failure that occurs simultaneously in the high side switching device and the low side switching device of one leg.
  • drive circuit 350 monitors the voltage between the source and drain of each FET, and detects the failure of the FET by comparing the voltage between the source and drain with a predetermined threshold voltage and Vds. .
  • the threshold voltage is set in the drive circuit 350, for example, by data communication with an external IC (not shown) and an external component.
  • the drive circuit 350 is connected to the port of the microcontroller 340 and notifies the microcontroller 340 of a failure detection signal. For example, when the drive circuit 350 detects a fault in the FET, it asserts a fault detection signal.
  • the microcontroller 340 receives the asserted fault detection signal, it reads the internal data of the drive circuit 350 to determine which of the plurality of FETs has failed.
  • the microcontroller 340 can also detect a failure of the FET based on the difference between the actual current value of the motor and the target current value.
  • the failure detection is not limited to these methods, and various methods related to failure detection can be used.
  • the microcontroller 340 switches control of the power conversion device 100 from normal control to abnormal control.
  • the timing at which control is switched from normal to abnormal is about 10 msec to 30 msec after the fault detection signal is asserted.
  • the first inverter 120 of the two inverters is treated as a failure inverter
  • the second inverter 130 is treated as a normal inverter.
  • the FET 121H has an open failure in the high side switching elements (FETs 121H, 122H and 123H) of the first inverter 120. Even when the FET 122H or 123H has an open failure, the power conversion device 100 can be controlled by the control method described below.
  • the control circuit 300 brings the FETs 111, 112, 113 and 114 of the two switching circuits 110 and the FETs 122H, 123H, 121L, 122L and 123L of the first inverter 120 into the first state. .
  • the FETs 111 and 113 of the two switching circuits 110 are turned off, and the FETs 112 and 114 are turned on.
  • the FETs 122H and 123H (high-side switching elements different from the failed FET 121H) other than the failed FET 121H of the first inverter 120 are turned off, and the FETs 121L, 122L and 123L are turned on.
  • the first inverter 120 is electrically disconnected from the power supply 101 and GND, and the second inverter 130 is electrically connected to the power supply 101 and GND.
  • the FET 113 disconnects the connection between the power supply 101 and the first inverter 120
  • the FET 111 disconnects the connection between the first inverter 120 and GND.
  • the node N1 on the low side functions as a neutral point of each winding. In this specification, that a certain node functions as a neutral point is expressed as "a neutral point is configured”.
  • the power conversion device 100 drives the motor 200 using the neutral point and the second inverter 130 configured on the low side of the first inverter 120.
  • FIG. 7 schematically shows the flow of current in the power conversion device 100 when the FETs of the two switching circuits 110 and the first inverter 120 are in the first state.
  • FIG. 8 exemplifies a current waveform obtained by plotting current values flowing in the U-phase, V-phase, and W-phase windings of the motor 200 when the power conversion apparatus 100 is controlled in the first state.
  • FIG. 7 shows, for example, the flow of current at a motor electrical angle of 270 °. Each of the straight arrows represents the current flowing from the power supply 101 to the motor 200.
  • the FETs 131H, 132L and 133L are on, and the FETs 131L, 132H and 133H are off.
  • the current flowing through the FET 131H of the second inverter 130 flows to the neutral point through the winding M1 and the FET 121L of the first inverter 120.
  • a portion of the current flows through FET 122L to winding M2, and the remaining current flows through FET 123L to winding M3.
  • the current flowing through the windings M2 and M3 flows to the GND through the FET 112 on the second inverter 130 side.
  • a regenerative current flows toward the winding M1 of the motor 200 in the reflux diode (also referred to as “regenerative diode”) of the FET 131L.
  • a parasitic diode 140 is formed in each of the FETs 121L, 122L, 123L, 121H, 122H, 123H, 131L, 132L, 133L, 131H, 132H, and 133H.
  • the parasitic diode 140 is arranged such that forward current flows toward the power supply 101. In this embodiment, this parasitic diode 140 is used as a free wheeling diode.
  • Table 2 exemplifies the current value flowing to the terminal of the second inverter 130 for each electrical angle in the current waveform of FIG. 8. Specifically, Table 2 exemplifies the current value at every electrical angle of 30 ° which flows to the terminals U_R, V_R and W_R of the second inverter 130 (bridge circuit R).
  • the definition of the current direction is as described above. By the definition of the current direction, the positive and negative signs of the current values shown in FIG. 8 have a relationship (phase difference 180 °) opposite to that of the current values shown in Table 2.
  • a current of size I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • current having a magnitude Ipk flow current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M3 of W-phase.
  • a current of size I 1 flows from bridge circuit L to bridge circuit R in U-phase winding M 1 , and from bridge circuit R to bridge circuit L in V-phase winding M 2 A current of I 1 flows. No current flows in the W-phase winding M3.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R by PWM control such that the current waveform shown in FIG. 8 is obtained, for example.
  • the states of the FETs of the two switching circuits 110 and the first inverter 120 are not limited to the first state.
  • the control circuit 300 may put those FETs in the second state. In the second state, the FETs 113 of the two switching circuits 110 are turned on, 111 is turned off, and the FETs 112 and 114 are turned on. Further, the FETs 122H and 123H other than the failed FET 121H of the first inverter 120 are turned off, and the FETs 121L, 122L and 123L are turned on. The difference between the first state and the second state is whether the FET 113 is on.
  • the reason why the FET 113 may be turned on is that, when the FET 121H is an open failure, the high side switching elements are all opened by controlling the FETs 122H and 123H to the off state, and even if the FET 113 is turned on This is because no current flows in the inverter 120. Thus, at the time of the open failure, the FET 113 may be on or off.
  • the FET 121H has a short circuit failure in the high side switching elements (FETs 121H, 122H and 123H) of the first inverter 120. Even when the FET 122H or 123H causes a short circuit failure, the power conversion device 100 can be controlled by the control method described below.
  • the control circuit 300 brings the FETs 111, 112, 113 and 114 of the two switching circuits 110 and the FETs 122H, 123H, 121L, 122L and 123L of the first inverter 120 into the first state.
  • the FET 113 is turned on, a current flows from the power supply 101 into the shorted FET 121H, so control in the second state is prohibited.
  • the neutral point of each winding is formed at the node N1 on the low side by turning on all the three low side switching elements.
  • the power conversion device 100 drives the motor 200 using the neutral point and the second inverter 130 configured on the low side of the first inverter 120.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R by PWM control such that the current waveform shown in FIG. 8 is obtained, for example.
  • the flow of current flowing in power conversion device 100 at the electrical angle of 270 ° is as shown in FIG. 7, and the current flowing in each winding for each motor electrical angle
  • Table 2 The values are as shown in Table 2.
  • FET 121 H When FET 121 H has a short circuit failure, for example, in the first state of each FET shown in FIG. 7, the regenerative current is transmitted to the FET 121 H through the parasitic diode of the FET 122 H at motor electric angle 0 ° to 120 ° in Table 2. At the motor electric angle of 60 ° to 180 ° in Table 2, a regenerative current flows to the FET 121H through the parasitic diode of the FET 123H. Thus, in the case of a short circuit failure, current may be dissipated through FET 121H over a range of motor electrical angles.
  • the FET 121L has an open failure in the low side switching elements (FETs 121L, 122L, and 123L) of the first inverter 120. Even when the FET 122L or 123L has an open failure, the power conversion apparatus 100 can be controlled by the control method described below.
  • the control circuit 300 brings the FETs 111, 112, 113 and 114 of the two switching circuits 110 and the FETs 121H, 122H, 123H, 122L and 123L of the first inverter 120 into the third state. .
  • the FETs 111 and 113 of the two switching circuits 110 are turned off, and the FETs 112 and 114 are turned on.
  • the FETs 122L and 123L (the low side switching elements different from the failed 121L) other than the failed FET 121L of the first inverter 120 are turned off, and the FETs 121H, 122H and 123H are turned on.
  • the first inverter 120 is electrically disconnected from the power supply 101 and GND, and the second inverter 130 is electrically connected to the power supply 101 and GND. Further, by turning on all the three high side switching elements of the first inverter 120, the neutral point of each winding is formed at the node N3 on the high side.
  • FIG. 9 schematically shows the flow of current in the power conversion device 100 when the FETs of the two switching circuits 110 and the first inverter 120 are in the third state.
  • FIG. 9 shows, for example, the flow of current at a motor electrical angle of 270 °.
  • Each of the straight arrows represents the current flowing from the power supply 101 to the motor 200.
  • the FETs 131H, 132L and 133L are on, and the FETs 131L, 132H and 133H are off.
  • the current flowing through the FET 131H of the second inverter 130 flows to the neutral point through the winding M1 and the FET 121H of the first inverter 120.
  • a portion of the current flows through FET 122H to winding M2, and the remaining current flows through FET 123H to winding M3.
  • the current flowing through the windings M2 and M3 flows to the GND through the FET 112 on the second inverter 130 side.
  • a regenerative current flows toward the winding M1 of the motor 200 in the parasitic diode of the FET 131L.
  • the current values flowing in the respective windings for each motor electrical angle are as shown in Table 2.
  • the power conversion device 100 drives the motor 200 using the neutral point and the second inverter 130 configured on the high side of the first inverter 120.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R by PWM control such that the current waveform shown in FIG. 8 is obtained, for example.
  • the states of the FETs of the two switching circuits 110 and the first inverter 120 are not limited to the third state.
  • the control circuit 300 may put those FETs in the fourth state.
  • the FETs 113 of the two switching circuits 110 are turned off, 111 is turned on, and the FETs 112 and 114 are turned on.
  • the FETs 122L and 123L other than the failed FET 121L of the first inverter 120 are turned off, and the FETs 121H, 122H and 123H are turned on.
  • the difference between the third state and the fourth state is whether or not the FET 111 is on.
  • the reason why the FET 111 may be turned on is that, when the FET 121L is an open failure, the low side switching elements are all opened by controlling the FETs 122L and 123L to the off state, and the current flows to GND even if the FET 111 is turned on. It is because there is not. Thus, at the time of an open failure, the FET 111 may be in the on state or in the off state.
  • the FET 121L has a short circuit failure in the low side switching elements (FETs 121L, 122L and 123L) of the first inverter 120. Even when the FET 122L or 123L causes a short circuit failure, the power conversion apparatus 100 can be controlled by the control method described below.
  • the control circuit 300 causes the FETs 111, 112, 113 and 114 of the two switching circuits 110 and the FETs 121H, 122H, 123H, 122L and 123L of the first inverter 120 as in the open failure And the third state.
  • a short circuit failure when the FET 111 is turned on, a current flows from the shorted FET 121L to the GND, so the control in the fourth state is prohibited.
  • the FETs 131H, 132L and 133L are on, and the FETs 131L, 132H and 133H are off.
  • the current flowing through the FET 131H of the second inverter 130 flows to the neutral point through the winding M1 and the FET 121H of the first inverter 120.
  • a portion of the current flows through FET 122H to winding M2, and the remaining current flows through FET 123H to winding M3.
  • the current flowing through the windings M2 and M3 flows to the GND through the FET 112 on the second inverter 130 side.
  • a regenerative current flows toward the winding M1 of the motor 200 in the parasitic diode of the FET 131L. Furthermore, unlike the open failure, in the short failure, a current flows from the shorted FET 121L to the node N1 on the low side. A portion of the current flows through the parasitic diode of FET 122L to winding M2, and the remaining current flows through the parasitic diode of FET 123L to winding M3. The current flowing in the windings M2 and M3 flows to the GND through the FET 112.
  • the power conversion device 100 drives the motor 200 using the neutral point and the second inverter 130 configured on the high side of the first inverter 120.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R by PWM control such that the current waveform shown in FIG. 8 is obtained, for example.
  • the first inverter 120 of the two inverters is treated as a failure inverter
  • the second inverter 130 is treated as a normal inverter.
  • control in the event of an abnormality can be performed as described above.
  • control of the first inverter 120, the second inverter 130, and the switching circuit 110 is reversed to the control described above. That is, a neutral point can be formed in the second inverter 130, and the motor 200 can be driven using the neutral point and the first inverter 120.
  • the diagnosis is performed in a state where the neutral point described above is configured.
  • the failure diagnosis may be performed, for example, by periodically configuring the neutral point during the above-described control operation at normal time. Also, for example, failure diagnosis can be performed even in a state where a failure has already occurred and a neutral point is configured to drive the motor 200.
  • the open fault of the FET is detected.
  • the open failure refers to a failure in which the source-drain of the FET is opened (in other words, the resistance between the source-drain always has a high impedance).
  • FIG. 10 is a diagram showing an example of an operation of forming a neutral point and performing failure diagnosis.
  • the control circuit 300 turns off the FETs 111 and 113 and turns on the FETs 112 and 114. Then, the FETs 121H, 122H, and 123H are turned off, the FETs 121L, 122L, and 123L are turned on, and a neutral point is formed at the node N1.
  • the control circuit 300 turns on the FETs 131H and 132L and turns off the FETs 131L, 132H, 133L, and 133H.
  • a conductive path is formed in which the high side FET 131H of the second inverter 130, the U phase winding M1, the neutral point (node N1), the V phase winding M2 and the low side FET 132L of the second inverter 130 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • FIG. 11 is a diagram showing FETs included in the first and second inverters 120 and 130.
  • a parasitic diode 14 is provided in each of the FETs 121 L, 122 L, 123 L, 121 H, 122 H, 123 H, 131 L, 132 L, 133 L, 131 H, 132 H, and 133 H. 0 is formed.
  • the parasitic diode 140 is arranged such that forward current flows toward the power supply 101. That is, the parasitic diode 140 is disposed such that the cathode faces the power supply 101 and the anode faces the GND. In this embodiment, this parasitic diode 140 is used as a free wheeling diode.
  • An element configuration in which a free wheeling diode is connected in parallel to the FET can also be used in this embodiment.
  • the current flowing through the above-described conductive path diagnoses the presence or absence of a failure of the switching element in which the reverse direction current flows in the free wheeling diode 140.
  • the current flowing through the conductive path is a reverse current in the reflux diodes 140 of the FETs 121L, 131H, and 132L. That is, the presence or absence of a failure of the FETs 121L, 131H, 132L is diagnosed.
  • the control circuit 300 diagnoses the presence or absence of a failure using at least two of the voltage value of the U phase, the voltage value of the V phase and the voltage value of the W phase when the voltage is applied to the above conductive path.
  • the U-phase voltage value is, for example, a voltage value of the node N131 to which the FET 131H and the FET 131L are connected.
  • the voltage value of the node N131 is, for example, a potential difference between the node N131 and GND.
  • the voltage at node N131 may be the same as the voltage at terminal U_R (FIG. 1).
  • the voltage value of the V phase is, for example, a voltage value of the node N132 to which the FET 132H and the FET 132L are connected.
  • the voltage value of the node N132 is, for example, a potential difference between the node N132 and GND.
  • the voltage at node N132 may be the same as the voltage at terminal V_R (FIG. 1).
  • the W-phase voltage value is, for example, a voltage value of the node N133 to which the FET 133H and the FET 133L are connected.
  • the voltage value of the node N133 is, for example, a potential difference between the node N133 and GND.
  • the voltage at node N133 may be the same as the voltage at terminal W_R (FIG. 1).
  • the voltage detection circuit 380 (FIG. 5) detects the voltage value of each of the U phase, the V phase, and the W phase, and outputs the voltage value to the microcontroller 340.
  • the voltage of the node N131 is close to the output voltage of the power supply 101.
  • the voltage of the node N132 is a value between the output voltage of the power supply 101 and the GND voltage.
  • the voltage of the node N132 has a value slightly closer to the GND voltage than the output voltage of the power supply 101.
  • such a value close to the output voltage of the power supply 101 is expressed as "high”.
  • a value between the output voltage of the power supply 101 and the GND voltage is expressed as “middle”.
  • the microcontroller 340 determines that all of the FETs 121L, 131H, and 132L are normal.
  • the voltage value when the FET 131H has an open failure will be described.
  • the power supply voltage is not applied to the node N131. Therefore, the voltages of the nodes N131 and N132 both have values close to the GND voltage.
  • such a value close to the GND voltage is expressed as "low”.
  • the above-mentioned voltage "medium” means that the voltage is a value between "high” and "low”.
  • the microcontroller 340 determines that the FET 131H has an open failure when the voltages of the nodes N131 and N132 are both “low”.
  • the microcontroller 340 determines that the FET 121L has an open failure.
  • the voltage value when the FET 132L has an open failure will be described.
  • the node N132 is not connected to GND. Therefore, the voltages of the nodes N131 and N132 are both "high".
  • the microcontroller 340 determines that the FET 132L has an open failure if the voltages of the nodes N131 and N132 are both "high".
  • FIG. 12 is a diagram showing the relationship between the switching element turned on in the second inverter 130 and the switching element to be diagnosed when the neutral point is configured on the low side.
  • the switching elements that can be diagnosed for the switching elements to be turned on are indicated by white circles.
  • the FETs 131H and 132L are in the on state, and it is possible to diagnose the presence or absence of a failure in the FETs 121L, 131H, and 132L.
  • fault diagnosis when the FETs 132H and 133L are in the on state will be described with reference to FIG.
  • fault diagnosis when the FETs 133H and 131L are in the on state will be described with reference to FIG.
  • FIG. 13 is a diagram for explaining failure diagnosis when the FETs 132H and 133L are turned on. Similar to the example of FIG. 10, the control circuit 300 configures a neutral point at the node N1.
  • the control circuit 300 turns on the FETs 132H and 133L and turns off the FETs 131L, 131H, 132L and 133H.
  • a conductive path is formed in which the high side FET 132H of the second inverter 130, the V phase winding M2, the neutral point (node N1), the W phase winding M3 and the low side FET 133L of the second inverter 130 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the free wheeling diode 140 of the FETs 132H, 122L, and 133L.
  • the presence or absence of a failure of the FETs 132H, 122L, and 133L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N132 and N133 is “high”, “medium”, or “low”, and performs failure diagnosis. Do.
  • the microcontroller 340 determines that all of the FETs 132H, 122L, and 133L are normal when the voltage of the node N132 is "high” and the voltage of the node N133 is "medium”.
  • the microcontroller 340 determines that the FET 132H has an open failure when the voltages of the nodes N132 and N133 are both “low”.
  • the microcontroller 340 determines that the FET 122L has an open failure.
  • the microcontroller 340 determines that the FET 133L has an open failure if the voltages of the nodes N132 and N133 are both "high".
  • FIG. 14 is a diagram for explaining failure diagnosis when the FETs 133H and 131L are turned on. Similar to the examples of FIGS. 10 and 13, the control circuit 300 configures a neutral point at the node N1.
  • the control circuit 300 turns on the FETs 133H and 131L and turns off the FETs 131H, 132L, 132H and 133L.
  • a conductive path is formed in which the high side FET 133H of the second inverter 130, the W phase winding M3, the neutral point (node N1), the U phase winding M1 and the low side FET 131L of the second inverter 130 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 133H, 123L, and 131L.
  • the presence or absence of a failure of the FETs 133H, 123L, and 131L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N133 and N131 is “high”, “medium”, or “low”. Perform fault diagnosis.
  • the microcontroller 340 determines that all the FETs 133H, 123L, and 131L are normal.
  • the microcontroller 340 determines that the FET 133H has an open failure when the voltages of the nodes N133 and N131 are both “low”.
  • the microcontroller 340 determines that the FET 123L has an open failure.
  • the microcontroller 340 determines that the FET 131L has an open failure when the voltages of the nodes N133 and N131 are both “high”.
  • FIG. 15 is a diagram showing an example of an operation of forming a neutral point and performing failure diagnosis.
  • the control circuit 300 turns off the FETs 111 and 113 and turns on the FETs 112 and 114. Then, the FETs 121L, 122L, and 123L are turned off, the FETs 121H, 122H, and 123H are turned on, and a neutral point is formed at the node N3.
  • the control circuit 300 turns on the FETs 131H and 132L and turns off the FETs 131L, 132H, 133L, and 133H.
  • a conductive path connecting the high-side FET 131H of the second inverter 130, the U-phase winding M1, the neutral point (node N3), the V-phase winding M2 and the low-side FET 132L of the second inverter 130 is configured. Be done. A voltage is applied from the power supply 101 and a current flows in this conductive path. Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 122H, 131H, and 132L. That is, the presence or absence of a failure of the FETs 122H, 131H, 132L is diagnosed.
  • the microcontroller 340 determines that all of the FETs 122H, 131H, and 132L are normal.
  • the microcontroller 340 determines that the FET 131H has an open failure when the voltages of the nodes N131 and N132 are both “low”.
  • the microcontroller 340 determines that the FET 122H has an open failure.
  • the microcontroller 340 determines that the FET 132L has an open failure if the voltages of the nodes N131 and N132 are both "high".
  • FIG. 16 is a diagram showing the relationship between the switching element turned on in the second inverter 130 and the switching element to be diagnosed when the neutral point is configured on the high side.
  • the switching elements that can be diagnosed for the switching elements to be turned on are indicated by white circles.
  • the FETs 131H and 132L are in the on state, and it is possible to diagnose the presence or absence of a failure in the FETs 122H, 131H, and 132L.
  • FIG. 17 is a diagram for explaining failure diagnosis when the FETs 132H and 133L are turned on. Similar to the example of FIG. 15, the control circuit 300 configures a neutral point at the node N3.
  • the control circuit 300 turns on the FETs 132H and 133L and turns off the FETs 131L, 131H, 132L and 133H.
  • a conductive path is formed in which the high side FET 132H of the second inverter 130, the V phase winding M2, the neutral point (node N3), the W phase winding M3 and the low side FET 133L of the second inverter 130 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 132H, 123H, and 133L.
  • the presence or absence of a failure of the FETs 132H, 123H, and 133L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N 132 and N 133 is “high”, “medium”, or “low”, and performs failure diagnosis.
  • the microcontroller 340 determines that all of the FETs 132H, 123H, and 133L are normal.
  • the microcontroller 340 determines that the FET 132H has an open failure when the voltages of the nodes N132 and N133 are both “low”.
  • the microcontroller 340 determines that the FET 123H has an open failure when the voltage of the node N132 is "high” and the voltage of the node N133 is "low".
  • the microcontroller 340 determines that the FET 133L has an open failure if the voltages of the nodes N132 and N133 are both "high".
  • FIG. 18 is a diagram for explaining failure diagnosis when the FETs 133H and 131L are turned on. Similar to the example of FIGS. 15 and 17, the control circuit 300 configures a neutral point at the node N3.
  • the control circuit 300 turns on the FETs 133H and 131L and turns off the FETs 131H, 132L, 132H and 133L.
  • a conductive path connecting the high-side FET 133H of the second inverter 130, the W-phase winding M3, the neutral point (node N3), the U-phase winding M1 and the low-side FET 131L of the second inverter 130 is configured. Be done. A voltage is applied from the power supply 101 and a current flows in this conductive path. Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 133H, 121H, and 131L.
  • the presence or absence of a failure of the FETs 133H, 121H, and 131L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N133 and N131 is "high”, “medium”, or “low” to perform failure diagnosis.
  • the microcontroller 340 determines that all of the FETs 133H, 121H, and 131L are normal.
  • the microcontroller 340 determines that the FET 133H has an open failure when the voltages of the nodes N133 and N131 are both “low”.
  • the microcontroller 340 determines that the FET 121H has an open failure.
  • the microcontroller 340 determines that the FET 131L has an open failure when the voltages of the nodes N133 and N131 are both “high”.
  • FIG. 19 is a diagram showing an example of an operation of forming a neutral point and performing failure diagnosis.
  • the control circuit 300 turns off the FETs 112 and 114 and turns on the FETs 111 and 113. Then, the FETs 131H, 132H, and 133H are turned off, the FETs 131L, 132L, and 133L are turned on, and a neutral point is formed at the node N2.
  • the control circuit 300 turns on the FETs 121H and 122L and turns off the FETs 121L, 122H, 123L, and 123H.
  • a conductive path is formed in which the high side FET 121H of the first inverter 120, the U phase winding M1, the neutral point (node N2), the V phase winding M2 and the low side FET 122L of the first inverter 120 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 131L, 121H, and 122L. That is, the presence or absence of a failure of the FETs 131L, 121H, 122L is diagnosed.
  • the control circuit 300 diagnoses the presence or absence of a failure using at least two of the voltage value of the U phase, the voltage value of the V phase and the voltage value of the W phase when the voltage is applied to the above conductive path.
  • the U-phase voltage value is, for example, a voltage value of the node N121 to which the FET 121H and the FET 121L are connected.
  • the voltage value of the node N121 is, for example, a potential difference between the node N121 and GND.
  • the voltage at node N121 may be the same as the voltage at terminal U_L (FIG. 1).
  • the voltage value of the V phase is, for example, a voltage value of the node N122 where the FET 122H and the FET 122L are connected.
  • the voltage value of the node N122 is, for example, a potential difference between the node N122 and GND.
  • the voltage at node N122 may be the same as the voltage at terminal V_L (FIG. 1).
  • the W-phase voltage value is, for example, a voltage value of the node N123 to which the FET 123H and the FET 123L are connected.
  • the voltage value of the node N123 is, for example, a potential difference between the node N123 and GND.
  • the voltage at node N123 may be the same as the voltage at terminal W_L (FIG. 1).
  • the voltage detection circuit 380 (FIG. 5) detects the voltage value of each of the U phase, the V phase, and the W phase, and outputs the voltage value to the microcontroller 340.
  • the microcontroller 340 determines that all of the FETs 131L, 121H, and 122L are normal.
  • the microcontroller 340 determines that the FET 121H has an open failure when the voltages of the nodes N121 and N122 are both “low”.
  • the microcontroller 340 determines that the FET 131L has an open failure.
  • the voltage value when the FET 122L has an open failure will be described.
  • the node N122 is not connected to GND. Therefore, the voltages of the nodes N121 and N122 are both "high".
  • the microcontroller 340 determines that the FET 122L has an open failure when the voltages of the nodes N121 and N122 are both "high".
  • FIG. 20 is a diagram showing a relationship between a switching element to be turned on in the first inverter 120 and a switching element to be diagnosed when the neutral point is configured on the low side of the second inverter 130.
  • the switching elements that can be diagnosed for the switching elements to be turned on are indicated by white circles.
  • the FETs 121H and 122L are in the on state, and it is possible to diagnose the presence or absence of a failure in the FETs 131L, 121H, and 122L.
  • fault diagnosis when the FETs 122H and 123L are in the on state will be described with reference to FIG. Further, fault diagnosis when the FETs 123H and 121L are in the on state will be described with reference to FIG.
  • FIG. 21 is a diagram for explaining failure diagnosis when the FETs 122H and 123L are turned on. Similar to the example of FIG. 19, the control circuit 300 configures a neutral point at the node N2.
  • the control circuit 300 turns on the FETs 122H and 123L and turns off the FETs 121L, 121H, 122L and 123H.
  • a conductive path is formed in which the high-side FET 122H of the first inverter 120, the V-phase winding M2, the neutral point (node N2), the W-phase winding M3 and the low-side FET 123L of the first inverter 120 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 122H, 132L, and 123L.
  • the presence or absence of a failure of the FETs 122H, 132L, and 123L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N122 and N123 is “high”, “medium”, or “low”, and performs failure diagnosis. Do.
  • the microcontroller 340 determines that all of the FETs 122H, 132L, and 123L are normal.
  • the microcontroller 340 determines that the FET 122H has an open failure when the voltages of the nodes N122 and N123 are both "low".
  • the microcontroller 340 determines that the FET 132L has an open failure.
  • the microcontroller 340 determines that the FET 123L has an open failure if the voltages of the nodes N122 and N123 are both "high".
  • FIG. 22 is a diagram for explaining failure diagnosis when the FETs 123H and 121L are turned on. As in the examples of FIGS. 19 and 21, the control circuit 300 configures a neutral point at the node N2.
  • the control circuit 300 turns on the FETs 123H and 121L and turns off the FETs 121H, 122L, 122H and 123L.
  • a conductive path is formed in which the high side FET 123H of the first inverter 120, the W phase winding M3, the neutral point (node N2), the U phase winding M1 and the low side FET 121L of the first inverter 120 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 123H, 133L, and 121L.
  • the presence or absence of a failure of the FETs 123H, 133L, and 121L is diagnosed.
  • the microcontroller 340 is similar to the method described with reference to FIGS. Makes a fault diagnosis by judging whether the voltage of each of the nodes N123 and N121 is "high”, “medium” or "low".
  • the microcontroller 340 determines that all the FETs 123H, 133L, and 121L are normal.
  • the microcontroller 340 determines that the FET 123H has an open failure when the voltages of the nodes N123 and N121 are both “low”.
  • the microcontroller 340 determines that the FET 133L has an open failure.
  • the microcontroller 340 determines that the FET 121L has an open failure when the voltages of the nodes N123 and N121 are both “high”.
  • FIG. 23 is a diagram showing an example of an operation of forming a neutral point and performing failure diagnosis.
  • the control circuit 300 turns off the FETs 112 and 114 and turns on the FETs 111 and 113. Then, the FETs 131L, 132L, and 133L are turned off, the FETs 131H, 132H, and 133H are turned on, and a neutral point is formed at the node N4.
  • the control circuit 300 turns on the FETs 121H and 122L and turns off the FETs 121L, 122H, 123L, and 123H.
  • a conductive path is formed in which the high side FET 121H of the first inverter 120, the U phase winding M1, the neutral point (node N4), the V phase winding M2 and the low side FET 122L of the first inverter 120 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing through the conductive path is a reverse current in the reflux diodes 140 of the FETs 132H, 121H, and 122L. That is, the presence or absence of a failure of the FETs 132H, 121H, 122L is diagnosed.
  • the microcontroller 340 determines that all of the FETs 132H, 121H, and 122L are normal.
  • the microcontroller 340 determines that the FET 121H has an open failure when the voltages of the nodes N121 and N122 are both “low”.
  • the microcontroller 340 determines that the FET 132H has an open failure.
  • the microcontroller 340 determines that the FET 122L has an open failure when the voltages of the nodes N121 and N122 are both "high".
  • FIG. 24 is a diagram showing the relationship between the switching element to be turned on in the first inverter 120 and the switching element to be diagnosed when the neutral point is configured on the high side of the second inverter 130.
  • the switching elements that can be diagnosed with respect to the switching elements to be turned on are indicated by white circles.
  • the FETs 121H and 122L are in the on state, and it is possible to diagnose the presence or absence of a failure in the FETs 132H, 121H, and 122L.
  • FIG. 25 is a diagram for explaining failure diagnosis when the FETs 122H and 123L are turned on. Similar to the example of FIG. 23, the control circuit 300 configures a neutral point at the node N4.
  • the control circuit 300 turns on the FETs 122H and 123L and turns off the FETs 121L, 121H, 122L and 123H.
  • a conductive path connecting the high-side FET 122H of the first inverter 120, the V-phase winding M2, the neutral point (node N4), the W-phase winding M3 and the low-side FET 123L of the first inverter 120 is configured. Be done. A voltage is applied from the power supply 101 and a current flows in this conductive path. Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 122H, 133H, and 123L.
  • the presence or absence of a failure of the FETs 122H, 133H, 123L is diagnosed.
  • the microcontroller 340 determines whether the voltage at each of the nodes N122 and N123 is "high”, “medium”, or “low” to perform failure diagnosis.
  • the microcontroller 340 determines that all of the FETs 122H, 133H, and 123L are normal.
  • the microcontroller 340 determines that the FET 122H has an open failure when the voltages of the nodes N122 and N123 are both "low".
  • the microcontroller 340 determines that the FET 133H has an open failure.
  • the microcontroller 340 determines that the FET 123L has an open failure if the voltages of the nodes N122 and N123 are both "high".
  • FIG. 26 is a diagram for explaining failure diagnosis when the FETs 123H and 121L are turned on. Similar to the example of FIGS. 23 and 25, the control circuit 300 configures a neutral point at the node N4.
  • the control circuit 300 turns on the FETs 123H and 121L and turns off the FETs 121H, 122L, 122H and 123L.
  • a conductive path is formed in which the high side FET 123H of the first inverter 120, the W phase winding M3, the neutral point (node N4), the U phase winding M1 and the low side FET 121L of the first inverter 120 are connected. Be done.
  • a voltage is applied from the power supply 101 and a current flows in this conductive path.
  • Each of the straight arrows represents the current flowing in the conductive path.
  • the current flowing in the conductive path is a reverse current in the reflux diodes 140 of the FETs 123H, 131H, and 121L.
  • the presence or absence of a failure of the FETs 123H, 131H, and 121L is diagnosed.
  • the microcontroller 340 determines whether the voltage of each of the nodes N123 and N121 is "high”, “medium”, or “low”, and performs failure diagnosis.
  • the microcontroller 340 determines that all of the FETs 123H, 131H, and 121L are normal.
  • the microcontroller 340 determines that the FET 123H has an open failure when the voltages of the nodes N123 and N121 are both “low”.
  • the microcontroller 340 determines that the FET 131H has an open failure.
  • the microcontroller 340 determines that the FET 121L has an open failure when the voltages of the nodes N123 and N121 are both “high”.
  • the 12 FETs included in the first and second inverters 120 and 130 are obtained. All fault diagnosis can be performed.
  • all of the four types of diagnosis shown in FIGS. 12, 16, 20, and 24 may be performed. By performing all four types of diagnosis, it is possible to increase the accuracy of detection of the faulty switching element.
  • a failed FET can be identified even in a mode in which the voltage between the source and the drain of the FET as described above is not monitored.
  • the above-described failure diagnosis can be performed by periodically configuring the neutral point.
  • the “control at normal time” can be switched to the “control at abnormal time”, and the driving of the motor 200 can be continued.
  • the above-described two types of diagnosis may be continuously performed to return to the control operation in the normal state.
  • the above-described three types of diagnosis may be continuously performed to return to the control operation in the normal state.
  • the above-described four types of diagnosis may be continuously performed to return to the control operation in the normal state.
  • the drive circuit 350 supplies gate control signals for switching on and off of the FETs 121L, 122L, and 123L to the FETs 121L, 122L, and 123L.
  • the FET 111 of the switching circuit 110 is in the on state, and the source potentials of the FETs 121L, 122L, and 123L are low because they are the GND potential. Since the reference potential of the gate is the GND potential, the FETs 121L, 122L, and 123L can be turned on even if the voltage (gate voltage) of the gate control signal is relatively low.
  • the voltage of the gate control signal may be expressed as a gate voltage. In this example, the voltage of the gate control signal and the gate voltage represent values based on the GND potential.
  • the source potentials of the FETs 121H, 122H, and 123H are high because they become drive voltages supplied to the windings M1, M2, and M3. Therefore, the gate voltage for turning on the FETs 121H, 122H, and 123H is higher than the gate voltage for turning on the FETs 121L, 122L, and 123L. This high gate voltage is generated, for example, by the booster circuit 370 (FIG. 5).
  • the gate voltage for turning on the FETs 121L, 122L, and 123L is 12 V, for example.
  • the gate voltage for turning on the FETs 121H, 122H, and 123H is, for example, 24V.
  • a neutral point is configured at the node N1 on the low side.
  • the FETs 111 and 113 of the switching circuit 110 are turned off.
  • the source potentials of the FETs 121L, 122L, and 123L are not the GND potential.
  • the source potentials of the FETs 121L, 122L, and 123L are neutral point potentials higher than the GND potential.
  • the reference voltages of the sources of the FETs 121L, 122L, and 123L are in a floating state. Therefore, the gate-source voltage of the FETs 121L, 122L, and 123L is smaller than that in the normal control.
  • FIG. 27 schematically shows the power conversion device 100 including the sub drive circuit 160L according to the present embodiment.
  • the sub drive circuit 160L is connected to the FETs 121L, 122L, and 123L.
  • the gate control signal is supplied from the drive circuit 350 to the FETs 121L, 122L, and 123L.
  • the sub drive circuit 160L supplies gate control signals to the FETs 121L, 122L, and 123L.
  • the voltage of the gate control signal output by the sub drive circuit 160L is higher than the voltage of the gate control signal output by the drive circuit 350. This high gate voltage is generated, for example, by the booster circuit 370 (FIG. 5).
  • the voltage of the gate control signal output from the sub drive circuit 160L is 24 V, for example.
  • the sub drive circuit 160L includes switching circuits 161 and 162. Under normal control of the first inverter 120, the switching circuits 161 and 162 are off.
  • the microcontroller 340 turns on the switching circuit 161. Then, the voltage of the voltage source 163 is supplied as the gate voltage to the FETs 121L, 122L, and 123L through the switching circuit 161.
  • the voltage of the voltage source 163 is a voltage generated by the booster circuit 370.
  • the voltage of the voltage source 163 is set, for example, such that the gate-source voltage of the FETs 121L, 122L, and 123L is smaller than the withstand voltage.
  • the microcontroller 340 turns on the switching circuit 162. Then, the gates of the FETs 121L, 122L, and 123L are connected to GND, and the FETs 121L, 122L, and 123L are turned off. For example, when performing control to configure the neutral point, some further failure may occur. In this case, by turning on the switching circuit 162, the FETs 121L, 122L, and 123L can be forcibly turned off. Note that the switching circuit 162 may be omitted when control to forcibly turn off the FETs 121L, 122L, and 123L is unnecessary. When the power conversion device 100 does not include the switching circuit 162, the operation of the first inverter 120 may be forcibly stopped by turning off the driving circuit 350 and the switching circuit 161.
  • FIG. 28 schematically shows an example of the circuit configuration of the sub drive circuit 160L.
  • the second inverter 130 is omitted in FIG.
  • the sub drive circuit 160L is a circuit including an open collector output type transistor.
  • the switching circuit 161 (FIG. 27) includes switching elements 10, 11, 12, 13.
  • the switching circuit 162 (FIG. 27) includes switching elements 20, 21, 22, 23.
  • Each of the switching circuits 161 and 162 is, for example, a push-pull circuit.
  • the switching elements 11, 12, 13, 20 are PNP bipolar transistors.
  • the switching elements 10, 21, 22, 23 are NPN bipolar transistors.
  • an example using a bipolar transistor as switching elements 10, 11, 12, 13, 20, 21, 22, and 23 will be described, and those switching elements may be expressed as transistors.
  • the base of the transistor 10 is connected to the microcontroller 340.
  • the emitter of the transistor 10 is connected to GND.
  • the collector of the transistor 10 is connected to the bases of the transistors 11, 12, 13.
  • the emitters of the transistors 11, 12, 13 are connected to a voltage source 163.
  • the collector of the transistor 11 is connected to the gate of the FET 121L.
  • the collector of the transistor 12 is connected to the gate of the FET 122L.
  • the collector of the transistor 13 is connected to the gate of the FET 123L.
  • the base of transistor 20 is connected to microcontroller 340.
  • the emitter of transistor 20 is connected to voltage source Vcc.
  • the collector of the transistor 20 is connected to the bases of the transistors 21, 22, 23.
  • the emitters of the transistors 21, 22 and 23 are connected to GND.
  • the collector of the transistor 21 is connected to the gate of the FET 121L.
  • the collector of the transistor 22 is connected to the gate of the FET 122L.
  • the collector of the transistor 23 is connected to the gate of the FET 123L.
  • protection circuits 31, 32, 33 in which a resistor and a diode are connected in parallel are connected.
  • protection circuits 41, 42, 43 in which a resistor and a diode are connected in parallel are connected.
  • a protection circuit 51 is connected between the output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 121L and the GND.
  • a protection circuit 52 is connected between an output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 122L and the GND.
  • a protection circuit 53 is connected between the output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 123L and the GND.
  • the microcontroller 340 turns off the transistors 10,20. By turning off the transistors 10, 20, the transistors 11, 12, 13, 21, 22, 23 are turned off.
  • the microcontroller 340 turns off the gate control signal output from the drive circuit 350 to the FETs 121L, 122L, and 123L. At the same time, the microcontroller 340 turns on the transistor 10. When the transistor 10 is turned on, the bases of the transistors 11, 12, 13 are at the GND level, and the transistors 11, 12, 13 are turned on.
  • the voltage of the voltage source 163 is supplied to the FETs 121L, 122L, 123L as a gate control signal.
  • gate voltages higher than those in the normal state can be supplied to the FETs 121L, 122L, and 123L.
  • By raising the gate voltage it is possible to suppress a decrease in the gate-source voltage even if the source potential becomes a potential at a neutral point. While being able to suppress that resistance value between source-drain of FET121 L, 122 L, 123 L in an ON state becomes large, it can suppress that FET 121 L, 122 L, 123 L will be in an OFF state unintentionally.
  • the protection circuits 51, 52, 53 suppress the supply of the voltage higher than the withstand voltage to the output terminals of the drive circuit 350 connected to the gates of the FETs 121L, 122L, 123L.
  • the breakdown voltage here is, for example, the breakdown voltage of the circuit element of the drive circuit 350 that outputs the gate control signal for the FETs 121L, 122L, and 123L in the control at the normal time.
  • the protection circuits 51, 52, 53 are, for example, zener diodes.
  • the protection circuits 51, 52, and 53 function when the voltage of the gate control signal output from the sub drive circuit 160L is close to or higher than the withstand voltage.
  • the protection circuits 51, 52, and 53 function when the voltage of the gate control signal becomes 17 V or more.
  • the voltage supplied to the output terminal of the drive circuit 350 connected to the gates of the FETs 121L, 122L, and 123L can be less than the withstand voltage.
  • the FETs 121L, 122L and 123L are supplied with a gate voltage higher than that in the normal state. Even if the high gate voltage unintentionally exceeds the withstand voltage, the drive circuit 350 can be protected by the protection circuits 51, 52, 53.
  • the microcontroller 340 turns on the transistor 20.
  • the bases of the transistors 21, 22, 23 become the level of the voltage source Vcc, and the transistors 21, 22, 23 are turned on.
  • the transistors 21, 22, and 23 are turned on, the gates of the FETs 121L, 122L, and 123L go to the GND level. As a result, the FETs 121L, 122L, and 123L can be forcibly turned off.
  • FIG. 29 schematically shows a power conversion device 100 including the sub drive circuit 160R according to the present embodiment.
  • the sub drive circuit 160L is connected to the FETs 121L, 122L, and 123L of the first inverter 120.
  • the sub drive circuit 160R is connected to the FETs 131L, 132L, and 133L of the second inverter 130.
  • the circuit configuration of the other sub drive circuit 160R is similar to that of the sub drive circuit 160L described with reference to FIGS. 27 and 28.
  • a neutral point is configured at the low side node N1.
  • a neutral point is formed at the node N2 on the low side.
  • the voltage of the gate control signal for turning on the FETs 131L, 132L, and 133L is made larger than that in the normal state by using the sub drive circuit 160R.
  • Power conversion device 100 may include both sub drive circuits 160L and 160R, or may include only one of them.
  • the switching circuits 161 and 162 including transistors are illustrated, but the switching circuits 161 and 162 may include analog switches.
  • the switching circuits 161 and 162 may include single throw switches.
  • FIG. 30 schematically shows a power conversion device 100 including the sub drive circuit 170L according to the present embodiment.
  • the sub drive circuit 170L is connected to the FETs 121H, 122H, 123H, 121L, 122L, and 123L.
  • a neutral point is formed at the node N1.
  • the voltage of the gate control signal for turning on the FETs 121H, 122H and 123H is higher than the gate control signal for turning on the FETs 121L, 122L and 123L. large.
  • high voltage gate control signals for the FETs 121H, 122H, and 123H are supplied to the FETs 121L, 122L, and 123L.
  • drive circuit 350 is a charge pump system. The drive circuit 350 generates a gate control signal using the GND potential as the reference potential, not the gate control signal using the source potential as the reference potential.
  • the sub drive circuit 170L includes switching circuits 171 and 172.
  • the microcontroller 340 turns off the switching circuit 172 and turns on the switching circuit 171.
  • the high voltage gate control signals for the FETs 121H, 122H, and 123H output from the drive circuit 350 are supplied to the FETs 121L, 122L, and 123L without being supplied to the FETs 121H, 122H, and 123H.
  • FIG. 31 schematically shows an example of the circuit configuration of the sub drive circuit 170L.
  • the second inverter 130 is omitted in FIG.
  • the sub drive circuit 170L is a circuit including an open collector output type transistor.
  • the switching circuit 171 (FIG. 30) includes switching elements 60, 61, 62, 63.
  • the switching circuit 172 (FIG. 30) includes switching elements 70, 71, 72, 73.
  • Each of the switching circuits 171 and 172 is, for example, a push-pull circuit.
  • the switching elements 60 and 70 are NPN bipolar transistors.
  • the switching elements 61, 62, 63, 71, 72, 73 are PNP bipolar transistors.
  • an example using a bipolar transistor as switching elements 60, 61, 62, 63, 70, 71, 72, 73 will be described, and these switching elements may be expressed as transistors.
  • the base of transistor 60 is connected to microcontroller 340.
  • the emitter of the transistor 60 is connected to GND.
  • the collector of the transistor 60 is connected to the bases of the transistors 61, 62, 63.
  • the emitter of the transistor 61 is connected to the drive circuit 350 side of the control line for the gate of the FET 121H.
  • the emitter of the transistor 61 may be connected to, for example, an output terminal (not shown) of the drive circuit 350 that outputs a gate control signal for the FET 121H.
  • the emitter of the transistor 62 is connected to the drive circuit 350 side of the control line for the gate of the FET 122H.
  • the emitter of the transistor 62 may be connected, for example, to an output terminal (not shown) of the drive circuit 350 that outputs a gate control signal for the FET 122H.
  • the emitter of the transistor 63 is connected to the drive circuit 350 side of the control line for the gate of the FET 123H.
  • the emitter of the transistor 63 may be connected to, for example, an output terminal (not shown) of the drive circuit 350 that outputs a gate control signal for the FET 123H.
  • the collector of the transistor 61 is connected to the gate of the FET 121L.
  • the collector of the transistor 62 is connected to the gate of the FET 122L.
  • the collector of the transistor 63 is connected to the gate of the FET 123L.
  • the base of transistor 70 is connected to microcontroller 340.
  • the emitter of the transistor 70 is connected to GND.
  • the collector of the transistor 70 is connected to the bases of the transistors 71, 72, 73.
  • the collector of the transistor 71 is connected to the gate of the FET 121H.
  • the collector of the transistor 72 is connected to the gate of the FET 122H.
  • the collector of the transistor 73 is connected to the gate of the FET 123H.
  • the emitter of the transistor 71 is connected to a control line for the gate of the FET 121H.
  • the emitter of the transistor 71 is connected to the control line on the side of the FET 121 H with respect to the connection point between the control line and the emitter of the transistor 61.
  • the emitter of the transistor 72 is connected to the control line for the gate of the FET 122H.
  • the emitter of the transistor 72 is connected to the control line on the FET 122 H side with respect to the connection point between the control line and the emitter of the transistor 62.
  • the emitter of the transistor 73 is connected to the control line for the gate of the FET 123H.
  • the emitter of the transistor 73 is connected to the control line on the FET 123 H side with respect to the connection point between the control line and the emitter of the transistor 63.
  • a protection circuit 51 is connected between the output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 121L and the GND.
  • a protection circuit 52 is connected between an output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 122L and the GND.
  • a protection circuit 53 is connected between the output terminal (not shown) of the drive circuit 350 connected to the gate of the FET 123L and the GND.
  • the microcontroller 340 turns on the transistor 70.
  • the bases of the transistors 71, 72, 73 become GND level, and the transistors 71, 72, 73 are turned on.
  • the microcontroller 340 turns the transistor 60 off. By turning off the transistor 60, the transistors 61, 62, 63 are turned off.
  • gate control signals for the FETs 121H, 122H, and 123H output from the drive circuit 350 are supplied to the FETs 121H, 122H, and 123H.
  • microcontroller 340 turns off transistor 70. By turning off the transistor 70, the transistors 71, 72, 73 are turned off. At the same time, microcontroller 340 turns on transistor 60. When the transistor 60 is turned on, the bases of the transistors 61, 62, 63 become GND level, and the transistors 61, 62, 63 are turned on.
  • the gate control signal for the FET 121H output from the drive circuit 350 is supplied to the FET 121L through the transistor 61.
  • the gate control signal for the FET 122 H output from the drive circuit 350 is supplied to the FET 122 L through the transistor 62.
  • the transistor 63 is turned on, the gate control signal for the FET 123H output from the drive circuit 350 is supplied to the FET 123L through the transistor 63.
  • gate voltages higher than those in the normal state can be supplied to the FETs 121L, 122L, and 123L.
  • By raising the gate voltage it is possible to suppress a decrease in the gate-source voltage even if the source potential becomes a potential at a neutral point. While being able to suppress that resistance value between source-drain of FET121 L, 122 L, 123 L in an ON state becomes large, it can suppress that FET 121 L, 122 L, 123 L will be in an OFF state unintentionally.
  • the switching circuits 171 and 172 are turned off, and the gate control signals for the FETs 121L, 122L and 123L output from the driving circuit 350 are turned off. Thereby, the operation of the first inverter 120 can be forcibly stopped.
  • FIG. 32 schematically shows a power conversion device 100 including the sub drive circuit 170R according to the present embodiment.
  • the sub drive circuit 170L is connected to the FETs 121H, 122H, 123H, 121L, 122L, and 123L of the first inverter 120.
  • the sub drive circuit 170R is connected to the FETs 131H, 132H, 133H, 131L, 132L, and 133L of the second inverter 130.
  • the circuit configuration of the other sub drive circuit 170R is similar to that of the sub drive circuit 170L described with reference to FIGS. 30 and 31.
  • a neutral point is configured at the low side node N1.
  • a neutral point is formed at the node N2 on the low side.
  • the voltage of the gate control signal for turning on the FETs 131L, 132L, and 133L is made larger than that in the normal state by using the sub drive circuit 170R.
  • Power conversion device 100 may include both sub drive circuits 170L and 170R, or may include only one of them.
  • the switching circuits 171 and 172 provided with a transistor were illustrated, the switching circuits 171 and 172 may be provided with an analog switch.
  • the switching circuits 171 and 172 may include single throw switches.
  • the switching circuits 171 and 172 may include double throw type switches.
  • an analog switch having a small ON resistance for example, several tens of m ⁇ to several ⁇
  • failure diagnosis is performed to diagnose the presence or absence of a failure in the FET provided in the first and second inverters 120 and 130.
  • the diagnosis in the state in which the neutral point is configured on the low side is performed prior to the diagnosis in the state in which the neutral point is configured on the high side. Good.
  • the control circuit 300 performs the first diagnosis than the diagnosis performed by configuring the neutral point (node N3) on the high side of the first inverter 120.
  • a neutral point (node N1) is configured on the low side of the inverter 120 to perform diagnosis first.
  • the control circuit 300 executes the diagnosis shown in FIG. 12 prior to the diagnosis shown in FIG.
  • the control circuit 300 performs diagnosis rather than performing diagnosis by configuring the neutral point (node N4) on the high side of the second inverter 130.
  • a neutral point (node N2) is configured on the low side of the second inverter 130 to perform diagnosis first.
  • the control circuit 300 executes the diagnosis shown in FIG. 20 prior to the diagnosis shown in FIG.
  • control circuit 300 executes the diagnosis shown in FIGS. 12 and 20 prior to the diagnosis shown in FIGS. 16 and 24. .
  • control circuit 300 executes the diagnosis shown in FIGS. 12 and 20 prior to the diagnosis shown in FIGS. 16 and 24. .
  • a vehicle such as a car generally includes an electric power steering device.
  • the electric power steering apparatus generates an assist torque for assisting a steering torque of a steering system generated by the driver operating the steering wheel.
  • the assist torque is generated by the assist torque mechanism and can reduce the burden of the driver's operation.
  • the assist torque mechanism includes a steering torque sensor, an ECU, a motor, a reduction mechanism, and the like.
  • the steering torque sensor detects a steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor generates an auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the reduction mechanism.
  • FIG. 33 schematically shows a typical configuration of an electric power steering apparatus 500 according to this embodiment.
  • Electric power steering apparatus 500 includes a steering system 520 and an assist torque mechanism 540.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522 (also referred to as a "steering column”), universal joint 523A, 523B, and a rotating shaft 524 (also referred to as a "pinion shaft” or “input shaft”). , Rack and pinion mechanism 525, rack shaft 526, left and right ball joints 552A, 552B, tie rods 527A, 527B, knuckles 528A, 528B, and left and right steering wheels (eg, left and right front wheels) 529A, 529B.
  • the steering handle 521 is connected to the rotation shaft 524 via the steering shaft 522 and the universal joint 523A, 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 has a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 via a ball joint 552A, a tie rod 527A and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B and a knuckle 528B in this order.
  • the right side and the left side respectively correspond to the right side and the left side viewed from the driver sitting in the seat.
  • a steering torque is generated when the driver operates the steering wheel 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525.
  • the driver can operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a reduction mechanism 544, and a power conversion device 545.
  • the assist torque mechanism 540 applies assist torque to the steering system 520 from the steering wheel 521 to the left and right steering wheels 529A, 529B.
  • the assist torque may be referred to as "additional torque”.
  • the control circuit 300 according to the first embodiment can be used as the ECU 542, and the power conversion device 100 according to the first embodiment can be used as the power conversion device 545. Further, the motor 543 corresponds to the motor 200 in the first embodiment.
  • the motor drive unit 400 according to the first embodiment can be suitably used as an electromechanical integrated unit including the ECU 542, the motor 543, and the power conversion device 545.
  • the steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering wheel 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an assist torque corresponding to the steering torque based on the drive signal.
  • the assist torque is transmitted to the rotation shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotation shaft 524 to the rack and pinion mechanism 525.
  • the electric power steering apparatus 500 can be classified into a pinion assist type, a rack assist type, a column assist type, and the like according to the portion where the assist torque is applied to the steering system 520.
  • a pinion assist type electric power steering apparatus 500 is illustrated in FIG.
  • the electric power steering apparatus 500 may be a rack assist type, a column assist type, or the like.
  • the external device 560 is, for example, a vehicle speed sensor.
  • the external device 560 may be another ECU that can communicate in the in-vehicle network such as CAN (Controller Area Network).
  • the microcontroller of the ECU 542 can perform vector control or PWM control of the motor 543 based on a torque signal, a vehicle speed signal, and the like.
  • the ECU 542 sets a target current value based on at least the torque signal.
  • the ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor, and in consideration of the rotation signal of the rotor detected by the angle sensor.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current, such that the actual current value detected by the current sensor (not shown) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver.
  • the motor drive unit 400 of the present disclosure in the above-described mechanical-electrical integrated unit, the quality of parts can be improved, and appropriate current control can be performed in both normal and abnormal cases.
  • An electric power steering apparatus provided with a motor drive unit is provided.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
  • switch element (FET) 111: switch element (FET) 112: switch element (FET) 113: switch element (FET) 114: switch element (FET) 115: switch element (FET) 116: switch element (FET) 120: first inverters 121H, 122H, 123H: high side switching element (FET) 121L, 122L, 123L: low side switching element (FET) 121R, 122R, 123R: shunt resistor 130: Second inverters 131H, 132H, 133H: high side switching elements (FETs) 131L, 132L, 133L: low side switching Element (FET) 131R, 132R, 133R: Shunt resistor 140 Diode 150: Current sensor 160L, 160R: Sub drive circuit 161, 162: Switching circuit 170L, 170R: Sub drive circuit 171, 172: Switching circuit 200: Electric motor 300: Control circuit 310

Abstract

インバータが備えるスイッチング素子のうちのどのスイッチング素子が故障したのかを特定する。実施形態に係る電力変換装置(100)は、第1インバータ(120)のローサイドに中性点を構成する場合に、第1インバータのローサイドスイッチング素子をオンにする制御信号を供給する第1駆動回路(160L、170L)を備える。第1駆動回路は、第1インバータに中性点を構成しない場合よりも大きい電圧の制御信号を、第1インバータのローサイドスイッチング素子に供給する。制御回路(300)は、第1インバータのローサイドに第1中性点を構成させて、第1および第2インバータの故障の有無を診断する第1診断と、第1インバータのハイサイドに第2中性点を構成させて、第1および第2インバータの故障の有無を診断する第2診断とを実行する。制御回路は、第2診断よりも第1診断を先に実行する。

Description

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
本開示は、電動モータに供給する電力を変換する電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置に関する。
ブラシレスDCモータおよび交流同期モータなどの電動モータ(以下、単に「モータ」と表記する。)は、一般的に三相電流によって駆動される。三相電流の波形を正確に制御するため、ベクトル制御などの複雑な制御技術が用いられる。このような制御技術では、高度な数学的演算が必要であり、マイクロコントローラ(マイコン)などのデジタル演算回路が用いられる。ベクトル制御技術は、モータの負荷変動が大きな用途、例えば、洗濯機、電動アシスト自転車、電動スクータ、電動パワーステアリング装置、電気自動車、産業機器などの分野で活用されている。一方、出力が相対的に小さなモータでは、パルス幅変調(PWM)方式などの他のモータ制御方式が採用されている。 
車載分野においては、自動車用電子制御ユニット(ECU:Electrical Contorl Unit)が車両に用いられる。ECUは、マイクロコントローラ、電源、入出力回路、ADコンバータ、負荷駆動回路およびROM(Read Only Memory)などを備える。ECUを核として電子制御システムが構築される。例えば、ECUはセンサからの信号を処理してモータなどのアクチュエータを制御する。具体的に説明すると、ECUはモータの回転速度やトルクを監視しながら、電力変換装置におけるインバータを制御する。ECUの制御の下で、電力変換装置はモータに供給する駆動電力を変換する。 
近年、モータ、電力変換装置およびECUが一体化された機電一体型モータが開発されている。特に車載分野においては、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 
例えば特許文献1は、制御部と、2つのインバータとを備え、三相モータに供給する電力を変換する電力変換装置を開示している。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチング素子およびローサイドスイッチング素子を含む3つのレグから構成されるブリッジ回路を備える。制御部は、2つのインバータにおけるスイッチング素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。本願明細書において、「異常」とは、主としてスイッチング素子の故障を意味する。また、「正常時の制御」は、全てのスイッチング素子が正常な状態における制御を意味し、「異常時の制御」は、あるスイッチング素子に故障が生じた状態における制御を意味する。 
異常時の制御においては、2つのインバータのうちの故障したスイッチング素子を含むインバータ(以下、「故障インバータ」と表記する。)には、スイッチング素子を所定の規則でオンおよびオフすることにより巻線の中性点が構成される。その規則によれば、例えば、ハイサイドスイッチング素子が常時オフとなるオープン故障が発生した場合、インバータのブリッジ回路において、3つのハイサイドスイッチング素子のうちの故障したスイッチング素子以外のものはオフし、かつ、3つのローサイドスイッチング素子はオンする。その場合、中性点はローサイド側に構成される。または、ハイサイドスイッチング素子が常時オンとなるショート故障が発生した場合、インバータのブリッジ回路において、3つのハイサイドスイッチング素子のうちの故障したスイッチング素子以外のものはオンし、かつ、3つのローサイドスイッチング素子はオフする。その場合、中性点はハイサイド側に構成される。特許文献1の電力変換装置によれば、異常時において、三相の巻線の中性点は、故障インバータの中に構成される。スイッチング素子に故障が生じても、正常な方のインバータを用いてモータ駆動を継続させることができる。
特開2014-192950号公報 特開2017-063571号公報
上記のような2つのインバータを用いてモータを駆動する装置において、インバータに故障が発生した場合には、その故障箇所を特定することが求められる。 
特許文献2は、Y結線された巻線を有するモータを1つのインバータで駆動する装置を開示している。特許文献2では、予め定められた通電パターンにおいて検出された信号を、予め定められた異常種類対応表に照合して、配線の断線および短絡を検出することが開示されている。 
しかし、特許文献2の技術では、インバータが備えるスイッチング素子に故障が発生した場合に、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することはできない。 
2つのインバータを用いてモータを駆動する装置においては、スイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することが求められる。 
本開示の実施形態は、スイッチング素子に故障が発生した場合に、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することが可能な電力変換装置を提供する。
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続される第1インバータと、前記各相の巻線の他端に接続される第2インバータと、前記第1および第2インバータの動作を制御する制御回路とを備え、前記第1および第2インバータのそれぞれは、複数のローサイドスイッチング素子および複数のハイサイドスイッチング素子を備え、前記電力変換装置は、前記第1インバータのローサイドに中性点を構成する場合に、前記第1インバータのローサイドスイッチング素子をオンにする制御信号を前記第1インバータのローサイドスイッチング素子に供給する第1駆動回路をさらに備え、前記第1駆動回路は、前記第1インバータに中性点を構成しない場合に前記第1インバータのローサイドスイッチング素子をオンにする制御信号よりも大きい電圧の制御信号を、前記第1インバータのローサイドスイッチング素子に供給し、前記制御回路は、前記第1インバータのローサイドに第1中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第1診断と、前記第1インバータのハイサイドに第2中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第2診断とを実行し、前記制御回路は、前記第2診断よりも前記第1診断を先に実行する。
本開示の実施形態によれば、インバータが備えるスイッチング素子に故障が発生した場合に、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。
図1は、例示的な実施形態1による電力変換装置100の回路構成を示す回路図である。 図2は、例示的な実施形態1による電力変換装置100の他の回路構成を示す回路図である。 図3は、例示的な実施形態1による電力変換装置100のさらなる他の回路構成を示す回路図である。 図4は、例示的な実施形態1による電力変換装置100のさらなる他の回路構成を示す回路図である。 図5は、電力変換装置100を備えるモータ駆動ユニット400の典型的な構成を示すブロック図である。 図6は、三相通電制御に従って電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を示す図である。 図7は、2つの切替回路110および第1インバータ120のFETが第1状態にあるときの電力変換装置100内の電流の流れを示す模式図である。 図8は、第1状態において電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形を示す図である。 図9は、2つの切替回路110および第1インバータ120のFETが第3状態にあるときの電力変換装置100内の電流の流れを示す模式図である。 図10は、ローサイドに中性点を構成して故障診断を行う動作の例を示す図である。 図11は、第1および第2インバータ120、130が備えるFETを示す図である。 図12は、ローサイドに中性点を構成した場合における、第2インバータ130においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。 図13は、FET132H、133Lをオンにしたときの故障診断を説明する図である。 図14は、FET133H、131Lをオンにしたときの故障診断を説明する図である。 図15は、ハイサイドに中性点を構成して故障診断を行う動作の例を示す図である。 図16は、ハイサイドに中性点を構成した場合における、第2インバータ130においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。 図17は、FET132H、133Lをオンにしたときの故障診断を説明する図である。 図18は、FET133H、131Lをオンにしたときの故障診断を説明する図である。 図19は、ローサイドに中性点を構成して故障診断を行う動作の例を示す図である。 図20は、第2インバータ130のローサイドに中性点を構成した場合における、第1インバータ120においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。 図21は、FET122H、123Lをオンにしたときの故障診断を説明する図である。 図22は、FET123H、121Lをオンにしたときの故障診断を説明する図である。 図23は、ハイサイドに中性点を構成して故障診断を行う動作の例を示す図である。 図24は、第2インバータ130のハイサイドに中性点を構成した場合における、第1インバータ120においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。 図25は、FET122H、123Lをオンにしたときの故障診断を説明する図である。 図26は、FET123H、121Lをオンにしたときの故障診断を説明する図である。 図27は、サブ駆動回路160Lを備える電力変換装置100を模式的に示す回路図である。 図28は、サブ駆動回路160Lの回路構成を模式的に示す回路図である。 図29は、サブ駆動回路160Rを備える電力変換装置100を模式的に示す回路図である。 図30は、サブ駆動回路170Lを備える電力変換装置100を模式的に示す回路図である。 図31は、サブ駆動回路170Lの回路構成を模式的に示す回路図である。 図32は、サブ駆動回路170Rを備える電力変換装置100を模式的に示す回路図である。 図33は、例示的な実施形態2による電動パワーステアリング装置500の典型的な構成を示す模式図である。
以下、添付の図面を参照しながら、本開示の電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 
本願明細書においては、三相(U相、V相、W相)の巻線を有する三相モータに供給する電力を変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力を変換する電力変換装置も本開示の範疇である。 
(実施形態1) 図1は、本実施形態による電力変換装置100の回路構成を模式的に示している。 
電力変換装置100は、2つの切替回路110、第1インバータ120および第2インバータ130を備える。電力変換装置100は種々のモータに供給する電力を変換することができる。モータ200は、三相交流モータである。 
モータ200は、U相の巻線M1、V相の巻線M2およびW相の巻線M3を備え、第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。本願明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味する。第1インバータ120は、各相に対応した端子U_L、V_LおよびW_Lを有し、第2インバータ130は、各相に対応した端子U_R、V_RおよびW_Rを有する。 
第1インバータ120の端子U_Lは、U相の巻線M1の一端に接続され、端子V_Lは、V相の巻線M2の一端に接続され、端子W_Lは、W相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子U_Rは、U相の巻線M1の他端に接続され、端子V_Rは、V相の巻線M2の他端に接続され、端子W_Rは、W相の巻線M3の他端に接続される。モータとのこのような結線は、いわゆるスター結線およびデルタ結線とは異なる。 
2つの切替回路110は、スイッチ素子111、112、113および114を有する。本願明細書では、2つの切替回路110において、スイッチ素子111、112が設けられたGND側の切替回路110を「GND側切替回路」と呼び、また、スイッチ素子113、114が設けられた電源側の切替回路110を「電源側切替回路」と呼ぶ。すなわち、GND側切替回路は、スイッチ素子111、112を有し、電源側切替回路は、スイッチ素子113、114を有する。 
電力変換装置100では、第1インバータ120と第2インバータ130とは、2つの切替回路110によって電源101とGNDとに電気的に接続可能である。 
具体的に説明すると、スイッチ素子111は、第1インバータ120とGNDとの接続・非接続を切替える。スイッチ素子112は、第2インバータ130とGNDとの接続・非接続を切替える。スイッチ素子113は、電源101と第1インバータ120との接続・非接続を切替える。スイッチ素子114は、電源101と第2インバータ130との接続・非接続を切替える。 
スイッチ素子111、112、113および114のオンおよびオフは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。スイッチ素子111、112、113および114は、双方向の電流を遮断することが可能である。スイッチ素子111、112、113および114として、例えば、サイリスタ、アナログスイッチICなどの半導体スイッチ、および、メカニカルリレーなどを用いることができる。ダイオードおよび絶縁ゲートバイポーラトランジスタ(IGBT)などの組み合わせを用いても構わない。ただし、本開示によるスイッチ素子は、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)などの半導体スイッチを含む。以下、スイッチ素子111、112、113および114としてFETを用いる例を説明し、スイッチ素子111、112、113および114を、FET111、112、113および114とそれぞれ表記する。 
FET111、112は、寄生ダイオード111D、112Dをそれぞれ有し、寄生ダイオード111D、112Dが第1および第2インバータ120、130にそれぞれ向くように配置される。より詳細には、FET111は、寄生ダイオード111Dにおいて第1インバータ120に向けて順方向電流が流れるように配置され、FET112は、寄生ダイオード112Dにおいて第2インバータ130に向けて順方向電流が流れるように配置される。 
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、電源側切替回路およびGND側切替回路において、各インバータ用として複数のスイッチ素子を設けておくことが好ましい。 
図2は、本実施形態による電力変換装置100の他の回路構成を模式的に示している。 
電源側切替回路110は、逆接続保護用のスイッチ素子(FET)115およびスイッチ素子(FET)116をさらに有していてもよい。FET113、114、115および116は寄生ダイオードを有し、FET内の寄生ダイオードの向きが互いに対向するように配置される。具体的に説明すると、FET113は、寄生ダイオードにおいて電源101に向けて順方向電流が流れるように配置され、FET115は、寄生ダイオードにおいて第1インバータ120に向けて順方向電流が流れるように配置される。FET114は、寄生ダイオードにおいて電源101に向けて順方向電流が流れるように配置され、FET116は、寄生ダイオードにおいて第2インバータ130に向けて順方向電流が流れるように配置される。電源101が逆向きに接続された場合でも、逆接続保護用の2つのFETによって逆電流を遮断することができる。 
電源101は所定の電源電圧を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータおよびDC―DCコンバータであってもよいし、バッテリー(蓄電池)であっても良い。 
電源101は、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源および第2インバータ130用の第2電源を備えていてもよい。 
電源101と電源側切替回路との間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、電源101と各インバータとの間にはコンデンサ103が接続されている。図示する例では、コイル102と電源側切替回路110との間にコンデンサ103が接続されている。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
第1インバータ120(「ブリッジ回路L」と表記する場合がある。)は、3個のレグから構成されるブリッジ回路を含む。各レグは、ローサイドスイッチング素子およびハイサイドスイッチング素子を有する。図1に示されるスイッチング素子121L、122Lおよび123Lがローサイドスイッチング素子であり、スイッチング素子121H、122Hおよび123Hが、ハイサイドスイッチング素子である。スイッチング素子として、例えばFETやIGBTを用いることができる。以下、スイッチング素子としてFETを用いる例を説明し、スイッチング素子をFETと表記する場合がある。例えば、スイッチング素子121L、122Lおよび123Lは、FET121L、122Lおよび123Lと表記される。 
第1インバータ120は、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ(図5を参照)として、3個のシャント抵抗121R、122Rおよび123Rを備える。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。例えば、シャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチング素子とグランドとの間にそれぞれ接続される。具体的には、シャント抵抗121RはFET121LとFET111との間に電気的に接続され、シャント抵抗122RはFET122LとFET111との間に電気的に接続され、シャント抵抗123RはFET123LとFET111との間に電気的に接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 
第1インバータ120と同様に、第2インバータ130(「ブリッジ回路R」と表記する場合がある。)は、3個のレグから構成されるブリッジ回路を含む。図1に示されるFET131L、132Lおよび133Lがローサイドスイッチング素子であり、FET131H、132Hおよび133Hがハイサイドスイッチング素子である。また、第2インバータ130は、3個のシャント抵抗131R、132Rおよび133Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチング素子とグランドとの間に接続される。第1および第2インバータ120、130の各FETは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。 
図1では、各インバータにおいて各レグに1個のシャント抵抗を配置する構成を例示している。ただし、第1および第2インバータ120、130は、6個以下のシャント抵抗を備えることができる。例えば、6個以下のシャント抵抗は、第1および第2インバータ120、130が備える6個のレグのうちの6個以下のローサイドスイッチング素子とGNDとの間に接続され得る。さらにこれをn相モータに拡張すると、第1および第2インバータ120、130は、2n個以下のシャント抵抗を備えることができる。例えば、2n個以下のシャント抵抗は、第1および第2インバータ120、130が備える2n個のレグのうちの2n個以下のローサイドスイッチング素子とGNDとの間に接続され得る。 
図3および図4は、本実施形態による電力変換装置100のさらなる他の回路構成を模式的に示している。 
図3に示されるように、第1または第2インバータ120、130の各レグと、巻線M1、M2およびM3との間に3つのシャント抵抗を配置することも可能である。例えば、第1インバータ120と巻線M1、M2およびM3の一端との間にシャント抵抗121R、122Rおよび123Rが配置され得る。また例えば、図示されないが、シャント抵抗121R、122Rは第1インバータ120と巻線M1、M2の一端との間に配置され、シャント抵抗123Rは、第2インバータ130と巻線M3の他端との間に配置され得る。このような構成において、U、VおよびW相用に3個のシャント抵抗が配置されていれば十分であり、最低2個のシャント抵抗が配置されていればよい。 
図4に示されるように、例えば各インバータに、各相の巻線に共通のシャント抵抗を1つだけ配置してもよい。1個のシャント抵抗は、例えば第1インバータ120のローサイド側のノードN1(各レグの接続点)とFET111との間に電気的に接続され、他の1個のシャント抵抗は、例えば第2インバータ130のローサイド側のノードN2とFET112との間に電気的に接続され得る。 
または、ローサイド
側と同様に、1個のシャント抵抗は、例えば第1インバータ120のハイサイド側のノードN3とFET113との間に電気的に接続され、他の1個のシャント抵抗は、例えば第2インバータ130のハイサイド側のノードN4とFET114との間に電気的に接続される。このように、使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストや設計仕様などを考慮して適宜決定される。 
図5は、電力変換装置100を備えるモータ駆動ユニット400の典型的なブロック構成を模式的に示している。 
モータ駆動ユニット400は、電力変換装置100およびモータ200を備える。電力変換装置100は、制御回路300を備える。なお、制御回路300は電力変換装置100とは別の構成要素として設けられていてもよい。 
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は、電力変換装置100に接続され、電力変換装置100を制御することによりモータ200を駆動する。 
具体的には、制御回路300は、目的とするロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサに代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えばレゾルバやホールICである。角度センサ320は、モータ200のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をマイクロコントローラ340に出力する。入力回路330は、電流センサ150によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取って、実電流値のレベルをマイクロコントローラ340の入力レベルに必要に応じて変換し、実電流値をマイクロコントローラ340に出力する。 
マイクロコントローラ340は、電力変換装置100の第1および第2インバータ120、130における各FETのスイッチング動作(ターンオンまたはターンオフ)を制御する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。また、マイクロコントローラ340は、電力変換装置100の2つの切替回路110における各FETのオンおよびオフを制御することができる。 
駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ120、130における各FETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各FETのゲートに制御信号を与える。また、駆動回路350は、2つの切替回路110における各FETのオンおよびオフを制御する制御信号(ゲート制御信号)をマイクロコントローラ340からの指示に従って生成し、各FETのゲートに制御信号を与えることができる。 
駆動回路350は、昇圧回路370を備える。昇圧回路370は、電源101から供給された電圧を昇圧する。例えば、電源101の出力電圧が12Vである場合、昇圧回路370は、その電圧を18Vに昇圧したり24Vに昇圧したりする。昇圧した電圧は、第1および第2インバータ120、130における各FETのスイッチング動作の制御や、2つの切替回路110における各FETのオンおよびオフの制御に用いられ得る。駆動回路350はチャージポンプ方式であってもよいし、ブートストラップ方式であってもよい。また、昇圧回路370はチャージポンプ方式であってもよい。 
駆動回路350は、電圧検出回路380を備える。電圧検出回路380は、例えば、第1および第2インバータ120、130が備える各FETのソース-ドレイン間の電圧を検出する。また、例えば、後述するように、U相、V相、W相のそれぞれの電圧を検出する。 
なお、マイクロコントローラが2つの切替回路110のFETの制御を実行するようにしてもよい。なお、マイクロコントローラ340は駆動回路350の機能を備えていてもよい。その場合、制御回路300は駆動回路350を有していなくてもよい。 
ROM360は、例えば書き込み可能なメモリ、書き換え可能なメモリまたは読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 
電力変換装置100には正常時および異常時の制御がある。制御回路300(主としてマイクロコントローラ340)は、電力変換装置100の制御を正常時の制御から異常時の制御に切替えることができる。FETの故障パターンに従って、2つの切替回路110における各FETのオン・オフ状態が決定される。また、故障インバータにおける各FETのオン・オフ状態も決定される。 
(1.正常時の制御) 先ずは、電力変換装置100の正常時の制御方法の具体例を説明する。上述したとおり、正常とは、第1および第2インバータ120、130の各FETは故障しておらず、かつ、2つの切替回路110における各FETも故障していない状態を指す。 
正常時において、制御回路300は、2つの切替回路110のFET111、112、113および114を全てオンにする。これにより、電源101と第1インバータ120とが電気的に接続され、かつ、電源101と第2インバータ130とが電気的に接続される。また、第1インバータ120とGNDとが電気的に接続され、かつ、第2インバータ130とGNDとが電気的に接続される。この接続状態において、制御回路300は、第1および第2インバータ120、130の両方を用いて三相通電制御することによってモータ200を駆動する。具体的に、制御回路300は、第1インバータ120のFETと第2インバータ130のFETとを互いに逆位相(位相差=180°)でスイッチング制御することにより三相通電制御を行う。例えば、FET121L、121H、131Lおよび131Hを含むHブリッジに着目すると、FET121Lがオンすると、FET131Lはオフし、FET121Lがオフすると、FET131Lはオンする。これと同様に、FET121Hがオンすると、FET131Hはオフし、FET121Hがオフすると、FET131Hはオンする。電源101から出力された電流は、ハイサイドスイッチング素子、巻線、ローサイドスイッチング素子を通ってGNDに流れる。 
図6は、三相通電制御に従って電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示している。図6の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表している。 
表1は、図6の正弦波において電気角毎に、各インバータの端子に流れる電流値を示している。具体的には、表1は、第1インバータ120(ブリッジ回路L)の端子U_L、V_LおよびW_Lに流れる、電気角30°毎の電流値、および、第2インバータ130(ブリッジ回路R)の端子U_R、V_RおよびW_Rに流れる、電気角30°毎の電流値を示している。ここで、ブリッジ回路Lに対しては、ブリッジ回路Lの端子からブリッジ回路Rの端子に流れる電流方向を正の方向と定義する。図6に示される電流の向きはこの定義に従う。また、ブリッジ回路Rに対しては、ブリッジ回路Rの端子からブリッジ回路Lの端子に流れる電流方向を正の方向と定義する。従って、ブリッジ回路Lの電流とブリッジ回路Rの電流との位相差は180°となる。表1において、電流値I1の大きさは〔(3)1/2/2〕*Ipkであり、電流値I2の大きさはIpk/2である。 
Figure JPOXMLDOC01-appb-T000001
電気角0°においては、U相の巻線M1には電流は流れない。V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れる。 
電気角30°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。 
電気角60°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。 
電気角90°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れる。 
電気角120°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。V相の巻線M2には電流は流れない。 
電気角150°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れる。 
電気角180°においては、U相の巻線M1には電流は流れない。V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。 
電気角210°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れる。 
電気角240°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。 
電気角270°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。 
電気角300°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI1
の電流が流れる。V相の巻線M2には電流は流れない。 
電気角330°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れる。 
三相通電制御によれば、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に常に「0」になる。例えば、制御回路300は、図6に示される電流波形が得られるようなPWM制御によってブリッジ回路LおよびRの各FETのスイッチング動作を制御する。 
(2.異常時の制御) 上述したように、異常とは主としてFETに故障が発生したことを意味する。FETの故障には、大きく分けて「オープン故障」と「ショート故障」とがある。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「ショート故障」は、FETのソース-ドレイン間が短絡する故障を指す。 
再び図1を参照する。電力変換装置100の動作時において、通常は、複数のFETの中から1つのFETがランダムに故障するランダム故障が発生すると考えられる。本開示は、主としてランダム故障が発生した場合における電力変換装置100の制御方法を対象としている。ただし、本開示は、複数のFETが連鎖的に故障した場合などの電力変換装置100の制御方法も対象とする。連鎖的な故障とは、例えば1つのレグのハイサイドスイッチング素子およびローサイドスイッチング素子に同時に発生する故障を意味する。 
電力変換装置100を長期間使用すると、ランダム故障が起こる可能性がある。なお、ランダム故障は、製造時に発生し得る製造故障とは異なるものである。2つのインバータの複数のFETのうちの1つでも故障すると、正常時の三相通電制御はもはや不可能となる。 
故障検知の一例として、駆動回路350は、各FETのソース-ドレイン間の電圧を監視し、ソース-ドレイン間の電圧と所定の閾値電圧とVdsとを比較することによって、FETの故障を検知する。閾値電圧は、例えば外部IC(不図示)とのデータ通信および外付け部品によって駆動回路350に設定される。駆動回路350は、マイクロコントローラ340のポートと接続され、故障検知信号をマイクロコントローラ340に通知する。例えば、駆動回路350は、FETの故障を検知すると、故障検知信号をアサートする。マイクロコントローラ340は、アサートされた故障検知信号を受信すると、駆動回路350の内部データを読み出して、複数のFETの中でどのFETが故障しているのかを判別する。 
故障検知の他の一例としては、マイクロコントローラ340は、モータの実電流値と目標電流値との差に基づいてFETの故障を検知することも可能である。ただし、故障検知は、これらの手法に限られず、故障検知に関する種々の手法を用いることができる。 
マイクロコントローラ340は、故障検知信号がアサートされると、電力変換装置100の制御を正常時の制御から異常時の制御に切替える。例えば、正常時から異常時に制御を切替えるタイミングは、故障検知信号がアサートされてから10msec~30msec程度である。 
電力変換装置100の故障には様々な故障パターンが存在する。以下、故障パターンを場合分けして、電力変換装置100の異常時の制御をパターン毎に詳細に説明する。本実施形態では、2つのインバータのうちの第1インバータ120を故障インバータとして扱い、第2インバータ130を正常インバータとして扱う。 
〔2-1.ハイサイドスイッチング素子_オープン故障〕 第1インバータ120のブリッジ回路において、3個のハイサイドスイッチング素子がオープン故障したスイッチング素子を含む場合の異常時の制御を説明する。 
第1インバータ120のハイサイドスイッチング素子(FET121H、122Hおよび123H)の中でFET121Hがオープン故障したとする。なお、FET122Hまたは123Hがオープン故障した場合においても、以下で説明する制御方法で電力変換装置100を制御することができる。 
FET121Hがオープン故障している場合、制御回路300は、2つの切替回路110のFET111、112、113および114と、第1インバータ120のFET122H、123H、121L、122Lおよび123Lとを第1状態にする。第1状態では、2つの切替回路110のFET111、113はオフし、FET112、114はオンする。また、第1インバータ120の、故障したFET121H以外のFET122H、123H(故障したFET121Hとは異なるハイサイドスイッチング素子)はオフし、FET121L、122Lおよび123Lはオンする。 
第1状態において、第1インバータ120は、電源101およびGNDから電気的に切り離され、第2インバータ130は電源101およびGNDに電気的に接続される。換言すると、第1インバータ120が異常のとき、FET113は電源101と第1インバータ120との接続を遮断し、かつ、FET111は第1インバータ120とGNDとの接続を遮断する。また、3つのローサイドスイッチング素子を全てオンすることにより、ローサイド側のノードN1が各巻線の中性点として機能する。本願明細書において、あるノードが中性点として機能することを、「中性点が構成される」と表現することとする。電力変換装置100は、第1インバータ120のローサイド側に構成された中性点および第2インバータ130を用いてモータ200を駆動する。 
図7は、2つの切替回路110および第1インバータ120のFETが第1状態にあるときの電力変換装置100内の電流の流れを模式的に示している。図8は、第1状態において電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。図7には、例えばモータ電気角270°での電流の流れを示している。直線の矢印のそれぞれは、電源101からモータ200に流れる電流を表している。 
図7に示される状態では、第2インバータ130においてFET131H、132Lおよび133Lはオン状態であり、FET131L、132Hおよび133Hはオフ状態である。第2インバータ130のFET131Hを流れた電流は、巻線M1および第1インバータ120のFET121Lを通って中性点に流れる。その電流の一部は、FET122Lを通って巻線M2に流れ、残りの電流は、FET123Lを通って巻線M3に流れる。巻線M2およびM3を流れた電流は、第2インバータ130側のFET112を通ってGNDに流れる。また、FET131Lの還流ダイオード(「回生ダイオード」とも呼ばれる。)には回生電流がモータ200の巻線M1に向けて流れる。図11を用いて後述するように、FET121L、122L、123L、121H、122H、123H、131L、132L、133L、131H、132H、133Hのそれぞれの内部には、寄生ダイオード140が形成されている。各FETにおいて、寄生ダイオード140は、電源101の方向に向けて順方向電流が流れるように配置されている。本実施形態では、この寄生ダイオード140を還流ダイオードとして用いる。 
表2は、図8の電流波形における電気角毎に、第2インバータ130の端子に流れる電流値を例示している。具体的には、表2は、第2インバータ130(ブリッジ回路R)の端子U_R、V_RおよびW_Rに流れる、電気角30°毎の電流値を例示している。電流方向の定義は上述したとおりである。なお、電流方向の定義によって、図8に示される電流値の正負の符号は、表2に示される電流値のそれとは逆の関係(位相差180°)になる。 
Figure JPOXMLDOC01-appb-T000002
例えば、電気角30°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。電気角60°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。中性点に流れ込む電流と中性点から流れ出る電流との総和は電気角毎に常に「0」になる。制御回路300は、例えば図8に示される電流波形が得られるようなPWM制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。 
表1および表2に示されるように、正常時および異常時の制御の間でモータ200に流れるモータ電流は電気角毎に変わらないことが分かる。このため、正常時の制御と比較して、異常時の制御においてはモータのアシストトルクは低減しない。 
電源101と第1インバータ120とは電気的に非接続であるので、電源101から第1インバータ120に電流が流れ込まない。また、第1インバータ120とGNDとは電気的に非接続であるので、中性点を流れる電流はGNDには流れない。これにより、電力損失を抑制することができ、かつ、駆動電流の閉ループを形成することで適切な電流制御が可能となる。 
ハイサイドスイッチング素子(FET121H)がオープン故障している場合、2つの切替回路110および第1インバータ120のFETの状態は第1状態に限られない。例えば、制御回路300は、それらのFETを第2状態にしてもよい。第2状態では、2つの切替回路110のFET113はオンし、かつ、111はオフし、かつ、FET112、114はオンする。また、第1インバータ120の、故障したFET121H以外のFET122H、123Hはオフし、FET121L、122Lおよび123Lはオンする。第1状態と第2状態との差異は、FET113がオンしているか否かである。FET113がオンしてもよい理由は、FET121Hがオープン故障の場合、FET122H、123Hをオフ状態に制御することによりハイサイドスイッチング素子は全て開放状態となり、FET113がオンしても、電源101から第1インバータ120に電流は流れないためである。このように、オープン故障時において、FET113はオン状態でもよいし、オフ状態でもよい。 
〔2-2.ハイサイドスイッチング素子_ショート故障〕 第1インバータ120のブリッジ回路において、3個のハイサイドスイッチング素子がショート故障したスイッチング素子を含む場合の異常時の制御を説明する。 
第1インバータ120のハイサイドスイッチング素子(FET121H、122Hおよび123H)の中でFET121Hがショート故障したとする。なお、FET122Hまたは123Hがショート故障した場合においても、以下で説明する制御方法で電力変換装置100を制御することができる。 
FET121Hがショート故障している場合、制御回路300は、2つの切替回路110のFET111、112、113および114と、第1インバータ120のFET122H、123H、121L、122Lおよび123Lとを第1状態にする。なお、ショート故障の場合、FET113がオンすると、電源101からショートしたFET121Hに電流が流れ
込むので、第2状態での制御は禁止される。 
オープン故障時と同様に、3つのローサイドスイッチング素子を全てオンすることにより、ローサイド側のノードN1には各巻線の中性点が構成される。電力変換装置100は、第1インバータ120のローサイド側に構成された中性点および第2インバータ130を用いてモータ200を駆動する。制御回路300は、例えば図8に示される電流波形が得られるようなPWM制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。例えば、ショート故障時の第1状態において、電気角270°のときに電力変換装置100内に流れる電流の流れは図7に示されるとおりであり、また、モータ電気角毎の各巻線に流れる電流値は表2に示されるとおりである。 
なお、FET121Hがショート故障している場合、例えば、図7に示される各FETの第1状態で表2におけるモータ電気角0°~120°では、FET122Hの寄生ダイオードを通ってFET121Hに回生電流が流れ、表2におけるモータ電気角60°~180°では、FET123Hの寄生ダイオードを通ってFET121Hに回生電流が流れる。このように、ショート故障の場合、モータ電気角のある範囲では電流がFET121Hを通って分散し得る。 
この制御によれば、電源101と第1インバータ120とは電気的に非接続であるので、電源101から第1インバータ120に電流は流れ込まない。また、第1インバータ120とGNDとは電気的に非接続であるので、中性点を流れる電流はGNDには流れない。 
〔2-3.ローサイドスイッチング素子_オープン故障〕 第1インバータ120のブリッジ回路において、3個のローサイドスイッチング素子がオープン故障したスイッチング素子を含む場合の異常時の制御を説明する。 
第1インバータ120のローサイドスイッチング素子(FET121L、122Lおよび123L)の中でFET121Lがオープン故障したとする。なお、FET122Lまたは123Lがオープン故障した場合においても、以下で説明する制御方法で電力変換装置100を制御することができる。 
FET121Lがオープン故障している場合、制御回路300は、2つの切替回路110のFET111、112、113および114と、第1インバータ120のFET121H、122H、123H、122Lおよび123Lとを第3状態にする。第3状態では、2つの切替回路110のFET111、113はオフし、FET112、114はオンする。また、第1インバータ120の、故障したFET121L以外のFET122L、123L(故障した121Lとは異なるローサイドスイッチング素子)はオフし、FET121H、122Hおよび123Hはオンする。 
第3状態において、第1インバータ120は、電源101およびGNDから電気的に切り離され、第2インバータ130は電源101およびGNDに電気的に接続される。また、第1インバータ120の3つのハイサイドスイッチング素子を全てオンすることにより、ハイサイド側のノードN3には各巻線の中性点が構成される。 
図9は、2つの切替回路110および第1インバータ120のFETが第3状態にあるときの電力変換装置100内の電流の流れを模式的に示している。図9には、例えばモータ電気角270°における電流の流れを示している。直線の矢印のそれぞれは、電源101からモータ200に流れる電流を表している。 
図9に示される状態では、第2インバータ130においてFET131H、132Lおよび133Lはオン状態であり、FET131L、132Hおよび133Hはオフ状態である。第2インバータ130のFET131Hを流れた電流は、巻線M1および第1インバータ120のFET121Hを通って中性点に流れる。その電流の一部は、FET122Hを通って巻線M2に流れ、残りの電流は、FET123Hを通って巻線M3に流れる。巻線M2およびM3を流れた電流は、第2インバータ130側のFET112を通ってGNDに流れる。また、FET131Lの寄生ダイオードには回生電流がモータ200の巻線M1に向けて流れる。例えば、モータ電気角毎の各巻線に流れる電流値は表2に示されるとおりである。 
電力変換装置100は、第1インバータ120のハイサイド側に構成された中性点および第2インバータ130を用いてモータ200を駆動する。制御回路300は、例えば図8に示される電流波形が得られるようなPWM制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。 
この制御によれば、電源101と第1インバータ120とは電気的に非接続であるので、電源101から第1インバータ120の中性点に電流が流れ込まない。また、第1インバータ120とGNDとは電気的に非接続であるので、電流は第1インバータ120からGNDには流れない。 
ローサイドスイッチング素子(FET121L)がオープン故障している場合、2つの切替回路110および第1インバータ120のFETの状態は第3状態に限られない。例えば、制御回路300は、それらのFETを第4状態にしてもよい。第4状態では、2つの切替回路110のFET113はオフし、かつ、111はオンし、かつ、FET112、114はオンする。また、第1インバータ120の、故障したFET121L以外のFET122L、123Lはオフし、FET121H、122Hおよび123Hはオンする。第3状態と第4状態との差異は、FET111がオンしているか否かである。FET111がオンしてもよい理由は、FET121Lがオープン故障の場合、FET122L、123Lをオフ状態に制御することによりローサイドスイッチング素子は全て開放状態になり、FET111がオンしても、電流はGNDに流れないためである。このように、オープン故障時においては、FET111はオン状態でもよいし、オフ状態でもよい。 
〔2-4.ローサイドスイッチング素子_ショート故障〕 第1インバータ120のブリッジ回路において、3個のローサイドスイッチング素子がショート故障したスイッチング素子を含む場合の異常時の制御を説明する。 
第1インバータ120のローサイドスイッチング素子(FET121L、122Lおよび123L)の中でFET121Lがショート故障したとする。なお、FET122Lまたは123Lがショート故障した場合においても、以下で説明する制御方法で電力変換装置100を制御することができる。 
FET121Lがショート故障している場合、制御回路300は、オープン故障時と同様に、2つの切替回路110のFET111、112、113および114と、第1インバータ120のFET121H、122H、123H、122Lおよび123Lとを第3状態にする。なお、ショート故障の場合、FET111がオンすると、ショートしたFET121LからGNDに電流が流れ込むので、第4状態での制御は禁止される。 
図9に示される状態では、第2インバータ130においてFET131H、132Lおよび133Lはオン状態であり、FET131L、132Hおよび133Hはオフ状態である。第2インバータ130のFET131Hを流れた電流は、巻線M1および第1インバータ120のFET121Hを通って中性点に流れる。その電流の一部は、FET122Hを通って巻線M2に流れ、残りの電流は、FET123Hを通って巻線M3に流れる。巻線M2およびM3を流れた電流は、第2インバータ130側のFET112を通ってGNDに流れる。また、FET131Lの寄生ダイオードには回生電流がモータ200の巻線M1に向けて流れる。さらに、オープン故障とは異なりショート故障においては、ショートしたFET121Lからローサイド側のノードN1に電流が流れる。その電流の一部は、FET122Lの寄生ダイオードを通って巻線M2に流れ、残りの電流は、FET123Lの寄生ダイオードを通って巻線M3に流れる。巻線M2およびM3に流れた電流はFET112を通ってGNDに流れる。 
例えば、モータ電気角毎の各巻線に流れる電流値は表2に示されるとおりである。 
電力変換装置100は、第1インバータ120のハイサイド側に構成された中性点および第2インバータ130を用いてモータ200を駆動する。制御回路300は、例えば図8に示される電流波形が得られるようなPWM制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。 
この制御によれば、電源101と第1インバータ120とは電気的に非接続であるので、電源101から第1インバータ120の中性点に電流が流れ込まない。また、第1インバータ120とGNDとは電気的に非接続であるので、電流は第1インバータ120からGNDには流れない。 
上記の実施形態の説明では、2つのインバータのうちの第1インバータ120を故障インバータとして扱い、第2インバータ130を正常インバータとして扱った。第2インバータ130が故障インバータであり、第1インバータ120が正常インバータである場合も上記と同様に、異常時の制御を行うことができる。この場合は、第1インバータ120、第2インバータ130、切替回路110の制御を上記の制御と逆にする。すなわち、第2インバータ130に中性点を構成し、その中性点および第1インバータ120を用いてモータ200を駆動することができる。 
(3.故障診断) 次に、本実施形態の2つのインバータ120、130を用いてモータ200を駆動する電力変換装置100において、FETの故障の有無を診断する動作を説明する。本実施形態の故障診断では、FETに故障が発生した場合に、複数のFETのうちのどのFETが故障したのかを特定することができる。 
本実施形態の故障診断では、上記で説明した中性点を構成した状態で診断を行う。故障診断は、例えば、上述した正常時の制御動作中において、中性点を定期的に構成することによって行ってもよい。また、例えば、既に故障が発生し、中性点を構成してモータ200の駆動を行っている状態においても、故障診断を行うことができる。 
本実施形態の故障診断では、FETのオープン故障を検出する。上述したように、オープン故障とは、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗が常時ハイインピーダンスになること)を指す。 
〔3-1.第1インバータ120のローサイドに中性点を構成したときの故障診断〕 まず、第1インバータ120のローサイドのノードN1に中性点を構成して、故障診断を行う動作を説明する。 
図10は、中性点を構成して故障診断を行う動作の例を示す図である。 
制御回路300は、FET111、113をオフにして、FET112、114をオンにする。そして、FET121H、122H、123Hをオフにし、FET121L、122L、123Lをオンにして、ノードN1に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET131H、132Lをオンにし、FET131L、132H、133L、133Hをオフにする。これにより、第2インバータ130のハイサイドのFET131H、U相の巻線M1、中性点(ノードN1)、V相の巻線M2、および第2インバータ130のローサイドのFET132Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図11は、第1および第2インバータ120、130が備えるFETを示す図である。FET121L、122L、123L、121H、122H、123H、131L、132L、133L、131H、132H、133Hのそれぞれの内部には、寄生ダイオード14
0が形成されている。各FETにおいて、寄生ダイオード140は、電源101に向けて順方向電流が流れるように配置されている。すなわち、カソードが電源101の方を向き、アノードがGNDの方を向くように寄生ダイオード140は配置されている。本実施形態では、この寄生ダイオード140を還流ダイオードとして用いる。なお、FETに還流ダイオードが並列に接続された素子構成も本実施形態において用いることができる。 
図10を参照して、本実施形態では、上記の導電経路に流れる電流が、還流ダイオード140において逆方向電流となるスイッチング素子の故障の有無を診断する。図10に示す例では、導電経路に流れる電流は、FET121L、131H、132Lの還流ダイオード140において逆方向電流となる。すなわち、FET121L、131H、132Lの故障の有無を診断する。 
制御回路300は、上記の導電経路に電圧が印加されたときの、U相の電圧値、V相の電圧値およびW相の電圧値の少なくとも2つを用いて、故障の有無の診断を行う。U相の電圧値は、例えば、FET131HとFET131Lとが接続されるノードN131の電圧値である。ノードN131の電圧値は、例えば、ノードN131とGNDとの電位差である。ノードN131の電圧は、端子U_R(図1)の電圧と同じであり得る。V相の電圧値は、例えば、FET132HとFET132Lとが接続されるノードN132の電圧値である。ノードN132の電圧値は、例えば、ノードN132とGNDとの電位差である。ノードN132の電圧は、端子V_R(図1)の電圧と同じであり得る。W相の電圧値は、例えば、FET133HとFET133Lとが接続されるノードN133の電圧値である。ノードN133の電圧値は、例えば、ノードN133とGNDとの電位差である。ノードN133の電圧は、端子W_R(図1)の電圧と同じであり得る。電圧検出回路380(図5)は、これらU相、V相、W相それぞれの電圧値を検出し、マイクロコントローラ340に出力する。 
まず、FET121L、131H、132Lの全てが正常である場合の電圧値を説明する。FET121L、131H、132Lの全てが正常である場合、ノードN131の電圧は、電源101の出力電圧に近い値になる。また、ノードN132の電圧は、電源101の出力電圧とGND電圧との間の値になる。例えば、ノードN132の電圧は、電源101の出力電圧よりもGND電圧にやや寄った値となる。以下、このような電源101の出力電圧に近い値を電圧が“高”であると表現する。また、電源101の出力電圧とGND電圧との間の値を電圧が“中”であると表現する。 
マイクロコントローラ340は、ノードN131の電圧が“高”であり、ノードN132の電圧が“中”である場合、FET121L、131H、132Lの全てが正常であると判断する。 
次に、FET131Hがオープン故障した場合の電圧値を説明する。FET131Hがオープン故障した場合、ノードN131には電源電圧は印加されない。そのため、ノードN131、N132の電圧は共にGND電圧に近い値となる。以下、このようなGND電圧に近い値を電圧が“低”であると表現する。また、上記の電圧が“中”とは、電圧が“高”と“低”の間の値であることを表している。 
マイクロコントローラ340は、ノードN131、N132の電圧が共に“低”である場合、FET131Hがオープン故障したと判断する。 
次に、FET121Lがオープン故障した場合の電圧値を説明する。FET121Lがオープン故障した場合、ノードN131の電圧は“高”となり、ノードN132の電圧は“低”となる。 
マイクロコントローラ340は、ノードN131の電圧が“高”であり、ノードN132の電圧が“低”である場合、FET121Lがオープン故障したと判断する。 
次に、FET132Lがオープン故障した場合の電圧値を説明する。この場合、ノードN132はGNDに接続されない。このため、ノードN131、N132の電圧は共に“高”となる。 
マイクロコントローラ340は、ノードN131、N132の電圧が共に“高”である場合、FET132Lがオープン故障したと判断する。 
図12は、ローサイドに中性点を構成した場合における、第2インバータ130においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。図12に示す表では、オンにするスイッチング素子に対して診断可能なスイッチング素子を白丸印で表している。図10に示す例では、FET131H、132Lがオン状態であり、FET121L、131H、132Lの故障の有無を診断することができる。以下、図13を用いて、FET132H、133Lがオン状態のときの故障診断を説明する。また、図14を用いて、FET133H、131Lがオン状態のときの故障診断を説明する。 
図13は、FET132H、133Lをオンにしたときの故障診断を説明する図である。図10の例と同様に、制御回路300は、ノードN1に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET132H、133Lをオンにし、FET131L、131H、132L、133Hをオフにする。これにより、第2インバータ130のハイサイドのFET132H、V相の巻線M2、中性点(ノードN1)、W相の巻線M3、および第2インバータ130のローサイドのFET133Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図13に示す例では、導電経路に流れる電流は、FET132H、122L、133Lの還流ダイオード140において逆方向電流となる。図13に示す例では、FET132H、122L、133Lの故障の有無を診断する。 
図10を用いて説明した方法と同様に、マイクロコントローラ340は、ノードN132、N133のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN132の電圧が“高”であり、ノードN133の電圧が“中”である場合、FET132H、122L、133Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN132、N133の電圧が共に“低”である場合、FET132Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN132の電圧が“高”であり、ノードN133の電圧が“低”である場合、FET122Lがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN132、N133の電圧が共に“高”である場合、FET133Lがオープン故障したと判断する。 
図14は、FET133H、131Lをオンにしたときの故障診断を説明する図である。図10、図13の例と同様に、制御回路300は、ノードN1に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET133H、131Lをオンにし、FET131H、132L、132H、133Lをオフにする。これにより、第2インバータ130のハイサイドのFET133H、W相の巻線M3、中性点(ノードN1)、U相の巻線M1、および第2インバータ130のローサイドのFET131Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図14に示す例では、導電経路に流れる電流は、FET133H、123L、131Lの還流ダイオード140において逆方向電流となる。図14に示す例では、FET133H、123L、131Lの故障の有無を診断する。 
図10、図13を用いて説明した方法と同様に、マイクロコントローラ340は、ノードN133、N131のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN133の電圧が“高”であり、ノードN131の電圧が“中”である場合、FET133H、123L、131Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN133、N131の電圧が共に“低”である場合、FET133Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN133の電圧が“高”であり、ノードN131の電圧が“低”である場合、FET123Lがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN133、N131の電圧が共に“高”である場合、FET131Lがオープン故障したと判断する。 
このように、本実施形態によれば、FETに故障が発生した場合に、複数のFETのうちのどのFETが故障したのかを特定することができる。 
〔3-2.第1インバータ120のハイサイドに中性点を構成したときの故障診断〕 次に、第1インバータ120のハイサイドのノードN3に中性点を構成して、故障診断を行う動作を説明する。 
図15は、中性点を構成して故障診断を行う動作の例を示す図である。 
制御回路300は、FET111、113をオフにして、FET112、114をオンにする。そして、FET121L、122L、123Lをオフにし、FET121H、122H、123Hをオンにして、ノードN3に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET131H、132Lをオンにし、FET131L、132H、133L、133Hをオフにする。これにより、第2インバータ130のハイサイドのFET131H、U相の巻線M1、中性点(ノードN3)、V相の巻線M2、および第2インバータ130のローサイドのFET132Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図15に示す例では、導電経路に流れる電流は、FET122H、131H、132Lの還流ダイオード140において逆方向電流となる。すなわち、FET122H、131H、132Lの故障の有無を診断する。 
マイクロコントローラ340は、ノードN131の電圧が“高”であり、ノードN132の電圧が“中”である場合、FET122H、131H、132Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN131、N132の電圧が共に“低”である場合、FET131Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN131の電圧が“高”であり、ノードN132の電圧が“低”である場合、FET122Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN131、N132の電圧が共に“高”である場合、FET132Lがオープン故障したと判断する。 
図16は、ハイサイドに中性点を構成した場合における、第2インバータ130においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。図16に示す表では、オンにするスイッチング素子に対して診断可能なスイッチング素子を白丸印で表している。図15に示す例では、FET131H、132Lがオン状態であり、FET122H、131H、132Lの故障の有無を診断することができる。 
図17は、FET132H、133Lをオンにしたときの故障診断を説明する図である。図15の例と同様に、制御回路300は、ノードN3に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET132H、133Lをオンにし、FET131L、131H、132L、133Hをオフにする。これにより、第2インバータ130のハイサイドのFET132H、V相の巻線M2、中性点(ノードN3)、W相の巻線M3、および第2インバータ130のローサイドのFET133Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図17に示す例では、導電経路に流れる電流は、FET132H、123H、133Lの還流ダイオード140において逆方向電流となる。図17に示す例では、FET132H、123H、133Lの故障の有無を診断する。 
上述した方法と同様に、マイクロコントローラ340は、ノードN132、N133のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN132の電圧が“高”であり、ノードN133の電圧が“中”である場合、FET132H、123H、133Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN132、N133の電圧が共に“低”である場合、FET132Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN132の電圧が“高”であり、ノードN133の電圧が“低”である場合、FET123Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN132、N133の電圧が共に“高”である場合、FET133Lがオープン故障したと判断する。 
図18は、FET133H、131Lをオンにしたときの故障診断を説明する図である。図15、図17の例と同様に、制御回路300は、ノードN3に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET133H、131Lをオンにし、FET131H、132L、132H、133Lをオフにする。これにより、第2インバータ130のハイサイドのFET133H、W相の巻線M3、中性点(ノードN3)、U相の巻線M1、および第2インバータ130のローサイドのFET131Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図18に示す例では、導電経路に流れる電流は、FET133H、121H、131Lの還流ダイオード140において逆方向電流となる。図18に示す例では、FET133H、121H、131Lの故障の有無を診断する。 
上述した方法と同様に、マイクロコントローラ340は、ノードN133、N131のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN133の電圧が“高”であり、ノードN131の電圧が“中”である場合、FET133H、121H、131Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN133、N131の電圧が共に“低”である場合、FET133Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN133の電圧が“高”であり、ノードN131の電圧が“低”である場合、FET121Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN133、N131の電圧が共に“高”である場合、FET131Lがオープン故障したと判断する。 
このように、本実施形態によれば、FETに故障が発生した場合に、複数のFETのうちのどのFETが故障したのかを特定することができる。 
〔3-3.第2インバータのローサイドに中性点を構成したときの故障診断〕 次に、第2インバータ130のローサイドのノードN2に中性点を構成して、故障診断を行う動作を説明する。 
図19は、中性点を構成して故障診断を行う動作の例を示す図である。 
制御回路300は、FET112、114をオフにして、FET111、113をオンにする。そして、FET131H、132H、133Hをオフにし、FET131L、132L、133Lをオンにして、ノードN2に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET121H、122Lをオンにし、FET121L、122H、123L、123Hをオフにする。これにより、第1インバータ120のハイサイドのFET121H、U相の巻線M1、中性点(ノードN2)、V相の巻線M2、および第1インバータ120のローサイドのFET122Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図19に示す例では、導電経路に流れる電流は、FET131L、121H、122Lの還流ダイオード140において逆方向電流となる。すなわち、FET131L、121H、122Lの故障の有無を診断する。 
制御回路300は、上記の導電経路に電圧が印加されたときの、U相の電圧値、V相の電圧値およびW相の電圧値の少なくとも2つを用いて、故障の有無の診断を行う。U相の電圧値は、例えば、FET121HとFET121Lとが接続されるノードN121の電圧値である。ノードN121の電圧値は、例えば、ノードN121とGNDとの電位差である。ノードN121の電圧は、端子U_L(図1)の電圧と同じであり得る。V相の電圧値は、例えば、FET122HとFET122Lとが接続されるノードN122の電圧値である。ノードN122の電圧値は、例えば、ノードN122とGNDとの電位差である。ノードN122の電圧は、端子V_L(図1)の電圧と同じであり得る。W相の電圧値は、例えば、FET123HとFET123Lとが接続されるノードN123の電圧値である。ノードN123の電圧値は、例えば、ノードN123とGNDとの電位差である。ノードN123の電圧は、端子W_L(図1)の電圧と同じであり得る。電圧検出回路380(図5)は、これらU相、V相、W相それぞれの電圧値を検出し、マイクロコントローラ340に出力する。 
まず、FET131L、121H、122Lの全てが正常である場合の電圧値を説明する。FET131L、121H、122Lの全てが正常である場合、ノードN121の電圧は“高”になる。また、ノードN122の電圧は“中”になる。 
マイクロコントローラ340は、ノードN121の電圧が“高”であり、ノードN122の電圧が“中”である場合、FET131L、121H、122Lの全てが正常であると判断する。 
次に、FET121Hがオープン故障した場合の電圧値を説明する。FET121Hがオープン故障した場合、ノードN121には電源電圧は印加されない。そのため、ノードN121、N122の電圧は共に“低”になる。 
マイクロコントローラ340は、ノードN121、N122の電圧が共に“低”である場合、FET121Hがオープン故障したと判断する。 
次に、FET131Lがオープン故障した場合の電圧値を説明する。FET131Lがオープン故障した場合、ノードN121の電圧は“高”となり、ノードN122の電圧は“低”となる。 
マイクロコントローラ340は、ノードN121の電圧が“高”であり、ノードN122の電圧が“低”である場合、FET131Lがオープン故障したと判断する。 
次に、FET122Lがオープン故障した場合の電圧値を説明する。この場合、ノードN122はGNDに接続されない。このため、ノードN121、N122の電圧は共に“高”となる。 
マイクロコントローラ340は、ノードN121、N122の電圧が共に“高”である場合、FET122Lがオープン故障したと判断する。 
図20は、第2インバータ130のローサイドに中性点を構成した場合における、第1インバータ120においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。図20に示す表では、オンにするスイッチング素子に対して診断可能なスイッチング素子を白丸印で表している。図19に示す例では、FET121H、122Lがオン状態であり、FET131L、121H、122Lの故障の有無を診断することができる。以下、図21を用いて、FET122H、123Lがオン状態のときの故障診断を説明する。また、図22を用いて、FET123H、121Lがオン状態のときの故障診断を説明する。 
図21は、FET122H、123Lをオンにしたときの故障診断を説明する図である。図19の例と同様に、制御回路300は、ノードN2に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET122H、123Lをオンにし、FET121L、121H、122L、123Hをオフにする。これにより、第1インバータ120のハイサイドのFET122H、V相の巻線M2、中性点(ノードN2)、W相の巻線M3、および第1インバータ120のローサイドのFET123Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図21に示す例では、導電経路に流れる電流は、FET122H、132L、123Lの還流ダイオード140において逆方向電流となる。図21に示す例では、FET122H、132L、123Lの故障の有無を診断する。 
図19を用いて説明した方法と同様に、マイクロコントローラ340は、ノードN122、N123のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN122の電圧が“高”であり、ノードN123の電圧が“中”である場合、FET122H、132L、123Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN122、N123の電圧が共に“低”である場合、FET122Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN122の電圧が“高”であり、ノードN123の電圧が“低”である場合、FET132Lがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN122、N123の電圧が共に“高”である場合、FET123Lがオープン故障したと判断する。 
図22は、FET123H、121Lをオンにしたときの故障診断を説明する図である。図19、図21の例と同様に、制御回路300は、ノードN2に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET123H、121Lをオンにし、FET121H、122L、122H、123Lをオフにする。これにより、第1インバータ120のハイサイドのFET123H、W相の巻線M3、中性点(ノードN2)、U相の巻線M1、および第1インバータ120のローサイドのFET121Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図22に示す例では、導電経路に流れる電流は、FET123H、133L、121Lの還流ダイオード140において逆方向電流となる。図22に示す例では、FET123H、133L、121Lの故障の有無を診断する。 
図19、図21を用いて説明した方法と同様に、マイクロコントローラ340
は、ノードN123、N121のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN123の電圧が“高”であり、ノードN121の電圧が“中”である場合、FET123H、133L、121Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN123、N121の電圧が共に“低”である場合、FET123Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN123の電圧が“高”であり、ノードN121の電圧が“低”である場合、FET133Lがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN123、N121の電圧が共に“高”である場合、FET121Lがオープン故障したと判断する。 
このように、本実施形態によれば、FETに故障が発生した場合に、複数のFETのうちのどのFETが故障したのかを特定することができる。 
〔3-4.第2インバータのハイサイドに中性点を構成したときの故障診断〕 次に、第2インバータ130のハイサイドのノードN4に中性点を構成して、故障診断を行う動作を説明する。 
図23は、中性点を構成して故障診断を行う動作の例を示す図である。 
制御回路300は、FET112、114をオフにして、FET111、113をオンにする。そして、FET131L、132L、133Lをオフにし、FET131H、132H、133Hをオンにして、ノードN4に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET121H、122Lをオンにし、FET121L、122H、123L、123Hをオフにする。これにより、第1インバータ120のハイサイドのFET121H、U相の巻線M1、中性点(ノードN4)、V相の巻線M2、および第1インバータ120のローサイドのFET122Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図23に示す例では、導電経路に流れる電流は、FET132H、121H、122Lの還流ダイオード140において逆方向電流となる。すなわち、FET132H、121H、122Lの故障の有無を診断する。 
マイクロコントローラ340は、ノードN121の電圧が“高”であり、ノードN122の電圧が“中”である場合、FET132H、121H、122Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN121、N122の電圧が共に“低”である場合、FET121Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN121の電圧が“高”であり、ノードN122の電圧が“低”である場合、FET132Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN121、N122の電圧が共に“高”である場合、FET122Lがオープン故障したと判断する。 
図24は、第2インバータ130のハイサイドに中性点を構成した場合における、第1インバータ120においてオンにするスイッチング素子と、診断されるスイッチング素子との関係を示す図である。図24に示す表では、オンにするスイッチング素子に対して診断可能なスイッチング素子を白丸印で表している。図23に示す例では、FET121H、122Lがオン状態であり、FET132H、121H、122Lの故障の有無を診断することができる。 
図25は、FET122H、123Lをオンにしたときの故障診断を説明する図である。図23の例と同様に、制御回路300は、ノードN4に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET122H、123Lをオンにし、FET121L、121H、122L、123Hをオフにする。これにより、第1インバータ120のハイサイドのFET122H、V相の巻線M2、中性点(ノードN4)、W相の巻線M3、および第1インバータ120のローサイドのFET123Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図25に示す例では、導電経路に流れる電流は、FET122H、133H、123Lの還流ダイオード140において逆方向電流となる。図25に示す例では、FET122H、133H、123Lの故障の有無を診断する。 
上述した方法と同様に、マイクロコントローラ340は、ノードN122、N123のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN122の電圧が“高”であり、ノードN123の電圧が“中”である場合、FET122H、133H、123Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN122、N123の電圧が共に“低”である場合、FET122Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN122の電圧が“高”であり、ノードN123の電圧が“低”である場合、FET133Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN122、N123の電圧が共に“高”である場合、FET123Lがオープン故障したと判断する。 
図26は、FET123H、121Lをオンにしたときの故障診断を説明する図である。図23、図25の例と同様に、制御回路300は、ノードN4に中性点を構成する。 
中性点を構成する動作と並行して、制御回路300は、FET123H、121Lをオンにし、FET121H、122L、122H、123Lをオフにする。これにより、第1インバータ120のハイサイドのFET123H、W相の巻線M3、中性点(ノードN4)、U相の巻線M1、および第1インバータ120のローサイドのFET121Lが繋がる導電経路が構成される。この導電経路には、電源101から電圧が印加されて電流が流れる。直線の矢印のそれぞれは、導電経路に流れる電流を表している。 
図26に示す例では、導電経路に流れる電流は、FET123H、131H、121Lの還流ダイオード140において逆方向電流となる。図26に示す例では、FET123H、131H、121Lの故障の有無を診断する。 
上述した方法と同様に、マイクロコントローラ340は、ノードN123、N121のそれぞれの電圧が“高”、“中”、“低”のいずれであるかを判断して、故障診断を行う。 
マイクロコントローラ340は、ノードN123の電圧が“高”であり、ノードN121の電圧が“中”である場合、FET123H、131H、121Lの全てが正常であると判断する。 
マイクロコントローラ340は、ノードN123、N121の電圧が共に“低”である場合、FET123Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN123の電圧が“高”であり、ノードN121の電圧が“低”である場合、FET131Hがオープン故障したと判断する。 
マイクロコントローラ340は、ノードN123、N121の電圧が共に“高”である場合、FET121Lがオープン故障したと判断する。 
このように、本実施形態によれば、FETに故障が発生した場合に、複数のFETのうちのどのFETが故障したのかを特定することができる。 
特に、図12に示す診断と図16に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図20に示す診断と図24に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図12に示す診断と図20に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図16に示す診断と図24に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図12に示す診断と図24に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図16に示す診断と図20に示す診断との両方を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
このように、図12、図16、図20、図24に示す4種類の診断のうちの少なくとも2種類の診断を行うことにより、第1および第2インバータ120、130が備える12個のFETの全ての故障診断を行うことができる。 
また、図12、図16、図20、図24に示す4種類の診断の全てを行ってもよい。4種類の診断の全てを行うことにより、故障スイッチング素子の検出の精度を高くすることができる。 
これにより、例えば、上述したようなFETのソース-ドレイン間の電圧を監視しない形態においても、故障したFETを特定することができる。 
また、電力変換装置100の正常時の制御動作中において、中性点を定期的に構成することによって上記の故障診断を行うことができる。上記の故障診断により、故障したFETを検出した場合は、「正常時の制御」を「異常時の制御」に切り替えて、モータ200の駆動を継続することができる。 
例えば、正常時の制御動作の途中で、上記2種類の診断を続けて実行し、再び正常時の制御動作に戻るという動作を実行してもよい。また、例えば、正常時の制御動作の途中で、上記3種類の診断を続けて実行し、再び正常時の制御動作に戻るという動作を実行してもよい。また、例えば、正常時の制御動作の途中で、上記4種類の診断を続けて実行し、再び正常時の制御動作に戻るという動作を実行してもよい。 
(4.ゲート制御信号の電圧) 次に、ハイサイドスイッチング素子(FET121H、122H、123H、131H、132H、133H)およびローサイドスイッチング素子(FET121L、122L、123L、131L、132L、133L)のオン・オフを切り替えるゲート制御信号について説明する。ここでは、第1インバータ120のハイサイドスイッチング素子(FET121H、122H、123H)およびローサイドスイッチング素子(FET121L、122L、123L)に着目して説明するが、第2インバータ130の場合も同様である。 
第1インバータ120の正常時の制御では、駆動回路350は、FET121L、122L、123Lのオン・オフを切り替えるためのゲート制御信号をFET121L、122L、123Lに供給する。切替回路110のFET111はオン状態になっており、FET121L、122L、123Lのソース電位はGND電位になるため低い。ゲートの基準電位がGND電位となるため、ゲート制御信号の電圧(ゲート電圧)は比較的低くてもFET121L、122L、123Lをオンにすることができる。以下、ゲート制御信号の電圧をゲート電圧と表現する場合がある。この例では、ゲート制御信号の電圧およびゲート電圧は、GND電位を基準とした値を表している。 
一方、FET121H、122H、123Hのソース電位は、巻線M1、M2、M3に供給される駆動電圧となる
ため高い。このため、FET121H、122H、123Hをオンにするためのゲート電圧は、FET121L、122L、123Lをオンにするためのゲート電圧よりも高くする。この高いゲート電圧は、例えば昇圧回路370(図5)で生成される。 
第1インバータ120の正常時の制御では、FET121L、122L、123Lをオンにするためのゲート電圧は、例えば12Vである。また、FET121H、122H、123Hをオンにするためのゲート電圧は、例えば24Vである。 
FET121H、122H、123Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合、上述したように、ローサイド側のノードN1に中性点を構成する。切替回路110のFET111、113はオフにする。この場合、FET121L、122L、123Lのソース電位はGND電位ではなくなる。FET121L、122L、123Lのソース電位は、GND電位よりも高い中性点の電位になる。言い換えると、FET121L、122L、123Lのソースの基準電圧は、フローティング状態になる。このため、正常時の制御と比較して、FET121L、122L、123Lのゲート・ソース間電圧は小さくなる。 
ゲート・ソース間電圧が小さい場合、オン状態におけるFET121L、122L、123Lのソース・ドレイン間の抵抗値が大きくなったり、FET121L、122L、123Lが意図せずにオフ状態になったりすることが発生し得る。このため、ローサイド側のノードN1に中性点を構成する場合は、FET121L、122L、123Lをオンにするゲート制御信号の電圧(ゲート電圧)を、正常時よりも大きくすることが考えられる。 
図27は、本実施形態によるサブ駆動回路160Lを備える電力変換装置100を模式的に示している。サブ駆動回路160Lは、FET121L、122L、123Lに接続されている。 
第1インバータ120の正常時の制御では、ゲート制御信号は、駆動回路350からFET121L、122L、123Lに供給される。第1インバータ120の異常時においてノードN1に中性点を構成する場合は、サブ駆動回路160LがFET121L、122L、123Lにゲート制御信号を供給する。FET121L、122L、123Lについて、サブ駆動回路160Lが出力するゲート制御信号の電圧は、駆動回路350が出力するゲート制御信号の電圧よりも高い。この高いゲート電圧は、例えば昇圧回路370(図5)で生成される。サブ駆動回路160Lが出力するゲート制御信号の電圧は、例えば24Vである。 
サブ駆動回路160Lは、スイッチング回路161、162を備える。第1インバータ120の正常時の制御では、スイッチング回路161、162はオフになっている。 
第1インバータ120のノードN1に中性点を構成する場合、マイクロコントローラ340は、スイッチング回路161をオン状態にする。そうすると、スイッチング回路161を介して、電圧源163の電圧がゲート電圧としてFET121L、122L、123Lに供給される。電圧源163の電圧は、昇圧回路370が生成した電圧である。電圧源163の電圧は、例えば、FET121L、122L、123Lのゲート・ソース間電圧が耐圧よりも小さくなるように設定する。 
中性点を構成する制御とは別の制御として、第1インバータ120の動作を強制的に停止させる場合、マイクロコントローラ340は、スイッチング回路162をオン状態にする。そうすると、FET121L、122L、123LのそれぞれのゲートはGNDに接続され、FET121L、122L、123Lはオフになる。例えば、中性点を構成する制御を行っているときに、何らかの更なる故障が発生することが起こり得る。この場合は、スイッチング回路162をオン状態にすることで、FET121L、122L、123Lを強制的にオフにすることができる。なお、FET121L、122L、123Lを強制的にオフにする制御が不要な場合は、スイッチング回路162は省略されていてもよい。電力変換装置100がスイッチング回路162を備えない場合は、駆動回路350およびスイッチング回路161をオフにすることで、第1インバータ120の動作を強制的に停止させてもよい。 
図28は、サブ駆動回路160Lの回路構成の一例を模式的に示している。サブ駆動回路160Lを分かりやすく図示するために、図28では第2インバータ130の図示を省略している。図28に示す例では、サブ駆動回路160Lは、オープンコレクタ出力方式のトランジスタを備える回路である。スイッチング回路161(図27)は、スイッチング素子10、11、12、13を備える。スイッチング回路162(図27)は、スイッチング素子20、21、22、23を備える。スイッチング回路161、162のそれぞれは、例えばプッシュプル回路である。 
図28に示す例では、スイッチング素子11、12、13、20は、PNP型のバイポーラトランジスタである。スイッチング素子10、21、22、23は、NPN型のバイポーラトランジスタである。以下、スイッチング素子10、11、12、13、20、21、22、23としてバイポーラトランジスタを用いる例を説明し、それらのスイッチング素子をトランジスタと表現する場合がある。 
トランジスタ10のベースは、マイクロコントローラ340に接続されている。トランジスタ10のエミッタは、GNDに接続されている。トランジスタ10のコレクタは、トランジスタ11、12、13のベースに接続されている。 
トランジスタ11、12、13のエミッタは、電圧源163に接続されている。トランジスタ11のコレクタは、FET121Lのゲートに接続されている。トランジスタ12のコレクタは、FET122Lのゲートに接続されている。トランジスタ13のコレクタは、FET123Lのゲートに接続されている。 
トランジスタ20のベースは、マイクロコントローラ340に接続されている。トランジスタ20のエミッタは、電圧源Vccに接続されている。トランジスタ20のコレクタは、トランジスタ21、22、23のベースに接続されている。 
トランジスタ21、22、23のエミッタは、GNDに接続されている。トランジスタ21のコレクタは、FET121Lのゲートに接続されている。トランジスタ22のコレクタは、FET122Lのゲートに接続されている。トランジスタ23のコレクタは、FET123Lのゲートに接続されている。 
FET121L、122L、123Lのゲートとソースとの間には、抵抗器とダイオードとが並列接続された保護回路31、32、33が接続されている。FET121H、122H、123Hのゲートとソースとの間には、抵抗器とダイオードとが並列接続された保護回路41、42、43が接続されている。 
FET121Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路51が接続されている。FET122Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路52が接続されている。FET123Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路53が接続されている。 
第1インバータ120の正常時の制御では、マイクロコントローラ340は、トランジスタ10、20をオフにする。トランジスタ10、20をオフにすることにより、トランジスタ11、12、13、21、22、23はオフになる。 
次に、ローサイド側のノードN1に中性点を構成する動作を説明する。ノードN1に中性点を構成するとき、マイクロコントローラ340は、駆動回路350からFET121L、122L、123Lに出力されるゲート制御信号をオフにする。同時に、マイクロコントローラ340は、トランジスタ10をオンにする。トランジスタ10がオンになると、トランジスタ11、12、13のベースはGNDレベルになり、トランジスタ11、12、13はオンになる。 
トランジスタ11、12、13がオンになると、ゲート制御信号として電圧源163の電圧がFET121L、122L、123Lに供給される。これにより、正常時よりも高いゲート電圧をFET121L、122L、123Lに供給することができる。ゲート電圧を高くすることにより、ソース電位が中性点の電位になったとしても、ゲート・ソース間電圧の低下を抑制することができる。オン状態におけるFET121L、122L、123Lのソース・ドレイン間の抵抗値が大きくなることを抑制することができるとともに、FET121L、122L、123Lが意図せずにオフ状態になることを抑制できる。 
保護回路51、52、53は、FET121L、122L、123Lのゲートに接続される駆動回路350の出力端子に耐圧以上の電圧が供給されることを抑制する。ここでの耐圧は、例えば、正常時の制御においてFET121L、122L、123L用のゲート制御信号を出力する駆動回路350の回路素子の耐圧である。 
保護回路51、52、53は、例えばツェナーダイオードである。保護回路51、52、53は、サブ駆動回路160Lが出力するゲート制御信号の電圧が、耐圧に近い大きさおよび耐圧以上になったときに機能する。例えば、耐圧が18Vの場合、ゲート制御信号の電圧が17V以上になったとき、保護回路51、52、53が機能する。これにより、FET121L、122L、123Lのゲートに接続される駆動回路350の出力端子に供給される電圧を耐圧未満にすることができる。この例では、FET121L、122L、123Lに、正常時よりも高いゲート電圧を供給する。その高いゲート電圧が意図せずに耐圧以上になったとしても、保護回路51、52、53により駆動回路350を保護することができる。 
次に、FET121L、122L、123Lを強制的にオフにする動作を説明する。FET121L、122L、123Lを強制的にオフにするとき、マイクロコントローラ340は、トランジスタ20をオンにする。トランジスタ20がオンになると、トランジスタ21、22、23のベースが電圧源Vccのレベルになり、トランジスタ21、22、23はオンになる。トランジスタ21、22、23がオンになると、FET121L、122L、123LのそれぞれのゲートはGNDレベルになる。これにより、FET121L、122L、123Lを強制的にオフにすることができる。 
なお、サブ駆動回路160Lと同様の回路が第2インバータ130に接続されていてもよい。図29は、本実施形態によるサブ駆動回路160Rを備える電力変換装置100を模式的に示している。サブ駆動回路160Lは、第1インバータ120のFET121L、122L、123Lに接続されていた。これに対し、サブ駆動回路160Rは、第2インバータ130のFET131L、132L、133Lに接続されている。それ以外のサブ駆動回路160Rの回路構成は、図27および図28を用いて説明したサブ駆動回路160Lと同様である。 
第1インバータ120のFET121H、122H、123Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合は、上述したように、ローサイド側のノードN1に中性点を構成する。同様に、第2インバータ130のFET131H、132H、133Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合は、ローサイド側のノードN2に中性点を構成する。この場合は、サブ駆動回路160Rを用いて、FET131L、132L、133Lをオンにするゲート制御信号の電圧を、正常時よりも大きくする。これにより、オン状態におけるFET131L、132L、133Lのソース・ドレイン間の抵抗値が大きくなること
を抑制することができるとともに、FET131L、132L、133Lが意図せずにオフ状態になることを抑制できる。 
電力変換装置100は、サブ駆動回路160Lおよび160Rの両方を備えていてもよいし、いずれか一方のみを備えていてもよい。 
上記の例では、トランジスタを備えるスイッチング回路161、162を例示したが、スイッチング回路161、162はアナログスイッチを備えていてもよい。例えば、スイッチング回路161、162は、単投式のスイッチを備えていてもよい。 
次に、サブ駆動回路の別の例を説明する。 
図30は、本実施形態によるサブ駆動回路170Lを備える電力変換装置100を模式的に示している。サブ駆動回路170Lは、FET121H、122H、123H、121L、122L、123Lに接続されている。 
FET121H、122H、123Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合、ノードN1に中性点を構成する。上述したように、第1インバータ120の正常時の制御において、FET121H、122H、123Hをオンにするためのゲート制御信号の電圧は、FET121L、122L、123Lをオンにするためのゲート制御信号よりも大きい。この例では、ノードN1に中性点を構成する場合は、FET121H、122H、123H用の高い電圧のゲート制御信号を、FET121L、122L、123Lに供給する。この例では、駆動回路350はチャージポンプ方式である。駆動回路350は、ソース電位を基準電位としたゲート制御信号ではなく、GND電位を基準電位としたゲート制御信号を生成する。 
サブ駆動回路170Lは、スイッチング回路171、172を備える。第1インバータ120のノードN1に中性点を構成する場合、マイクロコントローラ340は、スイッチング回路172をオフ状態にし、スイッチング回路171をオン状態にする。そうすると、駆動回路350から出力されたFET121H、122H、123H用の高い電圧のゲート制御信号は、FET121H、122H、123Hには供給されずに、FET121L、122L、123Lに供給される。 
図31は、サブ駆動回路170Lの回路構成の一例を模式的に示している。サブ駆動回路170Lを分かりやすく図示するために、図31では第2インバータ130の図示を省略している。図31に示す例では、サブ駆動回路170Lは、オープンコレクタ出力方式のトランジスタを備える回路である。スイッチング回路171(図30)は、スイッチング素子60、61、62、63を備える。スイッチング回路172(図30)は、スイッチング素子70、71、72、73を備える。スイッチング回路171、172のそれぞれは、例えばプッシュプル回路である。 
図31に示す例では、スイッチング素子60、70は、NPN型のバイポーラトランジスタである。スイッチング素子61、62、63、71、72、73は、PNP型のバイポーラトランジスタである。以下、スイッチング素子60、61、62、63、70、71、72、73としてバイポーラトランジスタを用いる例を説明し、それらのスイッチング素子をトランジスタと表現する場合がある。 
トランジスタ60のベースは、マイクロコントローラ340に接続されている。トランジスタ60のエミッタは、GNDに接続されている。トランジスタ60のコレクタは、トランジスタ61、62、63のベースに接続されている。 
トランジスタ61のエミッタは、FET121Hのゲート用の制御線の駆動回路350側に接続されている。トランジスタ61のエミッタは、例えば、FET121H用のゲート制御信号を出力する駆動回路350の出力端子(図示せず)に接続されていてもよい。 
トランジスタ62のエミッタは、FET122Hのゲート用の制御線の駆動回路350側に接続されている。トランジスタ62のエミッタは、例えば、FET122H用のゲート制御信号を出力する駆動回路350の出力端子(図示せず)に接続されていてもよい。 
トランジスタ63のエミッタは、FET123Hのゲート用の制御線の駆動回路350側に接続されている。トランジスタ63のエミッタは、例えば、FET123H用のゲート制御信号を出力する駆動回路350の出力端子(図示せず)に接続されていてもよい。 
トランジスタ61のコレクタは、FET121Lのゲートに接続されている。トランジスタ62のコレクタは、FET122Lのゲートに接続されている。トランジスタ63のコレクタは、FET123Lのゲートに接続されている。 
トランジスタ70のベースは、マイクロコントローラ340に接続されている。トランジスタ70のエミッタは、GNDに接続されている。トランジスタ70のコレクタは、トランジスタ71、72、73のベースに接続されている。 
トランジスタ71のコレクタは、FET121Hのゲートに接続されている。トランジスタ72のコレクタは、FET122Hのゲートに接続されている。トランジスタ73のコレクタは、FET123Hのゲートに接続されている。 
トランジスタ71のエミッタは、FET121Hのゲート用の制御線に接続されている。トランジスタ71のエミッタは、制御線とトランジスタ61のエミッタとの接続点よりもFET121H側において、その制御線に接続されている。 
トランジスタ72のエミッタは、FET122Hのゲート用の制御線に接続されている。トランジスタ72のエミッタは、制御線とトランジスタ62のエミッタとの接続点よりもFET122H側において、その制御線に接続されている。 
トランジスタ73のエミッタは、FET123Hのゲート用の制御線に接続されている。トランジスタ73のエミッタは、制御線とトランジスタ63のエミッタとの接続点よりもFET123H側において、その制御線に接続されている。 
FET121Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路51が接続されている。FET122Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路52が接続されている。FET123Lのゲートに接続される駆動回路350の出力端子(図示せず)とGNDとの間には、保護回路53が接続されている。これにより、FET121L、122L、123Lのゲートに供給されるゲート電圧が高い場合でも、駆動回路350の出力端子にかかる電圧を耐圧未満にすることができる。 
第1インバータ120の正常時の制御では、マイクロコントローラ340は、トランジスタ70をオンにする。トランジスタ70がオンになると、トランジスタ71、72、73のベースがGNDレベルになり、トランジスタ71、72、73はオンになる。また、マイクロコントローラ340は、トランジスタ60をオフにする。トランジスタ60をオフにすることにより、トランジスタ61、62、63はオフになる。これにより、駆動回路350から出力されるFET121H、122H、123H用のゲート制御信号は、FET121H、122H、123Hに供給される。 
次に、ローサイド側のノードN1に中性点を構成する動作を説明する。ノードN1に中性点を構成するとき、マイクロコントローラ340は、トランジスタ70をオフにする。トランジスタ70をオフにすることにより、トランジスタ71、72、73はオフになる。同時に、マイクロコントローラ340は、トランジスタ60をオンにする。トランジスタ60がオンになると、トランジスタ61、62、63のベースがGNDレベルになり、トランジスタ61、62、63はオンになる。 
トランジスタ61がオンになることにより、駆動回路350から出力されるFET121H用のゲート制御信号は、トランジスタ61を通ってFET121Lに供給される。トランジスタ62がオンになることにより、駆動回路350から出力されるFET122H用のゲート制御信号は、トランジスタ62を通ってFET122Lに供給される。トランジスタ63がオンになることにより、駆動回路350から出力されるFET123H用のゲート制御信号は、トランジスタ63を通ってFET123Lに供給される。 
これにより、正常時よりも高いゲート電圧をFET121L、122L、123Lに供給することができる。ゲート電圧を高くすることにより、ソース電位が中性点の電位になったとしても、ゲート・ソース間電圧の低下を抑制することができる。オン状態におけるFET121L、122L、123Lのソース・ドレイン間の抵抗値が大きくなることを抑制することができるとともに、FET121L、122L、123Lが意図せずにオフ状態になることを抑制できる。 
なお、第1インバータ120の動作を強制的に停止させる場合は、スイッチング回路171、172をオフにするとともに、駆動回路350が出力するFET121L、122L、123L用のゲート制御信号をオフにする。これにより、第1インバータ120の動作を強制的に停止させることができる。 
サブ駆動回路170Lと同様の回路が第2インバータ130に接続されていてもよい。図32は、本実施形態によるサブ駆動回路170Rを備える電力変換装置100を模式的に示している。サブ駆動回路170Lは、第1インバータ120のFET121H、122H、123H、121L、122L、123Lに接続されていた。これに対し、サブ駆動回路170Rは、第2インバータ130のFET131H、132H、133H、131L、132L、133Lに接続されている。それ以外のサブ駆動回路170Rの回路構成は、図30および図31を用いて説明したサブ駆動回路170Lと同様である。 
第1インバータ120のFET121H、122H、123Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合は、上述したように、ローサイド側のノードN1に中性点を構成する。同様に、第2インバータ130のFET131H、132H、133Hのうちの少なくとも1つにオープン故障またはショート故障が発生した場合は、ローサイド側のノードN2に中性点を構成する。この場合は、サブ駆動回路170Rを用いて、FET131L、132L、133Lをオンにするゲート制御信号の電圧を、正常時よりも大きくする。これにより、オン状態におけるFET131L、132L、133Lのソース・ドレイン間の抵抗値が大きくなることを抑制することができるとともに、FET131L、132L、133Lが意図せずにオフ状態になることを抑制できる。 
電力変換装置100は、サブ駆動回路170Lおよび170Rの両方を備えていてもよいし、いずれか一方のみを備えていてもよい。 
上記の例では、トランジスタを備えるスイッチング回路171、172を例示したが、スイッチング回路171、172はアナログスイッチを備えていてもよい。例えば、スイッチング回路171、172は、単投式のスイッチを備えていてもよい。また、例えば、スイッチング回路171、172は、双投式のスイッチを備えていてもよい。PWM制御に対する影響を抑えるために、ハイサイド側に用いられるアナログスイッチとしては、ON抵抗が小さい(例えば数十mΩから数Ω)アナログスイッチが用いられ得る。 
上述したように、本実施形態では、第1および第2インバータ120、130が備えるFETの故障の有無を診断する故障診断を行う。電力変換装置100が上記のサブ駆動回路を備える形態においては、ハイサイドに中性点を構成した状態での診断よりも、ローサイドに中性点を構成した状態での診断を先に行ってもよい。 
例えば、電力変換装置100がサブ駆動回路160Lまたは170Lを備える形態にお
いては、制御回路300は、第1インバータ120のハイサイドに中性点(ノードN3)を構成して行う診断よりも、第1インバータ120のローサイドに中性点(ノードN1)を構成して行う診断を先に実行する。例えば、制御回路300は、図16に示す診断よりも図12に示す診断を先に実行する。 
また、例えば、電力変換装置100がサブ駆動回路160Rまたは170Rを備える形態においては、制御回路300は、第2インバータ130のハイサイドに中性点(ノードN4)を構成して行う診断よりも、第2インバータ130のローサイドに中性点(ノードN2)を構成して行う診断を先に実行する。例えば、制御回路300は、図24に示す診断よりも図20に示す診断を先に実行する。 
また、例えば、電力変換装置100がサブ駆動回路160Lおよび160Rを備える形態においては、制御回路300は、図16および図24に示す診断よりも、図12および図20に示す診断を先に実行する。 
また、例えば、電力変換装置100がサブ駆動回路170Lおよび170Rを備える形態においては、制御回路300は、図16および図24に示す診断よりも、図12および図20に示す診断を先に実行する。 
(実施形態2) 自動車等の車両は一般的に、電動パワーステアリング装置を備えている。電動パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などを備える。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。 
本開示のモータ駆動ユニット400は、電動パワーステアリング装置に好適に利用される。図33は、本実施形態による電動パワーステアリング装置500の典型的な構成を模式的に示している。電動パワーステアリング装置500は、ステアリング系520および補助トルク機構540を備える。 
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、回転軸524(「ピニオン軸」または「入力軸」とも称される。)、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力変換装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 
ECU542として、実施形態1による制御回路300を用いることができ、電力変換装置545として、実施形態1による電力変換装置100を用いることができる。また、モータ543は、実施形態1におけるモータ200に相当する。ECU542、モータ543および電力変換装置545を備える機電一体型ユニットとして、実施形態1によるモータ駆動ユニット400を好適に用いることができる。 
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。 
電動パワーステアリング装置500は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類することができる。図33には、ピニオンアシスト型の電動パワーステアリング装置500を例示している。ただし、電動パワーステアリング装置500は、ラックアシスト型、コラムアシスト型等であってもよい。 
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。外部機器560は例えば車速センサである。または、外部機器560は、例えばCAN(Controller Area Network)等の車内ネットワークで通信可能な他のECUであってもよい。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御またはPWM制御することができる。 
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(不図示)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。 
電動パワーステアリング装置500によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型ユニットに、本開示のモータ駆動ユニット400を利用することにより、部品の品質が向上し、かつ、正常時および異常時のいずれにおいても適切な電流制御が可能となる、モータ駆動ユニットを備える電動パワーステアリング装置が提供される。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
100  :電力変換装置101  :電源102  :コイル103  :コンデンサ110  :切替回路111  :スイッチ素子(FET)112  :スイッチ素子(FET)113  :スイッチ素子(FET)114  :スイッチ素子(FET)115  :スイッチ素子(FET)116  :スイッチ素子(FET)120  :第1インバータ121H、122H、123H  :ハイサイドスイッチング素子(FET)121L、122L、123L  :ローサイドスイッチング素子(FET)121R、122R、123R  :シャント抵抗130  :第2インバータ131H、132H、133H  :ハイサイドスイッチング素子(FET)131L、132L、133L  :ローサイドスイッチング素子(FET)131R、132R、133R  :シャント抵抗140  ダイオード150  :電流センサ160L、160R  :サブ駆動回路161、162  :スイッチング回路170L、170R  :サブ駆動回路171、172  :スイッチング回路200  :電動モータ300  :制御回路310  :電源回路320  :角度センサ330  :入力回路340  :マイクロコントローラ350  :駆動回路360  :ROM370  :昇圧回路380  :電圧検出回路400  :モータ駆動ユニット500  :電動パワーステアリング装置

Claims (21)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置であって、

     前記モータの各相の巻線の一端に接続される第1インバータと、

     前記各相の巻線の他端に接続される第2インバータと、

     前記第1および第2インバータの動作を制御する制御回路と、

     を備え、

     前記第1および第2インバータのそれぞれは、複数のローサイドスイッチング素子および複数のハイサイドスイッチング素子を備え、

     前記電力変換装置は、前記第1インバータのローサイドに中性点を構成する場合に、前記第1インバータのローサイドスイッチング素子をオンにする制御信号を前記第1インバータのローサイドスイッチング素子に供給する第1駆動回路をさらに備え、

     前記第1駆動回路は、前記第1インバータに中性点を構成しない場合に前記第1インバータのローサイドスイッチング素子をオンにする制御信号よりも大きい電圧の制御信号を、前記第1インバータのローサイドスイッチング素子に供給し、

     前記制御回路は、

      前記第1インバータのローサイドに第1中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第1診断と、

      前記第1インバータのハイサイドに第2中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第2診断と、

     を実行し、

     前記制御回路は、前記第2診断よりも前記第1診断を先に実行する、電力変換装置。
  2. 前記第1インバータに前記第1中性点を構成しない場合において、前記第1インバータのハイサイドスイッチング素子をオンにするための第1制御信号の電圧は、前記第1インバータのローサイドスイッチング素子をオンにするための第2制御信号よりも大きく、

     前記第1インバータに前記第1中性点を構成する場合、前記第1駆動回路は、前記第1制御信号を前記第1インバータのローサイドスイッチング素子に供給する、請求項1に記載の電力変換装置。
  3. 前記第1駆動回路は、オープンコレクタ出力方式のトランジスタを備える駆動回路である、請求項1または2に記載の電力変換装置。
  4. 前記電力変換装置は、前記第2インバータのローサイドに中性点を構成する場合に、前記第2インバータのローサイドスイッチング素子をオンにする制御信号を前記第2インバータのローサイドスイッチング素子に供給する第2駆動回路をさらに備え、

     前記第2駆動回路は、前記第2インバータに中性点を構成しない場合に前記第2インバータのローサイドスイッチング素子をオンにする制御信号よりも大きい電圧の制御信号を、前記第2インバータのローサイドスイッチング素子に供給し、

     前記制御回路は、

      前記第2インバータのローサイドに第3中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第3診断と、

      前記第2インバータのハイサイドに第4中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第4診断と、

     を実行し、

     前記制御回路は、前記第4診断よりも前記第3診断を先に実行する、請求項1から3のいずれかに記載の電力変換装置。
  5. 前記制御回路は、前記第2および第4診断よりも前記第1および第3診断を先に実行する、請求項4に記載の電力変換装置。
  6. 前記n相の巻線は、第1相の巻線、第2相の巻線および第3相の巻線を含み、

     前記第1診断において、前記制御回路は、

      前記第1インバータのローサイドに前記第1中性点を構成させ、

      前記第2インバータのハイサイド、前記第1相の巻線、前記第1中性点、前記第2相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第2診断において、前記制御回路は、

      前記第1インバータのハイサイドに前記第2中性点を構成させ、

      前記第2インバータのハイサイド、前記第1相の巻線、前記第2中性点、前記第2相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第3診断において、前記制御回路は、

      前記第2インバータのローサイドに前記第3中性点を構成させ、

      前記第1インバータのハイサイド、前記第1相の巻線、前記第3中性点、前記第2相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第4診断において、前記制御回路は、

      前記第2インバータのハイサイドに前記第4中性点を構成させ、

      前記第1インバータのハイサイド、前記第1相の巻線、前記第4中性点、前記第2相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断する、請求項4または5に記載の電力変換装置。
  7. 前記n相の巻線は、第1相の巻線、第2相の巻線および第3相の巻線を含み、

     前記第1診断において、前記制御回路は、

      前記第1インバータのローサイドに前記第1中性点を構成させ、

      前記第2インバータのハイサイド、前記第2相の巻線、前記第1中性点、前記第3相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第2診断において、前記制御回路は、

      前記第1インバータのハイサイドに前記第2中性点を構成させ、

      前記第2インバータのハイサイド、前記第2相の巻線、前記第2中性点、前記第3相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第3診断において、前記制御回路は、

      前記第2インバータのローサイドに前記第3中性点を構成させ、

      前記第1インバータのハイサイド、前記第2相の巻線、前記第3中性点、前記第3相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第4診断において、前記制御回路は、

      前記第2インバータのハイサイドに前記第4中性点を構成させ、

      前記第1インバータのハイサイド、前記第2相の巻線、前記第4中性点、前記第3相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断する、請求項4から6のいずれかに記載の電力変換装置。
  8. 前記n相の巻線は、第1相の巻線、第2相の巻線および第3相の巻線を含み、

     前記第1診断において、前記制御回路は、

      前記第1インバータのローサイドに前記第1中性点を構成させ、

      前記第2インバータのハイサイド、前記第3相の巻線、前記第1中性点、前記第1相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第2診断において、前記制御回路は、

      前記第1インバータのハイサイドに前記第2中性点を構成させ、

      前記第2インバータのハイサイド、前記第3相の巻線、前記第2中性点、前記第1相の巻線、前記第2インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第3診断において、前記制御回路は、

      前記第2インバータのローサイドに前記第3中性点を構成させ、

      前記第1インバータのハイサイド、前記第3相の巻線、前記第3中性点、前記第1相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断し、

     前記第4診断において、前記制御回路は、

      前記第2インバータのハイサイドに前記第4中性点を構成させ、

      前記第1インバータのハイサイド、前記第3相の巻線、前記第4中性点、前記第1相の巻線、前記第1インバータのローサイドが繋がる経路に電圧を印加して、前記第1および第2インバータの故障の有無を診断する、請求項4から7のいずれかに記載の電力変換装置。
  9. 前記複数のローサイドスイッチング素子および前記複数のハイサイドスイッチング素子のそれぞれは、還流ダイオードを含み、

     前記制御回路は、前記電圧を印加したときに流れる電流が、前記還流ダイオードにおいて逆方向電流となるスイッチング素子の故障の有無を診断する、請求項6から8のいずれかに記載の電力変換装置。
  10. 前記n相の巻線は、第1相の巻線、第2相の巻線および第3相の巻線を含み、

     前記第1インバータの第1ローサイドスイッチング素子および第1ハイサイドスイッチング素子は、前記第1相の巻線の一端に接続され、

     前記第1インバータの第2ローサイドスイッチング素子および第2ハイサイドスイッチング素子は、前記第2相の巻線の一端に接続され、

     前記第1インバータの第3ローサイドスイッチング素子および第3ハイサイドスイッチング素子は、前記第3相の巻線の一端に接続され、

     前記第2インバータの第4ローサイドスイッチング素子および第4ハイサイドスイッチング素子は、前記第1相の巻線の他端に接続され、

     前記第2インバータの第5ローサイドスイッチング素子および第5ハイサイドスイッチング素子は、前記第2相の巻線の他端に接続され、

     前記第2インバータの第6ローサイドスイッチング素子および第6ハイサイドスイッチング素子は、前記第3相の巻線の他端に接続される、請求項4から9のいずれかに記載の電力変換装置。
  11. 前記第1診断において、前記制御回路は、

      前記第1ローサイドスイッチング素子、前記第2ローサイドスイッチング素子および前記第3ローサイドスイッチング素子をオンにして、前記第1中性点を構成させ、

      前記第4ハイサイドスイッチング素子および前記第5ローサイドスイッチング素子をオンにし、

      前記第4ローサイドスイッチング素子、前記第5ハイサイドスイッチング素子、前記第6ローサイドスイッチング素子および前記第6ハイサイドスイッチング素子をオフにし、

      前記第1ローサイドスイッチング素子、前記第4ハイサイドスイッチング素子および前記第5ローサイドスイッチング素子の故障の有無を診断する、請求項10に記載の電力変換装置。
  12. 前記第2診断において、前記制御回路は、

      前記第1ハイサイドスイッチング素子、前記第2ハイサイドスイッチング素子および前記第3ハイサイドスイッチング素子をオンにして、前記第2中性点を構成させ、

      前記第4ハイサイドスイッチング素子および前記第5ローサイドスイッチング素子をオンにし、

      前記第4ローサイドスイッチング素子、前記第5ハイサイドスイッチング素子、前記第6ローサイドスイッチング素子および前記第6ハイサイドスイッチング素子をオフにし、

      前記第2ハイサイドスイッチング素子、前記第4ハイサイドスイッチング素子および前記第5ローサイドスイッチング素子の故障の有無を診断する、請求項10または11に記載の電力変換装置。
  13. 前記第3診断において、前記制御回路は、

      前記第4ローサイドスイッチング素子、前記第5ローサイドスイッチング素子および前記第6ローサイドスイッチング素子をオンにして、前記第3中性点を構成させ、

      前記第1ハイサイドスイッチング素子および前記第2ローサイドスイッチング素子をオンにし、

      前記第1ローサイドスイッチング素子、前記第2ハイサイドスイッチング素子、前記第3ローサイドスイッチング素子および前記第3ハイサイドスイッチング素子をオフにし、

      前記第4ローサイドスイッチング素子、前記第1ハイサイドスイッチング素子および前記第2ローサイドスイッチング素子の故障の有無を診断する、請求項10から12のいずれかに記載の電力変換装置。
  14. 前記第4診断において、前記制御回路は、

      前記第4ハイサイドスイッチング素子、前記第5ハイサイドスイッチング素子および前記第6ハイサイドスイッチング素子をオンにして、前記第4中性点を構成させ、

      前記第1ハイサイドスイッチング素子および前記第2ローサイドスイッチング素子をオンにし、

      前記第1ローサイドスイッチング素子、前記第2ハイサイドスイッチング素子、前記第3ローサイドスイッチング素子および前記第3ハイサイドスイッチング素子をオフにし、

      前記第5ハイサイドスイッチング素子、前記第1ハイサイドスイッチング素子および前記第2ローサイドスイッチング素子の故障の有無を診断する、請求項10から13のいずれかに記載の電力変換装置。
  15. 前記n相の巻線は、第1相の巻線、第2相の巻線および第3相の巻線を含み、

     前記制御回路は、前記第1相の電圧値、前記第2相の電圧値および前記第3相の電圧値の少なくとも2つを用いて、前記故障の有無の診断を行う、請求項1から14のいずれかに記載の電力変換装置。
  16. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置であって、

     前記モータの各相の巻線の一端に接続される第1インバータと、

     前記各相の巻線の他端に接続される第2インバータと、

     前記第1および第2インバータの動作を制御する制御回路と、

     を備え、

     前記第1および第2インバータのそれぞれは、複数のローサイドスイッチング素子および複数のハイサイドスイッチング素子を備え、

     前記第1インバータのローサイドに中性点を構成しない場合において、前記第1インバータのローサイドスイッチング素子をオンにする第1制御信号を前記第1インバータのローサイドスイッチング素子に供給する第1駆動回路と、

     前記第1インバータのローサイドに中性点を構成する場合において、前記第1インバータのローサイドスイッチング素子をオンにする第2制御信号であって、前記第1制御信号よりも大きい電圧の前記第2制御信号を前記第1インバータのローサイドスイッチング素子に供給する第2駆動回路と、

     をさらに備え、

     前記制御回路は、

      前記第1インバータのローサイドに第1中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第1診断と、

      前記第1インバータのハイサイドに第2中性点を構成させて、前記第1および第2インバータの故障の有無を診断する第2診断と、

     を実行し、

     前記制御回路は、前記第2診断よりも前記第1診断を先に実行する、電力変換装置。
  17. 前記第2駆動回路は、オープンコレクタ出力方式のトランジスタを備える駆動回路である、請求項16に記載の電力変換装置。
  18. 前記第2駆動回路が前記第2制御信号を出力した場合に前記第1駆動回路に所定値以上の電圧が供給されることを抑制する保護回路をさらに備える、請求項16または17に記載の電力変換装置。
  19. 前記保護回路は、ツェナーダイオードを備える、請求項18に記載の電力変換装置。
  20. 請求項1から19のいずれかに記載の電力変換装置と、

     前記モータと、

     を備えるモータ駆動ユニット。
  21. 請求項20に記載のモータ駆動ユニットを備える電動パワーステアリング装置。
PCT/JP2018/022136 2017-08-31 2018-06-11 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 WO2019044106A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-167978 2017-08-31
JP2017167978 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044106A1 true WO2019044106A1 (ja) 2019-03-07

Family

ID=65527271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022136 WO2019044106A1 (ja) 2017-08-31 2018-06-11 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Country Status (2)

Country Link
CN (1) CN216146261U (ja)
WO (1) WO2019044106A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273348A (ja) * 2008-04-07 2009-11-19 Mitsubishi Electric Corp 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2016181947A (ja) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置
JP2016201922A (ja) * 2015-04-10 2016-12-01 東洋電機製造株式会社 交流電動機駆動システム及び交流電動機配線異常検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273348A (ja) * 2008-04-07 2009-11-19 Mitsubishi Electric Corp 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2016181947A (ja) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置
JP2016201922A (ja) * 2015-04-10 2016-12-01 東洋電機製造株式会社 交流電動機駆動システム及び交流電動機配線異常検出装置

Also Published As

Publication number Publication date
CN216146261U (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
JP6933205B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7238777B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7136110B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7014183B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7063322B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6947184B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7070575B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
WO2019026493A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JPWO2019026492A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7070548B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7052801B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN216146261U (zh) 电力转换装置、马达驱动单元以及电动助力转向装置
CN213367657U (zh) 电力转换装置、马达驱动单元以及电动助力转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP