WO2019159836A1 - 電力変換装置、駆動装置およびパワーステアリング装置 - Google Patents

電力変換装置、駆動装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2019159836A1
WO2019159836A1 PCT/JP2019/004597 JP2019004597W WO2019159836A1 WO 2019159836 A1 WO2019159836 A1 WO 2019159836A1 JP 2019004597 W JP2019004597 W JP 2019004597W WO 2019159836 A1 WO2019159836 A1 WO 2019159836A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
power
phase
motor
control
Prior art date
Application number
PCT/JP2019/004597
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
香織 鍋師
北村 高志
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020500455A priority Critical patent/JPWO2019159836A1/ja
Publication of WO2019159836A1 publication Critical patent/WO2019159836A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • the present invention relates to a power conversion device, a drive device, and a power steering device.
  • an inverter drive system that converts electric power of a motor by two inverters is known.
  • Patent Document 1 discloses a power conversion device having two inverter units.
  • a failure of a switching element is detected by a failure detection means.
  • the on / off operation control of the switching element is switched from normal time control to failure time control to drive the rotating electric machine in order to continue driving the rotating electric machine (motor).
  • the present invention provides a power conversion device, a drive device, and a power steering device that can continue power supply with the other inverter even when control or operation on one side of the two inverters becomes impossible.
  • the purpose is to do.
  • One aspect of a power conversion device is a method in which power from a power source is supplied to power supplied to a motor having windings of respective phases each having a first winding portion and a second winding portion connected in series.
  • a power conversion device for converting, a first inverter that applies a driving voltage to one end of the first winding portion, a second inverter that applies a driving voltage to one end of the second winding portion, and the first
  • a neutral point switch for switching connection / disconnection of windings of each phase.
  • an aspect of the drive device includes the power conversion device and a motor to which power converted by the power conversion device is supplied. *
  • An aspect of the power steering apparatus includes the power conversion apparatus, a motor to which power converted by the power conversion apparatus is supplied, and a power steering mechanism driven by the motor.
  • FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit according to the present embodiment.
  • FIG. 3 is a diagram showing current values flowing in the coils of the respective phases of the motor in a normal state.
  • FIG. 4 is a diagram schematically illustrating a hardware configuration of the motor drive unit.
  • FIG. 5 is a diagram schematically illustrating a hardware configuration of a motor drive unit according to a modification of the present embodiment.
  • FIG. 6 is a diagram illustrating a modified example having a different circuit structure.
  • FIG. 7 is a diagram showing another modification example having a different circuit structure.
  • FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit according to the present embodiment.
  • FIG. 3 is a diagram showing current values flowing in the coils of
  • FIG. 8 is a diagram showing a modification in which a neutral point switch is employed as the neutral point mechanism.
  • FIG. 9 is a diagram illustrating a modified example in which the configuration of the control circuit is different.
  • FIG. 10 is a diagram schematically showing a hardware configuration of the motor drive unit according to the modification shown in FIG.
  • FIG. 11 is a diagram schematically illustrating the configuration of the power steering apparatus according to the present embodiment.
  • FIG. 1 is a diagram schematically showing a block configuration of the motor drive unit 1000 according to the present embodiment.
  • the motor drive unit 1000 includes power supply apparatuses 101 and 102, a motor 200, and control circuits 301 and 302. *
  • a motor driving unit 1000 including a motor 200 as a component will be described.
  • the motor drive unit 1000 including the motor 200 corresponds to an example of the drive device of the present invention.
  • the motor drive unit 1000 may be a device for driving the motor 200, in which the motor 200 is omitted as a component.
  • the motor drive unit 1000 from which the motor 200 is omitted corresponds to an example of the power conversion device of the present invention.
  • the first power supply apparatus 101 includes a first inverter 111, a current sensor 401, and a voltage sensor 411.
  • the second power supply apparatus 102 includes a second inverter 112, a current sensor 402, and a voltage sensor 412. *
  • the motor drive unit 1000 can convert the power from the power source (reference numerals 403 and 404 in FIG. 2) to the power to be supplied to the motor 200 by the two power supply devices 101 and 102.
  • the first and second inverters 111 and 112 can convert DC power into three-phase AC power that is a pseudo sine wave of U phase, V phase, and W phase.
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 has U-phase, V-phase, and W-phase coils.
  • the winding method of the coil is, for example, concentrated winding or distributed winding.
  • Each phase coil has a first coil part 201 and a second coil part 202 connected in series with each other.
  • the first coil unit 201 and the second coil unit 202 may be two of three or more coil units. *
  • the first inverter 111 applies a driving voltage to one end of the first coil unit 201
  • the second inverter 112 applies a driving voltage to one end of the second coil unit 202.
  • the other ends of the first coil unit 201 and the second coil unit 202 are connected to each other, and the coils of each phase are connected to each other by the bus bar 120 at the connection point between the first coil unit 201 and the second coil unit 202.
  • “connection” between components (components) means electrical connection unless otherwise specified.
  • the bus bar 120 corresponds to an example of a neutral point mechanism in which coils of each phase are connected at any point from the other end of the first coil unit 201 to the other end of the second coil unit 202. *
  • the control circuits 301 and 302 include microcontrollers 341 and 342, as will be described in detail later.
  • the control circuits 301 and 302 control the drive voltages of the first inverter 111 and the second inverter 112 based on input signals from the current sensors 401 and 402 and the angle sensors 321 and 322. Specific drive voltages will be described later.
  • a control method of the inverters 111 and 112 by the control circuits 301 and 302 for example, a control method selected from vector control and direct torque control (DTC) is used.
  • DTC direct torque control
  • a specific circuit configuration of the motor drive unit 1000 will be described with reference to FIG.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit 1000 according to the present embodiment. *
  • the motor drive unit 1000 is connected to a power source.
  • Each power source includes a first power source 403 and a second power source 404 that are independent of each other.
  • the power supplies 403 and 404 generate a predetermined power supply voltage (for example, 12V).
  • a DC power supply is used as the power supplies 403 and 404.
  • the power supplies 403 and 404 may be AC-DC converters, DC-DC converters, or batteries (storage batteries).
  • the first power supply 403 for the first inverter 111 and the second power supply 404 for the second inverter 112 are shown as an example, but the motor drive unit 1000 is common to the first inverter 111 and the second inverter 112. May be connected to a single power source.
  • the motor drive unit 1000 may include a power source therein.
  • the motor drive unit 1000 includes a first inverter 111, a second inverter 112, a motor 200, and control circuits 301 and 302. *
  • the motor drive unit 1000 includes a first system corresponding to the first coil unit 201 side of the motor 200 and a second system corresponding to the second coil unit 202 side of the motor 200.
  • the first system includes a first inverter 111 and a first control circuit 301.
  • the second system includes a second inverter 112 and a second control circuit 302.
  • the first system inverter 111 and the control circuit 301 are supplied with power from the first power supply 403.
  • the second system inverter 112 and the control circuit 302 are supplied with power from the second power supply 404. Since the drive system including the power supply and the control circuit is made redundant including the power supply, as described later, even when the power supply in one system is abnormal, the power supply is continued by the other system. *
  • the first inverter 111 includes a bridge circuit having three legs. Each leg includes a high-side switch element connected between the power source and the first coil part 201 of the motor 200 and a low-side switch element connected between the first coil part 201 of the motor 200 and the ground. Specifically, the U-phase leg includes a high-side switch element 113H and a low-side switch element 113L. The V-phase leg includes a high-side switch element 114H and a low-side switch element 114L. The W-phase leg includes a high-side switch element 115H and a low-side switch element 115L.
  • the switch element for example, a field effect transistor (MOSFET or the like) or an insulated gate bipolar transistor (IGBT or the like) is used. When the switch element is an IGBT, a diode (freewheel) is connected in antiparallel with the switch element.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first inverter 111 includes, for example, shunt resistors 113R, 114R, and 115R as current sensors 401 (see FIG. 1) for detecting currents flowing through the windings of the U-phase, V-phase, and W-phase, respectively. Prepare for each leg.
  • the current sensor 401 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • the shunt resistor can be connected between the low-side switch elements 113L, 114L, and 115L and the ground.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ . *
  • the number of shunt resistors may be other than three.
  • two shunt resistors 113R and 114R for U phase and V phase, two shunt resistors 114R and 115R for V phase and W phase, or two shunt resistors 113R and 115R for U phase and W phase are used. May be.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of the product cost and design specifications. *
  • the second inverter 112 includes a bridge circuit having three legs. Each leg of the second inverter 112 includes a high-side switch element connected between the power supply and the second coil part 202 of the motor 200 and a low-side switch connected between the second coil part 202 of the motor 200 and the ground.
  • the device is provided.
  • the U-phase leg includes a high-side switch element 116H and a low-side switch element 116L.
  • the V-phase leg includes a high-side switch element 117H and a low-side switch element 117L.
  • the W-phase leg includes a high-side switch element 118H and a low-side switch element 118L.
  • the second inverter 112 includes, for example, shunt resistors 116R, 117R, and 118R.
  • the control circuits 301 and 302 include, for example, power supply circuits 311 and 312, angle sensors 321 and 322, input circuits 331 and 332, microcontrollers 341 and 342, drive circuits 351 and 352, and ROMs 361 and 362. .
  • the control circuits 301 and 302 are connected to the power supply apparatuses 101 and 102.
  • the control circuits 301 and 302 control the first inverter 111 and the second inverter 112. *
  • the control circuits 301 and 302 can realize closed-loop control by controlling the target rotor position (rotation angle), rotation speed, current, and the like.
  • the rotation speed is obtained, for example, by differentiating the rotation angle (rad) with time, and is represented by the number of rotations (rpm) at which the rotor rotates per unit time (for example, 1 minute).
  • the control circuits 301 and 302 can also control the target motor torque.
  • the control circuits 301 and 302 may include a torque sensor for torque control, but torque control is possible even if the torque sensor is omitted. Further, a sensorless algorithm may be provided instead of the angle sensor.
  • the two control circuits 301 and 302 synchronize their control operations by performing control in synchronization with the rotation of the motor.
  • the power supply circuits 311 and 312 generate DC voltages (for example, 3V and 5V) necessary for the respective blocks in the control circuits 301 and 302. *
  • the angle sensors 321 and 322 are, for example, resolvers or Hall ICs.
  • the angle sensors 321 and 322 are also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet.
  • the angle sensors 321 and 322 detect the rotation angle of the rotor of the motor 200, and output a rotation signal representing the detected rotation angle to the microcontrollers 341 and 342.
  • the angle sensors 321 and 322 may be omitted. *
  • the voltage sensors 411 and 412 detect the voltage between the phases of the coils of the motor 200 at the connection points between the inverters 111 and 112 and the first coil unit 201 and the second coil unit 202, and the detected voltage value is the input circuit 331. 332. *
  • the input circuits 331 and 332 receive motor current values detected by the current sensors 401 and 402 (hereinafter referred to as “actual current values”) and voltage values detected by the voltage sensors 411 and 412.
  • the input circuits 331 and 332 convert the actual current value and voltage value level to the input levels of the microcontrollers 341 and 342 as necessary, and output the actual current value and voltage value to the microcontrollers 341 and 342, respectively.
  • the input circuits 331 and 332 are analog-digital conversion circuits. *
  • the microcontrollers 341 and 342 receive the rotor rotation signals detected by the angle sensors 321 and 322 and also receive the actual current value and voltage value output from the input circuits 331 and 332.
  • the microcontrollers 341 and 342 generate a PWM signal by setting a target current value according to the actual current value and the rotation signal of the rotor, and output the generated PWM signal to the drive circuits 351 and 352.
  • the microcontrollers 341 and 342 generate PWM signals for controlling the switching operation (turn-on or turn-off) of each switch element in the inverters 111 and 112 of the power supply apparatuses 101 and 102.
  • microcontrollers 341 and 342 can determine a control method for controlling the first inverter 111 and the second inverter 112 based on the received current value and voltage value.
  • the drive circuits 351 and 352 are typically gate drivers.
  • the drive circuits 351 and 352 generate a control signal (for example, a gate control signal) for controlling the switching operation of each switch element in the first inverter 111 and the second inverter 112 according to the PWM signal, and generate the generated control signal for each switch element.
  • the microcontrollers 341 and 342 may have the functions of the drive circuits 351 and 352. In that case, the drive circuits 351 and 352 are omitted. *
  • the ROMs 361 and 362 are, for example, a writable memory (for example, PROM), a rewritable memory (for example, a flash memory), or a read-only memory.
  • the ROMs 361 and 362 store a control program including a command group for causing the microcontrollers 341 and 342 to control the power supply apparatuses 101 and 102 (mainly inverters 111 and 112).
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • Control of the inverters 111 and 112 by the control circuits 301 and 302 includes normal and abnormal control.
  • a specific example of the operation of the motor drive unit 1000 will be described, and a specific example of the operation of the inverters 111 and 112 will be mainly described. (Control during normal operation)
  • control circuits 301 and 302 drive the motor 200 by performing three-phase energization control using both the first inverter 111 and the second inverter 112. Specifically, the control circuits 301 and 302 perform three-phase energization control by switching control of the switch element of the first inverter 111 and the switch element of the second inverter 112.
  • control circuits 301 and 302 use the drive voltages of the first inverter 111 and the second inverter 112 to determine the potential of the coils of each phase at the location where the coils of each phase of the motor 200 are connected to the bus bar 120. Are controlled to drive voltages having the same potential.
  • control circuits 301 and 302 can obtain a desired drive voltage for each of the high-side switch elements 113H and 116H. Switching control with duty.
  • the control circuits 301 and 302 connect the high side switch elements 113H and 116H to both ends of the coils of each phase.
  • switching control is performed with a duty at which drive voltages of 2 V and 10 V can be obtained.
  • the potential difference between both ends of the coil changes according to the change in the value of the current flowing through the coil, the potential of the coil of each phase at the location connected to the bus bar 120 is kept at a common potential between the phases.
  • the common potential may change with time.
  • FIG. 3 is a diagram showing current values flowing in the coils of the respective phases of the motor 200 in a normal state.
  • FIG. 3 plots the current values flowing through the U-phase, V-phase, and W-phase coils of the motor 200 when the first inverter 111 and the second inverter 112 are controlled according to the normal three-phase energization control.
  • the resulting current waveform (sine wave) is illustrated.
  • the horizontal axis in FIG. 3 represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • Ipk represents the maximum current value (peak current value) of each phase.
  • the power supply devices 101 and 102 can drive the motor 200 using, for example, a rectangular wave in addition to the sine wave illustrated in FIG.
  • Table 1 shows the value of current flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG.
  • Table 1 specifically shows the current value at every electrical angle of 30 ° flowing through the connection point between the first inverter 111 and the first coil portion 201 of each of the U-phase, V-phase, and W-phase coils.
  • Table 1 shows current values for every electrical angle of 30 ° flowing through the connection points between the second inverter 112 and the second coil portions 202 of the U-phase, V-phase, and W-phase coils.
  • the direction of current flowing from the first coil unit 201 side of the motor 200 to the second coil unit 202 side is defined as a positive direction.
  • the direction of current flowing from the second coil portion 202 side of the motor 200 to the first coil portion 201 side is defined as a positive direction. Therefore, the phase difference between the current of the first inverter 111 and the current of the second inverter 112 is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • the current of the U-phase coil is “0”.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the V-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows.
  • the coils of the U-phase current of magnitude I 2 flows through the second inverter 112 from the first inverter 111, the coil of the V phase magnitude I from the second inverter 112 to the first inverter 111 pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”.
  • a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil.
  • second current flows to the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows.
  • the current of the V-phase coil is “0”.
  • the coils of the U-phase current of magnitude I 2 flows from the first inverter 111 to the second inverter 112, the coil of the V phase magnitude I from the first inverter 111 to the second inverter 112 2 current flows, and a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 in the W-phase coil.
  • the current of the U-phase coil is “0”.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the V-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows.
  • a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil.
  • pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”.
  • a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 2 flows, and a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows.
  • the current of the V-phase coil is “0”.
  • a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 2 current flows, and a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
  • the sum of the currents flowing through the three-phase coils in consideration of the current direction is “0” for each electrical angle.
  • the control circuits 301 and 302 can also perform control such that the sum of currents is a value other than “0”. (Control at the time of abnormality)
  • the specific example of the control method of the 1st inverter 111 and the 2nd inverter 112 at the time of abnormality is demonstrated. *
  • Abnormality refers to a state in which one or more of the two power supplies 403 and 404, the two inverters 111 and 112, and the two control circuits 301 and 302 have failed.
  • the abnormality is roughly classified into an abnormality of the first system and an abnormality of the second system.
  • As abnormality of each system there are abnormality due to the failure of the inverters 111 and 112 and abnormality of the upstream part including the power supplies 403 and 404 and the control circuits 301 and 302. *
  • “Abnormality in upstream part” means that only the power supply 403, 404 is abnormal, only the control circuit 301, 302 is abnormal, both the power supply 403, 404 and the control circuit 301, 302 are abnormal, and the power supply 403, 404 is abnormal.
  • the circuits 301 and 302 also include various abnormal states such as a state where the operation is stopped. Further, the failure of the inverters 111 and 112 includes disconnection, short circuit, switch element failure, and the like in the inverter circuit. *
  • control circuits 301 and 302 (mainly microcontrollers 341 and 342) analyze voltage values detected by voltage sensors 411 and 412 and actual current values detected by current sensors 401 and 402. Thus, an abnormality is detected in the partner system with respect to the system to which the self belongs.
  • the control circuits 301 and 302 can check the behavior of the counterpart inverters 111 and 112 via the voltage sensors 411 and 412 and the current sensors 401 and 402 under their control.
  • the voltage at the connection point between the inverters 111 and 112 under the control of the motor 200 and the motor 200 is not only the behavior of the inverters 111 and 112 on the own side but also the behavior of the inverters 111 and 112 on the other side. Affected.
  • the current flowing from the lower arm of the inverters 111 and 112 under its control to the ground is influenced not only by the behavior of the inverters 111 and 112 on the own side but also by the behavior of the inverters 111 and 112 on the other side.
  • the voltage sensors 411 and 412 detect the voltage affected as described above at the connection point, and the current sensors 401 and 402 detect the current affected as described above by the shunt resistors 113R,. To do. *
  • the microcontrollers 341 and 342 can also detect an abnormality by analyzing a difference between the actual current value of the motor and the target current value.
  • the control circuits 301 and 302 are not limited to these methods, and widely known methods relating to abnormality detection can be used. *
  • Control circuit 301 When 302 detects an abnormality in the microcontrollers 341 and 342, the control of the inverters 111 and 112 is switched from normal control to abnormal control.
  • the timing for switching control from normal to abnormal is about 10 msec to 30 msec after the abnormality is detected.
  • the control circuits 301 and 302 perform drive control using the bus bar 120 as a neutral point using only the inverters 111 and 112 on its own side in the event of an abnormality. For example, when the first control circuit 301 detects an abnormality, the first control circuit 301 energizes the first coil unit 201 of the coil of the motor 200 by controlling the first inverter 111 in three phases. *
  • the bus bar 120 connects the coils of each phase even when it is normal, and it is not necessary to change the connection between the coils even when shifting to the abnormal time.
  • the first control circuit 301 detects an abnormality, it means that an abnormality has occurred in the second system.
  • the second system abnormality is an upstream abnormality
  • the second inverter 112 is inoperable or uncontrollable. Even in such a case, since the bus bar 120 can be used as a neutral point, the power supply to the motor 200 is continued by the inverter 111 on the first system side.
  • the second control circuit 302 When the second control circuit 302 detects an abnormality, the second control circuit 302 energizes the second coil portion 202 of the coil of the motor 200 by controlling the second inverter 112 in three phases. *
  • the second control circuit 302 detects an abnormality, it means that an abnormality has occurred in the first system.
  • the abnormality in the first system is an abnormality in the drive system
  • the first inverter 111 is inoperable or uncontrollable. Even in such a case, since the bus bar 120 can be used as a neutral point, the power supply to the motor 200 is continued by the inverter 112 on the second system side.
  • each switch included in the first inverter 111 is a switch that is automatically turned off when the control by the first control circuit 301 fails
  • each switch included in the second inverter 112 is The switch is automatically turned off when the control by the second control circuit 302 fails.
  • control circuits 301 and 302 are configured to perform switching operations in the switching elements of the inverters 111 and 112, for example, by PWM control that can obtain a waveform similar to the current waveform shown in FIG. To control. *
  • Table 2 shows the value of the current flowing through the terminals of the second inverter 112 when the second inverter 112 is controlled by, for example, the three-phase energization control so that a waveform similar to the current waveform shown in FIG. It is illustrated in Table 2 specifically shows the current value at every electrical angle of 30 ° that flows to the connection point between the second inverter 112 and the second coil portion 202 of each of the U phase, V phase, and W phase. The definition of the current direction is as described above. *
  • a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the U-phase coil, and a magnitude of the current from the second inverter 112 to the first inverter 111 flows in the V-phase coil.
  • the current flow I pk the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”. The sum of the current flowing into the neutral point and the current flowing out of the neutral point is always “0” for each electrical angle.
  • the motor current flowing through the motor 200 during normal and abnormal control is the same for each electrical angle. However, since an electric current flows through only one of the first coil unit 201 and the second coil unit 202 at the time of abnormality, the motor torque at the time of abnormality is smaller than the motor torque at the time of normality.
  • FIG. 4 is a diagram schematically illustrating a hardware configuration of the motor drive unit 1000.
  • the motor drive unit 1000 includes the motor 200, the first mounting board 1001, the second mounting board 1002, the housing 1003, and the connectors 1004 and 1005 described above as hardware configurations. *
  • one end 210 of the first coil unit 201 and one end 220 of the second coil unit 202 protrude and extend toward the mounting substrates 1001 and 1002.
  • Both one end 210 of the first coil unit 201 and one end 220 of the second coil unit 202 are connected to one of the first mounting substrate 1001 and the second mounting substrate 1002, and the one end 210 of the first coil unit 201 and Both the one end 220 of the second coil part 202 penetrates the one of the first mounting substrate 1001 and the second mounting substrate 1002 and is connected to the other.
  • both one end 210 of the first coil unit 201 and one end 220 of the second coil unit 202 are connected to the second mounting substrate 1002, for example.
  • both one end 210 of the first coil unit 201 and one end 220 of the second coil unit 202 penetrate the second mounting substrate 1002 and are connected to the first mounting substrate 1001.
  • the bus bar 120 may be provided inside the motor 200 or may be provided on the output side (lower side in FIG. 4) of the motor 200.
  • the neutral point mechanism is the bus bar 120, the degree of freedom of arrangement of the neutral point mechanism is high, and thus the degree of freedom of design of the drive device is high.
  • the first mounting substrate 1001 and the second mounting substrate 1002 face each other.
  • the rotation axis of the motor 200 extends in the direction in which the substrate surfaces face each other.
  • the first mounting substrate 1001, the second mounting substrate 1002, and the motor 200 are housed in the housing 1003 so that their positions are fixed. *
  • a connector 1004 to which a power cord from the first power supply 403 is connected is attached to the first mounting board 1001.
  • a connector 1005 to which a power cord from the second power supply 404 is connected is attached to the second mounting board 1002.
  • a first inverter 111 is mounted on the first mounting board 1001, and a second inverter 112 is mounted on the second mounting board 1002.
  • the wiring of the inverters 111 and 112 to the one end 210 of the first coil unit 201 and the one end 220 of the second coil unit 202 is simplified and the element is efficient. Placement is possible.
  • a first control circuit 301 is also mounted on the first mounting substrate 1001.
  • a second control circuit 302 is also mounted on the second mounting substrate 1002. Since the control circuits 301 and 302 are mounted on the same mounting board as the elements to be controlled by the control circuits 301 and 302, the wiring for control fits in the board. Therefore, efficient element arrangement is possible. *
  • FIG. 5 is a diagram schematically showing a hardware configuration of a motor drive unit 1000 according to a modification of the present embodiment. *
  • the modification shown in FIG. 5 is an example of a neutral point mechanism in which coils of each phase are connected at any point from the other end 230 of the first coil unit 201 to the other end 240 of the second coil unit 202.
  • a neutral point circuit 125 provided on the substrate.
  • the neutral point circuit 125 is formed on the second mounting substrate 1002 with a wiring pattern.
  • the neutral point circuit 125 may be formed on the first mounting substrate 1001 or may be formed on a substrate different from the first mounting substrate 1001 and the second mounting substrate 1002. If the neutral point mechanism is a neutral point circuit on the substrate, the neutral point mechanism is formed outside the motor 200, so the motor 200 can be reduced in size.
  • the neutral point mechanism is a neutral point circuit on the substrate
  • the first end 210 of the first coil unit 201 and the one end 220 of the second coil unit 202 are connected to the mounting substrates 1001 and 1002 in the same manner as the first point circuit. Since the other end 230 of the coil unit 201 and the other end 240 of the second coil unit 202 are connected to the neutral point circuit 125, the assembly process is facilitated.
  • the neutral point mechanism may have a structure other than the bus bar and the neutral point circuit. As long as it is connected as a neutral point mechanism, for example, a structure in which coil lead wires are welded to each other may be used.
  • FIG. 6 is a diagram showing a modified example having a different circuit structure. *
  • a first open relay 131 is provided between one end of the first coil unit 201 and the first inverter 111, and the first open relay 131 is provided between one end of the second coil unit 202 and the second inverter 112.
  • Two open relays 132 are provided.
  • the first open relay 131 switches connection / disconnection between one end of the first coil unit 201 and the first inverter 111.
  • the second open relay 132 switches connection / disconnection between the one end of the second coil unit 202 and the second inverter 112.
  • the first control circuit 301 controls the first inverter 111 and the first open relay 131
  • the second control circuit 302 controls the second inverter 112 and the second open relay 132.
  • the open relays 131 and 132 are automatically turned off when the control signal is stopped.
  • the inverters 111 and 112 of the system in which an abnormality has occurred are disconnected from the motor 200.
  • power loss is suppressed.
  • the control of the inverters 111 and 112 and the open relays 131 and 132 is shared by the two control circuits 301 and 302, even if an abnormality occurs in one of the control circuits 301 and 302, the other control circuit
  • the power supply can be continued by 301 and 302.
  • FIG. 7 is a diagram showing another modified example having a different circuit structure. *
  • two bus bars 121 and 122 are used as a neutral point mechanism in which coils of each phase are connected at any point from the other end of the first coil unit 201 to the other end of the second coil unit 202.
  • the first bus bar 121 connects the other ends of the respective phases of the first coil unit 201.
  • the second bus bar 122 connects the other ends of the respective phases of the second coil unit 202.
  • Intermediate open relays 133 and 134 for switching connection / disconnection between the other end of the first coil unit 201 and the other end of the second coil unit 202 are provided between the first bus bar 121 and the second bus bar 122. It is done.
  • the number of intermediate open relays may be one, but in the modification shown in FIG. 7, the first intermediate open relay 133 on the first inverter 111 side and the second intermediate inverter 112 side are connected in series as the intermediate open relay. Two intermediate open relays 134 are provided. *
  • the first control circuit 301 controls the first inverter 111 and the first intermediate open relay 133
  • the second control circuit 302 includes the second inverter 112 and the second intermediate open relay 134.
  • the control of the inverters 111 and 112 and the intermediate open relays 133 and 134 is shared by the two control circuits 301 and 302, so that even if an abnormality occurs in one of the control circuits 301 and 302, the other control circuit 301 , 302 makes it possible to continue power supply.
  • FIG. 8 is a view showing a modified example in which a neutral point switch is adopted as the neutral point mechanism.
  • a neutral point switch 127 including three switch elements is provided as a point switch.
  • Such a neutral point switch 127 is opened during the above-described normal state to disconnect the motor coils, and is closed during the abnormal state described above to connect the motor coils. For this reason, at the time of normality, even when the electric potentials of the coils of the motor 200 are different, current leakage between the coils is prevented, and the degree of freedom of control is high.
  • the motor 200 can function continuously in the same way as the neutral point connection described above, and the motor 200 can be continuously driven by the normal one of the first system and the second system.
  • the other end of the first coil unit 201 and the other end of the second coil unit 202 are connected to each other by a conducting wire. For this reason, the other end of the first coil unit 201 and the other end of the second coil unit 202 are always conducted in the same phase. Therefore, the separation switch for separating the first coil unit 201 and the second coil unit 202 is omitted, and the circuit configuration is simple. *
  • the neutral point switch 127 receives control signals from both of the two control circuits 301 and 302, and the neutral point switch 127 can be controlled by only one of these control signals. That is, the neutral point switch 127 can be controlled by each of the first control circuit 301 and the second control circuit 302. By such control, even when one of the two control circuits 301 and 302 fails, the neutral point switch 127 can be controlled.
  • FIG. 9 shows a modification in which the configuration of the control circuit is different. *
  • FIG. 10 is a diagram schematically showing a hardware configuration of the motor drive unit 1000 according to the modification shown in FIG. *
  • the neutral point switch 127 is provided on the second mounting substrate 1002, and a third control circuit 303 that controls the neutral point switch 127 is also provided on the second mounting substrate 1002.
  • the neutral point switch 127 may be formed on the first mounting substrate 1001 or may be formed on a substrate different from the first mounting substrate 1001 and the second mounting substrate 1002. Further, it is preferable that the neutral point switch 127 and the third control circuit 303 are provided on the same mounting substrate because the wiring is simplified, but they may be provided on different substrates. (Embodiment of power steering device)
  • a vehicle such as an automobile generally includes a power steering device.
  • the power steering device generates an auxiliary torque for assisting a steering torque of a steering system that is generated when a driver operates a steering wheel.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and the burden on the operation of the driver can be reduced.
  • the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like.
  • the steering torque sensor detects steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor generates auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the speed reduction mechanism.
  • FIG. 11 is a diagram schematically showing the configuration of the power steering apparatus 2000 according to the present embodiment.
  • the electric power steering device 2000 includes a steering system 520 and an auxiliary torque mechanism 540. *
  • the steering system 520 is also referred to as, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal joints 523A, 523B, and a rotating shaft 524 (“pinion shaft” or “input shaft”). Provided.) *
  • the steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A, 529B.
  • a rack and pinion mechanism 525 for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A, 529B.
  • the steering handle 521 is connected to the rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 includes a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side correspond to the right side and the left side as viewed from the driver sitting on the seat, respectively.
  • a steering torque is generated by the driver operating the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. Accordingly, the driver can operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power supply device 545.
  • the auxiliary torque mechanism 540 gives auxiliary torque to the steering system 520 from the steering handle 521 to the left and right steering wheels 529A and 529B.
  • the auxiliary torque may be referred to as “additional torque”. *
  • the ECU 542 for example, control circuits 301 and 302 shown in FIG.
  • the power supply device 545 for example, the power supply devices 101 and 102 shown in FIG.
  • the motor 543 for example, the motor 200 shown in FIG.
  • the motor 543, and the power supply device 545 constitute a unit generally referred to as a “mechanical and integrated motor”, the unit has, for example, the hardware configuration shown in FIGS.
  • a motor drive unit 1000 is preferably used.
  • the mechanism constituted by elements excluding the ECU 542, the motor 543, and the power supply device 545 corresponds to an example of a power steering mechanism driven by the motor 543. *
  • the steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering handle 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the speed reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525. *
  • the power steering device 2000 is classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on a place where an assist torque is applied to the steering system 520.
  • FIG. 11 shows a pinion assist type power steering apparatus 2000.
  • the power steering device 2000 is also applied to a rack assist type, a column assist type, and the like. *
  • the ECU 542 can receive not only a torque signal but also a vehicle speed signal, for example.
  • the microcontroller of the ECU 542 can perform vector control or PWM control of the motor 543 based on a torque signal, a vehicle speed signal, or the like.
  • the ECU 542 sets a target current value based on at least the torque signal.
  • the ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and the rotor rotation signal detected by the angle sensor.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor (see FIG. 1) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver.
  • the motor drive unit 1000 of the above-described embodiment for the above-described electromechanical integrated motor appropriate current control can be performed at both normal and abnormal times.
  • the power assist in the power steering device is continued both in the normal time and in the abnormal time.
  • a power steering device may be mentioned, but the usage method of the power conversion device and the drive device of the present invention is not limited to the above, and a pump, a compressor It can be used widely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置の一態様は、直列接続される第1巻線部分と第2巻線部分とを有する各相の巻線を備えたモータに供給される電力に電源からの電力を変換する電力変換装置であって、上記第1巻線部分の一端に駆動電圧を印加する第1インバータと、上記第2巻線部分の一端に駆動電圧を印加する第2インバータと、上記第1インバータを制御する第1制御部と、上記第2インバータを制御する第2制御部と、上記第1巻線部分の他端から上記第2巻線部分の他端に至るいずれかの箇所で上記各相の巻線同士の接続・非接続を切替える中性点スイッチと、を備える。

Description

電力変換装置、駆動装置およびパワーステアリング装置
本発明は、電力変換装置、駆動装置およびパワーステアリング装置に関する。
従来、2つのインバータによりモータの電力を変換するインバータ駆動システムが知られている。また、モータの各巻線の両端それぞれにインバータが接続され各巻線について独立に電力を供給するタイプのインバータ駆動システムも知られている。 
例えば特許文献1には2つのインバータ部を有する電力変換装置が開示されている。特許文献1では、故障検出手段によりスイッチング素子の故障が検出される。そして、スイッチング素子に故障が生じた場合、回転電機(モータ)の駆動継続のため、スイッチング素子のオンオフ作動制御が正常時制御から故障時制御に切り替えられて回転電機が駆動される。
特開2014-192950号公報
近年、電力変換装置、駆動装置およびパワーステアリング装置における電力供給について、電源および制御回路を含んだ駆動系の全部あるいは一部の冗長化による電力供給の継続性の向上が求められる。特に、駆動系における故障などによって2つのインバータの一方側について制御あるいは動作が不能となった場合に、もう一方側で電力供給を継続することができる装置が望まれる。 
そこで本発明は、2つのインバータの一方側について制御あるいは動作が不能となった場合であっても他方のインバータで電力供給を継続することが可能な電力変換装置、駆動装置およびパワーステアリング装置を提供することを目的とする。
本発明に係る電力変換装置の一態様は、直列接続される第1巻線部分と第2巻線部分とを有する各相の巻線を備えたモータに供給される電力に電源からの電力を変換する電力変換装置であって、上記第1巻線部分の一端に駆動電圧を印加する第1インバータと、上記第2巻線部分の一端に駆動電圧を印加する第2インバータと、上記第1インバータを制御する第1制御部と、上記第2インバータを制御する第2制御部と、上記第1巻線部分の他端から上記第2巻線部分の他端に至るいずれかの箇所で上記各相の巻線同士の接続・非接続を切替える中性点スイッチと、を備える。 また、本発明に係る駆動装置の一態様は、上記電力変換装置と、上記電力変換装置によって変換された電力が供給されるモータと、を備える。 
また、本発明に係るパワーステアリング装置の一態様は、上記電力変換装置と、上記電力変換装置によって変換された電力が供給されるモータと、上記モータにより駆動されるパワーステアリング機構と、を備える。
本発明によれば、2つのインバータの一方側について制御あるいは動作が不能となった場合であっても他方のインバータで電力供給を継続することが可能である。
図1は、本実施形態によるモータ駆動ユニットのブロック構成を模式的に示す図である。 図2は、本実施形態によるモータ駆動ユニットの回路構成を模式的に示す図である。 図3は、正常時におけるモータの各相の各コイルに流れる電流値を示す図である。 図4は、モータ駆動ユニットのハードウェア構成を模式的に示す図である。 図5は、本実施形態の変形例によるモータ駆動ユニットのハードウェア構成を模式的に示す図である。 図6は、回路構造が異なる変形例を示す図である。 図7は、回路構造が異なる別の変形例を示す図である。 図8は、中性点機構として中性点スイッチが採用された変形例を示す図である。 図9は、制御回路の構成が異なる変形例を示す図である。 図10は、図9に示す変形例によるモータ駆動ユニットのハードウェア構成を模式的に示す図である。 図11は、本実施形態によるパワーステアリング装置の構成を模式的に示す図である。
以下、添付の図面を参照しながら、本開示の電力変換装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。(モータ駆動ユニット1000の構造) 図1は、本実施形態によるモータ駆動ユニット1000のブロック構成を模式的に示す図である。 モータ駆動ユニット1000は、電力供給装置101、102、モータ200および制御回路301、302を備える。 
本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200が省かれた、モータ200を駆動するための装置であってもよい。モータ200が省かれたモータ駆動ユニット1000は、本発明の電力変換装置の一例に相当する。 
第1の電力供給装置101は、第1インバータ111、電流センサ401および電圧センサ411を備える。第2の電力供給装置102は、第2インバータ112、電流センサ402および電圧センサ412を備える。 
モータ駆動ユニット1000は、2つの電力供給装置101、102によって、電源(図2の符号403,404)からの電力をモータ200に供給する電力に変換することが可能である。例えば、第1および第2インバータ111、112は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。 
モータ200は、例えば三相交流モータである。モータ200は、U相、V相およびW相のコイルを有する。コイルの巻き方は、例えば集中巻きまたは分布巻きである。各相のコイルは互いに直列接続される第1コイル部201と第2コイル部202とを有する。但し、第1コイル部201と第2コイル部202は、3個以上備えられたコイル部のうちの2つであってもよい。 
第1インバータ111は、第1コイル部201の一端に駆動電圧を印加し、第2インバータ112は、第2コイル部202の一端に駆動電圧を印加する。第1コイル部201と第2コイル部202は他端同士が接続されており、第1コイル部201と第2コイル部202との接続箇所で各相のコイルがバスバー120によって互いに接続される。本明細書において、部品(構成要素)同士の「接続」とは、特に断らない限り電気的な接続を意味する。バスバー120は、第1コイル部201の他端から第2コイル部202の他端に至るいずれかの箇所で各相のコイルを接続した中性点機構の一例に相当する。 
制御回路301、302は、後で詳述するようにマイクロコントローラ341、342などを備える。制御回路301、302は、電流センサ401、402および角度センサ321、322からの入力信号に基づいて第1インバータ111および第2インバータ112の駆動電圧を制御する。具体的な駆動電圧については後述する。制御回路301、302によるインバータ111、112の制御手法として、例えばベクトル制御、直接トルク制御(DTC)から選択された制御手法が用いられる。 図2を参照して、モータ駆動ユニット1000の具体的な回路構成を説明する。 図2は、本実施形態によるモータ駆動ユニット1000の回路構成を模式的に示す図である。 
モータ駆動ユニット1000は電源に接続される。電源はそれぞれ独立した第1電源403および第2電源404を備える。電源403、404は所定の電源電圧(例えば12V)を生成する。電源403、404として、例えば直流電源が用いられる。ただし、電源403、404は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。図2では、一例として、第1インバータ111用の第1電源403および第2インバータ112用の第2電源404が示されるが、モータ駆動ユニット1000は、第1インバータ111および第2インバータ112に共通の単一電源に接続されてもよい。また、モータ駆動ユニット1000は、内部に電源を備えていてもよい。 モータ駆動ユニット1000は、第1インバータ111、第2インバータ112、モータ200および制御回路301、302を備える。 
モータ駆動ユニット1000は、モータ200の第1コイル部201側に対応した第1系統と、モータ200の第2コイル部202側に対応した第2系統とを備える。第1系統には、第1インバータ111と第1の制御回路301が含まれる。第2系統には、第2インバータ112と第2の制御回路302が含まれる。第1系統のインバータ111および制御回路301は第1電源403から電力を供給される。第2系統のインバータ112および制御回路302は第2電源404から電力を供給される。電源と制御回路を含んだ駆動系が、電源も含めて冗長化されるので、後述するように、一方の系統における電源の異常時にも、他方の系統によって電力供給が継続される。 
第1インバータ111は、3個のレグを有するブリッジ回路を備える。各レグは、電源とモータ200の第1コイル部201との間に接続されたハイサイドスイッチ素子およびモータ200の第1コイル部201とグランドとの間に接続されたローサイドスイッチ素子を備える。具体的には、U相用レグは、ハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lを備える。V相用レグは、ハイサイドスイッチ素子114Hおよびローサイドスイッチ素子114Lを備える。W相用レグは、ハイサイドスイッチ素子115Hおよびローサイドスイッチ素子115Lを備える。スイッチ素子としては、例えば電界効果トランジスタ(MOSFETなど)または絶縁ゲートバイポーラトランジスタ(IGBTなど)が用いられる。なお、スイッチ素子がIGBTである場合には、スイッチ素子と逆並列にダイオード(フリーホイール)が接続される。 
第1インバータ111は、例えば、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ401(図1を参照)として、シャント抵抗113R、114Rおよび115Rをそれぞれ各レグに備える。電流センサ401は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。例えば、シャント抵抗は、ローサイドスイッチ素子113L、114Lおよび115Lとグランドとの間に接続され得る。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 
シャント抵抗の数は3つ以外でもよい。例えば、U相、V相用の2つのシャント抵抗113R、114R、V相、W相用の2つのシャント抵抗114R、115R、または、U相、W相用の2つのシャント抵抗113R、115Rが用いられてもよい。使用されるシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などが考慮されて適宜決定される。 
第2インバータ112は、3個のレグを有するブリッジ回路を備える。第2インバータ112の各レグは、電源とモータ200の第2コイル部202との間に接続されたハイサイドスイッチ素子およびモータ200の第2コ
イル部202とグランドとの間に接続されたローサイドスイッチ素子を備える。具体的には、U相用レグは、ハイサイドスイッチ素子116Hおよびローサイドスイッチ素子116Lを備える。V相用レグは、ハイサイドスイッチ素子117Hおよびローサイドスイッチ素子117Lを備える。W相用レグは、ハイサイドスイッチ素子118Hおよびローサイドスイッチ素子118Lを備える。第1インバータ111と同様に、第2インバータ112は、例えば、シャント抵抗116R、117Rおよび118Rを備える。 
再び図1を参照する。制御回路301、302は、例えば、電源回路311、312と、角度センサ321、322と、入力回路331、332と、マイクロコントローラ341、342と、駆動回路351、352と、ROM361、362とを備える。制御回路301、302は電力供給装置101、102に接続される。そして、制御回路301、302は第1インバータ111および第2インバータ112を制御する。 
制御回路301、302は、目的とするロータの位置(回転角)、回転速度、および電流などを制御してクローズドループ制御を実現することができる。回転速度は、例えば、回転角(rad)を時間微分することにより得られ、単位時間(例えば1分間)にロータが回転する回転数(rpm)で表される。制御回路301、302は、目的とするモータトルクを制御することも可能である。制御回路301、302は、トルク制御のためにトルクセンサを備えてもよいがトルクセンサが省かれていてもトルク制御は可能である。また、角度センサに変えてセンサレスアルゴリズムを備えてもよい。また、2つの制御回路301、302は、各々がモータの回転に同期して制御を行うことで相互の制御動作を同期させる。 電源回路311、312は、制御回路301、302内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。 
角度センサ321、322は、例えばレゾルバまたはホールICである。角度センサ321、322は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ321、322は、モータ200のロータの回転角を検出し、検出した回転角を表した回転信号をマイクロコントローラ341、342に出力する。モータ制御手法(例えばセンサレス制御)によっては、角度センサ321、322は省かれる場合がある。 
電圧センサ411、412は、モータ200のコイルの各相間における電圧を、インバータ111、112と第1コイル部201および第2コイル部202との接続箇所で検出し、検出した電圧値を入力回路331、332に出力する。 
入力回路331、332は、電流センサ401、402によって検出されたモータ電流値(以下、「実電流値」と表記する。)と電圧センサ411、412によって検出された電圧値を受け取る。入力回路331、332は、マイクロコントローラ341、342の入力レベルに実電流値および電圧値のレベルを必要に応じて変換し、実電流値および電圧値をマイクロコントローラ341、342に出力する。入力回路331、332は、アナログデジタル変換回路である。 
マイクロコントローラ341、342は、角度センサ321、322によって検出されたロータの回転信号を受信するとともに、入力回路331、332から出力された実電流値および電圧値を受信する。マイクロコントローラ341、342は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、生成したPWM信号を駆動回路351、352に出力する。例えば、マイクロコントローラ341、342は、電力供給装置101、102のインバータ111、112における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。 
また、マイクロコントローラ341、342は、第1インバータ111および第2インバータ112を制御する制御方式を、受信した電流値および電圧値に基づいて決定することが可能である。 
駆動回路351、352は、典型的にはゲートドライバである。駆動回路351、352は、第1インバータ111および第2インバータ112における各スイッチ素子のスイッチング動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、生成した制御信号を各スイッチ素子に与える。 マイクロコントローラ341、342は、駆動回路351、352の機能を有していてもよい。その場合、駆動回路351、352は省かれる。 
ROM361、362は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM361、362は、マイクロコントローラ341、342に電力供給装置101、102(主としてインバータ111、112)を制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 制御回路301、302(主としてマイクロコントローラ341、342)によるインバータ111、112の制御には正常時および異常時の制御がある。 以下、モータ駆動ユニット1000の動作の具体例を説明し、主としてインバータ111、112の動作の具体例を説明する。



(正常時の制御) 
インバータ111、112の正常時の制御方法の具体例を説明する。正常とは、2つの電源403、404と、2つのインバータ111、112と、2つの制御回路301、302のいずれもが正しく動作する状態を指す。 
正常時において、制御回路301、302は、第1インバータ111および第2インバータ112の両方を用いて三相通電制御することによってモータ200を駆動する。具体的に、制御回路301、302は、第1インバータ111のスイッチ素子と第2インバータ112のスイッチ素子とをスイッチング制御することにより三相通電制御を行う。 
また、三相通電制御に際して制御回路301、302は、第1インバータ111および第2インバータ112による駆動電圧を、モータ200の各相のコイルがバスバー120に接続された箇所における各相のコイルの電位が互いに同電位となる駆動電圧に制御する。 
例えば、ハイサイドスイッチ素子113H、116Hおよびローサイドスイッチ素子113L、116Lを含むU相用レグに着目すると、制御回路301、302は、各ハイサイドスイッチ素子113H、116Hを、所望の駆動電圧が得られるデューティでスイッチング制御する。 
具体的には、バスバー120に接続された箇所における各相のコイルの電位として例えば6Vが必要な場合には、制御回路301、302はハイサイドスイッチ素子113H、116Hを、各相のコイルの両端で例えば2Vと10Vの駆動電圧が得られるデューティでスイッチング制御する。コイルの両端の電位差は、コイルに流れる電流値の変化に従って変化するが、バスバー120に接続された箇所における各相のコイルの電位は各相間の共通電位に保たれる。但し、各相のコイルの電位が互いに同電位であれば、共通電位は時間的に変動してもよい。 
このように、バスバー120に接続された箇所における各相のコイルの電位が互いに同電位となることにより、各相のコイルが互いに絶縁される場合と同様の電流が各相のコイルに流れることになる。即ち、バスバー120で各相のコイルが相互に接続されても、各相の電流はいわば独立して流れ、各相のコイル相互で電流が混じることが防がれる。従って、各相のコイルを互いに切り離すためのスイッチは不要である。 図3は、正常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。 
図3には、正常時の三相通電制御に従って第1インバータ111および第2インバータ112が制御されたときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)が例示されている。図3の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。なお、電力供給装置101、102は、図3に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することも可能である。 
表1は、図3の正弦波において電気角毎に各インバータの端子に流れる電流値を示す。表1は、具体的に、第1インバータ111とU相、V相およびW相それぞれのコイルの第1コイル部201との接続点に流れる電気角30°毎の電流値を示す。また、表1は、第2インバータ112とU相、V相およびW相それぞれのコイルの第2コイル部202との接続点に流れる、電気角30°毎の電流値を示す。ここで、第1インバータ111に対しては、モータ200の第1コイル部201側から第2コイル部202側に流れる電流方向を正の方向と定義する。また、第2インバータ112に対しては、モータ200の第2コイル部202側から第1コイル部201側に流れる電流方向を正の方向と定義する。従って、第1インバータ111の電流と第2インバータ112の電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。 
Figure JPOXMLDOC01-appb-T000001
電気角0°において、U相のコイルは電流が「0」となる。電気角0°において、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。 
電気角30°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。 
電気角60°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角60°において、W相のコイルは電流が「0」となる。 
電気角90°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。 
電気角120°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角120°において、V相のコイルは電流が「0」となる。 
電気角150°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れる。 
電気角180°において、U相のコイルは電流が「0」となる。電気角180°において、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。 
電気角210°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。 
電気角240°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角240°において、W相のコイルは電流が「0」となる。 
電気角270°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。 
電気角300°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角300°において、V相のコイルは電流が「0」となる。 
電気角330°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れる。 
図3に示される電流波形において、電流の向きを考慮した三相のコイルに流れる電流の総和は電気角毎に「0」となる。ただし、電力供給装置101、102の回路構成によれば、三相のコイルに流れる電流は独立に制御される。このため、制御回路301、302は電流の総和が「0」以外の値となる制御を行うことも可能である。(異常時の制御) 異常時における第1インバータ111および第2インバータ112の制御方法の具体例を説明する。 
異常とは、2つの電源403、404と、2つのインバータ111、112と、2つの制御回路301、302の1つ以上に故障が生じた状態を指す。異常には、大きく分けて第1系統の異常と第2系統の異常とがある。各系統の異常としては、インバータ111、112の故障による異常と、電源403、404および制御回路301、302を含む上流部の異常がある。 
「上流部の異常」は、電源403、404のみの異常、制御回路301、302のみの異常、電源403、404と制御回路301、302との両方における異常、電源403、404の異常に伴い制御回路301、302も動作停止した状態などといった各種の異常状態を含む。また、インバータ111、112の故障は、インバータ回路内における断線、ショート、スイッチ素子の故障などを含む。 
インバータ111、112の故障による異常時における制御方法としては、例えば特開2014-192950号公報に記載された制御方法などが用いられる。以下では、上流部の異常時における制御方法について説明する。 
異常検知の一例として、制御回路301、302(主としてマイクロコントローラ341、342)は、電圧センサ411、412によって検出された電圧値と、電流センサ401、402によって検出された実電流値とを解析することで、2つの系統のうち自己が所属する系統に対する相手側の系統における異常を検知する。 
制御回路301、302は、自分の制御下にある電圧センサ411、412および電流センサ401、402を介して相手側のインバータ111、112における挙動を確認することができる。具体的には、自分の制御下にあるインバータ111、112とモータ200との接続点における電圧は、自分側のインバータ111、112の挙動だけでなく、相手側のインバータ111、112の挙動にも影響される。また、自分の制御下にあるインバータ111、112の下アームからグランドへと流れる電流も、自分側のインバータ111、112の挙動だけでなく、相手側のインバータ111、112の挙動にも影響される。電圧センサ411、412は上記のように影響される電圧を上記接続点で検出し、電流センサ401、402は上記のように影響される電流を図2のシャント抵抗113R、……、118Rで検出する。 
異常検知の他の一例として、マイクロコントローラ341、342は、モータの実電流値と目標電流値との差などを解析することで異常を検知することも可能である。ただし、制御回路301、302は、これらの手法に限られず、異常検知に関する公知の手法を広く用いることができる。 
制御回路301、
302は、マイクロコントローラ341、342で異常を検知すると、インバータ111、112の制御を正常時の制御から異常時の制御に切替える。例えば、正常時から異常時に制御を切替えるタイミングは、異常が検知されてから10msec~30msec程度である。 
制御回路301、302は、異常時には、自分側のインバータ111、112のみを用いて、バスバー120を中性点として利用した駆動制御を行う。例えば第1の制御回路301が異常を検知した場合には、第1の制御回路301は第1インバータ111を三相通電制御することでモータ200のコイルの第1コイル部201を通電する。 
上述したように、正常時には、各相のコイルの電流がバスバー120を介して混じることの回避のために、バスバー120に各コイルが接続される各箇所における電位が共通電位に制御される。このため、バスバー120は正常時も各相のコイルを接続し、異常時への移行に際してもコイル相互の接続変更は不要である。 
第1の制御回路301が異常を検知した場合には、第2系統で異常が生じたことになる。そして、第2系統の異常が上流部の異常である場合、第2インバータ112は、動作不能あるいは制御不能な状態である。このような場合でも、バスバー120が中性点として利用可能であるので、第1系統側のインバータ111でモータ200に対する電力供給が継続される。 
第2の制御回路302が異常を検知した場合には、第2の制御回路302は第2インバータ112を三相通電制御することでモータ200のコイルの第2コイル部202を通電する。 
第2の制御回路302が異常を検知した場合には、第1系統で異常が生じたことになる。そして、第1系統の異常が駆動系の異常である場合、第1インバータ111は、動作不能あるいは制御不能な状態である。このような場合でも、バスバー120が中性点として利用可能であるので、第2系統側のインバータ112でモータ200に対する電力供給が継続される。 
なお、本実施形態では、第1インバータ111に含まれる各スイッチは、第1の制御回路301による制御が失陥した場合に自ずとオフとなるスイッチであり、第2インバータ112に含まれる各スイッチは、第2の制御回路302による制御が失陥した場合に自ずとオフとなるスイッチである。このようなスイッチがインバータ111,112に用いられることにより、制御回路301,302の一方が故障した場合に故障側のインバータ111,112が自ずとモータのコイルから電気的に切り離される。 
異常時における具体的な三相通電制御として、制御回路301、302は、例えば図3に示される電流波形と同様の波形が得られるようなPWM制御によってインバータ111、112の各スイッチング素子におけるスイッチング動作を制御する。 
表2は、図3に示される電流波形と同様の波形が得られるような三相通電制御で例えば第2インバータ112が制御された場合に第2インバータ112の端子に流れる電流値を電気角毎に例示する。表2は、具体的に、第2インバータ112とU相、V相およびW相それぞれの第2コイル部202との接続点に流れる、電気角30°毎の電流値を示す。電流方向の定義は上述したとおりである。 
Figure JPOXMLDOC01-appb-T000002
例えば、電気角30°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角60°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角60°において、W相のコイルは電流が「0」となる。中性点に流れ込む電流と中性点から流れ出る電流との総和は電気角毎に常に「0」になる。 
表1および表2に示されるように、正常時および異常時の制御の間でモータ200に流れるモータ電流は電気角毎に同一である。但し、異常時には第1コイル部201と第2コイル部202とのうち一方のみに電流が流れるので異常時のモータトルクは正常時のモータトルクより小さい。 
なお、異常時の異常箇所が、インバータ111、112内の1つのスイッチ素子である場合には、例えば特開2014-192950号公報に記載された制御手法によるインバータ111、112の中性点化が可能である。但し、この制御手法の実現に際しては、制御信号の電圧が正常時とは異なる特殊なゲートドライバが必要とされる。このような制御手法に対し、バスバー120が中性点として用いられる制御は、正常時と同じ電圧の制御信号で実行可能であるため、特殊なゲートドライバが不要である。 
また、故障を生じたスイッチ素子を含んだインバータ111、112の使用は避けることが望ましいので、この点でも、バスバー120が中性点として用いられる制御の方が優れる。



 (モータ駆動ユニット1000のハードウェア構成)



 次に、モータ駆動ユニット1000のハードウェア構成について説明する。 図4は、モータ駆動ユニット1000のハードウェア構成を模式的に示す図である。 
モータ駆動ユニット1000は、ハードウェア構成として、上述したモータ200と、第1実装基板1001と、第2実装基板1002と、ハウジング1003と、コネクタ1004、1005とを備える。 
モータ200からは、第1コイル部201の一端210と第2コイル部202の一端220が突き出し実装基板1001、1002に向かって延びる。第1コイル部201の一端210と第2コイル部202の一端220との双方は、第1実装基板1001および第2実装基板1002の一方に接続されると共に、第1コイル部201の一端210と第2コイル部202の一端220との双方が第1実装基板1001および第2実装基板1002の当該一方を貫通して他方に接続される。具体的には、第1コイル部201の一端210と第2コイル部202の一端220との双方が例えば第2実装基板1002に接続される。また、第1コイル部201の一端210と第2コイル部202の一端220との双方が、第2実装基板1002を貫通して第1実装基板1001に接続される。


モータ200からは、第1コイル部201の他端230と第2コイル部202の他端240も突き出す。第1コイル部201の他端230は第2コイル部202の他端240に接続され、各相の接続箇所が互いにバスバー120によって接続される。なお、本発明の駆動装置の実施形態としては、バスバー120がモータ200内部に設けられてもよいし、モータ200の出力側(図4の下側)に設けられてもよい。中性点機構がバスバー120であると、中性点機構の配置の自由度が高く、延いては駆動装置の設計の自由度が高い。 
第1実装基板1001と第2実装基板1002とは基板面が互いに対向する。基板面が対向した方向に、モータ200の回転軸が延びる。第1実装基板1001と第2実装基板1002とモータ200は、ハウジング1003内に収容されることで互いの位置が固定される。 
第1実装基板1001には、第1電源403からの電源コードが接続されるコネクタ1004が取り付けられる。第2実装基板1002には、第2電源404からの電源コードが接続されるコネクタ1005が取り付けられる。 
第1実装基板1001には、第1インバータ111が実装され、第2実装基板1002には、第2インバータ112が実装される。2枚の実装基板1001、1002に対するこのような素子の振り分けにより、第1コイル部201の一端210および第2コイル部202の一端220に対するインバータ111、112の配線が簡略化されて効率的な素子配置が可能となる。 
第1実装基板1001には、第1の制御回路301も実装される。第2実装基板1002には、第2の制御回路302も実装される。各制御回路301、302が、各制御回路301、302による制御対象の素子と同一の実装基板上に実装されるので制御のための配線が基板内に納まる。よって効率的な素子配置が可能である。 
第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の第1インバータ111と第2実装基板1002上の第2インバータ112とは互いに対称な配置である。また、第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の制御回路301と第2実装基板1002上の制御回路302とは互いに対称な配置である。このような対称な配置により、2枚の実装基板1001、1002について基板設計が共通化できる。(変形例) 図5は、本実施形態の変形例によるモータ駆動ユニット1000のハードウェア構成を模式的に示す図である。 
図5に示された変形例は、第1コイル部201の他端230から第2コイル部202の他端240に至るいずれかの箇所で各相のコイルを接続した中性点機構の一例として、基板上に設けられた中性点回路125を備える。具体的には、中性点回路125は、第2実装基板1002上に配線パターンによって形成される。なお、中性点回路125は第1実装基板1001上に形成されてもよいし、第1実装基板1001および第2実装基板1002とは別の基板上に形成されてもよい。中性点機構が基板上の中性点回路であると、モータ200外に中性点機構が形成されるのでモータ200の小型化が図られる。また、中性点機構が基板上の中性点回路であると、第1コイル部201の一端210および第2コイル部202の一端220における実装基板1001、1002への接続と同様に、第1コイル部201の他端230および第2コイル部202の他端240が中性点回路125に接続されるので組み立て工程が容易となる。 
なお、中性点機構は、バスバー、中性点回路以外の構造でもよい。中性点機構として繋がっていれば、例えば、コイルの引出線同士が溶接された構造などでもよい。 図6は、回路構造が異なる変形例を示す図である。 
図6に示す変形例では、第1コイル部201の一端と第1インバータ111との間に第1開放リレー131が備えられ、第2コイル部202の一端と第2インバータ112との間に第2開放リレー132が備えられる。第1開放リレー131は、第1コイル部201の一端と第1インバータ111との接続・非接続を切替える。第2開放リレー132は、第2コイル部202の一端と第2インバータ112との接続・非接続を切替える。また、第1の制御回路301が第1インバータ111と第1開放リレー131とを制御し、第2の制御回路302が第2インバータ112と第2開放リレー132とを制御する。 
開放リレー131、132は、制御信号が止まった場合には自ずとオフ状態になる。開放リレー131、132が備えられることにより、異常が生じた系統のインバータ111、112はモータ200から切り離される。この結果、電力損失が抑制される。また、2つの制御回路301,302によってインバータ111、112および開放リレー131、132の制御が分担されることで、制御回路301,302の一方に異常が生じた場合であっても他方の制御回路301、302によって電力供給の継続が可能となる。 図7は、回路構造が異なる別の変形例を示す図である。 
図7に示す変形例では、第1コイル部201の他端から第2コイル部202の他端に至るいずれかの箇所で各相のコイルを接続した中性点機構として2つのバスバー121、122が備えられる。第1のバスバー121は第1コイル部201の各相の他端同士を接続する。第2のバスバー122は第2コイル部202の各相の他端同士を接続する。第1のバスバー121と第2のバスバー122との間には、第1コイル部201の他端と第2コイル部202の他端との接続・非接続を切替える中間開放リレー133、134が備えられる。中間開放リレーは1つでもよいが、図7に示す変形例では、中間開放リレーとして、互いに直列に接続される、第1インバータ111側の第1中間開放リレー133と第2インバータ112側の第2中間開放リレー134が備えられる。 
中間開放リレー133、134がオンすると、第1コイル部201と第2コイル部202は直列接続されるので、図7に示す回路構造は、電気的には、図2に示す回路構造と同等になる。異常時には中間開放リレー133、134によって第1コイル部201と第2コイル部202が切り離される。この結果、電力損失が抑制される。 
なお、図7に示す変形例の場合でも、正常時には、バスバー120に接続された箇所における各相のコイルの電位は各相間の共通電位に保たれ、各相コイルの相互間で電流が混じることが防がれる。この結果、図7に示す変形例の場合でも、正常時と異常時とでコイル相互の接続状態を切替えるスイッチは不要である。 
図7に示す変形例では、第1の制御回路301が第1インバータ111と第1中間開放リレー133とを制御し、第2の制御回路302が第2インバータ112と第2中間開放リレー134とを制御する。2つの制御回路301,302によってインバータ111、112および中間開放リレー133、134の制御が分担されることで、制御回路301,302の一方に異常が生じた場合であっても他方の制御回路301,302によって電力供給の継続が可能となる。 
中性点機構としては、図4に示すバスバー120や図5に示す中性点回路125などのように結線された中性点結線の他に、コイル相互の接続・非接続が切り替え可能な中性点スイッチが採用されてもよい。 図8は、中性点機構として中性点スイッチが採用された変形例を示す図である。 
図8に示す変形例では、第1コイル部201の他端から第2コイル部202の他端に至るいずれかの箇所で各相の巻線(コイル)同士の接続・非接続を切替える中性点スイッチとして、3つのスイッチ素子からなる中性点スイッチ127が備えられる。このような中性点スイッチ127は、上述した正常時には開放されてモータのコイル同士を非接続とし、上述した異常時には閉鎖されてモータのコイル同士を接続する。このため、正常時には、モータ200のコイル同士の電位が異なる制御であってもコイル相互間の電流漏洩が防がれ制御の自由度が高い。また、異常時には、上述した中性点結線と同様に機能して、第1系統と第2系統とのうち正常な一方によるモータ200の駆動継続が可能となる。 
第1コイル部201の他端と第2コイル部202の他端とは同じ相同士が導線で結線される。このため、第1コイル部201の他端と第2コイル部202の他端とは、同じ相で常時導通する。従って、第1コイル部201と第2コイル部202とを切り離す分離スイッチが省かれ、回路構成が簡素である。 
中性点スイッチ127には、2つの制御回路301,302の双方から制御信号が入力され、中性点スイッチ127はそれらの制御信号の一方のみで制御可能である。即ち、中性点スイッチ127は、第1制御回路301と前記第2制御回路302の各々が制御可能である。このような制御により、2つの制御回路301,302の一方が故障した場合でも中性点スイッチ127が制御可能である。図9は制御回路の構成が異なる変形例を示す。 
図9に示す変形例では、中性点スイッチ127を制御する第3の制御回路303が備えられる。インバータ111、112を制御する制御回路301,302と中性点スイッチ127を制御する制御回路303とが別であることにより、中性点スイッチの制御が簡素化される。 図10は、図9に示す変形例によるモータ駆動ユニット1000のハードウェア構成を模式的に示す図である。 
中性点スイッチ127は、例えば第2実装基板1002上に備えられ、中性点スイッチ127を制御する第3の制御回路303も第2実装基板1002上に備えられる。 なお、中性点スイッチ127は第1実装基板1001上に形成されてもよいし、第1実装基板1001および第2実装基板1002とは別の基板上に形成されてもよい。また、中性点スイッチ127と第3の制御回路303は、同一の実装基板上に備えられると配線などが簡素化されて好ましいが、別々の基板上に備えられてもよい。



(パワーステアリング装置の実施形態)


自動車等の車両は一般的に、パワーステアリング装置を備える。パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などから構成される。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。 
上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図11は、本実施形態によるパワーステアリング装置2000の構成を模式的に示す図である。 電動パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。 
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。 
また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。 
ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力供給装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 
ECU542としては、例えば図1などに示された制御回路301、302が用いられる。また、電力供給装置545としては、例えば図1などに示された電力供給装置101、102が用いられる。また、モータ543としては、例えば図1などに示されたモータ200が用いられる。ECU542、モータ543および電力供給装置545が、一般的に「機電一体型モータ」と称されるユニットを構成する場合には、当該ユニットとしては、例えば図4、5に示されたハードウェア構成のモータ駆動ユニット1000が好適に用いられる。図11に示された各要素のうち、ECU542、モータ543および電力供給装置545を除いた要素で構成された機構は、モータ543によって駆動されるパワーステアリング機構の一例に相当する。 
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。 
パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図11には、ピニオンアシスト型のパワーステアリング装置2000が示される。ただし、パワーステアリング装置2000は、ラックアシスト型、コラムアシスト型等にも適用される。 
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御またはPWM制御することができる。 
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(図1参照)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。 
パワーステアリング装置2000によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型モータに、上記実施形態のモータ駆動ユニット1000が利用されることにより、正常時および異常時のいずれにおいても適切な電流制御が可能となる。この結果、正常時および異常時のいずれにおいてもパワーステアリング装置におけるパワーアシストが継続される。 
なお、ここでは、本発明の電力変換装置および駆動装置における使用方法の一例としてパワーステアリング装置が挙げられるが、本発明の電力変換装置および駆動装置の使用方法は上記に限定されず、ポンプ、コンプレッサなど広範囲に使用可能である。 
上述した実施形態及び変形例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1. 直列接続される第1巻線部分と第2巻線部分とを有する各相の巻線を備えたモータに供給される電力に電源からの電力を変換する電力変換装置であって、



     前記第1巻線部分の一端に駆動電圧を印加する第1インバータと、



     前記第2巻線部分の一端に駆動電圧を印加する第2インバータと、



     前記第1インバータを制御する第1制御部と、



     前記第2インバータを制御する第2制御部と、



     前記第1巻線部分の他端から前記第2巻線部分の他端に至るいずれかの箇所で前記各相の巻線同士の接続・非接続を切替える中性点スイッチと、



    を備える電力変換装置。
  2. 前記第1巻線部分の他端と前記第2巻線部分の他端とは、同じ相で常時導通する請求項1に記載の電力変換装置。
  3. 前記第1インバータに含まれる各スイッチは、前記第1制御部による制御が失陥した場合にオフとなるスイッチであり、



     前記第2インバータに含まれる各スイッチは、前記第2制御部による制御が失陥した場合にオフとなるスイッチである請求項2に記載の電力変換装置。
  4. 前記中性点スイッチは、前記第1制御部と前記第2制御部の各々が制御可能である請求項1から3のいずれか1項に記載の電力変換装置。
  5. 前記中性点スイッチを制御する第3制御部を備える請求項1から3のいずれか1項に記載の電力変換装置。
  6. 前記第1インバータおよび前記第1制御部が第1電源から電力を供給され、



     前記第2インバータおよび前記第2制御部が第2電源から電力を供給される請求項1から5のいずれか1項に記載の電力変換装置。
  7. 請求項1から6のいずれか1項に記載の電力変換装置と、



     前記電力変換装置によって変換された電力が供給されるモータと、



    を備える駆動装置。
  8. 請求項1から6のいずれか1項に記載の電力変換装置と、



     前記電力変換装置によって変換された電力が供給されるモータと、



     前記モータによって駆動されるパワーステアリング機構と、



    を備える電動パワーステアリング装置。
PCT/JP2019/004597 2018-02-13 2019-02-08 電力変換装置、駆動装置およびパワーステアリング装置 WO2019159836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500455A JPWO2019159836A1 (ja) 2018-02-13 2019-02-08 電力変換装置、駆動装置およびパワーステアリング装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018023429 2018-02-13
JP2018-023429 2018-02-13
JP2018152515 2018-08-13
JP2018-152515 2018-08-13

Publications (1)

Publication Number Publication Date
WO2019159836A1 true WO2019159836A1 (ja) 2019-08-22

Family

ID=67618508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004597 WO2019159836A1 (ja) 2018-02-13 2019-02-08 電力変換装置、駆動装置およびパワーステアリング装置

Country Status (2)

Country Link
JP (1) JPWO2019159836A1 (ja)
WO (1) WO2019159836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045012A (ja) * 2019-09-13 2021-03-18 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051092A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 充電システムおよびそれを備えた車両
US20100097027A1 (en) * 2008-10-07 2010-04-22 Siemens Industry, Inc. Methods and apparatus for controlling multiple a.c. induction machines from a single inverter
WO2018012420A9 (ja) * 2016-07-11 2018-06-14 株式会社デンソー モータ制御装置、モータ駆動システム、及び、モータ制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051092A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 充電システムおよびそれを備えた車両
US20100097027A1 (en) * 2008-10-07 2010-04-22 Siemens Industry, Inc. Methods and apparatus for controlling multiple a.c. induction machines from a single inverter
WO2018012420A9 (ja) * 2016-07-11 2018-06-14 株式会社デンソー モータ制御装置、モータ駆動システム、及び、モータ制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045012A (ja) * 2019-09-13 2021-03-18 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置

Also Published As

Publication number Publication date
JPWO2019159836A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6888609B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN111034024B (zh) 电力转换装置、马达模块以及电动助力转向装置
US20200274461A1 (en) Electric power conversion device, motor driver, and electric power steering device
CN111713002B (zh) 电力转换装置、驱动装置以及助力转向装置
CN111034006B (zh) 电力转换装置、马达模块以及电动助力转向装置
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
WO2019150913A1 (ja) 駆動装置およびパワーステアリング装置
CN110463024B (zh) 电力转换装置、马达驱动单元以及电动助力转向装置
WO2019151308A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019159836A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JP7151432B2 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019150911A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019150912A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN113169545B (zh) 电力转换装置、驱动装置以及助力转向装置
WO2019159835A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JP2021013209A (ja) 電力変換装置、駆動装置およびパワーステアリング装置
JP7400735B2 (ja) 駆動制御装置、駆動装置およびパワーステアリング装置
WO2020137510A1 (ja) 駆動制御装置、モータ駆動装置およびパワーステアリング装置
WO2020137511A1 (ja) 駆動制御装置、モータ駆動装置およびパワーステアリング装置
CN111404396A (zh) 电力转换装置、驱动装置以及助力转向装置
JP2021045012A (ja) 電力変換装置、駆動装置およびパワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754324

Country of ref document: EP

Kind code of ref document: A1