WO2018012420A9 - モータ制御装置、モータ駆動システム、及び、モータ制御方法 - Google Patents

モータ制御装置、モータ駆動システム、及び、モータ制御方法 Download PDF

Info

Publication number
WO2018012420A9
WO2018012420A9 PCT/JP2017/024922 JP2017024922W WO2018012420A9 WO 2018012420 A9 WO2018012420 A9 WO 2018012420A9 JP 2017024922 W JP2017024922 W JP 2017024922W WO 2018012420 A9 WO2018012420 A9 WO 2018012420A9
Authority
WO
WIPO (PCT)
Prior art keywords
microcomputer
signal
microcomputers
motor
synchronization signal
Prior art date
Application number
PCT/JP2017/024922
Other languages
English (en)
French (fr)
Other versions
WO2018012420A1 (ja
Inventor
雅也 滝
利光 坂井
功一 中村
修司 倉光
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017124055A external-priority patent/JP7024223B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017003482.5T priority Critical patent/DE112017003482B4/de
Publication of WO2018012420A1 publication Critical patent/WO2018012420A1/ja
Publication of WO2018012420A9 publication Critical patent/WO2018012420A9/ja
Priority to US16/243,503 priority patent/US10668945B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/06Clock generators producing several clock signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping

Definitions

  • the present disclosure relates to a motor control device that controls driving of a motor by a plurality of microcomputers, a motor drive system including the motor control device, and a motor control method.
  • Patent Document 1 discloses a technique in which control is continued with a normal microcomputer when either the main microcomputer or the sub-microcomputer is abnormal in the control unit of the electric power steering control device.
  • the OFF / ON timing of the power supplied to each microcomputer may shift due to, for example, the difference in the supply voltage to each microcomputer or the characteristic variation of the power generation circuit. As a result, there may occur a situation in which only some of the microcomputers are stopped and only other microcomputers are operated even though the microcomputers and the power supply have not failed.
  • each microcomputer determines whether to stop / start its own microcomputer according to the OFF / ON of the vehicle switch signal.
  • the timing for determining whether to stop the operation due to power-off depends on the difference in the vehicle switch signal information recognized by each microcomputer and the difference in the control state within each microcomputer. There may be deviation.
  • the present invention is applied to an electric power steering apparatus that performs assist control to reduce the steering torque of a driver by controlling the driving force of a motor with a microcomputer.
  • the other microcomputer When each microcomputer independently determines that the operation is stopped when the vehicle switch signal is turned OFF / ON, the other microcomputers once shut off the power supply even though one microcomputer continues the assist control. There is a possibility of starting again. As a result, there is a possibility that an erroneous fail determination is made due to interruption of a signal to be received from another microcomputer, or that timing synchronization cannot be performed when timing synchronization is performed with another microcomputer.
  • Patent Document 1 does not mention any problem that the consistency of the control state, the operation timing, and the like is lost when the operations of a plurality of microcomputers are stopped.
  • An object of the present disclosure is to provide a motor control device that ensures consistency when a plurality of microcomputers stop operating. Moreover, it is providing the motor drive system provided with the motor control apparatus, and the motor control method by the motor control apparatus.
  • the motor control device of the present disclosure includes a plurality of motor drive circuits and a plurality of microcomputers.
  • the plurality of motor drive circuits drive, for example, one or more motors having a plurality of winding sets.
  • the plurality of microcomputers have a drive signal generation unit that operates by a microcomputer power supply generated by a power supply generation circuit connected to a power supply and generates motor drive signals that respectively instruct the plurality of motor drive circuits.
  • the microcomputer and the motor drive circuit are provided corresponding to each other, and the unit of the group of components is defined as “system”.
  • the motor control device drives the motor by controlling the energization to the corresponding winding set by the constituent elements of each system. Further, for a plurality of microcomputers, the microcomputer itself is referred to as “own microcomputer” for each microcomputer.
  • the motor control device further includes the following configuration.
  • At least one of the plurality of microcomputers includes a stop determination unit that determines that the operation of the microcomputer is about to be stopped and transmits the information as a stop determination signal to another microcomputer.
  • the microcomputer that has received the stop determination signal from one or more other microcomputers actually stops the operation of its own microcomputer based on at least the stop determination signal of the other microcomputer.
  • the motor control device of the present disclosure can align the actual operation stop timing even when the stop determination timing is shifted among the plurality of microcomputers due to the difference in the characteristics of the supply voltage and the power generation circuit. Therefore, it is possible to ensure consistency when the operations of a plurality of microcomputers are stopped.
  • the motor control device is based on the basic configuration described above, and further, at least one microcomputer among the plurality of microcomputers and at least one microcomputer other than the microcomputers simultaneously stop operation.
  • the motor control device is based on the basic configuration described above, and further, at least one of the plurality of microcomputers and at least one microcomputer other than the microcomputers simultaneously stop driving the motor.
  • a motor control method by the motor control device having the above basic configuration is provided.
  • the stop determination unit included in at least one of the plurality of microcomputers determines that the operation of the own microcomputer is about to be stopped.
  • the stop determination signal transmission step information indicating that the operation of the own microcomputer is about to be stopped is transmitted to another microcomputer as a stop determination signal based on the determination in the own microcomputer stop determination step.
  • the own microcomputer receives a stop determination signal from one or more other microcomputers.
  • the own microcomputer actually stops the operation of the own microcomputer based on at least the stop determination signal of the other microcomputer.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus in which the ECU of each embodiment is applied as an electromechanical integrated motor drive system.
  • FIG. 2 is a configuration diagram of an electric power steering device in which the ECU of each embodiment is applied as an electro-mechanical separate type motor drive system,
  • FIG. 3 is a sectional view in the axial direction of a two-system electromechanical integrated motor, 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic diagram showing the configuration of a multi-homologous axis motor,
  • FIG. 6 is an overall configuration diagram of an ECU (motor control device) according to each embodiment.
  • FIG. 7 is a configuration diagram of an ECU (motor control device) according to the first embodiment.
  • FIG. 8 is a diagram for explaining operation 1 of the comparative example.
  • FIG. 9 is a diagram illustrating operation 2 of the comparative example.
  • FIG. 10 is a diagram for explaining operation 3 of the comparative example.
  • FIG. 11 is a diagram for explaining the operation 4 of the comparative example.
  • FIG. 12 is a diagram for explaining the operation 5A of the comparative example.
  • FIG. 13 is a diagram for explaining the operation 5B of the comparative example.
  • FIG. 14 is a time chart showing the operation 5B of the comparative example.
  • FIG. 15 is a diagram for explaining the operation of the first embodiment.
  • FIG. 16 is a time chart showing the operation of the first embodiment.
  • FIG. 17 is a simplified flowchart of first power switch circuit connection / open determination.
  • FIG. 18 is a simplified flowchart of second power supply switching circuit connection / open determination.
  • FIG. 19 is a flowchart (1) of a microcomputer stop process when an upper limit waiting time is provided for receiving a stop determination signal from another microcomputer.
  • FIG. 20 is the same flowchart (2) as above.
  • FIG. 21 is a configuration diagram of an ECU (motor control device) according to the second embodiment.
  • FIG. 22 is a configuration diagram of an ECU (motor control device) according to the third embodiment.
  • FIG. 23 is a configuration diagram of an ECU (motor control device) according to the fourth embodiment.
  • FIG. 24 is a flowchart of microcomputer reset processing according to the fourth embodiment.
  • FIG. 25 is a configuration diagram of an ECU (motor control device) according to the fifth embodiment.
  • FIG. 26 is a diagram for explaining the operation of the fifth embodiment.
  • FIG. 27 is a detailed configuration diagram of an ECU (motor control device) according to a basic form of the fifth embodiment,
  • FIG. 28 is a diagram illustrating the relationship between the motor drive signal and the analog signal sampling timing.
  • FIG. 29 is a time chart showing a clock shift between two systems of microcomputers.
  • FIG. 30 is a time chart for explaining timing correction (prior art) using a synchronization signal
  • FIG. 31 is a time chart for explaining problems of the prior art when the synchronization signal is abnormal
  • FIG. 32 is a flowchart of timing determination processing according to the basic form of the fifth embodiment.
  • FIG. 33 is a diagram illustrating a setting example of a synchronization permission section according to the basic form of the fifth embodiment
  • FIG. 34 is a time chart when the synchronization signal is abnormal according to the basic form of the fifth embodiment.
  • FIG. 35 is a flowchart of a motor drive start process at the time of starting the microcomputer.
  • FIG. 36 is a flowchart of the timing determination standby process when the microcomputer is activated.
  • FIG. 37 is a flowchart of the timing correction return processing after the synchronization signal abnormality determination
  • FIG. 38 is a flowchart of the synchronization signal abnormality confirmation process
  • FIG. 39 is a configuration diagram of an ECU (motor control device) according to the sixth embodiment.
  • FIG. 40 is a diagram illustrating bidirectional synchronization signal transmission / reception timing according to the sixth embodiment.
  • FIG. 41 is a time chart of the seventh embodiment using a synchronization signal of a specific pulse pattern
  • FIG. 42 is a time chart of the eighth embodiment using a synchronization signal of a specific pulse pattern.
  • an ECU as a “motor control device” is applied to an electric power steering device of a vehicle and controls energization of a motor that outputs a steering assist torque.
  • the ECU and the motor constitute a “motor drive system”.
  • substantially the same components are denoted by the same reference numerals and description thereof is omitted.
  • the following first to eighth embodiments are collectively referred to as “this embodiment”.
  • FIGS. 1 and 2 show an overall configuration of a steering system 99 including an electric power steering device 90.
  • FIG. FIG. 1 shows an “mechanical and integrated” configuration in which the ECU 10 is integrally formed on one side of the motor 80 in the axial direction, and FIG. The structure of “mechanical separate type” is illustrated.
  • the electric power steering device 90 in FIGS. 1 and 2 is a column assist type, but can be similarly applied to a rack assist type electric power steering device.
  • the steering system 99 includes a handle 91, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 90, and the like.
  • a steering shaft 92 is connected to the handle 91.
  • a pinion gear 96 provided at the tip of the steering shaft 92 is engaged with the rack shaft 97.
  • a pair of wheels 98 are provided at both ends of the rack shaft 97 via tie rods or the like.
  • the electric power steering device 90 includes a steering torque sensor 93, an ECU 10, a motor 80, a reduction gear 94, and the like.
  • the steering torque sensor 93 is provided in the middle of the steering shaft 92 and detects the steering torque of the driver.
  • the duplicated steering torque sensor 93 includes a first torque sensor 931 and a second torque sensor 932, and detects the first steering torque trq1 and the second steering torque trq2 doubly.
  • the detected value of one steering torque trq may be used in common for the two systems.
  • redundantly detected steering torques trq1 and trq2 they are described as one steering torque trq.
  • the ECU 10 controls the driving of the motor 80 based on the steering torques trq1 and trq2 so that the motor 80 generates a desired assist torque.
  • the assist torque output from the motor 80 is transmitted to the steering shaft 92 via the reduction gear 94.
  • the ECU 10 acquires the electrical angles ⁇ 1 and ⁇ 2 of the motor 80 detected by the rotation angle sensor and the steering torques trq1 and trq2 detected by the steering torque sensor 93.
  • the ECU 10 controls the driving of the motor 80 based on such information and information such as the motor current detected inside the ECU 10.
  • FIG. 3 A configuration of an electromechanical integrated motor 800 in which the ECU 10 is integrally formed on one side in the axial direction of the motor 80 will be described with reference to FIGS. 3 and 4.
  • the ECU 10 is disposed coaxially with the axis Ax of the shaft 87 on the side opposite to the output side of the motor 80.
  • the ECU 10 may be configured integrally with the motor 80 on the output side of the motor 80.
  • the motor 80 is a three-phase brushless motor, and includes a stator 840, a rotor 860, and a housing 830 that accommodates them.
  • the stator 840 has a stator core 845 fixed to the housing 830 and two sets of three-phase winding sets 801 and 802 assembled to the stator core 845.
  • Lead wires 851, 853, and 855 extend from the respective phase windings constituting the first winding set 801.
  • Lead wires 852, 854, 856 extend from the respective phase windings constituting the second winding set 802.
  • the rotor 860 has a shaft 87 supported by a rear bearing 835 and a front bearing 836, and a rotor core 865 in which the shaft 87 is fitted.
  • the rotor 860 is provided inside the stator 840 and is rotatable relative to the stator 840.
  • a permanent magnet 88 is provided at one end of the shaft 87.
  • the housing 830 has a bottomed cylindrical case 834 including a rear frame end 837 and a front frame end 838 provided at one end of the case 834.
  • the case 834 and the front frame end 838 are fastened to each other by bolts or the like.
  • Lead wires 851, 852 and the like of each winding set 801, 802 extend through the lead wire insertion hole 839 of the rear frame end 837 to the ECU 10 side and are connected to the substrate 230.
  • the ECU 10 includes a cover 21, a heat sink 22 fixed to the cover 21, a substrate 230 fixed to the heat sink 22, and various electronic components mounted on the substrate 230.
  • the cover 21 protects electronic components from external impacts and prevents intrusion of dust or water into the ECU 10.
  • the cover 21 includes an external connection connector 214 and a cover 213 for an external power supply cable and signal cable.
  • the power supply terminals 215 and 216 of the external connection connector portion 214 are connected to the substrate 230 via a path (not shown).
  • the board 230 is, for example, a printed board, is provided at a position facing the rear frame end 837, and is fixed to the heat sink 22.
  • the board 230 is provided with electronic components for two systems independently for each system, and has a completely redundant configuration.
  • the number of the substrates 230 is one, but in other embodiments, two or more substrates may be provided.
  • the surface facing the rear frame end 837 is referred to as a motor surface 237
  • the opposite surface, that is, the surface facing the heat sink 22 is referred to as a cover surface 238.
  • a plurality of switching elements 241 and 242, rotation angle sensors 251 and 252, custom ICs 261 and 262 are mounted on the motor surface 237.
  • the plurality of switching elements 241 and 242 are six for each system, and constitute the three-phase upper and lower arms of the motor drive circuit.
  • the rotation angle sensors 251 and 252 are arranged so as to face the permanent magnet 88 provided at the tip of the shaft 87.
  • the custom ICs 261 and 262 and the microcomputers 401 and 402 have a control circuit for the ECU 10.
  • the custom ICs 261 and 262 are provided with, for example, clock monitoring units 661 and 662 shown in FIG.
  • microcomputers 401 and 402 On the cover surface 238, microcomputers 401 and 402, capacitors 281 and 282, inductors 271 and 272, and the like are mounted.
  • the first microcomputer 401 and the second microcomputer 402 are arranged on the cover surface 238 that is the same side surface of the same substrate 230 at a predetermined interval.
  • Capacitors 281 and 282 smooth the electric power input from the power source and prevent noise from flowing out due to the switching operation of switching elements 241 and 242.
  • Inductors 271 and 272 constitute a filter circuit together with capacitors 281 and 282.
  • the motor 80 to be controlled by the ECU 10 is a three-phase brushless motor in which two sets of three-phase winding sets 801 and 802 are provided coaxially.
  • the winding sets 801 and 802 have the same electrical characteristics.
  • the winding sets 801 and 802 are arranged on a common stator with an electrical angle shifted by 30 degrees.
  • the winding sets 801 and 802 are controlled so that, for example, a phase current having the same amplitude and a phase shift of 30 deg.
  • a combination of the first winding set 801 and the first microcomputer 401 and the motor drive circuit 701 related to the energization control of the first winding set 801 is defined as a first system GR1.
  • a combination of the second winding set 802 and the second microcomputer 402, the second motor drive circuit 702, and the like related to energization control of the second winding set 802 is defined as a second system GR2.
  • the first system GR1 and the second system GR2 are all composed of two independent element groups, and have a so-called “complete two-system” redundant configuration.
  • first is added to the beginning of components or signals of the first system GR1
  • second is added to the beginning of components or signals of the second system GR2, as necessary.
  • Items that are common to each system are collectively described without adding “first and second”.
  • “1” is added to the end of the code of the first system component or signal
  • “2” is added to the end of the code of the second system component or signal.
  • own system a system including the component
  • other system is referred to as “other system”.
  • the microcomputer of the own system is referred to as “own microcomputer”
  • other microcomputer is referred to as “other microcomputer”.
  • the first connector portion 351 of the ECU 10 includes a first power connector 131, a first vehicle communication connector 311, and a first torque connector 331.
  • the second connector portion 352 includes a second power connector 132, a second vehicle communication connector 312, and a second torque connector 332.
  • Each of the connector portions 351 and 352 may be formed as a single connector, or may be divided into a plurality of connectors.
  • the first power connector 131 is connected to the first power source 111.
  • the power of the first power supply 111 is supplied to the first winding set 801 via the power connector 131, the power relay 141, the first motor drive circuit 701, and the motor relay 731.
  • the power of the first power supply 111 is also supplied to the first microcomputer 401 and the sensors of the first system GR1.
  • the second power connector 132 is connected to the second power source 112.
  • the power of the second power source 112 is supplied to the second winding set 802 via the power connector 132, the power relay 142, the second motor drive circuit 702, and the motor relay 732.
  • the two power supply connectors 131 and 132 may be connected to a common power supply.
  • the first vehicle communication connector 311 is connected between the first CAN 301 and the first vehicle communication circuit 321, and the second vehicle communication connector 312 is connected to the second CAN 302 and the second CAN communication network 312. Connected to the vehicle communication circuit 322.
  • the two vehicle communication connectors 311 and 312 may be connected to the common CAN 30.
  • a network of any standard such as CAN-FD (CAN with Flexible Data rate) or FlexRay may be used.
  • the vehicle communication circuits 321 and 322 communicate information bidirectionally with the microcomputers 401 and 402 of the own system and other systems.
  • the first torque connector 331 is connected between the first torque sensor 931 and the first torque sensor input circuit 341.
  • the first torque sensor input circuit 341 notifies the first microcomputer 401 of the steering torque trq1 detected by the first torque connector 331.
  • the second torque connector 332 is connected between the second torque sensor 932 and the second torque sensor input circuit 342.
  • the second torque sensor input circuit 342 notifies the second microcomputer 402 of the steering torque trq2 detected by the second torque connector 332.
  • Each processing in the microcomputers 401 and 402 may be software processing by a CPU executing a program stored in advance in a substantial memory device such as a ROM, or hardware processing by a dedicated electronic circuit. Also good.
  • the microcomputers 401 and 402 operate with the reference clock generated by the clock generation circuits 651 and 652.
  • the clock monitoring units 661 and 662 monitor the reference clocks generated by the clock generation circuits 651 and 652, respectively. The generation and monitoring of the reference clock will be described later in detail.
  • the first microcomputer 401 generates a motor drive signal Dr1 for operating the operation of the switching element 241 of the first motor drive circuit 701 and instructs the first motor drive circuit 701.
  • the first microcomputer 401 generates a first power relay drive signal Vpr1 and a first motor relay drive signal Vmr1.
  • the second microcomputer 402 generates a motor drive signal Dr2 for operating the operation of the switching element 242 of the second motor drive circuit 702, and instructs the second motor drive circuit 702.
  • the second microcomputer 402 generates a second power relay drive signal Vpr2 and a second motor relay drive signal Vmr2.
  • the power supply relay drive signals Vpr1 and Vpr2 generated by the microcomputers 401 and 402 are instructed to the power supply relays 141 and 142 of the own system, and are also notified to other microcomputers.
  • the microcomputers 401 and 402 can transmit / receive information to / from each other through communication between microcomputers.
  • the microcomputers 401 and 402 can transmit and receive a current detection value, a current command value, and the like to each other through communication between the microcomputers, and drive the motor 80 in cooperation with the first system GR1 and the second system GR2.
  • a communication frame for communication between microcomputers includes a current detection value and the like.
  • a current command value, a current limit value, an update counter, a status signal, a CRC signal that is an error detection value signal, or a checksum signal may be included. Note that this embodiment can be applied regardless of the communication contents of the communication between microcomputers, and may transmit / receive other information as necessary, or a part or all of the data may not be included. .
  • each microcomputer receives power relay drive signals Vpr1 and Vpr2 from other microcomputers, but does not receive signals from other microcomputers through communication between microcomputers, the other microcomputers are normal and communication between microcomputers is normal. Is determined to be abnormal.
  • each microcomputer does not receive the power supply relay drive signals Vpr1 and Vpr2 from the other microcomputers and does not receive the signal from the other microcomputers through the communication between the microcomputers, it is determined that the other microcomputers are abnormal.
  • the first motor drive circuit 701 is a three-phase inverter having a plurality of switching elements 241 and converts electric power supplied to the first winding set 801. On / off operation of the switching element 241 of the first motor drive circuit 701 is controlled based on the motor drive signal Dr1 output from the first microcomputer 401.
  • the second motor drive circuit 702 is a three-phase inverter having a plurality of switching elements 242, and converts electric power supplied to the second winding set 802. The on / off operation of the switching element 242 of the second motor drive circuit 702 is controlled based on the motor drive signal Dr2 output from the second microcomputer 402.
  • the first power supply relay 141 is provided between the first power supply connector 131 and the first motor drive circuit 701, and is controlled by a first power supply relay drive signal Vpr1 from the first microcomputer 401.
  • a first power supply relay drive signal Vpr1 from the first microcomputer 401.
  • the second power supply relay 142 is provided between the second power supply connector 132 and the second motor drive circuit 702, and is controlled by a second power supply relay drive signal Vpr2 from the second microcomputer 402.
  • the second power supply relay 142 When the second power supply relay 142 is on, energization between the second power supply 112 and the second motor drive circuit 702 is allowed. When the second power supply relay 142 is off, the second power supply 112 and the second motor drive circuit are allowed. The power supply to and from 702 is cut off.
  • the power supply relays 141 and 142 of this embodiment are semiconductor relays such as MOSFETs.
  • MOSFETs semiconductor relays
  • the power relays 141 and 142 may be mechanical relays.
  • the first motor relay 731 is provided in each phase power path between the first motor drive circuit 701 and the first winding set 801, and is controlled by a first motor relay drive signal Vmr 1 from the first microcomputer 401.
  • a first motor relay drive signal Vmr 1 from the first microcomputer 401.
  • the second motor relay 732 is provided in each phase power path between the second motor drive circuit 702 and the second winding set 802, and is controlled by the second motor relay drive signal Vmr2 from the second microcomputer 402.
  • the first current sensor 741 detects the current Im1 energized in each phase of the first winding set 801 and outputs it to the first microcomputer 401.
  • the second current sensor 742 detects the current Im ⁇ b> 2 energized in each phase of the second winding set 802 and outputs it to the second microcomputer 402.
  • the first rotation angle sensor 251 detects the electrical angle ⁇ ⁇ b> 1 of the motor 80 and outputs it to the first microcomputer 401.
  • the second rotation angle sensor 252 detects the electrical angle ⁇ ⁇ b> 2 of the motor 80 and outputs it to the second microcomputer 402.
  • the ECU 101 includes a first system control unit 601 that controls energization of the first winding set 801 and a second system control unit 602 that controls energization of the second winding set 802.
  • the control units 601 and 602 of each system include power supply switching circuits 151 and 152, power supply generation circuits 161 and 162, clock generation circuits 651 and 652, clock monitoring units 661 and 662, microcomputers 401 and 402, and motor drive circuits 701 and 702. Including.
  • a unit of a group of components including a power supply switching circuit, a power supply generation circuit, a clock generation circuit, a microcomputer, and a motor drive circuit that correspond to each other is referred to as a “system”.
  • the power supply switching circuits 151 and 152 are provided in the middle of the power supply paths 191 and 192.
  • the power supply open / close circuits 151 and 152 are constituted by MOSFETs, for example, and are connected or opened according to instructions from the power supply open / close determination units 551 and 552 of the microcomputers 401 and 402.
  • the vehicle power generation circuits 161 and 162 receive the vehicle switch signals Sw1 and Sw2 via the vehicle switch signal paths 181 and 182, respectively.
  • An ignition ON / OFF signal in an engine vehicle and a ready ON / OFF signal in a hybrid vehicle correspond to a vehicle switch signal.
  • Each of the microcomputers 401 and 402 recognizes whether or not the vehicle switch signals Sw1 and Sw2 are being input to the corresponding power generation circuits 161 and 162. Further, when the power supply switching circuits 151 and 152 are connected, the power supply voltages P1 and P2 are supplied to the power supply generation circuits 161 and 162.
  • the power supply generation circuits 161 and 162 generate microcomputer power supplies that operate the microcomputers 401 and 402 using the supplied power supply voltages P1 and P2.
  • the first clock generation circuit 651 and the second clock generation circuit 652 independently generate reference clocks that the first microcomputer 401 and the second microcomputer 402 operate as references.
  • the first clock monitoring unit 661 monitors the reference clock generated by the first clock generation circuit 651 and output to the first microcomputer 401.
  • the second clock monitoring unit 662 monitors the reference clock generated by the second clock generation circuit 652 and output to the second microcomputer 402. Further, when the clock monitoring units 661 and 662 detect the abnormality of the reference clock, the clock monitoring units 661 and 662 output a reset (“RESET” in the drawing) signal to the microcomputers 401 and 402.
  • RESET reset
  • the microcomputers 401 and 402 receive vehicle information input via the CANs 301 and 302, and information such as steering torque trq1 and trq2, phase currents Im1 and Im2, and electrical angles ⁇ 1 and ⁇ 2 input from each sensor. .
  • the microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 by control calculation based on these various pieces of input information, and output them to the motor drive circuits 701 and 702.
  • the timing of the control operation is determined based on the clock generated by the clock generation circuits 651 and 652.
  • the motor drive circuits 701 and 702 energize the winding sets 801 and 802 based on the motor drive signals Dr1 and Dr2 commanded from the microcomputers 401 and 402, respectively.
  • the motor drive circuits 701 and 702 are power conversion circuits in which a plurality of switching elements such as MOSFETs are bridge-connected.
  • the motor drive signals Dr1 and Dr2 are switching signals that turn on / off each switching element.
  • the motor drive circuits 701 and 702 are three-phase inverters.
  • Each of the microcomputers 401 and 402 includes drive signal generation units 451 and 452, stop determination units 531 and 532, and power supply open / close determination units 551 and 552.
  • Each microcomputer 401, 402 is independently provided with a ROM that stores fixed values such as control programs and parameters, and a RAM that temporarily stores and holds the results of arithmetic processing.
  • the ROM and RAM of the partner microcomputer can be referred to. Can not.
  • signal lines 541 and 542 are provided between the microcomputers 401 and 402.
  • the drive signal generators 451 and 452 generate, for example, motor drive signals Dr1 and Dr2 that are PWM signals by comparing the DUTY of the voltage command signal and the PWM carrier, and command the motor drive circuits 701 and 702.
  • the stop determination units 531 and 532 determine “the operation of the microcomputer is about to be stopped” based on the voltage drop of the vehicle switch signals Sw1 and Sw2 input to the power generation circuits 161 and 162. That is, the stop determination units 531 and 532 determine that the operation of the microcomputer is not already stopped, but is a state in which a future operation stop is predicted.
  • the stop determination units 531 and 532 notify the information as a stop determination signal to the power supply open / close determination units 551 and 552 inside the microcomputer and transmit them to other microcomputers via the signal lines 541 and 542. That is, the stop determination signal from the stop determination unit 531 of the first microcomputer 401 is notified to the power supply open / close determination unit 551 of the first microcomputer 401 and is also transmitted via the signal line 541 to the power supply open / close determination unit 552 of the second microcomputer 402. Sent to.
  • the stop determination signal from the stop determination unit 532 of the second microcomputer 402 is notified to the power supply open / close determination unit 552 of the second microcomputer 402 and transmitted to the power supply open / close determination unit 551 of the first microcomputer 401 via the signal line 542. Is done.
  • the signal lines 541 and 542 may be shared with signal lines for other uses, or may be provided exclusively.
  • the communication of the stop determination signal is performed using serial communication between microcomputers that communicate information such as current. Alternatively, the communication of the stop determination signal is performed using the output level of the microcomputer port instead of the signal line.
  • the power supply open / close determination units 551 and 552 output connection or release instructions to the corresponding power supply generation circuits 161 and 162. Note that in a normally open configuration in which the initial values of the power supply generation circuits 161 and 162 are in an open state, the output of a connection instruction is considered not to be output. On the other hand, in the normally closed configuration in which the initial values of the power supply generation circuits 161 and 162 are in the connected state, it is regarded that the release instruction is not output as the output of the connection instruction.
  • both the power supply open / close determination units 551 and 552 of the first microcomputer 401 and the second microcomputer 402 are notified of the stop determination signal of the own microcomputer and receive the stop determination signal of the other microcomputer.
  • the power supply open / close determination units 551 and 552 output an open instruction to the corresponding power supply open / close circuits 151 and 152 based on the stop determination signal of the microcomputer and the stop determination signal received from another microcomputer.
  • the power supply open / close determining units 551 and 552 actually stop the operation of the microcomputer by outputting an open instruction to the corresponding power supply open / close circuits 151 and 152.
  • the ECU 109 of the comparative example does not include the signal lines 541 and 542 between the microcomputers 401 and 402 with respect to the ECU 101 of the first embodiment, and each of the microcomputers 401 and 402 operates independently based only on its own microcomputer stop determination signal. It will stop.
  • FIG. 8 to 13 show configuration examples including individual power supplies 111 and 112 as a power supply system for supplying the operation power of the ECU 109.
  • FIG. The first power supply 111 is connected to the first power supply generation circuit 161 via the first vehicle switch signal path 181 provided with the first vehicle switch 121. When the first vehicle switch 121 is turned on, the first vehicle switch signal Sw1 is input to the first power supply generation circuit 161.
  • the first power supply 111 is connected to the first power supply switching circuit 151 via a first power supply path 191 branched from the first vehicle switch signal path 181 before the first vehicle switch 121.
  • the first power supply voltage P ⁇ b> 1 is always supplied to the input side of the first power supply switching circuit 151.
  • the second power source 112 is connected to the second power source generation circuit 162 via the second vehicle switch signal path 182 provided with the second vehicle switch 122.
  • the second vehicle switch 122 receives the ON / OFF signal SS of the first vehicle switch 121 and turns ON / OFF together with the first vehicle switch 121.
  • the second vehicle switch signal Sw2 is input to the second power generation circuit 162.
  • the second power supply 112 is connected to the second power supply switching circuit 152 via a second power supply path 192 branched from the second vehicle switch signal path 182 before the second vehicle switch 122.
  • the second power supply voltage P2 is always supplied to the input side of the second power supply switching circuit 152.
  • the configuration example of the power supply system is not limited to this.
  • the first vehicle switch 121 and the second vehicle switch 122 are connected in parallel to one common power supply, and the power supply paths 191 and 192 are branched from the vehicle switch signal paths 181 and 182 before the vehicle switches 121 and 122.
  • It may be configured as follows.
  • the individual power supplies 111 and 112 are used, there may be a difference in the voltages themselves of the power supplies 111 and 112. Even when one common power source is used, there is a possibility that a difference is generated in the voltages recognized by the microcomputers 401 and 402 due to variations in wiring resistance and A / D conversion characteristics of the voltage detection circuit. The effect of such a voltage difference will be described later.
  • the power supply generation circuits 161 and 162 are not supplied with the power supply voltages P1 and P2, so the power supply generation circuits 161 and 162 do not generate a microcomputer power supply.
  • the state in which the microcomputer power supply is generated is described as [generated]
  • the state in which the microcomputer power supply is not generated is described as [non-generated].
  • the power supply voltage is supplied to the power supply generation circuits 161 and 162 in the stage of the operation 2.
  • the power generation circuits 161 and 162 generate microcomputer power, and the microcomputers 401 and 402 are activated.
  • the power supply generation circuits 161 and 162 are supplied with the power supply voltage via both the vehicle switch signal paths 181 and 182 and the power supply paths 191 and 192.
  • “generation” is written in the blocks of the power supply generation circuits 161 and 162.
  • the microcomputers 401 and 402 stop operating simultaneously.
  • the stop determination and power supply open / close determination of the microcomputers 401 and 402 stop operating simultaneously.
  • the stop determination and power supply open / close determination of the microcomputers 401 and 402 stop operating simultaneously.
  • the first microcomputer 401 detects a voltage drop of the first vehicle switch signal Sw1 and makes a stop determination
  • the second microcomputer 402 detects a voltage drop of the second vehicle switch signal Sw2 and makes a stop determination.
  • the determination results of the microcomputers 401 and 402 may differ depending on the voltage difference between the vehicle switch signals Sw1 and Sw2.
  • the first vehicle switch signal Sw1 is turned off
  • the second vehicle switch signal Sw2 remains on. At this time, only the first microcomputer 401 is determined to be stopped, the second microcomputer 402 is not determined to be stopped, and voltage supply and microcomputer power generation continue.
  • the voltage difference between the vehicle switch signals Sw1 and Sw2 is not limited to the voltage difference between the two power supplies 111 and 112.
  • a difference occurs in the voltage that is a criterion for stop determination due to variations in characteristics of the wiring resistance and the power source generation circuits 161 and 162.
  • FIG. 14 the voltage drop of the vehicle switch signals Sw1 and Sw2 and the timing of the operation stop of the microcomputers 401 and 402 are shown.
  • the range above the OFF level corresponds to the ON state.
  • the first vehicle switch signal Sw1 and the second vehicle switch signal Sw2 begin to drop simultaneously at time q0.
  • the first vehicle switch signal Sw1 is turned off after the voltage drop is completed first at time q1s
  • the second vehicle switch signal Sw2 is turned off after the voltage drop is completed after time q2s.
  • the first microcomputer 401 starts microcomputer stop processing from time q1s, and stops operation at time q1e after the processing period Za1.
  • the second microcomputer 402 starts the microcomputer stop process from the time q2s after the waiting period Zb from the time q1e, and stops the operation at the time q2e after the processing period Za2.
  • the waiting period Zb only the first microcomputer 401 is stopped and the second microcomputer 402 is operating.
  • the second microcomputer 402 cannot receive, for example, a synchronization signal as a signal to be received from the first microcomputer 401. For this reason, when the abnormality determination is performed by monitoring the interruption of the synchronization signal reception, there is a possibility that the ECU 109 is erroneously determined to be abnormal although it is a factor derived from the external voltage.
  • the first vehicle switch 121 is turned on again at the waiting period Zb or at the time rs1 in the processing period Za2 of the second microcomputer 402, the first microcomputer 401 is already operating. Starts. At this time, the operation start timing of each of the microcomputers 401 and 402 is shifted.
  • the ECU 101 of the first embodiment is provided with signal lines 541 and 542 between the two microcomputers 401 and 402, and the stop determination signals from the stop determination units 531 and 532 of each microcomputer are mutually transmitted to other microcomputers.
  • the operation of the ECU 101 of the first embodiment will be described with reference to FIGS. 15 and 16.
  • FIG. 15 it is assumed that the first vehicle switch signal Sw1 is turned off and the second vehicle switch signal Sw2 is turned on, as in the operation 5B of the comparative example shown in FIG.
  • the stop determination unit 531 of the first microcomputer 401 outputs a stop determination signal, but the stop determination unit 532 of the second microcomputer 402 does not output a stop determination signal. Therefore, the power supply open / close determination unit 551 of the first microcomputer 401 outputs a connection instruction to the first power supply open / close circuit 151 because it does not receive a stop determination signal from the second microcomputer 402 which is another microcomputer. As a result, voltage supply to the power supply generation circuit 161 is continued, and the first power supply generation circuit 161 generates a microcomputer power supply for the first microcomputer 401.
  • the power supply open / close determination unit 552 of the second microcomputer 402 outputs a connection instruction to the second power supply open / close circuit 152 because it does not receive a stop determination signal of the microcomputer.
  • the first microcomputer 401 continues to operate until it receives the stop determination signal of the second microcomputer 402, and when it receives the stop determination signal of the second microcomputer 402, it actually stops its operation.
  • FIG. 16 the voltage drop of the vehicle switch signals Sw1 and Sw2 and the operation stop timing of the microcomputers 401 and 402 in the first embodiment are shown in the same manner as in FIG.
  • the first microcomputer 401 starts the microcomputer stop process at time q1s when the voltage drop of the first vehicle switch signal Sw1 is completed
  • the second microcomputer 402 starts the microcomputer stop process at time q2s when the voltage drop of the second vehicle switch signal Sw2 is completed.
  • the point of starting is similar to the comparative example.
  • the first microcomputer 401 continues to operate even after outputting the stop determination signal at time q1e after the processing period Za1 from time q1s, and receives the stop determination signal of the second microcomputer 402 at time q2e. Stops operation.
  • the second microcomputer 402 starts microcomputer stop processing from time q2s, and transmits a stop determination signal to the first microcomputer 401 at time q2e. At this time, since the second microcomputer 402 has already received the stop determination signal from the first microcomputer 401, it stops the operation of its own microcomputer without waiting.
  • the first microcomputer 401 that is one microcomputer among the plurality of microcomputers included in the ECU 101 and the second microcomputer 402 that is one microcomputer other than the first microcomputer 401 simultaneously stop operation. Therefore, the ECU 101 can align the actual operation stop timings of the plurality of microcomputers 401 and 402 even when the voltage drop timings of the vehicle switch signals Sw1 and Sw2 are shifted.
  • the microcomputer control device is regarded as corresponding to the ECU of this embodiment. It is. Note that it is possible to determine that a plurality of microcomputers simultaneously stop operation by detecting dark current, for example.
  • the ECU 101 can align the actual operation stop timing even when the stop determination timing is shifted between the microcomputers 401 and 402 due to the difference in the characteristics of the supply voltage and the power generation circuit. Therefore, it is possible to ensure consistency when the operations of a plurality of microcomputers are stopped.
  • the first microcomputer 401 can continue to output a synchronization signal to the second microcomputer 402, and can prevent erroneous determination of the synchronization signal reception interruption abnormality by the second microcomputer 402.
  • FIGS. 17 and 18 are simplified flowcharts of the connection / release determination processing of the power supply switching circuits 151 and 152 according to the first embodiment.
  • the power supply switching determination unit 551 of the first microcomputer 401 determines the stop determination signal of the first microcomputer 401 and the stop determination of the second microcomputer 402 in S 51. It is determined whether any signals are received. If YES in S51, the power supply open / close determination unit 551 outputs an open instruction to the first power supply open / close circuit 151 in S52. In the case of NO in S51, the power supply open / close determining unit 551 outputs a connection instruction to the first power supply open / close circuit 151 in S53.
  • connection / disconnection determination of the second power supply switching circuit 152 shown in FIG. It is determined whether any stop determination signals are received. If YES in S61, the power supply open / close determination unit 552 outputs an open instruction to the second power supply open / close circuit 152 in S62. If NO in S61, the power supply open / close determining unit 552 outputs a connection instruction to the second power supply open / close circuit 152 in S63.
  • FIG. 19 and FIG. 20 show flowcharts of microcomputer stop processing in a configuration in which an upper limit is set for the waiting time.
  • the first microcomputer 401 which is the own microcomputer, first determines stop, and then the second microcomputer 402, which is another microcomputer, determines to stop.
  • the microcomputer stop process is started when the first vehicle switch signal Sw1 is turned off from the initial state in which the first power switch circuit 151 is connected and the first system motor is being driven.
  • the microcomputer stop process shown in FIG. 19 and FIG. 20 is different in the motor drive stop timing.
  • the motor drive of the first system is stopped in S71. That is, the first microcomputer 401 first stops the motor drive by its own system before transmitting the stop determination signal to the second microcomputer 402.
  • own microcomputer stop determination step S72 the stop determination unit 531 of the first microcomputer 401 determines that the operation of the own microcomputer is about to be stopped. If the first microcomputer 401 determines “YES in first microcomputer stop”, that is, YES in S72, the first microcomputer 401 transmits a stop determination signal to the second microcomputer 402 in stop determination signal transmission step S73.
  • the first microcomputer 401 determines YES in the other microcomputer stop determination step S74.
  • the upper limit waiting time has elapsed before receiving the stop determination signal from the second microcomputer 402, it is determined NO in S74 and YES in S75. In both cases, the process proceeds to S77.
  • the first microcomputer 401 instructs the first power supply switching circuit 151 to open based on the stop determination signal of the second microcomputer 402, and actually stops the operation of its own microcomputer.
  • the process of actually stopping the operation of the own microcomputer in the operation stop step S77 after determining YES in S75 can be regarded as “spontaneous stop due to timeout of other microcomputer”.
  • the own microcomputer can voluntarily stop the power supply and reduce power consumption.
  • the microcomputer stop process in FIG. 20 differs from the process in FIG. 19 only in that S76 is executed instead of S71.
  • S76 after it is determined YES in S74 or YES in S75, the first microcomputer 401 stops the motor drive of the first system. That is, the first microcomputer 401 actually transmits the stop determination signal to the second microcomputer 402 and receives the stop determination signal from the second microcomputer 402 after the upper limit waiting time has elapsed. Immediately before stopping, the motor drive of the own system is stopped.
  • the operation stop step S77 after YES is determined in the other microcomputer stop determination step S74 the motor drive of both systems is stopped simultaneously after the stop determination of the own microcomputer and the other microcomputer is completed.
  • the microcomputer control device is the ECU of the present embodiment. It is considered to correspond to one form.
  • the ECU 102 of the second embodiment is not provided with a signal line 541 for transmitting a stop determination signal from the first microcomputer 401 to the second microcomputer 402. That is, the stop determination signal of each microcomputer is not communicated between the microcomputers, but is transmitted only in one direction from the second microcomputer 402 to the first microcomputer 401.
  • the first microcomputer 401 always makes a stop determination earlier than the second microcomputer 402 due to a difference in the characteristics of the power generation circuits 161 and 162.
  • the power supply open / close determination unit 551 of the first microcomputer 401 receives a stop determination signal from the stop determination unit 532 of the second microcomputer 402 after receiving the stop determination signal from the stop determination unit 531 of its own microcomputer. Then, it is determined to open the first power supply switching circuit 151.
  • the stop determination unit 532 transmits a stop determination signal to the first microcomputer 401, and at the same time, the power open / close determination unit 552 acquires the stop determination signal of the own microcomputer and opens the second power switch circuit 152. Judge to do.
  • the first and second power supply switching circuits 151 and 152 are simultaneously opened, and the first and second microcomputers 401 and 402 stop operating simultaneously.
  • the first microcomputer 401 that has received the stop determination signal from the second microcomputer 402 is based on the stop determination signal of the second microcomputer 402 that is another microcomputer and the stop determination signal of the own microcomputer.
  • the point of actually stopping the operation is the same as in the first embodiment.
  • the second microcomputer 402 corresponds to “at least one microcomputer having a stop determination unit 532 that transmits a stop determination signal to another microcomputer”.
  • the first microcomputer 401 corresponds to “a microcomputer that has received a stop determination signal from one or more other microcomputers”.
  • the first microcomputer 401 on the stop determination signal receiving side can apply the process of “spontaneous stop due to timeout of another microcomputer” shown in FIGS. 19 and 20.
  • the ECU 103 of the third embodiment further includes the first microcomputer 401 that does not include the stop determination unit 531. That is, in the first and second embodiments, each of the microcomputers 401 and 402 has the stop determination units 531 and 532, whereas in the third embodiment, only the second microcomputer 402 has the stop determination unit 532. is doing.
  • the first microcomputer 401 always determines to stop earlier than the second microcomputer 402, as in the second embodiment. Further, it is assumed that the stop determination unit 532 of the second microcomputer 402 surely outputs the stop determination signal within a predetermined time after the first vehicle switch signal Sw1 to the first power supply generation circuit 161 is turned off.
  • the power supply open / close determining unit 551 of the first microcomputer 401 determines to open the first power supply open / close circuit 151 when receiving a stop determination signal from the stop determination unit 532 of the second microcomputer 402.
  • the stop determination unit 532 transmits a stop determination signal to the first microcomputer 401
  • the power open / close determination unit 552 acquires the stop determination signal of the own microcomputer and opens the second power switch circuit 152.
  • the first and second power supply switching circuits 151 and 152 are simultaneously opened, and the first and second microcomputers 401 and 402 stop operating simultaneously.
  • the first microcomputer 401 that has received the stop determination signal from the second microcomputer 402 does not use the stop determination signal of its own microcomputer, but based only on the stop determination signal of the second microcomputer 402 that is another microcomputer. Actually stops the operation of the microcomputer. As described above, when the above premise is established, the communication of the stop determination signal is set in one direction from the second microcomputer 402 to the first microcomputer 401, and the first microcomputer 401 does not have the stop determination unit. Thus, the device configuration can be further simplified.
  • the ECU 104 according to the fourth embodiment shown in FIG. 23 further includes reset control (“reset CTRL” in the drawing) units 171 and 172 corresponding to the microcomputers 401 and 402 with respect to the ECU 101 according to the first embodiment.
  • the clock monitoring units 661 and 662 are not shown.
  • the reset control units 171 and 172 stop the microcomputers 401 and 402 based on the stop determination signal output from the corresponding microcomputers 401 and 402.
  • the reset control units 171 and 172 of this embodiment are configured as ICs that are provided outside the microcomputers 401 and 402 and operate the contacts of the reset terminals 571 and 572 of the microcomputers 401 and 402 to control the reset terminals 571 and 572. Has been.
  • a reset control unit may be provided inside the microcomputer.
  • the microcomputers 401 and 402 monitor the input of vehicle switch signals Sw1 and Sw2, respectively. Once the vehicle switch signals Sw1 and Sw2 are turned off in S81, the power open / close determination units 551 and 552 determine in S82 to open the power based on the stop determination signal. Thereafter, the vehicle switch signals Sw1 and Sw2 are re-input, and if YES is determined in S83, the microcomputers 401 and 402 notify the reset control units 171 and 172 of a reset instruction. Upon receiving the reset instruction, the reset control units 171 and 172 reset the microcomputers 401 and 402 in S84, respectively.
  • the reset timings of the microcomputers 401 and 402 for example, it is possible to perform control so as not to be affected by the remaining assist force during the initial check of the electric power steering device 90.
  • an initial synchronization mechanism it is possible to prevent the problem of synchronization timing shift caused by stopping and restarting the other microcomputer while only one microcomputer is operating.
  • a mechanism of the initial synchronization for example, a mechanism such as allowing the synchronization unconditionally for the first time after starting the microcomputer and releasing the reset can be considered.
  • the fifth embodiment has a configuration in which the first microcomputer 401 and the second microcomputer 402 transmit and receive a synchronization signal to the first embodiment. That is, as shown in FIG. 25, the ECU 105 of the fifth embodiment includes a synchronization control unit 49 that extends between the microcomputers 401 and 402.
  • the synchronization control unit 49 includes drive signal generation units 451 and 452 in the ECU 101 of the first embodiment. The detailed configuration of the synchronization control unit 49 will be described later as a basic form of the fifth embodiment.
  • the comparative example with respect to the fifth embodiment and the operation of the fifth embodiment use the description of the first embodiment with reference to FIGS.
  • the operation of the fifth embodiment is shown in FIG. 26 corresponding to FIG. 15 of the first embodiment.
  • the signal lines 541 and 542 in the first embodiment may be referred to as “stop determination signal communication lines 541 and 542” in order to distinguish them from the synchronization signal lines in the fifth embodiment.
  • the ECUs 102 to 104 of the second to fourth embodiments may be configured such that the microcomputers 401 and 402 transmit and receive synchronization signals.
  • FIG. 27 shows a configuration related to the synchronization control unit 49 among the configurations of the ECU 105 of the fifth embodiment shown in FIG.
  • ECU 100 includes a first system control unit 601 that controls energization of first winding set 801 and a second system control unit 602 that controls energization of second winding set 802.
  • the control units 601 and 602 of each system include clock generation circuits 651 and 652, clock monitoring units 661 and 662, microcomputers 401 and 402, and motor drive circuits 701 and 702.
  • a unit of a group of components including a clock generation circuit, a microcomputer, and a motor drive circuit corresponding to each other is referred to as a “system”.
  • the first clock generation circuit 651 and the second clock generation circuit 652 independently generate reference clocks that the first microcomputer 401 and the second microcomputer 402 operate as references.
  • the first clock monitoring unit 661 monitors the reference clock generated by the first clock generation circuit 651 and output to the first microcomputer 401.
  • the second clock monitoring unit 662 monitors the reference clock generated by the second clock generation circuit 652 and output to the second microcomputer 402. Further, when the clock monitoring units 661 and 662 detect the abnormality of the reference clock, the clock monitoring units 661 and 662 output a reset (“RESET” in the drawing) signal to the microcomputers 401 and 402.
  • RESET reset
  • the microcomputers 401 and 402 receive vehicle information input via the CANs 301 and 302, and information such as steering torque trq1 and trq2, phase currents Im1 and Im2, and electrical angles ⁇ 1 and ⁇ 2 input from the sensors. .
  • the microcomputers 401 and 402 generate motor drive signals Dr1 and Dr2 by control calculation based on these various pieces of input information, and output them to the motor drive circuits 701 and 702.
  • the timing of the control operation is determined based on the clock generated by the clock generation circuits 651 and 652.
  • the motor drive circuits 701 and 702 energize the winding sets 801 and 802 based on the motor drive signals Dr1 and Dr2 commanded from the microcomputers 401 and 402, respectively.
  • the motor drive circuits 701 and 702 are power conversion circuits in which a plurality of switching elements such as MOSFETs are bridge-connected.
  • the motor drive signals Dr1 and Dr2 are switching signals that turn on / off each switching element.
  • the motor drive circuits 701 and 702 are three-phase inverters.
  • Each microcomputer 401, 402 is independently provided with a ROM that stores fixed values such as control programs and parameters, and a RAM that temporarily stores and holds the results of arithmetic processing.
  • the ROM and RAM of the partner microcomputer can be referred to. Can not.
  • the two microcomputers 401 and 402 are connected by a synchronization signal line 471.
  • the number of the synchronization signal lines 471 is one.
  • a plurality of synchronization signal lines may be provided. . That is, the ECU based on the basic form of the fifth embodiment generally includes at least one synchronization signal line.
  • This synchronization signal line is not limited to a dedicated line for transmitting a synchronization signal, which will be described later. May be shared with other signal lines. Further, as disclosed in paragraph [0044] of Japanese Patent Application Laid-Open No. 2011-148498, for example, the port signal level is changed from the first microcomputer 401 to the second microcomputer 402 in place of communication using the synchronization signal line. By doing so, a synchronization signal can be notified.
  • the first microcomputer 401 and the second microcomputer 402 have drive timing generation units 441 and 442, drive signal generation units 451 and 452, and analog signal sampling units 461 and 462 as a common configuration.
  • the drive timing generation units 441 and 442 generate a drive timing that is a pulse timing of the motor drive signals Dr1 and Dr2 using, for example, a PWM carrier common to each phase, and instruct the drive signal generation units 451 and 452.
  • the drive signal generators 451 and 452 generate, for example, motor drive signals Dr1 and Dr2 that are PWM signals by comparing the DUTY of the voltage command signal and the PWM carrier, and command the motor drive circuits 701 and 702.
  • the analog signal sampling units 461 and 462 sample analog signals. As analog signals, the detection values of the motor currents Im1 and Im2 of each system are mainly assumed. In the three-phase motor, motor currents Im1 and Im2 are U-phase, V-phase, and W-phase currents of the winding sets 801 and 802, respectively.
  • FIG. 27 shows arrows assuming that motor currents Im1 and Im2 detected by shunt resistors and the like provided in the motor drive circuits 701 and 702 are acquired. In addition, assuming that the motor currents Im1 and Im2 are acquired from a current sensor provided on the motor 80 side, an arrow from outside the ECU 100 to the analog signal sampling units 461 and 462 may be described. As indicated by broken lines, the analog signal sampling units 461 and 462 may acquire analog signals of the electrical angles ⁇ 1 and ⁇ 2 and the steering torques trq1 and trq2.
  • FIG. 28 shows a configuration for generating a motor drive signal Dr using a PWM carrier having a period Tp in common for each phase.
  • the assumed DUTY is, for example, a value in the range of 10% to 90%, 0% and 100%.
  • DUTY 0% is represented as the peak side of the PWM carrier
  • DUTY 100% is represented as the valley side of the PWM carrier.
  • the period Tp of the PWM carrier corresponds to the pulse period of the motor drive signal Dr.
  • the pulse of the motor drive signal Dr rises during the period SWu from the time u9 to the time u1, and falls during the period SWd from the time d1 to the time d9. Further, no rise or fall of the pulse occurs during the DUTY 0% and 100% periods. Therefore, in the “non-switching period NSW” hatched by the broken line, the switching of the motor drive signal Dr does not occur for the switching elements of all phases. Note that the non-switching period NSW in the PWM control corresponds to a minute period straddling the timing of the valleys and peaks of carriers.
  • the analog signal sampling units 461 and 462 sample in synchronization with the drive timing generation units 441 and 442 at a timing at which switching to 0% or 100% DUTY does not occur in the non-switching period NSW. This makes the sampling signal less susceptible to switching noise and improves sampling accuracy. More specifically, sampling is preferably performed after a lapse of time during which the surge voltage generated by switching decays.
  • the first microcomputer 401 has a synchronization signal generation unit 411
  • the second microcomputer 402 has a timing correction unit 422.
  • the first microcomputer 401 functions as a “synchronization signal transmission side microcomputer” that transmits a synchronization signal
  • the second microcomputer 402 functions as a “synchronization signal reception side microcomputer” that receives the synchronization signal.
  • the microcomputer itself is referred to as “own microcomputer”.
  • the synchronization signal generation unit 411 of the first microcomputer 401 generates a synchronization signal that is synchronized with the drive timing generated by the drive timing generation unit 441 of its own microcomputer and that synchronizes the drive timings of the two microcomputers 401 and 402. Then, the synchronization signal generation unit 411 transmits a synchronization signal to the second microcomputer 402 via the synchronization signal line 471.
  • the timing correction unit 422 of the second microcomputer 402 receives the synchronization signal transmitted from the first microcomputer 401 and can correct the drive timing generated by the drive timing generation unit 442 of the own microcomputer so as to be synchronized with the received synchronization signal. It is. This correction is called “timing correction”. As shown by a broken line in the second microcomputer 402 in FIG. 27, in the timing correction, a timing correction instruction is output from the timing correction unit 422 to the drive timing generation unit 442, and the drive timing generation unit 442 changes the drive timing accordingly. to correct.
  • Patent Document 2 a configuration in which “the second microcomputer 402 corrects the drive timing based on the synchronization signal transmitted from the first microcomputer 401” is disclosed in Japanese Patent No. 5412095 (hereinafter, “Patent Document 2”). .
  • Patent Document 2 the prior art disclosed in Patent Document 2 will be referred to.
  • the motor control device disclosed in Patent Document 2 transmits and receives a synchronization signal between a plurality of microcomputers, and the microcomputer that receives the synchronization signal corrects the calculation control timing based on the synchronization signal. In this way, the torque pulsation of the motor is suppressed by synchronizing the operation control timings of the plurality of microcomputers with each other.
  • the timing correction unit 422 further includes a timing determination unit 432 as a “reception signal determination unit”.
  • FIG. 29 shows how the timings of the motor drive signals Dr1 and Dr2 of the two microcomputers 401 and 402 gradually shift due to manufacturing variations of the clock generation circuits 651 and 652.
  • the pulse period of the first motor drive signal Dr1 is indicated as TpA
  • the pulse period of the second motor drive signal Dr2 is indicated as TpB.
  • the PWM carrier valley and peak timings of the first microcomputer 401 are set to ta1, ta2,... In order from the reference time ta0.
  • the valley and peak timing of the PWM carrier of the second microcomputer 402 are tb1, tb2,... In order from the reference time tb0.
  • the reference times ta0 and tb0 match.
  • the second motor drive signal Dr2 is gradually delayed with respect to the first motor drive signal Dr1.
  • the timing shift ⁇ t1 that occurs in the first cycle is relatively small, if this accumulates, the timing shift expands to the size of ⁇ t7 in the fourth cycle.
  • torque pulsation occurs, as described in Patent Document 2, for example.
  • the falling timing of the first motor drive signal Dr1 after ta11 overlaps with the analog signal sampling timing of the second microcomputer 402.
  • the rising timing of the second motor drive signal Dr2 after tb11 overlaps with the analog signal sampling timing of the first microcomputer 401.
  • the sampling accuracy is lowered due to the influence of switching noise.
  • the synchronization signal is generated as a pulse signal having a cycle Ts corresponding to four cycles of the pulse cycle TpA of the first motor drive signal Dr1.
  • This pulse repeats rising and falling every four times of PWM carrier valley and peak timing. That is, the signal rises at ta0 and ta8, and falls at ta4 and ta12.
  • the timing of the second microcomputer 402 is corrected so as to synchronize with the timing of ta0 and ta8 when the pulse rises.
  • the timing is corrected so that the timing tb8 of the second microcomputer 402 coincides with the timing ta8 at which the pulse of the synchronization signal rises after the timing deviation ⁇ t7 is accumulated as in FIG. Since the timing shift is reset to 0 at tb8, the timing shift ⁇ t9 that occurs in the subsequent one cycle is suppressed to the same extent as the initial timing shift ⁇ t1. That is, good motor driving can be continued by correcting and synchronizing the drive timing before the timing deviation reaches a level that affects torque pulsation and sampling accuracy.
  • a specific synchronization method is not limited to the example in FIG. 30 and may be set as appropriate.
  • each microcomputer can operate a motor while synchronizing control timing in an ECU that operates with a clock generated by an independent clock generation circuit. It can be carried out. Thereby, torque pulsation can be suppressed. Further, it is possible to avoid the analog signal sampling timing from overlapping with the switching timing of the motor drive signals Dr1 and Dr2.
  • a normal synchronization signal is not always transmitted. That is, an abnormality occurs in the transmitted synchronization signal itself due to a failure of the first clock generation circuit 651 for operating the first microcomputer 401 or the synchronization signal generation unit 411 of the first microcomputer 401 or the synchronization signal line 471. There is a possibility. Then, next, a problem when an abnormal synchronization signal is received by the second microcomputer 402 will be described.
  • FIG. 31 shows a malfunction assumed when an abnormality occurs in the first clock generation circuit 651 that operates the first microcomputer 401.
  • the clock generation circuit 651 is normal from the reference time ta0 to ta8, but after ta8, the clock frequency increases and an abnormality occurs in which the pulse period TpA of the first motor drive signal Dr1 is shortened.
  • the frequency of the synchronization signal generated using the clock generated by the clock generation circuit 651 increases, and the cycle Ts becomes shorter. In this case, if the control calculation becomes unable to follow the increased clock frequency, the control of the first microcomputer 401 fails, and the motor drive must be stopped.
  • the second microcomputer 402 is normal, and the pulse period TpB of the second motor drive signal Dr2 is kept constant.
  • the drive timing of the second microcomputer 402 is corrected to the rising timings ta0, ta8, ta16, and ta24 of the synchronization signal pulse.
  • timing correction is performed in the middle of the ON period of the second motor drive signal Dr2, and it is forcibly turned off.
  • an unintended pulse is generated, and the switching control of the second motor drive circuit 702 may become unstable.
  • the sampling interval of the analog signal becomes uneven, which may affect the sampling accuracy.
  • the influence of the failure generated in the first system control unit 601 affects the operation of the microcomputer 402 of the other system is referred to as “failure propagation”.
  • the second microcomputer 402 performs timing correction based on the abnormal synchronization signal transmitted from the first microcomputer 401, so that the motor drive that would have been able to be executed normally if only the second system was used. There is a serious situation where the situation becomes impossible.
  • the reason why the motor control device has a redundant configuration of two systems is that even if an abnormality occurs in one of the systems, the motor drive can be continued by the operation of the other normal system. Nevertheless, when fault propagation occurs, its purpose is not fulfilled at all. In particular, in the electric power steering apparatus 90, it is more important to continue driving the motor and avoid stopping the assist function even if torque pulsation occurs and analog signal sampling accuracy is reduced. Therefore, there is a fatal problem in the prior art of Patent Document 2 where there is a possibility of failure propagation.
  • Patent Document 2 does not assume a case where an abnormality occurs in a synchronization signal transmitted / received between a plurality of microcomputers.
  • the microcomputer on the synchronization signal receiving side corrects the timing based on the abnormal synchronization signal. Therefore, depending on the degree of abnormality of the synchronization signal, the control by the synchronization signal receiving side microcomputer may fail.
  • a more inconvenient situation may occur than a torque pulsation caused by a clock shift. For example, in an electric power steering device for a vehicle, if the assist function is stopped by stopping the motor drive, the driver is anxious. Therefore, it is required to determine an abnormality of the synchronization signal and to take an appropriate measure in the case of the abnormality.
  • the ECU 100 performs “reception signal determination” which is a determination of normality or abnormality of the received synchronization signal to the timing correction unit 422 of the second microcomputer 402.
  • a timing determination unit 432 is included as the “reception signal determination unit”.
  • the second microcomputer 402 permits timing correction when the timing determination unit 432 determines that the received synchronization signal is normal.
  • the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401.
  • the synchronization signal reception side microcomputer first determines whether or not the synchronization signal from the synchronization signal transmission side microcomputer that causes failure propagation is normal.
  • the synchronization signal is determined to be normal, good motor drive is realized by correcting the drive timing of the synchronization signal reception side microcomputer so as to be synchronized with the drive timing of the synchronization signal transmission side microcomputer.
  • priority is given to prevention of failure propagation and timing correction is not performed. That is, it is most important to maintain the minimum assist function by cutting the edge with the synchronization signal transmission side microcomputer and continuing the motor drive asynchronously.
  • timing determination unit 432 performs “timing determination” as “reception signal determination”
  • reception signal determination it is determined whether or not the pulse edge of the received synchronization signal, that is, the rising or falling timing is included in the “synchronization permission section”.
  • the “synchronization permission section” may be rephrased as “correction permission section”.
  • the “timing of pulse edge reception of the synchronization signal” is simply referred to as “synchronization signal reception timing”.
  • the symbol “S” means a step. Except for S01 in FIG. 32, the execution subject of the flowcharts in FIGS. 32 and 35 to 38 is the timing correction unit and timing determination unit of the synchronization signal receiving side microcomputer or the entire synchronization signal receiving side microcomputer. 32, the synchronization signal generation unit 411 of the first microcomputer 401 transmits a synchronization signal to the second microcomputer 402. In the synchronization signal reception step S02, the timing correction unit 422 receives the synchronization signal. In the reception signal determination step S03, the timing determination unit 432 determines whether the synchronization signal is normal or abnormal by determining whether the reception timing of the synchronization signal is within the synchronization permission section.
  • the second microcomputer 402 permits the timing correction of the second microcomputer 402 in the timing correction permission step S04. Then, the first microcomputer 401 and the second microcomputer 402 drive the motor 80 in synchronization. If NO in S03, it is determined that the received synchronization signal is abnormal. The second microcomputer 402 prohibits the timing correction of the second microcomputer 402 in the timing correction prohibiting step S05, and drives the motor 80 asynchronously with the first microcomputer 401.
  • the timing of the synchronization signal does not overlap with the switch timing of the motor drive signal Dr.
  • the timing at which the timing correction unit 422 receives the synchronization signal coincides with the valley or peak timing of the PWM carrier of the second microcomputer 402.
  • the maximum range of clock deviation when the clock generation circuits 651 and 652 are normal is estimated.
  • the clocks generated by the clock generation circuits 651 and 652 vary by a maximum of ⁇ x%, and the period for performing timing correction by the synchronization signal is Ts [s].
  • the counted time in the microcomputers 401 and 402 is at least “(100 ⁇ x) / 100” times to “(100 + x) / max” with respect to the original clock generated by the clock generation circuits 651 and 652. It varies in the range of 100 times. From this, the maximum deviation width ⁇ Tmax [s] generated between the microcomputers 401 and 402 during one synchronization period is expressed by Expression (1).
  • the synchronization permission section In order not to prohibit the correction by mistake during normal driving, it is necessary to define the synchronization permission section with a width of ⁇ Tmax or more.
  • the PWM carrier period Tp is, for example, 0.5 [ms] and the DUTY range is 10% to 90%.
  • the non-switching period from the falling time d9 of the motor drive signal Dr to the next rising time u9 is 0.1 Tp, that is, 0.05 [ms].
  • a period of 0.02 [ms] which is the maximum deviation width ⁇ Tmax, is set as a synchronization permission section around 0.01 [ms] before and after the valley timing of the PWM carrier, the synchronization permission section is reliably set to 0.05 [ms]. ]
  • the non-switching period is, for example, 0.5 [ms] and the DUTY range is 10% to 90%.
  • the synchronization permission interval is set to 2% or more of the synchronization signal period Ts. Therefore, it is possible to prevent the correction from being prohibited. Therefore, it is possible to continue the synchronous driving while synchronizing the driving timing between the microcomputers 401 and 402. If the clock variation exceeds ⁇ 1% due to the failure of the second clock generation circuit 652, it can be detected by the second clock monitoring unit 662. Therefore, it is assumed that the position of the synchronization permission section of the second microcomputer 402 is set correctly.
  • the motor drive signal Dr can always ensure the pulse width at the maximum DUTY, and there is no problem. Operation can be secured.
  • the reception timing of the synchronization signal may overlap the switching timing of the DUTY.
  • the DUTY switching timing is only synchronized. For example, when DUTY is kept at 100%, there is no timing to turn off in the first place. Absent.
  • the start timing of 100% DUTY output is only changed.
  • the end timing of 100% DUTY output is only changed, and the next DUTY output period is not affected.
  • an abnormal DUTY output is not performed, and the influence on the motor drive is slight.
  • the 0% DUTY output is the same as the 100% DUTY output except that the ON and OFF are switched.
  • FIG. 34 shows a timing chart of timing determination when the synchronization signal is abnormal, using the synchronization permission section in the above example.
  • FIG. 34 shows the result of timing determination at the rising edge timings ta8, ta16, and ta24 of the synchronization signal when an abnormality occurs in the first clock generation circuit 651, as in FIG.
  • the case where the timing of the synchronization signal is within the synchronization permission section is described as “OK”, and the case where it is outside the synchronization permission section is described as “NG”.
  • the timing correction unit 422 does not perform timing correction because the reception timing of the synchronization signal is outside the synchronization permission section.
  • the second microcomputer 402 drives the motor 80 asynchronously with the first microcomputer 401. Thereby, the second microcomputer 402 can prevent failure propagation from the first microcomputer 401. In particular, at ta16, a situation in which the motor drive signal Dr2 is forcibly turned off during the ON period by timing correction based on an abnormal synchronization signal is avoided.
  • the timing correction unit 422 performs timing correction. In this case, even if the period Ts of the synchronization signal is abnormal, the rising timing itself at ta24 is close to the normal timing. Therefore, even if the timing correction unit 422 performs timing correction based on the received synchronization signal, there is substantially no influence on the motor drive signal Dr2.
  • the timing determination unit 422 of the second microcomputer 402 determines whether the synchronization signal transmitted from the first microcomputer 401 is normal or abnormal. . When it is determined that the received synchronization signal is normal, the second microcomputer 402 permits timing correction and drives the motor 80 in synchronization with the first microcomputer 401. Thereby, torque pulsation of the motor 80 can be suppressed. Further, it is possible to avoid the sampling timing of the analog signal sampling units 461 and 462 from overlapping with the switching timing of the motor drive signals Dr1 and Dr2. When a rectangular wave of DUTY 50% is used as the synchronization signal, the rise timing and fall timing enter the non-switching period NSW, so that the influence on the analog signal due to secondary switching of the synchronization signal is reduced. It is possible.
  • the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401. Thereby, it is possible to prevent the control of the second microcomputer 402 from failing due to the failure propagation from the first microcomputer 401.
  • the electric power steering apparatus 90 can maintain at least the normal motor drive by the second microcomputer 402 and maintain the assist function.
  • the switching of the motor drive signals Dr1 and Dr2 may affect not only the sampling of the analog signal but also the synchronization signal. Assume that the switching of the motor drive signals Dr1 and Dr2 affects the synchronization signal and an erroneous pulse edge occurs in the synchronization signal. In this case, with a normal configuration in which no synchronization permission section is provided, there is a problem that the synchronization signal receiving side microcomputer recognizes the rising edge of the pulse at a timing different from the original, and erroneous timing correction is performed.
  • the switching of the motor drive signals Dr1 and Dr2 is always performed outside the synchronization permission section. Therefore, even if the synchronization signal is affected and an erroneous pulse edge occurs, the timing can be expected to be outside the synchronization permission interval.
  • FIG. 35 shows a flowchart of the motor drive start process when the microcomputer is activated.
  • the second microcomputer 402 on the receiving side is activated.
  • the initial value of the number of receptions at startup is zero.
  • the timing correction unit 422 receives the synchronization signal in S11, and increments the number of receptions in S12.
  • S13 it is determined whether or not the number of receptions has reached a predetermined initial number Ni ( ⁇ 2). If YES in S13, the second microcomputer 402 starts driving the motor in S14. If NO in S13, the process returns to before S11.
  • the synchronization signal receiving side microcomputer waits for the start of motor driving until the synchronization signal is received Ni times from the synchronization signal transmission side microcomputer.
  • the motor driving is synchronized with the synchronization signal transmission side microcomputer. To start. Thereby, after waiting for the preparation of the synchronization between the plurality of microcomputers to be completed, the synchronous drive can be appropriately started.
  • FIG. 36 shows a flowchart of the timing determination standby process when the microcomputer is activated.
  • S20 to S22 are the same as S10 to S12 of FIG.
  • Nw standby number
  • the timing determination unit 432 starts timing determination in S24. If NO in S23, the process returns to before S21.
  • the synchronization signal receiving side microcomputer permits the timing correction unconditionally until the number of times of receiving the synchronization signal is Nw times. Then, timing determination is started from the synchronization signal received after the (Nw + 1) th time. As a result, it is possible to appropriately avoid a situation where timing correction is excessively prohibited immediately after startup.
  • FIG. 37 shows a flowchart of the timing correction return processing after the synchronization signal abnormality determination.
  • the timing correction unit 422 determines that the synchronization signal is abnormal because the reception timing of the synchronization signal is outside the synchronization permission section.
  • the synchronization signal is abnormal because the synchronization signal reception timing does not enter the synchronization permission section even though there is no substantial abnormality in the synchronization signal transmission microcomputer due to temporary disturbance of the synchronization signal pulse, etc. There is a possibility that it is erroneously determined that. In such a case, the timing correction may be excessively prohibited. Therefore, it is conceivable to perform the abnormality confirmation process shown in FIG.
  • FIG. 38 shows a flowchart of the synchronization signal abnormality confirmation process.
  • the timing determination unit 432 sets the initial value of the continuous abnormality count, which is “the number of times that the synchronization signal abnormality is continuously determined”, to 0.
  • the timing correction unit 422 receives the synchronization signal.
  • the timing determination unit 432 determines whether the reception timing of the synchronization signal is outside the synchronization permission section. If the synchronization signal is normal and the result in S42 is NO, the process ends. In this case, timing correction is performed in S04 of FIG. If YES in S42, the number of consecutive abnormalities is incremented in S43. In S44, it is determined whether or not the number of consecutive abnormalities has reached a predetermined fixed number Nfix. If YES in S44, the process proceeds to S45. If NO in S44, the process returns to before S41.
  • the timing correction unit 422 prohibits timing correction in S46.
  • the timing correction may be permitted until the abnormality is confirmed, and the second microcomputer 402 may continue the synchronous driving with the first microcomputer 401. Thereby, erroneous determination in timing determination can be prevented.
  • the ECU 100 is configured so that the timing correction unit 422 of the second microcomputer 402 on the synchronization signal reception side performs reception signal determination that is determination of normality or abnormality of the received synchronization signal.
  • a determination unit 432 is included.
  • the second microcomputer 402 permits the timing correction when the synchronization signal is determined to be normal in the reception signal determination, and prohibits the timing correction when the synchronization signal is determined to be abnormal in the reception signal determination.
  • the motor is driven asynchronously with the microcomputer 401.
  • the synchronization determination signal 432 of the second microcomputer 402 can determine the abnormality of the synchronization signal.
  • the second microcomputer 402 prohibits timing correction and drives the motor asynchronously with the first microcomputer 401. Accordingly, it is possible to prevent the control of the synchronization signal receiving microcomputer from failing due to the abnormality of the synchronization signal. In this case, even if torque pulsation occurs, at least driving of the motor can be continued. Therefore, the present invention is particularly effective in a motor drive system where there is a great need for continuing an assist function by motor drive, such as an electric power steering device.
  • the conventional technique of Patent Document 2 has the following problems.
  • the timing for determining whether to stop the power supply may be different among the microcomputers due to differences in supply voltages to the microcomputers or variations in the characteristics of the power generation circuit.
  • each microcomputer independently determines the stop of the operation, other microcomputers stop the operation even though a certain microcomputer continues to operate.
  • a signal that should be received from another microcomputer may be interrupted, so that an erroneous fail determination may occur or synchronization with another microcomputer may not be possible.
  • Patent Document 2 makes no mention of the problem that the synchronization relationship is lost when the operations of a plurality of microcomputers are stopped.
  • the ECU 105 of the fifth embodiment operates in the same manner as the ECU 101 of the first embodiment while having the configuration of the synchronization control unit 49 of the basic form.
  • the microcomputer 401, 402 A shift occurs in the operation start timing. Therefore, when the timing determination is performed with the synchronization permission section provided for the synchronization signal, there is a high possibility that synchronization cannot be performed.
  • FIG. 39 shows another configuration related to communication of a synchronization signal for a portion corresponding to the ECU 100 of the basic form of the fifth embodiment.
  • the first microcomputer 401 and the second microcomputer 402 include synchronization signal generation units 411 and 412 and timing correction units 421 and 422, respectively.
  • the first microcomputer 401 and the second microcomputer 402 function as a “synchronization signal transmission side microcomputer” and a “synchronization signal reception side microcomputer”, and transmit and receive synchronization signals to and from each other.
  • the configuration of the synchronization signal line in this embodiment includes a first synchronization signal line 471 for transmission from the first microcomputer 401 to the second microcomputer 402 and a transmission from the second microcomputer 402 to the first microcomputer 401 as shown by the solid line.
  • a reliable second synchronization signal line 472 may be provided separately.
  • a synchronization signal line 48 capable of bidirectional communication may be used. Note that at least one of the bidirectional synchronization signal line 48 or the one-way synchronization signal lines 471 and 472 may be shared with other communication signal lines used for communication between microcomputers.
  • the synchronization signal transmission timing from the first microcomputer 401 to the second microcomputer 402 and the synchronization signal transmission timing in the opposite direction are transmitted.
  • the microcomputers 401 and 402 alternately transmit a synchronization signal.
  • the port signal level is changed from the synchronization signal transmission side microcomputer to the synchronization signal reception side microcomputer.
  • the synchronization signal may be notified in both directions.
  • the synchronization signal may be transmitted from the microcomputer activated first to the microcomputer activated later.
  • a synchronization signal may be transmitted mainly from the first microcomputer 401 to the second microcomputer 402, and transmission in the reverse direction may be performed only in some cases.
  • the first microcomputer 401 may be activated in synchronization with the synchronization signal from the second microcomputer 402 at the time of activation, and thereafter the second microcomputer 402 may be operated in synchronization with the synchronization signal from the first microcomputer 401. .
  • the operation start timing of the own microcomputer may be determined based on the synchronization signal from the microcomputer from the second microcomputer 402 and the operation may be started. In this case, it is possible to resume motor driving in a state of being synchronized from the beginning when the microcomputer recovers from the abnormality.
  • the first microcomputer 401 and the second microcomputer 402 have exactly the same function and have complete redundancy. Therefore, since it can respond to all the failure patterns for one system, the reliability can be further improved.
  • the number of parts of the ECU can be reduced and the configuration can be simplified.
  • the ECU 10 of the seventh and eighth embodiments basically uses the configuration of the basic form of the fifth embodiment shown in FIG.
  • the reception signal determination does not determine the timing at which the synchronization signal is received, but determines whether the synchronization signal is normal or abnormal using a synchronization signal having a specific pulse pattern. Therefore, “timing determination unit 432” in the timing correction unit 422 in the second microcomputer 402 is replaced with “reception signal determination unit 432”.
  • the processing when the synchronization signal is determined to be normal by the reception signal determination unit 432 of the seventh and eighth embodiments or when it is determined to be abnormal is the same as the basic form of the fifth embodiment.
  • the specific pulse pattern refers to a pattern in which the number of pulses per period, time width, or interval is defined in advance.
  • the cause of the abnormality of the synchronization signal is not clearly shown as in FIGS. 31 and 34, and only the difference between a normal pulse pattern and an abnormal pulse pattern is shown.
  • the synchronization signal is normal when the clock input having a predetermined time width is input k times, which is the specified number of times.
  • the synchronization signal receiving side microcomputer corrects the timing at the kth clock input timing, that is, synchronizes the drive timing between the microcomputers.
  • the timing is not corrected and the motor is driven asynchronously.
  • the synchronization signal in the configuration in which the synchronization signal is shared with other signals, for example, when the serial communication clock line is used for the synchronization signal, reception by the CRC method or the like is triggered by the reception of serial communication. Calculate the reliability of the data. As a result of the check, if correct communication is performed, synchronization between microcomputers is permitted.
  • FIG. 42 shows pulses of the communication clock and the reception signal line in the eighth embodiment.
  • the R unit performs timing correction based on the reception completion timing.
  • a specific method of timing correction may be set as appropriate, for example, correction is performed for the time required for CRC calculation and synchronization is performed.
  • part X determines that the timing is not normal because the CRCs do not match, and timing correction is not performed.
  • the reception signal determination unit 432 determines whether the synchronization signal is normal or abnormal even if a specific pulse pattern is used, as well as the method based on the reception timing of the synchronization signal as in the basic form of the fifth embodiment. be able to. Note that the processes of FIGS. 35 to 38 can be similarly applied to the configurations of the seventh and eighth embodiments in which the received signal determination is performed based on the specific pulse pattern. In addition, the seventh and eighth embodiments may be applied to the configuration of the sixth embodiment that transmits and receives synchronization signals in both directions.
  • the motor 80 to be controlled in the above embodiment is a multi-winding motor in which two winding sets 801 and 802 are arranged on a common stator with an electrical angle of 30 deg.
  • the motor to be controlled in other embodiments may be one in which two or more winding sets are arranged in the same phase.
  • the configuration is not limited to a configuration in which two or more winding sets are arranged on a common stator of one motor. It may be applied to the motor of Further, the number of phases of the multiphase brushless motor is not limited to three phases and may be four or more.
  • the motor to be driven is not limited to an AC brushless motor, and may be a brushed DC motor. In that case, an H-bridge circuit may be used as the “motor drive circuit”.
  • one synchronization signal transmission side microcomputer may transmit a synchronization signal to the other two or more synchronization signal reception side microcomputers.
  • two or more synchronization signal transmission side microcomputers may transmit the synchronization signal to each synchronization signal reception side microcomputer other than its own microcomputer.
  • the stop timings of all the microcomputers are aligned when the operation of all the microcomputers affects the motor drive.
  • a microcomputer that has received a stop determination signal from one or more other microcomputers is automatically configured based on the received stop determination signals of all other microcomputers and the stop determination signal of its own microcomputer. What is necessary is just to actually stop the operation of the microcomputer.
  • the stop timing may be aligned only between the microcomputers that affect the motor drive.
  • the microcomputer that has received the stop determination signal from one or more other microcomputers is the stop determination signal of at least one other microcomputer among the received stop determination signals of the other microcomputers and the own microcomputer. Based on the stop determination signal, the operation of the microcomputer itself may be actually stopped.
  • the motor control device may not include an analog signal sampling unit synchronized with the motor drive timing generation unit. In that case, the motor control device may perform a control calculation based on digital data acquired from the outside. Or you may implement feedforward control, without using feedback information. Further, in the configuration including the analog signal sampling unit, the sampling timing may overlap the switch timing of the motor drive signal.
  • the motor drive signal generation method is not limited to the PWM control method shown in FIG. 26 and the like.
  • the PWM control type carrier is not limited to a triangular wave, and a sawtooth wave may be used.
  • the motor control device of the present disclosure is not limited to a motor for an electric power steering device, and may be applied to a motor for any other purpose.
  • the “vehicle switch signal” in the above embodiment can be interpreted by replacing it with a “system switch signal” or the like.
  • this indication is not limited to such embodiment, In the range which does not deviate from the meaning, it can implement with a various form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

ECU(モータ制御装置)(101)は、複数のモータ駆動回路(701、702)と、複数のマイコン(401、402)とを備える。複数のマイコン(401、402)は、電源に接続された電源生成回路(161、162)が生成するマイコン電源により動作する。複数のマイコン(401、402)のうち少なくとも一つのマイコンは、自マイコンの動作が停止されようとしていることを判定し、その情報を停止判定信号として他マイコンに送信する停止判定部(531、532)を有する。一つ以上の他マイコンから停止判定信号を受信したマイコンは、少なくとも他マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させる。

Description

モータ制御装置、モータ駆動システム、及び、モータ制御方法 関連出願の相互参照
 本出願は、2016年7月11日に出願された特許出願番号2016-136611号、2017年2月28日に出願された特許出願番号2017-36595号、2017年2月28日に出願された特許出願番号2017-36596号、2017年6月26日に出願された特許出願番号2017-124055号、及び、2017年6月26日に出願された特許出願番号2017-124060号に基づくものであり、ここにその記載内容を援用する。
 本開示は、複数のマイコンによりモータの駆動を制御するモータ制御装置、それを備えるモータ駆動システム、及び、モータ制御方法に関する。
 従来、冗長的に設けられた複数のマイコンでモータの駆動を制御するモータ制御装置が知られている。
 例えば特許文献1には、電動パワーステアリング制御装置の制御ユニットにおいて、メインマイコン又はサブマイコンのいずれかが異常のとき、正常なマイコンで制御を継続する技術が開示されている。
特開第2015-81013号公報
 たとえ複数のマイコンでモータ駆動を行う構成であっても、例えば複数のマイコンが同じ電源に基づき動作する場合には、電源の失陥という共通の要因により全てのマイコンが停止し制御を継続できない。したがって、複数のマイコンへの供給電源を独立の構成としたうえで、他マイコンの動作状況に拠らず、自マイコンが制御可能であるときには制御を行う構成とする必要がある。
 ところが単純に電源を独立化するだけでは、例えば各マイコンへの供給電圧の差や電源生成回路の特性ばらつき等により、各マイコンに供給される電源のOFF/ONタイミングがずれる場合がある。それにより、マイコンや電源に故障が発生していないにもかかわらず、一部のマイコンのみが停止し、他のマイコンのみが動作する状況が起こりうる。
 特に、車両スイッチ信号のOFF/ONに応じて各マイコンが自マイコンの停止/起動を判断する構成を想定する。この構成では、複数のマイコンの動作を停止させる時、各マイコンが認識する車両スイッチ信号の情報のずれや、各マイコン内の制御状態の違いにより、電源OFFによる動作停止判定のタイミングが各マイコンでずれる場合がある。
 例えばマイコンによりモータの駆動力を制御し、運転者の操舵トルクを軽減させるアシスト制御を行う電動パワーステアリング装置に適用した場合を考える。車両スイッチ信号がOFF/ONされたとき各マイコンが独自に動作の停止を判定すると、あるマイコンはアシスト制御を継続し続けているにもかかわらず、他のマイコンは、一度電源を遮断してから再度起動してしまう可能性が生じる。
 その結果、本来、他マイコンから受信すべき信号が途絶することにより誤ったフェイル判定をしたり、他マイコンとタイミング同期を行っている場合、タイミング同期ができなくなったりするおそれがある。
 また、電動パワーステアリング装置においてマイコン起動時の異常診断でアシスト停止状態を前提とした異常判断を行う場合には、他マイコンによるモータ駆動によるアシスト力発生により、誤った異常判定がされるおそれがある。或いは、あるマイコンだけが停止することにより、本来の狙いとは異なるアシスト力が出力され、操舵感の低下を招いたり、運転者に不安を与えたりするという問題が発生する。
 このように複数のマイコンの動作停止時に制御状態や動作タイミング等の一致性が崩れるという問題について、特許文献1には何ら言及されていない。
 本開示の目的は、複数のマイコンの動作停止時における一致性を確保するモータ制御装置を提供することにある。また、そのモータ制御装置を備えるモータ駆動システム、及び、そのモータ制御装置によるモータ制御方法を提供することにある。
 本開示のモータ制御装置は、複数のモータ駆動回路と、複数のマイコンと、を備える。
 複数のモータ駆動回路は、例えば複数の巻線組を有する一つ以上のモータを駆動する。
 複数のマイコンは、電源に接続された電源生成回路が生成するマイコン電源により動作し、複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する駆動信号生成部を有する。
 マイコン及びモータ駆動回路は、互いに対応して設けられており、それら一群の構成要素の単位を「系統」と定義する。各系統の構成要素が対応する巻線組への通電を制御することにより、モータ制御装置はモータを駆動する。また、複数のマイコンについて、各マイコンにとって、そのマイコン自身のことを「自マイコン」という。
 第一の態様のモータ制御装置は、上記の基本構成に加え、さらに以下の構成を備える。
 複数のマイコンのうち少なくとも一つのマイコンは、自マイコンの動作が停止されようとしていることを判定し、その情報を停止判定信号として他マイコンに送信する停止判定部を有する。
 一つ以上の他マイコンから停止判定信号を受信したマイコンは、少なくとも他マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させる。
 これにより、本開示のモータ制御装置は、供給電圧や電源生成回路の特性の違いにより複数のマイコン間で停止判定のタイミングがずれた場合でも、実際の動作停止タイミングを揃えることができる。したがって、複数のマイコンの動作停止時における一致性を確保することができる。
 第二の態様のモータ制御装置は、上記の基本構成を前提とし、さらに、複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンは、動作を同時に停止する。
 第三の態様のモータ制御装置は、上記の基本構成を前提とし、さらに、複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンは、モータの駆動を同時に停止する。
 また、上記基本構成のモータ制御装置によるモータ制御方法が提供される。
 このモータ制御方法の自マイコン停止判定ステップでは、複数のマイコンのうち少なくとも一つのマイコンが有する停止判定部が、自マイコンの動作が停止されようとしていることを判定する。
 停止判定信号送信ステップでは、自マイコン停止判定ステップでの判定に基づき、自マイコンの動作が停止されようとしていることの情報を停止判定信号として他マイコンに送信する。
 他マイコン停止判定ステップでは、自マイコンが一つ以上の他マイコンから停止判定信号を受信する。
 動作停止ステップでは、自マイコンが、少なくとも他マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、各実施形態のECUが機電一体式のモータ駆動システムとして適用される電動パワーステアリング装置の構成図であり、 図2は、各実施形態のECUが機電別体式のモータ駆動システムとして適用される電動パワーステアリング装置の構成図であり、 図3は、二系統機電一体式モータの軸方向断面図であり、 図4は、図3のIV-IV線断面図であり、 図5は、多相同軸モータの構成を示す模式図であり、 図6は、各実施形態によるECU(モータ制御装置)の全体構成図であり、 図7は、第1実施形態によるECU(モータ制御装置)の構成図であり、 図8は、比較例の動作1を説明する図であり、 図9は、比較例の動作2を説明する図であり、 図10は、比較例の動作3を説明する図であり、 図11は、比較例の動作4を説明する図であり、 図12は、比較例の動作5Aを説明する図であり、 図13は、比較例の動作5Bを説明する図であり、 図14は、比較例の動作5Bを示すタイムチャートであり、 図15は、第1実施形態の動作を説明する図であり、 図16は、第1実施形態の動作を示すタイムチャートであり、 図17は、第1電源開閉回路接続/開放判定の簡易的なフローチャートであり、 図18は、第2電源開閉回路接続/開放判定の簡易的なフローチャートであり、 図19は、他マイコンからの停止判定信号の受信に上限待ち時間を設ける場合のマイコン停止処理のフローチャート(1)であり、 図20は、同上のフローチャート(2)であり、 図21は、第2実施形態によるECU(モータ制御装置)の構成図であり、 図22は、第3実施形態によるECU(モータ制御装置)の構成図であり、 図23は、第4実施形態によるECU(モータ制御装置)の構成図であり、 図24は、第4実施形態によるマイコンリセット処理のフローチャートであり、 図25は、第5実施形態によるECU(モータ制御装置)の構成図であり、 図26は、第5実施形態の動作を説明する図であり、 図27は、第5実施形態の基礎形態によるECU(モータ制御装置)の詳細構成図であり、 図28は、モータ駆動信号とアナログ信号サンプリングタイミングとの関係を示す図であり、 図29は、二系統のマイコンのクロックずれを示すタイムチャートであり、 図30は、同期信号によるタイミング補正(従来技術)を説明するタイムチャートであり、 図31は、同期信号異常時における従来技術の問題点を説明するタイムチャートであり、 図32は、第5実施形態の基礎形態によるタイミング判定処理のフローチャートであり、 図33は、第5実施形態の基礎形態による同期許可区間の設定例を説明する図であり、 図34は、第5実施形態の基礎形態による同期信号異常時タイムチャートであり、 図35は、マイコン起動時のモータ駆動開始処理のフローチャートであり、 図36は、マイコン起動時のタイミング判定待機処理のフローチャートであり、 図37は、同期信号異常判定後のタイミング補正復帰処理のフローチャートであり、 図38は、同期信号の異常確定処理のフローチャートであり、 図39は、第6実施形態によるECU(モータ制御装置)の構成図であり、 図40は、第6実施形態による双方向の同期信号送受信タイミングを示す図であり、 図41は、特定パルスパターンの同期信号を用いる第7実施形態のタイムチャートであり、 図42は、特定パルスパターンの同期信号を用いる第8実施形態のタイムチャートである。
 以下、モータ制御装置の複数の実施形態を図面に基づいて説明する。各実施形態において、「モータ制御装置」としてのECUは、車両の電動パワーステアリング装置に適用され、操舵アシストトルクを出力するモータの通電を制御する。また、ECU及びモータにより「モータ駆動システム」が構成される。
 複数の実施形態で実質的に同一の構成には同一の符号を付して説明を省略する。また、以下の第1~第8実施形態を包括して「本実施形態」という。
 最初に、各実施形態に共通する事項として、適用される電動パワーステアリング装置の構成、モータ駆動システムの構成等について、図1~図6を参照して説明する。
 図1、図2に、電動パワーステアリング装置90を含むステアリングシステム99の全体構成を示す。図1には、ECU10がモータ80の軸方向の一方側に一体に構成されている「機電一体式」の構成が図示され、図2には、ECU10とモータ80とがハーネスで接続された「機電別体式」の構成が図示される。なお、図1、図2における電動パワーステアリング装置90はコラムアシスト式であるが、ラックアシスト式の電動パワーステアリング装置にも同様に適用可能である。
 ステアリングシステム99は、ハンドル91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、及び、電動パワーステアリング装置90等を含む。
 ハンドル91にはステアリングシャフト92が接続されている。ステアリングシャフト92の先端に設けられたピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が設けられる。運転者がハンドル91を回転させると、ハンドル91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によりラック軸97の直線運動に変換され、ラック軸97の変位量に応じた角度に一対の車輪98が操舵される。
 電動パワーステアリング装置90は、操舵トルクセンサ93、ECU10、モータ80、及び、減速ギア94等を含む。
 操舵トルクセンサ93は、ステアリングシャフト92の途中に設けられ、運転者の操舵トルクを検出する。図1、図2に示す形態では、二重化された操舵トルクセンサ93は、第1トルクセンサ931及び第2トルクセンサ932を含み、第1操舵トルクtrq1及び第2操舵トルクtrq2を二重に検出する。
 操舵トルクセンサが冗長的に設けられない場合、一つの操舵トルクtrqの検出値が二系統共通に用いられてもよい。以下、冗長的に検出された操舵トルクtrq1、trq2を用いることに特段の意味が無い箇所では、一つの操舵トルクtrqとして記載する。
 ECU10は、操舵トルクtrq1、trq2に基づいて、モータ80が所望のアシストトルクを発生するようにモータ80の駆動を制御する。モータ80が出力したアシストトルクは、減速ギア94を介してステアリングシャフト92に伝達される。
 ECU10は、回転角センサが検出したモータ80の電気角θ1、θ2及び操舵トルクセンサ93が検出した操舵トルクtrq1、trq2を取得する。ECU10は、これらの情報やECU10内部で検出したモータ電流等の情報に基づき、モータ80の駆動を制御する。
 モータ80の軸方向の一方側にECU10が一体に構成された機電一体式モータ800の構成について、図3、図4を参照して説明する。図3に示す形態では、ECU10は、モータ80の出力側とは反対側において、シャフト87の軸Axに対して同軸に配置されている。なお、他の実施形態では、ECU10は、モータ80の出力側において、モータ80と一体に構成されてもよい。
 モータ80は、三相ブラシレスモータであって、ステータ840、ロータ860、及びそれらを収容するハウジング830を備えている。
 ステータ840は、ハウジング830に固定されているステータコア845と、ステータコア845に組み付けられている二組の三相巻線組801、802とを有している。
 第1巻線組801を構成する各相巻線からは、リード線851、853、855が延び出している。第2巻線組802を構成する各相巻線からは、リード線852、854、856が延び出している。
 ロータ860は、リア軸受835及びフロント軸受836により支持されているシャフト87と、シャフト87が嵌入されたロータコア865とを有している。ロータ860は、ステータ840の内側に設けられており、ステータ840に対して相対回転可能である。シャフト87の一端には永久磁石88が設けられている。
 ハウジング830は、リアフレームエンド837を含む有底筒状のケース834と、ケース834の一端に設けられているフロントフレームエンド838とを有している。ケース834及びフロントフレームエンド838は、ボルト等により互いに締結されている。各巻線組801、802のリード線851、852等は、リアフレームエンド837のリード線挿通孔839を挿通してECU10側に延び、基板230に接続されている。
 ECU10は、カバー21と、カバー21に固定されているヒートシンク22と、ヒートシンク22に固定されている基板230と、基板230に実装されている各種の電子部品とを備えている。カバー21は、外部の衝撃から電子部品を保護したり、ECU10内への埃や水等の浸入を防止したりする。
 カバー21は、外部からの給電ケーブルや信号ケーブルが外部接続用コネクタ部214と、カバー部213とを有している。外部接続用コネクタ部214の給電用端子215、216は、図示しない経路を経由して基板230に接続されている。
 基板230は、例えばプリント基板であり、リアフレームエンド837と対向する位置に設けられ、ヒートシンク22に固定されている。基板230には、二系統分の各電子部品が系統毎に独立して設けられており、完全冗長構成をなしている。本実施形態では基板230は一枚であるが、他の実施形態では、二枚以上の基板を備えるようにしてもよい。
 基板230の二つの主面のうち、リアフレームエンド837に対向している面をモータ面237とし、その反対側の面、すなわちヒートシンク22に対向している面をカバー面238とする。
 モータ面237には、複数のスイッチング素子241、242、回転角センサ251、252、カスタムIC261、262等が実装されている。
 本実施形態では複数のスイッチング素子241、242は各系統について6個であり、モータ駆動回路の三相上下アームを構成する。回転角センサ251、252は、シャフト87の先端に設けられた永久磁石88と対向するように配置される。カスタムIC261、262及びマイコン401、402は、ECU10の制御回路を有する。カスタムIC261、262には、例えば図7に示すクロック監視部661、662等が設けられる。
 カバー面238には、マイコン401、402、コンデンサ281、282、及び、インダクタ271、272等が実装されている。特に、第1マイコン401及び第2マイコン402は、同一の基板230の同一側の面であるカバー面238に、所定間隔を空けて配置されている。
 コンデンサ281、282は、電源から入力された電力を平滑化し、また、スイッチング素子241、242のスイッチング動作等に起因するノイズの流出を防止する。インダクタ271、272は、コンデンサ281、282と共にフィルタ回路を構成する。
 図5、図6に示すように、ECU10の制御対象であるモータ80は、二組の三相巻線組801、802が同軸に設けられた三相ブラシレスモータである。
 巻線組801、802は、電気的特性が同等であり、例えば特許第5672278号公報の図3に参照されるように、共通のステータに互いに電気角30degずらして配置されている。これに応じて、巻線組801、802には、例えば、振幅が等しく位相が30degずれた相電流が通電されるように制御される。
 図6において、第1巻線組801と、第1巻線組801の通電制御に係る第1マイコン401及びモータ駆動回路701等との組み合わせを第1系統GR1とする。第2巻線組802と、第2巻線組802の通電制御に係る第2マイコン402及び第2モータ駆動回路702等との組み合わせを第2系統GR2とする。第1系統GR1と第2系統GR2とは、全て独立した2組の要素群から構成されており、いわゆる「完全二系統」の冗長構成をなしている。
 明細書中、必要に応じて、第1系統GR1の構成要素又は信号には語頭に「第1」を付し、第2系統GR2の構成要素又は信号には語頭に「第2」を付して区別する。各系統に共通の事項については、「第1、第2」を付さず、まとめて記載する。また、第1系統の構成要素又は信号の符号の末尾に「1」を付し、第2系統の構成要素又は信号の符号の末尾に「2」を付して記す。
 以下、ある構成要素にとって、その構成要素が含まれる系統を「自系統」といい、他方の系統を「他系統」という。同様に、二系統のマイコン401、402について、自系統のマイコンを「自マイコン」といい、他系統のマイコンを「他マイコン」という。
 ECU10の第1コネクタ部351には、第1電源コネクタ131、第1車両通信コネクタ311、及び、第1トルクコネクタ331が含まれる。第2コネクタ部352には、第2電源コネクタ132、第2車両通信コネクタ312、及び、第2トルクコネクタ332が含まれる。コネクタ部351、352は、それぞれ単一のコネクタとして形成されていてもよいし、複数のコネクタに分割されていてもよい。
 第1電源コネクタ131は、第1電源111に接続される。第1電源111の電力は、電源コネクタ131、電源リレー141、第1モータ駆動回路701、及び、モータリレー731を経由して、第1巻線組801に供給される。また、第1電源111の電力は、第1マイコン401及び第1系統GR1のセンサ類にも供給される。
 第2電源コネクタ132は、第2電源112に接続される。第2電源112の電力は、電源コネクタ132、電源リレー142、第2モータ駆動回路702、及び、モータリレー732を経由して、第2巻線組802に供給される。
 電源が冗長的に設けられない場合、二系統の電源コネクタ131、132は共通の電源に接続されてもよい。
 車両通信ネットワークとしてCANが冗長的に設けられる場合、第1車両通信コネクタ311は、第1CAN301と第1車両通信回路321との間に接続され、第2車両通信コネクタ312は、第2CAN302と第2車両通信回路322との間に接続される。
 CANが冗長的に設けられない場合、二系統の車両通信コネクタ311、312は、共通のCAN30に接続されてもよい。また、CAN以外の車両通信ネットワークとして、CAN-FD(CAN with Flexible Data rate)やFlexRay等、どのような規格のネットワークが用いられてもよい。
 車両通信回路321、322は、自系統及び他系統の各マイコン401、402との間で双方向に情報を通信する。
 第1トルクコネクタ331は、第1トルクセンサ931と第1トルクセンサ入力回路341との間に接続される。第1トルクセンサ入力回路341は、第1トルクコネクタ331が検出した操舵トルクtrq1を第1マイコン401に通知する。
 第2トルクコネクタ332は、第2トルクセンサ932と第2トルクセンサ入力回路342との間に接続される。第2トルクセンサ入力回路342は、第2トルクコネクタ332が検出した操舵トルクtrq2を第2マイコン402に通知する。
 マイコン401、402における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
 マイコン401、402は、クロック生成回路651、652が生成した基準クロックにより動作する。クロック監視部661、662は、クロック生成回路651、652により生成された基準クロックをそれぞれ監視する。基準クロックの生成、監視について、詳しくは後述する。
 第1マイコン401は、第1モータ駆動回路701のスイッチング素子241の動作を操作するモータ駆動信号Dr1を生成し、第1モータ駆動回路701に指令する。また、第1マイコン401は、第1電源リレー駆動信号Vpr1、及び、第1モータリレー駆動信号Vmr1を生成する。
 第2マイコン402は、第2モータ駆動回路702のスイッチング素子242の動作を操作するモータ駆動信号Dr2を生成し、第2モータ駆動回路702に指令する。また、第2マイコン402は、第2電源リレー駆動信号Vpr2、及び、第2モータリレー駆動信号Vmr2を生成する。
 マイコン401、402が生成した電源リレー駆動信号Vpr1、Vpr2は、自系統の電源リレー141、142に指令される他、他マイコンにも通知される。
 マイコン401、402は、マイコン間通信により、相互に情報を送受信可能である。マイコン401、402は、マイコン間通信にて、電流検出値や電流指令値等を相互に送受信し、第1系統GR1及び第2系統GR2を協働させてモータ80を駆動することが可能である。マイコン間通信の通信フレームには、電流検出値等が含まれる。その他、電流指令値、電流制限値、アップデートカウンタ、ステータス信号、及び、誤り検出値信号であるCRC信号、またはチェックサム信号等が含まれる場合もある。なお、本実施形態はマイコン間通信の通信内容に依らず適用可能であり、必要に応じてその他の情報を送受信してもよく、あるいは前記データの一部ないし全部が含まれていなくてもよい。
 各マイコンが他マイコンからの電源リレー駆動信号Vpr1、Vpr2を受信しているにもかかわらず、マイコン間通信で他マイコンからの信号を受信しない場合には、他マイコンは正常であり、マイコン間通信の異常であると判断される。
 一方、各マイコンが他マイコンからの電源リレー駆動信号Vpr1、Vpr2を受信せず、且つ、マイコン間通信で他マイコンからの信号を受信しない場合には、他マイコンが異常であると判断される。
 第1モータ駆動回路701は、複数のスイッチング素子241を有する三相インバータであって、第1巻線組801へ供給される電力を変換する。第1モータ駆動回路701のスイッチング素子241は、第1マイコン401から出力されるモータ駆動信号Dr1に基づいてオンオフ作動が制御される。
 第2モータ駆動回路702は、複数のスイッチング素子242を有する三相インバータであって、第2巻線組802へ供給される電力を変換する。第2モータ駆動回路702のスイッチング素子242は、第2マイコン402から出力されるモータ駆動信号Dr2に基づいてオンオフ作動が制御される。
 第1電源リレー141は、第1電源コネクタ131と第1モータ駆動回路701との間に設けられ、第1マイコン401からの第1電源リレー駆動信号Vpr1により制御される。第1電源リレー141がオンのとき、第1電源111と第1モータ駆動回路701との間の通電が許容され、第1電源リレー141がオフのとき、第1電源111と第1モータ駆動回路701との間の通電が遮断される。
 第2電源リレー142は、第2電源コネクタ132と第2モータ駆動回路702との間に設けられ、第2マイコン402からの第2電源リレー駆動信号Vpr2により制御される。第2電源リレー142がオンのとき、第2電源112と第2モータ駆動回路702との間の通電が許容され、第2電源リレー142がオフのとき、第2電源112と第2モータ駆動回路702との間の通電が遮断される。
 本実施形態の電源リレー141、142は、MOSFET等の半導体リレーである。電源リレー141、142がMOSFETのように寄生ダイオードを有する場合、電源リレー141、142に対し寄生ダイオードの向きが逆向きになるように直列接続される図示しない逆接保護リレーを設けることが望ましい。また、電源リレー141、142は、メカリレーであってもよい。
 第1モータリレー731は、第1モータ駆動回路701と第1巻線組801との間の各相電力経路に設けられ、第1マイコン401からの第1モータリレー駆動信号Vmr1により制御される。第1モータリレー731がオンのとき、第1モータ駆動回路701と第1巻線組801との間の通電が許容され、第1モータリレー731がオフのとき、第1モータ駆動回路701と第1巻線組801との間の通電が遮断される。
 第2モータリレー732は、第2モータ駆動回路702と第2巻線組802との間の各相電力経路に設けられ、第2マイコン402からの第2モータリレー駆動信号Vmr2により制御される。第2モータリレー732がオンのとき、第2モータ駆動回路702と第2巻線組802との間の通電が許容され、第2モータリレー732がオフのとき、第2モータ駆動回路702と第2巻線組802との間の通電が遮断される。
 第1電流センサ741は、第1巻線組801の各相に通電される電流Im1を検出し、第1マイコン401に出力する。第2電流センサ742は、第2巻線組802の各相に通電される電流Im2を検出し、第2マイコン402に出力する。
 回転角センサ251、252が冗長的に設けられる場合、第1回転角センサ251は、モータ80の電気角θ1を検出し、第1マイコン401に出力する。第2回転角センサ252は、モータ80の電気角θ2を検出し、第2マイコン402に出力する。
 回転角センサが冗長的に設けられない場合、例えば第1回転角センサ251が検出した第1系統の電気角θ1に基づき、第2系統の電気角θ2を「θ2=θ1+30deg」の式により算出してもよい。
 [ECUの構成]
 以下、各実施形態のECUの構成及び作用効果について実施形態毎に説明する。図6に示す二系統冗長に関する各構成については、適宜記載を省略する。各実施形態のECUの符号は、「10」に続く3桁目に実施形態の番号を付す。
 (第1実施形態)
 第1実施形態について、図7~図18を参照して説明する。
 図7に示すように、ECU101は、第1巻線組801の通電を制御する第1系統制御部601、及び、第2巻線組802の通電を制御する第2系統制御部602を含む。
 各系統の制御部601、602は、電源開閉回路151、152、電源生成回路161、162、クロック生成回路651、652、クロック監視部661、662、マイコン401、402及びモータ駆動回路701、702を含む。言い換えれば、互いに対応する電源開閉回路、電源生成回路、クロック生成回路、マイコン及びモータ駆動回路を含む一群の構成要素の単位を「系統」という。
 電源開閉回路151、152は電源経路191、192の途中に設けられる。電源開閉回路151、152は、例えばMOSFETで構成され、マイコン401、402の電源開閉判定部551、552からの指示に従って接続又は開放される。
 電源生成回路161、162は、車両スイッチ信号経路181、182を経由して車両スイッチ信号Sw1、Sw2が入力される。エンジン車両におけるイグニッションON/OFF信号や、ハイブリッド車両におけるレディON/OFF信号が車両スイッチ信号に相当する。各マイコン401、402は、対応する電源生成回路161、162に車両スイッチ信号Sw1、Sw2が入力されている状態であるか否かを認識する。
 また、電源開閉回路151、152が接続されたとき、電源電圧P1、P2が電源生成回路161、162に供給される。電源生成回路161、162は、供給された電源電圧P1、P2を用いて、各マイコン401、402を動作させるマイコン電源を生成する。
 第1クロック生成回路651及び第2クロック生成回路652は、第1マイコン401及び第2マイコン402が動作の基準とする基準クロックをそれぞれ独立して生成する。
 第1クロック監視部661は、第1クロック生成回路651により生成され第1マイコン401に出力された基準クロックを監視する。第2クロック監視部662は、第2クロック生成回路652により生成され第2マイコン402に出力された基準クロックを監視する。また、クロック監視部661、662は、基準クロックの異常を検出すると、マイコン401、402にリセット(図中「RESET」)信号を出力する。
 マイコン401、402は、CAN301、302を経由して入力される車両情報や、各センサから入力される操舵トルクtrq1、trq2、相電流Im1、Im2、電気角θ1、θ2等の情報が入力される。マイコン401、402は、これらの各種入力情報に基づく制御演算によりモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に出力する。ここで、制御演算のタイミングは、クロック生成回路651、652が生成したクロックに基づいて決定される。
 モータ駆動回路701、702は、マイコン401、402から指令されたモータ駆動信号Dr1、Dr2に基づいて、巻線組801、802に通電する。典型的には、モータ駆動回路701、702は、MOSFET等の複数のスイッチング素子がブリッジ接続された電力変換回路である。また、モータ駆動信号Dr1、Dr2は、各スイッチング素子をON/OFFさせるスイッチング信号である。例えば三相ブラシレスモータを駆動する本実施形態では、モータ駆動回路701、702は三相インバータである。
 各マイコン401、402は、駆動信号生成部451、452、停止判定部531、532及び電源開閉判定部551、552を有している。
 各マイコン401、402は、制御プログラムやパラメータ等の固定値を格納するROM、演算処理結果を一時的に記憶保持するRAM等を独立に備えており、相手マイコンのROM、RAMを参照することができない。このことを前提として、マイコン401、402間には、信号線541、542が設けられている。
 駆動信号生成部451、452は、例えば電圧指令信号のDUTYとPWMキャリアとを比較することで、PWM信号であるモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に指令する。
 停止判定部531、532は、電源生成回路161、162へ入力される車両スイッチ信号Sw1、Sw2の電圧低下に基づいて、「自マイコンの動作が停止されようとしていること」を判定する。つまり、停止判定部531、532は、自マイコンの動作が既に停止したことではなく、今後の動作停止が予測される状態であることを判定する。
 停止判定部531、532は、その情報を停止判定信号として、自マイコン内部の電源開閉判定部551、552に通知すると共に、信号線541、542を経由して他マイコンに送信する。
 すなわち、第1マイコン401の停止判定部531による停止判定信号は、第1マイコン401の電源開閉判定部551に通知されると共に、信号線541を経由して第2マイコン402の電源開閉判定部552に送信される。第2マイコン402の停止判定部532による停止判定信号は、第2マイコン402の電源開閉判定部552に通知されると共に、信号線542を経由して第1マイコン401の電源開閉判定部551に送信される。
 信号線541、542は、他の用途の信号線と共用されてもよく、専用に設けられてもよい。停止判定信号の通信は、例えば電流等の情報を通信するマイコン間のシリアル通信を用いて行われる。或いは、停止判定信号の通信は、信号線に代えて、マイコンポートの出力レベルを用いて行われる。
 電源開閉判定部551、552は、対応する電源生成回路161、162に対し、接続又は開放の指示を出力する。なお、電源生成回路161、162の初期値が開放状態であるノーマリーオープン型の構成では、接続指示を出力しないことが開放指示の出力とみなされる。一方、電源生成回路161、162の初期値が接続状態であるノーマリークローズ型の構成では、開放指示を出力しないことが接続指示の出力とみなされる。
 第1実施形態では、第1マイコン401及び第2マイコン402のいずれの電源開閉判定部551、552も、自マイコンの停止判定信号が通知されると共に、他マイコンの停止判定信号を受信する。電源開閉判定部551、552は、自マイコンの停止判定信号、及び、他マイコンから受信した停止判定信号に基づいて、対応する電源開閉回路151、152に開放指示を出力する。その結果、電源生成回路161、162でのマイコン電源の生成が停止されるため、自マイコンの動作は実際に停止する。つまり、電源開閉判定部551、552は、対応する電源開閉回路151、152に開放指示を出力することにより、自マイコンの動作を実際に停止させる。
 次に、第1実施形態のECU101の動作を説明する前に、この実施形態により解決する課題を理解するため、比較例のECUの動作について図8~図14を参照して説明する。図8~図13では、マイコン401、402内の駆動信号生成部451、452の図示を省略する。また、ブロックの枠線及びブロック間の矢印について、基本的に細線、細破線で示すものはOFF状態を示し、太線で示すものはON状態を示す。
 比較例のECU109は、第1実施形態のECU101に対し、マイコン401、402間に信号線541、542を備えず、各マイコン401、402が自マイコンの停止判定信号のみに基づいて独自に動作を停止するものである。
 また、図8~図13では、ECU109の動作電源を供給する電源システムとして、個別の電源111、112を備える構成例を示す。
 第1電源111は、第1車両スイッチ121が設けられた第1車両スイッチ信号経路181を経由して第1電源生成回路161に接続される。第1車両スイッチ121がONすると、第1車両スイッチ信号Sw1が第1電源生成回路161に入力される。
 また、第1電源111は、第1車両スイッチ121の手前で第1車両スイッチ信号経路181から分岐した第1電源経路191を経由して、第1電源開閉回路151に接続される。第1電源開閉回路151の入力側には、常時、第1電源電圧P1が供給されている。
 同様に第2電源112は、第2車両スイッチ122が設けられた第2車両スイッチ信号経路182を経由して第2電源生成回路162に接続される。第2車両スイッチ122は、第1車両スイッチ121のON/OFF信号SSを受信し、第1車両スイッチ121と共にON/OFFする。第2車両スイッチ122がONすると、第2車両スイッチ信号Sw2が第2電源生成回路162に入力される。
 また、第2電源112は、第2車両スイッチ122の手前で第2車両スイッチ信号経路182から分岐した第2電源経路192を経由して、第2電源開閉回路152に接続される。第2電源開閉回路152の入力側には、常時、第2電源電圧P2が供給されている。
 ただし、電源システムの構成例はこれに限らない。例えば、一つの共通電源に対し第1車両スイッチ121及び第2車両スイッチ122が並列に接続され、車両スイッチ121、122の手前で車両スイッチ信号経路181、182から電源経路191、192が分岐されるように構成されてもよい。
 個別の電源111、112を用いる場合、電源111、112の電圧そのものに差が生じる可能性がある。また、一つの共通電源を用いる場合であっても、配線抵抗や電圧検出回路のA/D変換特性のばらつき等により、各マイコン401、402が認識する電圧には差が生じる可能性がある。このような電圧差による影響については後述する。
 <比較例の動作1>
 図8を参照する。初期状態では、第1車両スイッチ121及び第2車両スイッチ122はOFFされている。このとき、車両スイッチ信号Sw1、Sw2は電源生成回路161、162に入力されない。
 ここでは、電源開閉判定部551、552が電源生成回路161、162に対し、初期値として開放指示を出力する構成を想定する。電源開閉回路151、152の接続/開放状態について、図中のブロック内に[接続]又は[開放]と記す。
 電源開閉回路151、152が開放していると、電源生成回路161、162に電源電圧P1、P2が供給されないため、電源生成回路161、162はマイコン電源を生成しない。図中の電源生成回路161、162のブロック内に、マイコン電源を生成する状態を[生成]、マイコン電源を生成しない状態を[非生成]と記す。
 なお、電源開閉判定部551、552が電源生成回路161、162に対し、初期値として接続指示を出力する構成では、次の動作2と動作3とが一段階で実現される。
 <比較例の動作2>
 図9を参照する。第1車両スイッチ121がONされると、第1車両スイッチ信号Sw1が第1電源生成回路161に入力される。また、第1車両スイッチ121と共に第2車両スイッチ122もONし、第2車両スイッチ信号Sw2が第2電源生成回路162に入力される。
 ここで、電源生成回路161、162への車両スイッチ信号Sw1、Sw2の入力は、信号通信機能のみを有し、電源電圧の供給を伴わないものとする。
 <比較例の動作3>
 図10を参照する。動作2において、各マイコン401、402は、車両スイッチ信号Sw1、Sw2が電源生成回路161、162に入力されたことを検知すると、その後、任意のタイミングで、電源開閉判定部551、552から電源開閉回路151、152へ接続指示を出力する。
 これにより、ブロック矢印で示すように電源開閉回路151、152を経由して、電源生成回路161、162に電源電圧P1、P2が供給される。供給された電源電圧P1、P2を用いて電源生成回路161、162がマイコン電源を生成することで、マイコン401、402が起動する。
 なお、車両スイッチ信号Sw1、Sw2の入力に伴って、電源111、112の電圧が車両スイッチ信号経路181、182を経由して電源生成回路161、162に供給される構成としてもよい。
 その場合、図9にブロック矢印で示すように、動作2の段階で電源生成回路161、162に電源電圧が供給される。そして、電源生成回路161、162がマイコン電源を生成し、マイコン401、402が起動する。また、動作3の段階では、電源生成回路161、162は、車両スイッチ信号経路181、182、及び、電源経路191、192の両方を経由して電源電圧が供給される。図9では、この場合を想定し、電源生成回路161、162のブロックに[生成]と記す。
 <比較例の動作4>
 図11を参照する。第1車両スイッチ121がOFFされると、第2車両スイッチ122もOFFする。すると、電源生成回路161、162への車両スイッチ信号Sw1、Sw2の入力が停止する。しかし、電源開閉回路151、152が接続されているので、電源電圧P1、P2は、ブロック矢印で示すように電源開閉回路151、152を経由して、電源生成回路161、162に供給され続ける。
 <比較例の動作5A>
 図12を参照する。車両スイッチ信号Sw1、Sw2の入力が停止すると、各マイコン401、402の停止判定部531、532は、自マイコンの電源開閉判定部551、552に停止判定信号を通知する。それを受け、電源開閉判定部551、552は、電源開閉回路151、152へ開放指示を出力する。すると、電源生成回路161、162への電源電圧P1、P2の供給が遮断され、マイコン電源が生成されなくなり、各マイコン401、402が動作を停止する。
 ここで、複数のマイコン401、402による停止判定及び電源開閉判定タイミングが理想的に一致すると仮定すると、マイコン401、402は、同時に動作を停止する。
 しかしながら、あるタイミングで各マイコン401、402の停止判定及び電源開閉判定に不一致が生じた場合、次のような問題が生じると考えられる。
 <比較例の動作5B>
 図13を参照する。例えば、第1マイコン401は第1車両スイッチ信号Sw1の電圧低下を検知して停止判定を行い、第2マイコン402は第2車両スイッチ信号Sw2の電圧低下を検知して停止判定を行う構成を想定する。この構成では、車両スイッチ信号Sw1、Sw2の電圧差により、各マイコン401、402の判定結果で異なる場合がある。
 図13の例では、第1車両スイッチ信号Sw1がOFFされたとき、第2車両スイッチ信号Sw2はONのままである。このとき、第1マイコン401のみが停止判定され、第2マイコン402は停止判定されずに、電圧供給及びマイコン電源生成が継続する。
 なお、上述の通り、車両スイッチ信号Sw1、Sw2の電圧差は、二つの電源111、112の電圧差によるものに限らない。例えば、一つの電源から分岐して電圧供給される構成においても、配線抵抗や各電源生成回路161、162の特性ばらつきにより、停止判定の基準となる電圧に差が生じる可能性がある。
 ここで、さらに図14を参照する。図14には、車両スイッチ信号Sw1、Sw2の電圧低下、及び、マイコン401、402の動作停止のタイミングを示す。車両スイッチ信号Sw1、Sw2の電圧は、OFFレベルよりも上の範囲がON状態に該当する。
 第1車両スイッチ信号Sw1及び第2車両スイッチ信号Sw2は、時刻q0に同時に電圧低下し始める。第1車両スイッチ信号Sw1は、時刻q1sに先に電圧低下が完了してOFF状態となり、第2車両スイッチ信号Sw2は、時刻q2sに遅れて電圧低下が完了してOFF状態となる。
 第1マイコン401は、時刻q1sからマイコン停止処理を開始し、処理期間Za1後の時刻q1eに動作を停止する。第2マイコン402は、時刻q1eから待ち期間Zb後の時刻q2sからマイコン停止処理を開始し、処理期間Za2後の時刻q2eに動作を停止する。待ち期間Zbでは第1マイコン401のみが停止し、第2マイコン402が動作している状態となる。この場合、第2マイコン402は、第1マイコン401から受信すべき信号として、例えば同期信号を受信することができなくなる。そのため、同期信号の受信途絶を監視して異常判定を行う場合、外部電圧に由来する要因であるにもかかわらず、誤ってECU109の異常であると判定するおそれがある。
 また、待ち期間Zb、又は、第2マイコン402の処理期間Za2中の時刻rs1に第1車両スイッチ121が再びONされた場合、第2マイコン402が既に動作している状態で、第1マイコン401が起動する。このとき、各マイコン401、402の動作開始タイミングにずれが生じる。
 そこで、図7に示す通り、第1実施形態のECU101は、二つのマイコン401、402間に信号線541、542を設け、各マイコンの停止判定部531、532による停止判定信号を他マイコンに相互に通信する。
 <第1実施形態のECUの動作>
 次に図15、図16を参照し、第1実施形態のECU101の動作について説明する。
 図15では、図13に示す比較例の動作5Bと同様に、第1車両スイッチ信号Sw1がOFFされ、第2車両スイッチ信号Sw2はONしている状況を想定する。
 このとき、第1マイコン401の停止判定部531は停止判定信号を出力するが、第2マイコン402の停止判定部532は停止判定信号を出力しない。したがって、第1マイコン401の電源開閉判定部551は、他マイコンである第2マイコン402からの停止判定信号を受信しないため、第1電源開閉回路151に対し接続指示を出力する。その結果、電源生成回路161への電圧供給が継続され、第1電源生成回路161は、第1マイコン401のマイコン電源を生成する。
 また、第2マイコン402の電源開閉判定部552は、自マイコンの停止判定信号を受信しないため、第2電源開閉回路152に対し、接続指示を出力する。
 要するに、第1マイコン401は、第2マイコン402の停止判定信号を受信するまでは動作を継続し、第2マイコン402の停止判定信号を受信したとき、実際に動作を停止する。
 図16には、第1実施形態での車両スイッチ信号Sw1、Sw2の電圧低下、及び、マイコン401、402の動作停止のタイミングについて、図14と同様の要領で示す。
 第1車両スイッチ信号Sw1の電圧低下が完了した時刻q1sに第1マイコン401がマイコン停止処理を開始し、第2車両スイッチ信号Sw2の電圧低下が完了した時刻q2sに第2マイコン402がマイコン停止処理を開始する点は、比較例と同様である。
 ただし第1実施形態では、第1マイコン401は、時刻q1sから処理期間Za1後の時刻q1eに停止判定信号を出力した後も動作を継続し、時刻q2eに第2マイコン402の停止判定信号を受信したとき動作を停止する。第2マイコン402は、時刻q2sからマイコン停止処理を開始し、時刻q2eに第1マイコン401に停止判定信号を送信する。このとき第2マイコン402は、既に第1マイコン401からの停止判定信号を受信しているため、待つことなく自マイコンの動作を停止する。
 このように、ECU101が備える複数のマイコンのうち一つのマイコンである第1マイコン401、及び、第1マイコン401以外の一つのマイコンである第2マイコン402は、動作を同時に停止する。したがって、ECU101は、車両スイッチ信号Sw1、Sw2の電圧低下タイミングがずれた場合であっても、複数のマイコン401、402の実際の動作停止タイミングを揃えることができる。
 そして、モータ制御装置が備える複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンが動作を同時に停止する場合、そのマイコン制御装置は、本実施形態のECUに相当するとみなされる。なお、複数のマイコンが動作を同時に停止することは、例えば暗電流を検出することにより、判定可能である。
 これにより、ECU101は、供給電圧や電源生成回路の特性の違いによりマイコン401、402間で停止判定のタイミングがずれた場合でも、実際の動作停止タイミングを揃えることができる。したがって、複数のマイコンの動作停止時における一致性を確保することができる。
 例えば第1マイコン401は、第2マイコン402に対し同期信号を出力し続けることができ、第2マイコン402による同期信号の受信途絶異常の誤判定を防止することができる。
 次に、第1実施形態による電源開閉回路151、152の接続/開放判定処理の簡易的なフローチャートを図17、図18に示す。
 図17に示す第1電源開閉回路151の接続/開放判定について、第1マイコン401の電源開閉判定部551は、S51で、第1マイコン401の停止判定信号、及び、第2マイコン402の停止判定信号をいずれも受信したか判断する。
 S51でYESの場合、電源開閉判定部551は、S52で、第1電源開閉回路151に開放指示を出力する。
 S51でNOの場合、電源開閉判定部551は、S53で、第1電源開閉回路151に接続指示を出力する。
 同様に、図18に示す第2電源開閉回路152の接続/開放判定について、第2マイコン402の電源開閉判定部552は、S61で、第1マイコン401の停止判定信号、及び、第2マイコン402の停止判定信号をいずれも受信したか判断する。
 S61でYESの場合、電源開閉判定部552は、S62で、第2電源開閉回路152に開放指示を出力する。
 S61でNOの場合、電源開閉判定部552は、S63で、第2電源開閉回路152に接続指示を出力する。
 ところで第1実施形態の構成では、ハードウェア故障により特定の他マイコンが停止を正常に判定できない場合、自マイコンも停止できなくなることが懸念される。そのため、自マイコンが停止判定信号を出力した後、他マイコンからの停止判定信号の受信を待つ時間に上限を設けるようにしてもよい。
 そこで図19、図20に、待ち時間に上限を設ける構成でのマイコン停止処理のフローチャートを示す。ここでは、図13~図16の動作に準じ、自マイコンである第1マイコン401が先に停止判定した後、他マイコンである第2マイコン402が停止判定するものとする。マイコン停止処理は、第1電源開閉回路151が接続しており第1系統モータ駆動中の初期状態から、第1車両スイッチ信号Sw1がOFFした時に開始される。
 また、マイコン動作停止タイミングに対し、各系統によるモータ駆動停止のタイミングをずらすことも可能である。図19及び図20に示すマイコン停止処理は、モータ駆動停止のタイミングが異なる。
 図19の例では、第1車両スイッチ信号Sw1がOFFし、第1マイコン401が停止処理を開始すると、最初にS71で第1系統のモータ駆動を停止する。つまり、第1マイコン401は、第2マイコン402に停止判定信号を送信する前に、まず自系統によるモータ駆動を停止する。
 自マイコン停止判定ステップS72で、第1マイコン401の停止判定部531は、自マイコンの動作が停止されようとしていることを判定する。第1マイコン401は、「第1マイコン停止判定あり」、すなわちS72でYESと判断すると、停止判定信号送信ステップS73で、第2マイコン402へ停止判定信号を送信する。
 続いて、第1マイコン401が第2マイコン402から停止判定信号を受信したとき、第1マイコン401は、他マイコン停止判定ステップS74でYESと判断する。
 また、第2マイコン402から停止判定信号を受信する前に上限待ち時間が経過したとき、S74でNO、S75でYESと判断される。これらの両方の場合に、S77に移行する。動作停止ステップS77で、第1マイコン401は、第2マイコン402の停止判定信号に基づいて、第1電源開閉回路151に開放指示し、自マイコンの動作を実際に停止させる。
 ここで、S75でYESと判断された後に動作停止ステップS77で自マイコンの動作を実際に停止させる処理は、「他マイコンのタイムアウトによる自発停止」とみなすことができる。これにより、特定の他のマイコンが何らかの故障により正しく停止判定できない場合、自マイコンは自発的に電源を停止し、電力消費を低減することができる。
 図20のマイコン停止処理は、図19の処理に対し、S71に代えてS76を実行する点のみが異なる。S76では、S74でYES、又はS75でYESと判断された後、第1マイコン401は第1系統のモータ駆動を停止する。つまり、上限待ち時間が経過する場合を除き、第1マイコン401は、第2マイコン402へ停止判定信号を送信し、且つ第2マイコン402から停止判定信号を受信した後、自マイコンの動作を実際に停止する直前に、自系統のモータ駆動を停止する。要するに、他マイコン停止判定ステップS74でYESと判断された後の動作停止ステップS77では、自マイコン及び他マイコンの停止判定が揃ってから両系統のモータ駆動を同時に停止することとなる。
 このように、モータ制御装置が備える複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンがモータ駆動を同時に停止する場合、そのマイコン制御装置は、本実施形態のECUの一形態に相当するとみなされる。
 (第2実施形態)
 第2実施形態について、図21を参照して説明する。
 図7に示す第1実施形態のECU101の構成に対し、第2実施形態のECU102は、第1マイコン401から第2マイコン402への停止判定信号が送信される信号線541が設けられていない。
 すなわち、各マイコンの停止判定信号は、マイコン間で相互に通信されるわけでなく、第2マイコン402から第1マイコン401への一方向にのみ送信される。
 ここで、第1車両スイッチ121がOFFされた時、電源生成回路161、162の特性の違い等により、常に第1マイコン401が第2マイコン402よりも早く停止判定すると仮定する。
 この前提で、第1マイコン401の電源開閉判定部551は、自マイコンの停止判定部531から停止判定信号が入力された後、第2マイコン402の停止判定部532から停止判定信号を受信した時、第1電源開閉回路151を開放するよう判定する。
 また、第2マイコン402は、停止判定部532が停止判定信号を第1マイコン401に送信すると同時に、電源開閉判定部552が自マイコンの停止判定信号を取得し、第2電源開閉回路152を開放するよう判定する。
 その結果、第1、第2電源開閉回路151、152は同時に開放され、第1、第2マイコン401、402は、同時に動作を停止する。
 第2実施形態において、第2マイコン402から停止判定信号を受信した第1マイコン401が、他マイコンである第2マイコン402の停止判定信号、及び、自マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させる点は第1実施形態と同様である。ここで、第2マイコン402は、「停止判定信号を他マイコンに送信する停止判定部532を有する少なくとも一つのマイコン」に相当する。また、第1マイコン401は、「一つ以上の他マイコンから停止判定信号を受信したマイコン」に相当する。
 このように、第1マイコン401が先に停止判定することが決まっている場合には、停止判定信号の通信を第2マイコン402から第1マイコン401への一方向とすることにより、装置構成を簡略化することができる。
 また、停止判定信号受信側の第1マイコン401は、図19、図20に示す「他マイコンのタイムアウトによる自発停止」の処理を適用可能である。
 (第3実施形態)
 第3実施形態について、図22を参照して説明する。
 図21に示す第2実施形態のECU102の構成に対し、第3実施形態のECU103は、さらに第1マイコン401が停止判定部531を有していない。
 すなわち、第1、第2実施形態では、各マイコン401、402が停止判定部531、532を有しているのに対し、第3実施形態では、第2マイコン402のみが停止判定部532を有している。
 ここで、第1車両スイッチ13がOFFされた時、第2実施形態と同様に、常に第1マイコン401が第2マイコン402よりも早く停止判定すると仮定する。また、第1電源生成回路161への第1車両スイッチ信号Sw1がOFFした後、所定時間以内に第2マイコン402の停止判定部532が確実に停止判定信号を出力することを前提とする。
 この前提で、第1マイコン401の電源開閉判定部551は、第2マイコン402の停止判定部532から停止判定信号を受信した時、第1電源開閉回路151を開放するよう判定する。
 また、第2マイコン402は、停止判定部532が停止判定信号を第1マイコン401に送信すると同時に、電源開閉判定部552が自マイコンの停止判定信号を取得し、第2電源開閉回路152を開放するよう判定する。
 その結果、第1、第2電源開閉回路151、152は同時に開放され、第1、第2マイコン401、402は、同時に動作を停止する。
 第3実施形態では、第2マイコン402から停止判定信号を受信した第1マイコン401は、自マイコンの停止判定信号を用いず、他マイコンである第2マイコン402の停止判定信号のみに基づいて、自マイコンの動作を実際に停止させる。
 このように、上記前提が成立する場合には、停止判定信号の通信を第2マイコン402から第1マイコン401への一方向とし、さらに、第1マイコン401が停止判定部を有しない構成とすることで、装置構成をより簡略化することができる。
 (第4実施形態)
 第4実施形態について、図23、図24を参照して説明する。
 第1実施形態のECU101において、車両スイッチ信号Sw1、Sw2の入力に伴って、電源電圧が電源生成回路161、162に供給される構成を想定する。そして、車両スイッチ信号Sw1、Sw2のOFF後、電源開閉判定部551、552による電源開放指示時に、車両スイッチ信号Sw1、Sw2の再ONが重なる場合を想定する。
 このとき、電源開閉回路151、152から電源生成回路161、162への供給電圧が十分低下する前に、車両スイッチ信号Sw1、Sw2に伴って供給される電圧を用いて電源生成回路161、162がマイコン電圧を生成し続ける可能性が考えられる。
 この場合、第1電源電圧P1と第2電源電圧P2との差により、一方のマイコン電圧だけが生成され続け、他方のマイコン電圧は、一旦生成が停止した後、再度生成される可能性がある。
 そこで、このような状況を回避するための手段として、各マイコン401、402に対し、電源生成回路161、162の開放指示に加え、マイコン401、402をリセットする手段を設けることが考えられる。
 図23に示す第4実施形態のECU104は、第1実施形態のECU101に対し、各マイコン401、402に対応するリセットコントロール(図中「リセットCTRL」)部171、172をさらに備えている。なお、クロック監視部661、662の図示を省略する。リセットコントロール部171、172は、対応する各マイコン401、402が出力した停止判定信号に基づいて、各マイコン401、402を停止させる。
 この実施形態のリセットコントロール部171、172は、各マイコン401、402の外部に設けられ、各マイコン401、402のリセット端子571、572の接点を操作しリセット端子571、572をコントロールするICとして構成されている。なお、他の実施形態では、マイコン内部にリセットコントロール部が設けられてもよい。
 マイコンリセット処理の例を図24に示す。
 マイコン401、402は、それぞれ、車両スイッチ信号Sw1、Sw2の入力を監視する。S81で車両スイッチ信号Sw1、Sw2が一旦OFFすると、電源開閉判定部551、552は、S82で、停止判定信号に基づいて電源を開放するように判定する。
 その後、車両スイッチ信号Sw1、Sw2が再入力され、S83でYESと判断されると、マイコン401、402は、リセットコントロール部171、172にリセット指示を通知する。リセット指示を受けたリセットコントロール部171、172は、S84で、それぞれマイコン401、402をリセットする。
 これにより、各マイコン401、402のリセットタイミングを揃えることで、例えば電動パワーステアリング装置90の初期チェック時にアシスト力残存の影響を受けないように制御することができる。
 また、初期同期の仕組みを設けることで、一方のマイコンのみが動作したまま、他方のマイコンが停止し動作再開することによる同期タイミングのずれの問題を防止することができる。初期同期の仕組みとしては、例えば、マイコン起動後及びリセット解除後、1回目は無条件に同期を許可する等の仕組みが考えられる。
 (第5実施形態)
 第5実施形態は、第1実施形態に対し、第1マイコン401及び第2マイコン402が同期信号を送受信する構成を備える。すなわち、図25に示すように、第5実施形態のECU105は、マイコン401、402間にまたがって同期制御部49が構成される。同期制御部49は、第1実施形態のECU101における駆動信号生成部451、452を含む。同期制御部49の詳細な構成は、第5実施形態の基礎形態として後述する。
 第5実施形態に対する比較例、及び、第5実施形態の動作は、図8~図20を参照する第1実施形態の説明を援用する。例えば、第5実施形態の動作は、第1実施形態の図15に対応する図26に示される。なお、第1実施形態における信号線541、542について、第5実施形態では同期信号線と区別するため、「停止判定信号用通信線541、542」と言い換えてもよい。また、第2~第4実施形態のECU102~104についても同様に、マイコン401、402が同期信号を送受信する構成としてもよい。
 第5実施形態の説明に先立って、まず、第5実施形態の基幹部分をなす基礎形態の構成及び作用効果について、図27~図38を参照して説明する。
 図27には、図25に示す第5実施形態のECU105の構成のうち特に同期制御部49に関する構成を示す。図27に示す基礎形態のECUの符号を「100」とする。
 図27に示すように、ECU100は、第1巻線組801の通電を制御する第1系統制御部601、及び、第2巻線組802の通電を制御する第2系統制御部602を含む。各系統の制御部601、602は、クロック生成回路651、652、クロック監視部661、662、マイコン401、402及びモータ駆動回路701、702を含む。言い換えれば、互いに対応するクロック生成回路、マイコン及びモータ駆動回路を含む一群の構成要素の単位を「系統」という。
 第1クロック生成回路651及び第2クロック生成回路652は、第1マイコン401及び第2マイコン402が動作の基準とする基準クロックをそれぞれ独立して生成する。
 第1クロック監視部661は、第1クロック生成回路651により生成され第1マイコン401に出力された基準クロックを監視する。第2クロック監視部662は、第2クロック生成回路652により生成され第2マイコン402に出力された基準クロックを監視する。また、クロック監視部661、662は、基準クロックの異常を検出すると、マイコン401、402にリセット(図中「RESET」)信号を出力する。
 マイコン401、402は、CAN301、302を経由して入力される車両情報や、各センサから入力される操舵トルクtrq1、trq2、相電流Im1、Im2、電気角θ1、θ2等の情報が入力される。マイコン401、402は、これらの各種入力情報に基づく制御演算によりモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に出力する。ここで、制御演算のタイミングは、クロック生成回路651、652が生成したクロックに基づいて決定される。
 モータ駆動回路701、702は、マイコン401、402から指令されたモータ駆動信号Dr1、Dr2に基づいて、巻線組801、802に通電する。典型的には、モータ駆動回路701、702は、MOSFET等の複数のスイッチング素子がブリッジ接続された電力変換回路である。また、モータ駆動信号Dr1、Dr2は、各スイッチング素子をON/OFFさせるスイッチング信号である。例えば三相ブラシレスモータを駆動する本実施形態では、モータ駆動回路701、702は三相インバータである。
 以下は、二つのマイコン401、402間にまたがる同期制御部49の構成である。
 各マイコン401、402は、制御プログラムやパラメータ等の固定値を格納するROM、演算処理結果を一時的に記憶保持するRAM等を独立に備えており、相手マイコンのROM、RAMを参照することができない。
 このことを前提として、二つのマイコン401、402は、同期信号線471で接続されている。図27に示す例では、同期信号線471は一つであるが、後述する第6実施形態や、三つ以上のマイコンを備える他の実施形態では、複数の同期信号線が設けられる場合もある。つまり、第5実施形態の基礎形態に基づくECUは、総じて、少なくとも一つの同期信号線を備える。
 この同期信号線は、後述する同期信号送信のための専用線に限らず、例えばマイコン間通信に使用するクロック線や電流等の情報を通信するシリアル通信線のように、同期信号以外の通信用の信号線と共用されてもよい。
 また、例えば特開2011-148498号公報の段落[0044]に開示されているように、同期信号線による通信に代えて、第1マイコン401から第2マイコン402に対してポート信号のレベル変化を行うことで、同期信号を通知することができる。
 第1マイコン401及び第2マイコン402は、共通の構成として、駆動タイミング生成部441、442、駆動信号生成部451、452、及び、アナログ信号サンプリング部461、462を有する。
 駆動タイミング生成部441、442は、例えば各相共通のPWMキャリアを用いて、モータ駆動信号Dr1、Dr2のパルスタイミングである駆動タイミングを生成し、駆動信号生成部451、452に指示する。駆動信号生成部451、452は、例えば電圧指令信号のDUTYとPWMキャリアとを比較することで、PWM信号であるモータ駆動信号Dr1、Dr2を生成し、モータ駆動回路701、702に指令する。
 アナログ信号サンプリング部461、462は、アナログ信号をサンプリングする。
 アナログ信号としては、主に各系統のモータ電流Im1、Im2の検出値を想定する。三相モータでは、モータ電流Im1、Im2は、各巻線組801、802のU相、V相、W相の電流である。図27には、モータ駆動回路701、702に設けられたシャント抵抗等で検出されたモータ電流Im1、Im2が取得される場合を想定して矢印を記載している。その他、モータ80側に設けた電流センサからモータ電流Im1、Im2が取得される場合を想定すると、ECU100の外からアナログ信号サンプリング部461、462への矢印を記載してもよい。また、破線で示すように、アナログ信号サンプリング部461、462は、電気角θ1、θ2や操舵トルクtrq1、trq2のアナログ信号を取得してもよい。
 アナログ信号サンプリング部461、462は、駆動タイミング生成部441、442と同期し、モータ駆動信号Dr1、Dr2のスイッチングタイミングと異なるタイミングでアナログ信号をサンプリングする。
 図28に、周期TpのPWMキャリアを各相に共通に用いてモータ駆動信号Drを生成する構成を示す。ここで、想定するDUTYは、例えば10%~90%の範囲の値、0%及び100%とする。本明細書では、DUTY0%をPWMキャリアの山側とし、DUTY100%をPWMキャリアの谷側として表す。PWMキャリアの周期Tpは、モータ駆動信号Drのパルス周期に相当する。
 DUTY90%のとき、モータ駆動信号Drのパルスは、時刻u9に立ち上がり、時刻d9に立ち下がり、ON時間は0.9Tpと表される。
 DUTY10%のとき、モータ駆動信号Drのパルスは、時刻u1に立ち上がり、時刻d1に立ち下がり、ON時間は0.1Tpと表される。
 10%~90%のDUTY範囲において、モータ駆動信号Drのパルスは、時刻u9から時刻u1までの期間SWu中に立ち上がり、時刻d1から時刻d9までの期間SWd中に立ち下がる。また、DUTY0%及び100%の期間中にはパルスの立ち上がりや立ち下がりが発生しない。したがって、破線でハッチングした「非スイッチング期間NSW」には、全ての相のスイッチング素子について、モータ駆動信号Drのスイッチングが生じない。なお、PWM制御での非スイッチング期間NSWは、キャリアの谷及び山のタイミングを跨ぐ微小期間に相当する。
 なお、DUTY0%以外のDUTYから0%に切り替わる時、またはDUTY100%以外のDUTYから100%に切り替わる時には、パルスの立ち上がり又は立ち下がりが発生する。しかし、DUTYの切り替えタイミングをキャリアの谷タイミングに設定しておくことで、非スイッチング期間NSWのうち、山タイミングでのスイッチングを避けることが可能である。その逆に、DUTYの切り替えタイミングを山タイミングに固定しておけば、非スイッチング期間NSWのうち、谷タイミングでのスイッチングを避けることが可能である。さらに、PWMキャリアの谷、山タイミングの例えばN回に1回DUTYを切り替える設定とすれば、DUTYの切り替えを行わない(N-1)回の谷、山タイミングではスイッチングは発生しない。
 そこで、アナログ信号サンプリング部461、462は、駆動タイミング生成部441、442と同期して、非スイッチング期間NSWのうち、0%又は100%DUTYへの切り替えが発生しないタイミングでサンプリングする。これにより、サンプリング信号がスイッチングノイズの影響を受けにくくなり、サンプリング精度が向上する。
 より詳しくは、スイッチングにより発生するサージ電圧が減衰する時間の経過後にサンプリングを行うことが好ましい。
 さらに、第5実施形態の基礎形態において、第1マイコン401は同期信号生成部411を有し、第2マイコン402はタイミング補正部422を有する。第1マイコン401は、同期信号を送信する「同期信号送信側マイコン」として機能し、第2マイコン402は、同期信号を受信する「同期信号受信側マイコン」として機能する。また、各マイコン401、402にとって、そのマイコン自身のことを「自マイコン」という。
 第1マイコン401の同期信号生成部411は、自マイコンの駆動タイミング生成部441が生成した駆動タイミングに同期し、且つ、二つのマイコン401、402の駆動タイミングを同期させる同期信号を生成する。そして、同期信号生成部411は、同期信号線471を介して同期信号を第2マイコン402に送信する。
 第2マイコン402のタイミング補正部422は、第1マイコン401から送信された同期信号を受信し、受信した同期信号に同期するように自マイコンの駆動タイミング生成部442が生成する駆動タイミングを補正可能である。この補正を「タイミング補正」という。図27において第2マイコン402内に破線で示すように、タイミング補正では、タイミング補正部422から駆動タイミング生成部442へタイミング補正指示が出力され、それに応じて、駆動タイミング生成部442が駆動タイミングを補正する。
 ところで、「第1マイコン401から送信された同期信号に基づいて、第2マイコン402が駆動タイミングを補正する」構成は、特許第5412095号公報(以下、「特許文献2」)に開示されている。
 ここで、特許文献2に開示された従来技術について言及する。
 従来、冗長的に設けられた複数のマイコンでモータの駆動を制御するモータ制御装置において、各マイコンが、それぞれ独立したクロック生成回路で生成されたクロックにより動作する装置が知られている。一つのクロック生成回路で全てのマイコンを動作させる場合には、クロック生成回路の故障時にモータ駆動が停止するのに対し、各マイコンに対応して独立したクロック生成回路を設けることにより、信頼性が向上する。
 ただし、現実には、クロック生成回路の製造ばらつき等により、各マイコンの演算制御タイミングにずれが生じるという問題がある。
 そこで、例えば特許文献2に開示された電動機制御装置は、複数のマイコン間で同期信号を送受信し、同期信号を受信したマイコンが、同期信号に基づいて演算制御タイミングを補正する。こうして複数のマイコンの演算制御タイミングを互いに同期させることで、モータのトルク脈動の抑制を図っている。
 この従来技術に対し、第5実施形態の基礎形態では、「受信信号判定部」としてのタイミング判定部432がさらにタイミング補正部422に含まれる。
 次にタイミング判定部432の説明に移る前に、特許文献2の従来技術が解決した点、及び、この従来技術では未解決の問題点について、図29~図31を参照して説明する。
 図29に、クロック生成回路651、652の製造ばらつき等により、二つのマイコン401、402のモータ駆動信号Dr1、Dr2のタイミングが徐々にずれていく様子を示す。
 図29以下のタイムチャートでは、第1モータ駆動信号Dr1のパルス周期をTpA、第2モータ駆動信号Dr2のパルス周期をTpBと示す。また、第1マイコン401のPWMキャリアの谷、山タイミングを基準時ta0から順にta1、ta2・・・とする。同様に、第2マイコン402のPWMキャリアの谷、山タイミングを基準時tb0から順にtb1、tb2・・・とする。ここで、基準時ta0及びtb0は一致している。
 基準時ta0、tb0後、パルス周期がTpA<TpBの関係にあるため、第2モータ駆動信号Dr2は、第1モータ駆動信号Dr1に対して徐々に遅れていく。1周期目に生じるタイミングずれΔt1は比較的小さいが、これが蓄積すると、4周期目にはΔt7の大きさにまでタイミングずれが拡大する。タイミングずれが大きくなると、一つには特許文献2に記載されているように、トルク脈動が発生する。
 また、図29において、ta11後の第1モータ駆動信号Dr1の立ち下がりタイミングは、第2マイコン402のアナログ信号サンプリングタイミングに重なっている。tb11後の第2モータ駆動信号Dr2の立ち上がりタイミングは、第1マイコン401のアナログ信号サンプリングタイミングに重なっている。このように、モータ駆動信号Dr1、Dr2のパルスエッジに重なったサンプリングタイミングでは、スイッチングノイズの影響を受け、サンプリング精度が低下する。
 次に、特許文献2の従来技術では二つのマイコン401、402を同期信号線471で結線し、同期信号を用いて演算タイミングのずれを補正する。この方法を図30に示す。
 図30に示すように、同期信号は、第1モータ駆動信号Dr1のパルス周期TpAの4周期に相当する周期Tsのパルス信号として生成される。このパルスは、PWMキャリアの谷、山タイミングの4回毎に、立ち上がり及び立ち下がりを繰り返す。つまり、ta0、ta8で立ち上がり、ta4、ta12で立ち下がる。そして、図30の例では、パルスが立ち上がるta0、ta8のタイミングに同期させるように、第2マイコン402のタイミングを補正する。
 つまり、図29と同様にタイミングずれΔt7が蓄積された後、同期信号のパルスが立ち上がるタイミングta8に、第2マイコン402のタイミングtb8を一致させるようにタイミングが補正される。
 tb8でタイミングずれが0にリセットされるため、その後の1周期で生じるタイミングずれΔt9は、初期のタイミングずれΔt1と同程度に抑えられる。つまり、タイミングずれがトルク脈動やサンプリング精度に影響を及ぼすレベルになる前に、駆動タイミングを補正して同期させることにより、良好なモータ駆動を継続することができる。なお、具体的な同期方法は、図30の例に限らず、適宜設定してよい。
 このように、複数のマイコン間で同期信号を用いてタイミング補正を行うことにより、各マイコンがそれぞれ独立したクロック生成回路で生成されたクロックにより動作するECUにおいて、制御タイミングを同期させながらモータ駆動を行うことができる。これにより、トルク脈動を抑制することができる。また、アナログ信号サンプリングタイミングがモータ駆動信号Dr1、Dr2のスイッチングタイミングと重なることを回避することができる。
 しかし、常に正常な同期信号が送信されるとは限らない。すなわち、第1マイコン401を動作させる第1クロック生成回路651、又は、第1マイコン401の同期信号生成部411、又は、同期信号線471の故障等により、送信される同期信号自体に異常が生じる可能性も考えられる。そこで次に、異常な同期信号が第2マイコン402に受信された場合の問題点について説明する。
 第1マイコン401を動作させる第1クロック生成回路651に異常が発生した場合に想定される不具合を図31に示す。
 図31に示すように、クロック生成回路651は、基準時ta0からta8まで正常であるが、ta8以後、クロック周波数が増加し、第1モータ駆動信号Dr1のパルス周期TpAが短くなる異常が発生する。これに伴い、クロック生成回路651が生成したクロックを用いて生成される同期信号の周波数が増加し、周期Tsが短くなる。
 この場合、増加したクロック周波数に対し制御演算が追従不能となると、第1マイコン401の制御が破綻し、モータ駆動を停止せざるを得ない自体に陥る。
 一方、第2マイコン402は正常であり、第2モータ駆動信号Dr2のパルス周期TpBは一定に維持されている。ここで、同期信号のパルスの立ち上がりタイミングta0、ta8、ta16、ta24に第2マイコン402の駆動タイミングを補正する場合を想定する。すると、破線で囲んだta16及びta24では、第2モータ駆動信号Dr2のON期間の途中にタイミング補正が実施され、強制的にOFFされる。
 その結果、意図しないパルスが生成され、第2モータ駆動回路702のスイッチング制御が不安定となるおそれがある。また、アナログ信号のサンプリング間隔が不均等となり、サンプリング精度にも影響を及ぼすおそれがある。
 このように、第1系統制御部601で発生した障害の影響が、他系統のマイコン402の動作に影響を及ぼすことを「故障伝搬」という。図31の例では、第1マイコン401から送信された異常な同期信号に基づいて第2マイコン402がタイミング補正を実施したことにより、第2系統のみであれば正常に実行できたはずのモータ駆動が不能な状態に陥るという深刻な事態が発生している。
 そもそもモータ制御装置を二系統の冗長構成としているのは、いずれか一方の系統に異常が生じても、他方の正常な系統の動作によりモータ駆動を継続可能とすることが目的である。それにもかかわらず、故障伝搬が発生すると、その目的が全く果たされなくなる。
 特に電動パワーステアリング装置90では、たとえトルク脈動が生じ、アナログ信号のサンプリング精度が低下したとしても、モータ駆動を継続し、アシスト機能の停止を回避することの方がより重要である。よって、故障伝搬の可能性がある特許文献2の従来技術には、致命的な問題が存在する。
 つまり、特許文献2の技術では、複数のマイコン間で送受信される同期信号に異常が発生した場合を想定していない。しかし、送信される同期信号に異常が発生すると、同期信号受信側のマイコンが異常な同期信号に基づいてタイミングを補正することになる。そのため、同期信号の異常の程度によっては、同期信号受信側マイコンによる制御が破綻するおそれがある。その結果、クロックのずれによりトルク脈動が生じることよりも不都合な事態に陥る可能性がある。例えば、車両の電動パワーステアリング装置において、モータ駆動の停止によりアシスト機能が停止すると、運転者に不安を与えることとなる。したがって、同期信号の異常を判定し、異常の場合に適切な処置を実施することが求められる。
 そこで、この問題を解決するため、第5実施形態の基礎形態によるECU100は、第2マイコン402のタイミング補正部422に、受信した同期信号の正常又は異常の判定である「受信信号判定」を行う「受信信号判定部」として、タイミング判定部432を含む。
 そして、第2マイコン402は、タイミング判定部432により、受信した同期信号が正常と判定されたとき、タイミング補正を許可する。一方、第2マイコン402は、受信した同期信号が異常と判定されたとき、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。
 要するに、同期信号受信側マイコンは、故障伝搬の原因となる同期信号送信側マイコンからの同期信号が正常であるか否かを、まず判定する。そして、同期信号が正常と判定された場合、同期信号受信側マイコンの駆動タイミングを同期信号送信側マイコンの駆動タイミングと同期するように補正することにより、良好なモータ駆動を実現する。
 しかし、同期信号が異常と判定された場合には、故障伝搬の防止を優先して、タイミング補正を行わない。すなわち、同期信号送信側マイコンとの縁を切り、非同期でモータ駆動を継続することにより、最低限のアシスト機能を維持することが最も重要であると考える。
 続いて、タイミング判定部432が「受信信号判定」として「タイミング判定」を行う構成について、図32~図34を参照して説明する。
 第5実施形態の基礎形態の判定方法では、受信した同期信号のパルスエッジ、すなわち立ち上がり又は立ち下がりのタイミングが「同期許可区間」に含まれるか否かを判定する。「同期許可区間」は「補正許可区間」と言い換えてもよい。以下、「同期信号のパルスエッジ受信のタイミング」を単に「同期信号の受信タイミング」という。
 モータ制御方法におけるこのタイミング判定処理を図32のフローチャートに示す。以下のフローチャートで記号「S」はステップを意味する。また、図32のS01を除き、図32、図35~図38のフローチャートの実行主体は、同期信号受信側マイコンのタイミング補正部及びタイミング判定部、又は、同期信号受信側マイコン全体とする。
 図32の同期信号送信ステップS01で、第1マイコン401の同期信号生成部411は、第2マイコン402に同期信号を送信する。
 同期信号受信ステップS02で、タイミング補正部422は同期信号を受信する。
 受信信号判定ステップS03で、タイミング判定部432は、同期信号の受信タイミングが同期許可区間内であるか否か判断することで、同期信号の正常又は異常を判定する。
 S03でYESの場合、第2マイコン402は、タイミング補正許可ステップS04で第2マイコン402のタイミング補正を許可する。すると、第1マイコン401及び第2マイコン402は、同期してモータ80を駆動する。
 S03でNOの場合、受信した同期信号が異常であると判定される。第2マイコン402は、タイミング補正禁止ステップS05で第2マイコン402のタイミング補正を禁止し、第1マイコン401とは非同期でモータ80を駆動する。
 次に同期許可区間の設定例について説明する。例えば図30のように、PWMキャリアの谷又は山タイミングに合わせて同期信号のパルスを生成する場合を想定する。この場合、図28に参照される通り、同期信号のタイミングは、モータ駆動信号Drのスイッチタイミングとは重ならない。
 モータ駆動信号Dr1、Dr2のタイミングずれが理想的に0の場合、タイミング補正部422が同期信号を受信するタイミングは、第2マイコン402のPWMキャリアの谷又は山タイミングに一致する。この理想状態に対し、クロック生成回路651、652の正常時における、クロックずれの最大範囲を推定する。
 例えばクロック生成回路651、652で生成されるクロックが最大±x%ばらつくとし、また、同期信号によりタイミング補正を実施する周期をTs[s]とする。
 このとき、マイコン401、402内部でのカウントされる時間は、クロック生成回路651、652が生成した原クロックに対し、最小で「(100-x)/100」倍から最大で「(100+x)/100」倍の範囲でばらつく。
 このことから、同期周期1周期の間に、マイコン401、402間で生じる最大ずれ幅ΔTmax[s]は、式(1)で表される。
  ΔTmax=Ts×{(100+x)-(100-x)}/100
       =Ts×2x/100          ・・・(1)
 正常駆動中に誤って補正禁止としないためには、同期許可区間をΔTmax以上の幅で定める必要がある。その上で、システム上許容される時間以内に同期許可区間を設定することで、適切なタイミング判定処理を実施することができる。
 例えば同期周期Tsを1msとし、クロック生成回路651、652で生成されるクロックのばらつき幅を最大±1%とする。このとき、1度同期してから次に同期するまでの間に生じる最大ずれ幅ΔTmax[s]は、式(1)により、0.02[ms]となる。
  ΔTmax=1[ms]×(2×1/100)=0.02[ms]
 図33に示すように、PWMキャリア周期Tpが例えば0.5[ms]であり、DUTY範囲が10%~90%であるとする。ここで、DUTY90%で駆動した場合、モータ駆動信号Drの立ち下がり時刻d9から次の立ち上がり時刻u9までの間の非スイッチング期間は、0.1Tp、すなわち0.05[ms]である。
 一方、PWMキャリアの谷タイミングの前後0.01[ms]に最大ずれ幅ΔTmaxである0.02[ms]の期間を同期許可区間として設定すると、同期許可区間は、確実に0.05[ms]の非スイッチング期間内に含まれる。
 このことから、クロック生成回路651、652で生成されるクロックのばらつきが最大±1%以内であれば、同期許可区間を同期信号周期Tsの2%以上に設定することにより、正常駆動中に誤って補正禁止とすることを防止することができる。したがって、マイコン401、402間での駆動タイミングを同期させつつ、同期駆動を継続可能となる。
 なお、仮に第2クロック生成回路652の故障によりクロックのばらつきが±1%を超えた場合、第2クロック監視部662により検出可能である。したがって、第2マイコン402の同期許可区間の位置は、正しく設定されていることを前提とする。
 また、最大DUTYにおけるモータ駆動信号Drの非スイッチング期間内に同期許可区間を設定すれば、タイミング補正によりパルスのON期間途中に強制的にOFFすることが避けられる。そのため、仮に異常な同期信号が本来の同期タイミングとは異なるタイミングで同期許可区間内に入ったとしても、モータ駆動信号Drは、必ず最大DUTYでのパルス幅を確保することができ、問題の無い動作を担保することができる。
 なお、DUTYとして、例えば10%~90%の範囲に加えて0%及び100%の出力を含む過変調制御では、同期信号の受信タイミングがDUTYの切り替えタイミングに重なる場合がある。しかし、その場合はDUTYの切り替えタイミングが同期するだけであり、例えばDUTY100%を継続する場合にはそもそもOFFするタイミングが存在しないことから、同期タイミングがどのタイミングで生じても実質的な影響は生じない。
 また、DUTYの切り替えタイミングにおいても、例えば100%以外のDUTYから100%に切り替わる場合は、切り替え前のDUTYについて正常なパルス幅を出し切った後、100%DUTY出力の開始タイミングが前後するだけである。一方で、100%DUTYから100%以外のDUTYへ切り替わる場合は、100%DUTY出力の終了タイミングが前後するだけであり、次のDUTY出力期間に影響を与えない。いずれの場合も、異常なDUTY出力が行われるわけではなく、モータ駆動に与える影響は軽微である。0%DUTY出力に関しても、100%DUTY出力に対しONとOFFとが入れ替わるだけであり、同様である。
 上記例の同期許可区間を用いた、同期信号異常時のタイミング判定のタイムチャートを図34に示す。図34では、図31と同様に、第1クロック生成回路651に異常が発生した場合において、同期信号のパルスの立ち上がりタイミングta8、ta16、ta24におけるタイミング判定の結果を示す。同期信号のタイミングが同期許可区間内にある場合を「OK」、同期許可区間外にある場合を「NG」と記す。
 ta8、ta16では、同期信号の受信タイミングが同期許可区間外にあるため、タイミング補正部422はタイミング補正を実施しない。このとき、第2マイコン402は、第1マイコン401とは非同期でモータ80を駆動する。
 これにより、第2マイコン402は、第1マイコン401からの故障伝搬を防止することができる。特にta16では、異常な同期信号に基づくタイミング補正によってモータ駆動信号Dr2がON期間の途中で強制的にOFFされる事態を回避する。
 一方、ta24では、同期信号の受信タイミングが同期許可区間内にあるため、タイミング補正部422はタイミング補正を実施する。この場合、たとえ同期信号の周期Tsが異常であったとしても、ta24における立ち上がりタイミング自体は正常なタイミングに近い。したがって、受信した同期信号に基づいてタイミング補正部422がタイミング補正を実施しても、実質的にモータ駆動信号Dr2への影響は無い。
 以上のように、第5実施形態の基礎形態の基本的な技術的思想によると、第2マイコン402のタイミング判定部422は、第1マイコン401から送信された同期信号の正常又は異常を判定する。
 受信した同期信号が正常と判定されたとき、第2マイコン402は、タイミング補正を許可し、第1マイコン401と同期してモータ80を駆動する。これにより、モータ80のトルク脈動を抑制することができる。また、アナログ信号サンプリング部461、462のサンプリングタイミングがモータ駆動信号Dr1、Dr2のスイッチングタイミングと重なることを回避することができる。なお、同期信号としてDUTY50%の矩形波を用いる場合には、その立ち上がりタイミング及び立ち下がりタイミングが非スイッチング期間NSWに入ることから、副次的に同期信号の切り替えによるアナログ信号への影響も低減することが可能である。
 一方、受信した同期信号が異常と判定されたとき、第2マイコン402は、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。これにより、第1マイコン401からの故障伝搬により、第2マイコン402の制御が破綻することを防止することができる。
 特に電動パワーステアリング装置90では、少なくとも正常な第2マイコン402によるモータ駆動を継続し、アシスト機能を維持することができる。
 なお、モータ駆動信号Dr1、Dr2のスイッチングは、アナログ信号のサンプリングだけでなく同期信号へ影響する可能性もある。仮にモータ駆動信号Dr1、Dr2のスイッチングが同期信号に影響し、同期信号に誤ったパルスエッジが生じた場合を想定する。この場合、同期許可区間を設けない通常の構成であれば、同期信号受信側マイコンが本来とは異なるタイミングでパルスの立ち上がりを認識してしまい、誤ったタイミング補正が行われるという問題が生じる。
 しかし、同期許可区間を非スイッチング期間NSW内に設定する第5実施形態の基礎形態の構成によれば、この問題についても有意な効果を得ることが期待できる。つまり、第5実施形態の基礎形態の構成によればモータ駆動信号Dr1、Dr2のスイッチングは必ず同期許可区間外で行われる。したがって、たとえ同期信号に影響が生じ、誤ったパルスエッジが生じたとしても、そのタイミングは同期許可区間外になることが期待できる。その結果、たとえ同期信号受信側マイコンがモータ駆動信号Dr1、Dr2のスイッチングの影響によって生じた同期信号のパルスエッジを認識したとしても、同期許可区間外であるため、異常な同期タイミングであると判別することができる。よって、同期信号受信側マイコンが誤ったタイミングでタイミング補正することを回避できる。
 次に、第5実施形態の基礎形態の各種応用処理について、図35~図38を参照して説明する。
 (起動時処理)
 各マイコンが個別に起動してモータ駆動を開始した場合において、駆動タイミングにずれが生じたとき、正常に駆動している状態であっても、同期信号の受信タイミングが同期許可区間に入らないため、タイミング補正が許可されない可能性がある。そこで、同期信号受信側マイコンの起動時に、図35、図36に示す起動時処理を実施することが考えられる。
 図35に、マイコン起動時のモータ駆動開始処理のフローチャートを示す。
 S10では、受信側の第2マイコン402を起動する。起動時の受信回数の初期値は0である。タイミング補正部422は、S11で同期信号を受信し、S12で受信回数をインクリメントする。
 S13では、受信回数が所定の初期回数Ni(≧2)に達したか否か判断する。
 S13でYESの場合、第2マイコン402は、S14でモータの駆動を開始する。S13でNOの場合、S11の前に戻る。
 要するに、同期信号受信側マイコンは、同期信号送信側マイコンから同期信号をNi回受信するまでモータの駆動開始を待ち、同期信号をNi回受信したとき、同期信号送信側マイコンと同期してモータ駆動を開始する。これにより、複数のマイコン間での同期の準備が整うのを待ってから、同期駆動を適切に開始することができる。
 図36に、マイコン起動時のタイミング判定待機処理のフローチャートを示す。
 S20~S22は、図35のS10~S12と同様である。
 S23では、受信回数が所定の待機回数Nw(≧1)を超えたか否か判断する。
 S23でYESの場合、タイミング判定部432は、S24でタイミング判定を開始する。S23でNOの場合、S21の前に戻る。
 要するに、同期信号受信側マイコンの起動後、同期信号の受信回数がNw回までの間、同期信号受信側マイコンは、無条件でタイミング補正を許可する。そして、(Nw+1)回目以後に受信した同期信号からタイミング判定を開始する。これにより、起動直後に過剰にタイミング補正が禁止される事態を適切に回避することができる。
 (復帰処理)
 一旦同期信号に異常が生じ、非同期駆動に移行した後、同期信号送信側マイコンをリセット又は再初期化することにより正常動作するようになった場合でも、そのままでは、同期駆動を再開することができない。そこで、図37に示す復帰処理を実施することが考えられる。
 図37に、同期信号異常判定後のタイミング補正復帰処理のフローチャートを示す。
 S31で、タイミング補正部422は、同期信号の受信タイミングが同期許可区間外であったため、同期信号が異常と判定する。
 S32では、異常判定後の同期信号受信回数が所定の復帰回数Nre(≧2)に達したか、又は、同期信号の非受信期間が所定の復帰時間Treに達したか否か判断する。
 S32でYESの場合、タイミング補正部422は、S33で、タイミング補正の禁止を解除する。そして、次回の同期信号の受信以後、受信タイミングが同期許可区間内であり、同期信号が正常と判定された場合にはタイミング補正を許可する。
 (異常確定処理)
 例えば一時的な同期信号のパルスの乱れ等により、同期信号送信側マイコンに実質的な異常が生じていないにもかかわらず、同期信号の受信タイミングが同期許可区間に入らないため、同期信号が異常であると誤判定する可能性も考えられる。このような場合、タイミング補正を過剰に禁止するおそれがある。そこで、図38に示す異常確定処理を実施することが考えられる。
 図38に、同期信号の異常確定処理のフローチャートを示す。
 S40で、タイミング判定部432は、「同期信号の異常を連続して判定した回数」である連続異常回数の初期値を0に設定する。
 S41で、タイミング補正部422は、同期信号を受信する。
 S42で、タイミング判定部432は、同期信号の受信タイミングが同期許可区間外であるか否か判断する。同期信号が正常であり、S42でNOの場合、処理を終了する。なお、この場合、図32のS04により、タイミング補正が実施される。
 S42でYESの場合、S43で連続異常回数をインクリメントする。
 S44では、連続異常回数が所定の確定回数Nfixに達した否か判断する。S44でYESの場合、S45に移行する。S44でNOの場合、S41の前に戻る。
 S45でタイミング判定部432が同期信号の異常を確定すると、S46で、タイミング補正部422はタイミング補正を禁止する。言い換えれば、異常確定まではタイミング補正を許可し、第2マイコン402は第1マイコン401との同期駆動を継続するようにしてもよい。これにより、タイミング判定における誤判定を防止することができる。
 以上が、第5実施形態の基礎形態による各種応用処理の説明である。
 このように、第5実施形態の基礎形態のECU100は、同期信号受信側である第2マイコン402のタイミング補正部422は、受信した同期信号の正常又は異常の判定である受信信号判定を行うタイミング判定部432を含む。
 そして、第2マイコン402は、受信信号判定において同期信号が正常と判定されたとき、タイミング補正を許可し、受信信号判定において同期信号が異常と判定されたとき、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。
 この構成では、第2マイコン402のタイミング判定部432により同期信号の異常を判定可能である。また、受信信号判定において同期信号が異常と判定されたとき、第2マイコン402は、タイミング補正を禁止し、第1マイコン401とは非同期でモータを駆動する。したがって、同期信号の異常が原因となって、同期信号受信側マイコンの制御が破綻することを防止することができる。
 この場合、たとえトルク脈動が生じたとしても、少なくともモータの駆動を継続することができる。したがって、電動パワーステアリング装置のように、モータ駆動によるアシスト機能を継続するニーズが大きいモータ駆動システムにおいて、特に有効である。
 ところで、特許文献2の従来技術には、さらに以下のような課題がある。
 複数のマイコンの動作を停止させる時、各マイコンへの供給電圧の差や電源生成回路の特性ばらつき等により、電源OFFによる停止判定のタイミングが各マイコンでずれる場合がある。そのとき、各マイコンが独自に動作の停止を判定すると、あるマイコンは動作し続けているにもかかわらず、他のマイコンが動作を停止することとなる。
 その結果、本来、他マイコンから受信すべき信号が途絶することにより誤ったフェイル判定をしたり、他マイコンとの同期ができなくなったりするおそれがある。さらに、複数のマイコン間でモータの駆動/停止等の状態が不一致のまま動作を停止すると、電源を再ONしたとき、例えば一方ではモータ駆動を開始し、他方ではイニシャルチェックを行うというような不都合が生ずるおそれがある。このように複数のマイコンの動作停止時に同期関係が崩れるという問題について、特許文献2には何ら言及されていない。
 この課題に対する解決手段が第5実施形態である。第5実施形態のECU105は、基礎形態の同期制御部49の構成を備えつつ、第1実施形態のECU101と同様に動作する。
 特に、図14に示す比較例の動作5Bにおいて、待ち期間Zb、又は、第2マイコン402の処理期間Za2中の時刻rs1に第1車両スイッチ121が再びONされた場合、各マイコン401、402の動作開始タイミングにずれが生じる。したがって、同期信号に対して同期許可区間を設けてタイミング判定を実施する場合、同期ができなくなる可能性が高い。その結果、比較例では、マイコン同期によりアナログ信号サンプリングへの影響を低減するという基礎形態の目的が達成されなくなる。
 それに対し、マイコン401、402が同時に動作を停止する第5実施形態では、複数のマイコンの動作停止時における同期関係を確保することができる。
 (第6実施形態)
 第6実施形態について、図39、図40を参照して説明する。
 図39は、第5実施形態の基礎形態のECU100に対応する部分について、同期信号の通信に関する別の構成を示す。
 図39に示すように、第6実施形態のECU106は、第1マイコン401及び第2マイコン402がそれぞれ同期信号生成部411、412、及びタイミング補正部421、422を有する。第1マイコン401及び第2マイコン402は、「同期信号送信側マイコン」且つ「同期信号受信側マイコン」として機能し、同期信号を相互に送受信する。
 この形態における同期信号線の構成は、実線で示すように、第1マイコン401から第2マイコン402への送信用の第1同期信号線471と、第2マイコン402から第1マイコン401への送信用の第2同期信号線472とを個別に備えてもよい。或いは、破線で示すように、双方向に通信可能な同期信号線48を用いてもよい。なお、双方向の同期信号線48、又は、一方向の同期信号線471、472のうち少なくとも一本は、マイコン間通信に用いられる他の通信用の信号線と共用されてもよい。
 共通の同期信号線48を双方向の信号線として用いる場合、図40に示すように、第1マイコン401から第2マイコン402への同期信号の送信タイミングと、その逆方向の同期信号の送信タイミングとは、互いに異なるタイミングに設定されている。特に図40の例では、マイコン401、402が交互に同期信号を送信する。
 なお、第5実施形態の基礎形態での説明と同様に、同期信号線による双方向通信に代えて、同期信号送信側マイコンから同期信号受信側マイコンに対してポート信号のレベル変化を行うことで、同期信号を双方向に通知するようにしてもよい。
 この他、例えば、マイコン401、402の起動タイミングが異なる場合に、先に起動したマイコンが後から起動したマイコンに対して同期信号を送信するようにしてもよい。
 また、主として第1マイコン401から第2マイコン402へ同期信号を送信し、何らかの場合にのみ逆方向の送信をするようにしてもよい。例えば、起動時には第2マイコン402からの同期信号に同期して第1マイコン401が起動し、その後は第1マイコン401からの同期信号に同期して第2マイコン402が動作するようにしてもよい。また、例えば第1マイコン401に異常が生じマイコンをリセットした際に、第2マイコン402からのマイコンからの同期信号をもとに自マイコンの動作開始タイミングを決定し動作を開始してもよい。この場合は、マイコン異常から復帰した際に初めから同期した状態でモータ駆動を再開することが可能である。
 第6実施形態では、第1マイコン401及び第2マイコン402がそっくり同じ機能を備えており、完全な冗長性を有している。したがって、一系統についてのあらゆる故障パターンに対応可能であるため、信頼性をより向上させることができる。
 また、各方向の同期信号の送信タイミングを異ならせ、共通の双方向同期信号線48を用いることにより、ECUの部品点数を減らし、構成を簡易にすることができる。
 (第7、第8実施形態)
 第7、第8実施形態について、図41、図42を参照して説明する。
 第7、第8実施形態のECU10は、基本的に図7に示す第5実施形態の基礎形態の構成を援用する。ただし第7、第8実施形態では、受信信号判定において、同期信号を受信したタイミングを判定するのでなく、特定のパルスパターンを有する同期信号を用いて、同期信号の正常又は異常を判定する。そこで、第2マイコン402におけるタイミング補正部422内の「タイミング判定部432」を「受信信号判定部432」と読み替える。
 第7、第8実施形態の受信信号判定部432により同期信号が正常と判定されたとき、又は、異常と判定されたときの処理については、第5実施形態の基礎形態と同様である。
 特定のパルスパターンとは、1周期あたりのパルス数、時間幅、又は間隔等が予め規定されたパターンをいう。なお、図41、図42では、図31及び図34のように同期信号の異常原因については明示せず、正常なパルスパターンと正常でないパルスパターンとの違いのみを表す。
 図41に示す第7実施形態では、R部に示すように、予め決められた時間幅のクロック入力が規定回数であるk回入力されたとき同期信号が正常であると判定する。そして、同期信号受信側マイコンは、k回目のクロック入力タイミングでタイミング補正を実施、すなわち、マイコン間での駆動タイミングの同期を行う。
 一方、X部に示すように、同期信号のパルスの時間幅が異なったり、連続回数が異なったりする場合にはタイミング補正を実施せず、非同期でモータ駆動する。
 また、第8実施形態では、同期信号を他の信号と共通化した構成において、例えばシリアル通信用のクロックラインを同期信号用として利用する場合に、シリアル通信の受信をトリガとしてCRC方式等により受信データの信頼性を計算する。チェックの結果、正しい通信が行われている場合には、マイコン間の同期を許可するというものである。
 図42に、第8実施形態における通信クロック及び受信信号線のパルスを示す。R部では、CRC正常と判断されたら、受信完了タイミングを基準としてタイミング補正を実施する。このとき、例えばCRC計算にかかった時間分だけ補正して同期信号するというように、タイミング補正の具体的な方法は適宜設定してよい。
 一方、X部では、CRCが不一致であるため正常なタイミングではないと判断し、タイミング補正を実施しない。
 このように、受信信号判定部432は、第5実施形態の基礎形態のように同期信号の受信タイミングによる方法に限らず、特定のパルスパターンを用いても、同期信号の正常又は異常を判定することができる。
 なお、特定パルスパターンにより受信信号判定を実施する第7、第8実施形態の構成においても、上記図35~図38の各処理を同様に適用可能である。また、双方向で同期信号を送受信する第6実施形態の構成に第7、第8実施形態を適用してもよい。
 (その他の実施形態)
 (a)上記実施形態の制御対象であるモータ80は、二組の巻線組801、802が共通のステータに互いに電気角30degずらして配置される多重巻線モータである。その他の実施形態で制御対象とされるモータは、二組以上の巻線組が同位相で配置されるものでもよい。また、二組以上の巻線組が一つのモータの共通のステータに配置される構成に限らず、例えば各巻線組が別々に巻回された複数のステータにより協働してトルクを出力する複数のモータに適用されてもよい。
 また、多相ブラシレスモータの相の数は、三相に限らず四相以上でもよい。さらに駆動対象のモータは、交流ブラシレスモータに限らず、ブラシ付き直流モータとしてもよい。その場合、「モータ駆動回路」としてHブリッジ回路を用いてもよい。
 (b)上記実施形態は、二つのマイコンを備えるモータ制御装置について例示しているが、三つ以上のマイコンを備えるモータ制御装置に本開示を適用してもよい。例えば第5実施形態の基礎形態に準ずる同期信号一方向送信の構成において、一つの同期信号送信側マイコンが他の二つ以上の同期信号受信側マイコンに対して同期信号を送信してもよい。或いは、二つ以上の同期信号送信側マイコンが、それぞれ、自マイコン以外の各同期信号受信側マイコンに対して同期信号を送信してもよい。
 三つ以上のマイコンを備えるモータ制御装置における停止判定の構成について、全てのマイコンの動作がモータ駆動に影響する場合には全てのマイコンの停止タイミングを揃えることが好ましい。例えば第2実施形態に準じる構成では、一つ以上の他マイコンから停止判定信号を受信したマイコンは、受信した全ての他マイコンの停止判定信号、及び、自マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させればよい。
 一方、一部のマイコンの動作がモータ駆動に影響しない場合等には、モータ駆動に影響するマイコン間のみで停止タイミングを揃えればよい。例えば第2実施形態に準じる構成では、一つ以上の他マイコンから停止判定信号を受信したマイコンは、受信した他マイコンの停止判定信号のうち少なくとも一つの他マイコンの停止判定信号、及び、自マイコンの停止判定信号に基づいて、自マイコンの動作を実際に停止させればよい。
 (c)モータ制御装置は、モータ駆動タイミング生成部に同期するアナログ信号サンプリング部を備えなくてもよい。その場合、モータ制御装置は、外部から取得したデジタルデータに基づいて制御演算を行ってもよい。或いは、フィードバック情報を用いず、フィードフォワード制御を実施してもよい。
 また、アナログ信号サンプリング部を備える構成において、サンプリングタイミングがモータ駆動信号のスイッチタイミングに重なるようにしてもよい。
 (d)モータ駆動信号の生成方式として、図26等に示されるPWM制御方式に限らず、例えば、予め記憶した複数のパルスパターンから変調率や回転数に応じて最適なパターンを選択するパルスパターン方式等を採用してもよい。また、PWM制御方式のキャリアは三角波に限らず、鋸波を用いてもよい。
 (e)本開示のモータ制御装置は、電動パワーステアリング装置用のモータに限らず、他のいかなる用途のモータに適用されてもよい。例えば車両以外のシステムに適用される場合、上記実施形態の「車両スイッチ信号」は、「システムスイッチ信号」等に置き換えて解釈可能である。
 以上、本開示はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。

Claims (22)

  1.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     電源(111、112)に接続された電源生成回路(161、162)が生成するマイコン電源により動作し、前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する駆動信号生成部(451、452)を有する複数のマイコン(401、402)と、
     を備え、
     前記複数のマイコンのうち少なくとも一つのマイコンは、自マイコンの動作が停止されようとしていることを判定し、その情報を停止判定信号として他マイコンに送信する停止判定部(531、532)を有し、
     一つ以上の他マイコンから前記停止判定信号を受信したマイコンは、少なくとも他マイコンの前記停止判定信号に基づいて、自マイコンの動作を実際に停止させるモータ制御装置。
  2.  一つ以上の他マイコンから前記停止判定信号を受信したマイコンは、受信した他マイコンの前記停止判定信号のうち少なくとも一つの他マイコンの前記停止判定信号、及び、自マイコンの前記停止判定信号に基づいて、自マイコンの動作を実際に停止させる請求項1に記載のモータ制御装置。
  3.  一つ以上の他マイコンから前記停止判定信号を受信したマイコンは、受信した全ての他マイコンの前記停止判定信号、及び、自マイコンの前記停止判定信号に基づいて、自マイコンの動作を実際に停止させる請求項2に記載のモータ制御装置。
  4.  自マイコンの前記停止判定信号の出力から上限待ち時間が経過したとき、他マイコンからの前記停止判定信号の受信の有無にかかわらず自マイコンの動作を停止させる請求項2または3に記載のモータ制御装置。
  5.  前記複数のマイコンは、それぞれ前記停止判定部を有し、各前記停止判定部による前記停止判定信号を相互に通知する請求項1~4のいずれか一項に記載のモータ制御装置。
  6.  前記複数のマイコンは、前記電源生成回路への電圧供給経路を開閉する電源開閉回路(151、152)に対し接続又は開放を指示する電源開閉判定部(551、552)をさらに有し、
     前記電源開閉判定部は、前記停止判定信号が通知されたとき、前記電源開閉回路に開放指示を出力し各マイコンの動作を実際に停止させる請求項1~5のいずれか一項に記載のモータ制御装置。
  7.  各マイコンのリセットをコントロールするリセットコントロール部(171、172)をさらに備え、
     前記リセットコントロール部は、前記停止判定信号に基づいて各マイコンの動作を停止させる請求項1~6のいずれか一項に記載のモータ制御装置。
  8.  前記リセットコントロール部は、マイコン外部に設けられ、マイコンのリセット端子をコントロールするICとして構成される請求項7に記載のモータ制御装置。
  9.  車両に搭載され、車両スイッチ信号(Sw1、Sw2)が入力されたとき前記電源生成回路に電圧が供給されるように構成されたモータ制御装置であって、
     前記複数のマイコンは、前記車両スイッチ信号の入力を監視し、前記車両スイッチ信号が一旦OFFした後、再入力されたとき、対応する前記リセットコントロール部にリセット指示を通知し、
     当該リセット指示を受けた前記リセットコントロール部は、対応するマイコンをリセットする請求項7または8に記載のモータ制御装置。
  10.  前記複数のマイコン間で信号が通信される信号線(541、542)をさらに備える請求項1~9のいずれか一項に記載のモータ制御装置。
  11.  前記複数のマイコンは、同一の基板(230)の同一側の面(238)に、所定間隔を空けて配置されている請求項1~10のいずれか一項に記載のモータ制御装置。
  12.  前記複数のマイコンが動作の基準とするクロックをそれぞれ独立して生成する複数のクロック生成回路(651、652)をさらに備える請求項1~11のいずれか一項に記載のモータ制御装置。
  13.  前記複数のマイコンのうち、自マイコンの前記駆動タイミングに同期し、且つ、前記複数のマイコンの前記駆動タイミングを同期させる同期信号を送信する少なくとも一つのマイコンを同期信号送信側マイコン(401)とし、前記同期信号送信側マイコンから送信された前記同期信号を受信する少なくとも一つのマイコンを同期信号受信側マイコン(402)とすると、
     前記同期信号送信側マイコンは、
     前記同期信号を生成し、前記同期信号受信側マイコンに送信する同期信号生成部(411)を有し、
     前記同期信号受信側マイコンは、
     受信した前記同期信号に同期するように自マイコンの前記駆動タイミングを補正するタイミング補正を実施可能なタイミング補正部(422)を有する請求項12に記載のモータ制御装置。
  14.  前記同期信号送信側マイコンと前記同期信号受信側マイコンとを接続し、前記同期信号が送受信される少なくとも一つの同期信号線(471、472、48)をさらに備える請求項13に記載のモータ制御装置。
  15.  前記同期信号受信側マイコンの前記タイミング補正部は、受信した前記同期信号の正常又は異常の判定である受信信号判定を行う受信信号判定部(432)を含み、
     前記同期信号受信側マイコンは、
     前記受信信号判定において前記同期信号が正常と判定されたとき、前記タイミング補正を許可し、
     前記受信信号判定において前記同期信号が異常と判定されたとき、前記タイミング補正を禁止し、前記同期信号送信側マイコンとは非同期でモータを駆動する請求項13または14に記載のモータ制御装置。
  16.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     電源(111、112)に接続された電源生成回路(161、162)が生成するマイコン電源により動作し、前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する駆動信号生成部(451、452)を有する複数のマイコン(401、402)と、
     を備え、
     前記複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンは、動作を同時に停止するモータ制御装置。
  17.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     電源(111、112)に接続された電源生成回路(161、162)が生成するマイコン電源により動作し、前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する駆動信号生成部(451、452)を有する複数のマイコン(401、402)と、
     を備え、
     前記複数のマイコンのうち少なくとも一つのマイコン、及び、そのマイコン以外の少なくとも一つのマイコンは、前記モータの駆動を同時に停止するモータ制御装置。
  18.  請求項1~17のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置により通電される複数の多相巻線組(801、802)が同軸に設けられたブラシレスモータとして構成される前記モータと、
     を備えるモータ駆動システム。
  19.  前記モータの軸方向の一方側に前記モータ制御装置が一体に構成されている請求項18に記載のモータ駆動システム。
  20.  車両の電動パワーステアリング装置に適用され、
     請求項1~17のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置により駆動され、アシストトルクを出力する前記モータと、
     を備えるモータ駆動システム。
  21.  二つの電源(111、112)と、
     二つの前記電源からそれぞれ電力が供給される二組の多相巻線組が設けられた前記モータと、
     二組の前記多相巻線組への通電をそれぞれ制御する二つの前記マイコン、及び、二つの前記マイコンからそれぞれ前記モータ駆動信号が指令される二つの前記モータ駆動回路を備える前記モータ制御装置と、
     操舵トルクを検出し、二つの前記マイコンに出力する二つの操舵トルクセンサ(931、932)と、
     前記モータの電気角を検出し、二つの前記マイコンに出力する二つの回転角センサ(251、252)と、
     を備える請求項20に記載のモータ駆動システム。
  22.  一つ以上のモータ(80)を駆動する複数のモータ駆動回路(701、702)と、
     電源(111、112)に接続された電源生成回路(161、162)が生成するマイコン電源により動作し、前記複数のモータ駆動回路にそれぞれ指令するモータ駆動信号を生成する駆動信号生成部(451、452)を有する複数のマイコン(401、402)と、
     を備えるモータ制御装置によるモータ制御方法であって、
     前記複数のマイコンのうち少なくとも一つのマイコンが有する停止判定部(531、532)が、自マイコンの動作が停止されようとしていることを判定する自マイコン停止判定ステップ(S72)と、
     前記自マイコン停止判定ステップでの判定に基づき、自マイコンの動作が停止されようとしていることの情報を停止判定信号として他マイコンに送信する停止判定信号送信ステップ(S73)と、
     自マイコンが一つ以上の他マイコンから前記停止判定信号を受信する他マイコン停止判定ステップ(S74)と、
     自マイコンが、少なくとも他マイコンの前記停止判定信号に基づいて、自マイコンの動作を実際に停止させる動作停止ステップ(S77)と、
     を含むモータ制御方法。
PCT/JP2017/024922 2016-07-11 2017-07-07 モータ制御装置、モータ駆動システム、及び、モータ制御方法 WO2018012420A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003482.5T DE112017003482B4 (de) 2016-07-11 2017-07-07 Motorsteuerungsvorrichtung, Motorantriebssystem und Motorsteuerungsverfahren
US16/243,503 US10668945B2 (en) 2016-07-11 2019-01-09 Motor control apparatus, motor drive system, and motor control method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-136611 2016-07-11
JP2016136611 2016-07-11
JP2017036596 2017-02-28
JP2017-036595 2017-02-28
JP2017036595 2017-02-28
JP2017-036596 2017-02-28
JP2017-124055 2017-06-26
JP2017124055A JP7024223B2 (ja) 2016-07-11 2017-06-26 モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP2017-124060 2017-06-26
JP2017124060 2017-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/243,503 Continuation US10668945B2 (en) 2016-07-11 2019-01-09 Motor control apparatus, motor drive system, and motor control method

Publications (2)

Publication Number Publication Date
WO2018012420A1 WO2018012420A1 (ja) 2018-01-18
WO2018012420A9 true WO2018012420A9 (ja) 2018-06-14

Family

ID=60953050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024922 WO2018012420A1 (ja) 2016-07-11 2017-07-07 モータ制御装置、モータ駆動システム、及び、モータ制御方法

Country Status (2)

Country Link
DE (1) DE112017003482B4 (ja)
WO (1) WO2018012420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159836A1 (ja) * 2018-02-13 2019-08-22 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668945B2 (en) 2016-07-11 2020-06-02 Denso Corporation Motor control apparatus, motor drive system, and motor control method
JP7252881B2 (ja) * 2019-10-31 2023-04-05 株式会社デンソー モータ駆動システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194135A (ja) * 1993-12-28 1995-07-28 Matsushita Electric Ind Co Ltd インバータの制御装置
JP3457889B2 (ja) * 1998-08-28 2003-10-20 株式会社東芝 洗濯機
JP2003340192A (ja) * 2002-05-31 2003-12-02 Hitachi Home & Life Solutions Inc 全自動洗濯乾燥機
JP5412095B2 (ja) * 2008-11-27 2014-02-12 日立オートモティブシステムズ株式会社 電動機制御装置および運転制御方法
JP5223945B2 (ja) 2011-05-10 2013-06-26 日本精工株式会社 電動パワーステアリング装置の制御方法及び制御装置
JP5672278B2 (ja) 2012-08-29 2015-02-18 株式会社デンソー 3相回転機の制御装置
JP6167831B2 (ja) * 2013-10-09 2017-07-26 トヨタ自動車株式会社 移動体の制御方法及び倒立二輪移動体
JP5726265B2 (ja) 2013-10-23 2015-05-27 三菱電機株式会社 電動パワーステアリング制御装置
JP5962833B2 (ja) 2015-01-16 2016-08-03 Toto株式会社 静電チャック
JP6434874B2 (ja) 2015-08-10 2018-12-05 日立造船株式会社 浮体式フラップゲート
JP6628025B2 (ja) 2015-08-10 2020-01-08 Toto株式会社 水洗大便器
JP6795889B2 (ja) 2016-01-14 2020-12-02 日本製紙クレシア株式会社 ウエットティッシュのロール体
JP6703839B2 (ja) 2016-01-14 2020-06-03 株式会社トプコン 眼科計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159836A1 (ja) * 2018-02-13 2019-08-22 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置

Also Published As

Publication number Publication date
DE112017003482B4 (de) 2022-01-20
DE112017003482T5 (de) 2019-03-28
WO2018012420A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP7024226B2 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
WO2018012417A1 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP7024223B2 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP6911561B2 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP7052347B2 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
WO2018012419A1 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
US10668945B2 (en) Motor control apparatus, motor drive system, and motor control method
WO2018147402A1 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
US10232874B2 (en) Motor drive device and electric power steering device
US11518435B2 (en) Motor control apparatus and motor driving system
CN111406365B (zh) 马达控制装置、马达驱动系统、以及马达控制方法
WO2018012420A9 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
KR20230008828A (ko) 리던던트 전자 제어 시스템 및 장치
JP7225689B2 (ja) モータ制御装置
CN113371057B (zh) 马达控制装置
US11770089B2 (en) Rotary electric machine control device
JP7054849B2 (ja) 診断装置
JP2020108327A (ja) 制御装置
CN110816645A (zh) 车辆控制装置
JP2021070431A (ja) モータ駆動システム
JP7155763B2 (ja) 車両制御装置
CN113169545B (zh) 电力转换装置、驱动装置以及助力转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827548

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17827548

Country of ref document: EP

Kind code of ref document: A1