JP2020088614A - 光受信機 - Google Patents

光受信機 Download PDF

Info

Publication number
JP2020088614A
JP2020088614A JP2018220822A JP2018220822A JP2020088614A JP 2020088614 A JP2020088614 A JP 2020088614A JP 2018220822 A JP2018220822 A JP 2018220822A JP 2018220822 A JP2018220822 A JP 2018220822A JP 2020088614 A JP2020088614 A JP 2020088614A
Authority
JP
Japan
Prior art keywords
signal
signals
digital
optical
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018220822A
Other languages
English (en)
Other versions
JP7074035B2 (ja
Inventor
松田 俊哉
Toshiya Matsuda
俊哉 松田
佳奈 益本
Kana Masumoto
佳奈 益本
松村 和之
Kazuyuki Matsumura
和之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018220822A priority Critical patent/JP7074035B2/ja
Priority to US17/296,572 priority patent/US11689294B2/en
Priority to PCT/JP2019/044878 priority patent/WO2020110778A1/ja
Publication of JP2020088614A publication Critical patent/JP2020088614A/ja
Application granted granted Critical
Publication of JP7074035B2 publication Critical patent/JP7074035B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6166Polarisation demultiplexing, tracking or alignment of orthogonal polarisation components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】偏波多重分離技術を用いた光受信機を小型化する。【解決手段】2つの光信号を直交偏波多重した偏波多重信号を受信する光受信機100Aは、偏波多重信号を、光の透過特性に関して非対称となる2つの透過信号に分岐するIL1と、分岐された透過信号を電気信号に変換するO/E2a,2bと、変換された電気信号をダウンサンプリングして、低速デジタル信号を生成するダウンサンプリング器3と、生成した低速デジタル信号から偏波分離行列の係数を計算する演算器4と、変換された電気信号の信号レベルを、計算した係数に従い調整して、複数の調整信号を生成するレベル調整器5Aと、生成した調整信号を加算して、加算信号を生成する加算器6Aa,6Abと、生成した加算信号から、2つの光信号を復元、抽出する識別器7a,7bと、を備える。【選択図】図1

Description

本発明は、光受信機に関する。
データセンタの急速なトラフィック増大を背景として、100GbE(100 Gigabit Ethernet。Ethernetは登録商標。)の標準化及び光モジュールの開発が進展している。100GbEの光モジュールの主流は、異なる4波長の光信号×25Gbit/sのIM−DD(Intensity Modulation-Direct Detection)送受信機で構成されている。データセンタ内の光トランシーバ等の光インタフェースとして、CFP(Centum gigabit Form factor Pluggable)4やQSFP(Quad Small Form-factor Pluggable)28といった、より小型省電力のモジュールの開発が進んでいる。
一方、直接データセンタ間を接続するために、波長分割多重(WDM:Wavelength Division Multiplexing)グリッドの任意の光信号を出力する光モジュールの開発が進んでいる。例えば、10G用の規格であるXFP(10 Gigabit Small Form Factor Pluggable)やSFP+(Small Form-Factor Pluggable Plus)等の光トランシーバである小型モジュールの市販が始まっており、これらの光モジュールを用いることでコストが低いWDMシステムの構築が可能となる。また、波長可変光モジュールの大容量化に向けた研究も進んでいる(例えば、非特許文献1〜3参照)。
上述した異なる波長の光信号を用いる100GbE及び40GbEの光モジュールをWDMシステムに適用する場合、波長可変機能を実現するためには、光モジュール内部の光分波器が複雑な構成となるため、光モジュール小型化の障害となっていた。
波長分割多重に依らず、大容量波長可変光モジュールを実現するには、その他の多重化技術を用いることが考えられる。ここで、その他の多重化技術としては、多重化した際の過剰な受信感度劣化が無い点や、周波数利用効率の点で、偏波多重分離技術が有効である。しかし、従来の偏波多重分離技術は、複雑な受信系の構成を必要としたり(非特許文献1,2参照)、信号のボーレート以上で動作する超高速の電気回路を必要としたりしていた(非特許文献1〜3参照)。このため、従来の偏波多重分離技術を用いた光受信機は大規模になってしまい、小型化することが困難であった。
このような背景に鑑みて、本発明は、偏波多重分離技術を用いた光受信機を小型化することを課題とする。
前記した課題を解決するため、請求項1に記載の発明は、2つの光信号を直交偏波多重した偏波多重信号を受信する光受信機であって、前記偏波多重信号を、光の透過特性に関して非対称となる2つの透過信号に分岐するインタリーバと、前記分岐された透過信号を電気信号に変換する光/電気変換器と、前記変換された電気信号をダウンサンプリングして、低速デジタル信号を生成するダウンサンプリング器と、前記生成した低速デジタル信号から偏波分離行列の係数を計算する演算器と、前記変換された電気信号の信号レベルを、前記計算した係数に従い調整して、複数の調整信号を生成するレベル調整器と、前記生成した調整信号を加算して、加算信号を生成する加算器と、前記生成した加算信号から、前記2つの光信号を復元、抽出する識別器と、を備える、ことを特徴とする。
請求項1に記載の発明によれば、高速な処理を必要とする、レベル調整器および加算器において、繰り返し演算が行われることはなく、繰り返し演算用のバッファメモリを不要とすることができる。その結果、光受信機の回路規模を抑制することができる。また、ダウンサンプリング器のダウンサンプリングにより、光/電気変換器からの出力となる電気信号の信号処理をするときの計算量は、大幅に低減される。その結果、信号のボーレート以上で動作する超高速の電気回路を必要とせず、光受信機の回路規模の抑制に資する。
したがって、偏波多重分離技術を用いた光受信機を小型化することができる。
また、請求項2に記載の発明は、請求項1に記載の光受信機であって、アナログ信号となる前記電気信号をデジタル信号に変換する第1のA/D変換器、をさらに備え、前記レベル調整器および前記加算器を、前記変換したデジタル信号を処理するデジタル回路として構成する、ことを特徴とする。
請求項2に記載の発明によれば、レベル調整器および加算器をデジタル回路として構成することで、光受信機を大量生産する場合には、量産効果により製造コストを低減することができる。
また、請求項3に記載の発明は、請求項1に記載の光受信機であって、アナログ信号となる前記電気信号をデジタル信号に変換するとともに、前記ダウンサンプリング器として機能する第2のA/D変換器、をさらに備え、前記レベル調整器および前記加算器を、前記電気信号を処理するアナログ回路として構成する、ことを特徴とする。
請求項3に記載の発明によれば、光受信機の製造が少量の場合には、レベル調整器および加算器をアナログ回路として構成することで、デジタル回路の製造に必要な複数回のフォトマスクの設計・製造が不要となるため光受信機の製造の初期コストを低減することができる。
本発明によれば、偏波多重分離技術を用いた光受信機を小型化することができる。
第1の実施形態における光受信機の構成図である。 第2の実施形態における光受信機の構成図である。 第3実施形態における光受信機の構成図である。 第2の実施形態における光受信機の実施例における、サンプリングレートとビットエラーレートとの関係を示す図である。
以下、図面を参照して本発明を実施するための形態について説明する。
各実施形態の光受信機は、受信側の光モジュールが備える複数の光受信機の1つである。例えば、受信側の光モジュールと、送信側の光モジュールとによって、マルチキャリア光信号を用いる光伝送システムが構成される。各実施形態の光受信機を含む光伝送システムは、例えば、デジタル信号処理を用いた偏波分離を行うことができる。
≪第1の実施形態≫
図1に示すように、本実施形態の光受信機100Aには、2つのOOK(On Off Keying:オンオフ変調)信号s1,s2からなるDP(Dual Polarization:二重偏波)−OOK信号Paが入力される。OOK信号s1,s2は、光受信機100Aと通信可能に接続する光送信機(図示せず)が生成した2つの光信号である。光送信機は、例えば、非特許文献3には記載されているものであり、詳細な説明は省略する。光送信機は、送信側の光モジュールが複数備える。
OOK信号s1は、光送信機において、異なる周波数の2チャンネルの一方である第1のチャンネル(Ch1)によって出力される第1のキャリア(光搬送波)を第1のデータ(0,1のビット列)で光変調した光信号である。
OOK信号s2は、光送信機において、異なる周波数の2チャンネルの他方である第2のチャンネル(Ch2)によって出力される第2のキャリア(光搬送波)を第2のデータ(0,1のビット列)で光変調した光信号である。
DP−OOK信号Paは、光送信機が備える偏光器(PBS:Polarization Beam Spliter)(図示せず)が生成した偏波多重信号である。偏光器は、Ch1のOOK信号s1、および、Ch2のOOK信号s2を、第1のキャリアおよび第2のキャリアの位相を互いに90度ずらして直交偏波で多重することによって、DP−OOK信号Paを生成する。Ch1のOOK信号s1、および、Ch2のOOK信号s2はそれぞれ、Ch1とCh2の周波数の中心位置f0を挟んだキャリア周波数(f0±f/2)のピーク成分P1,P2の周波数差がΔfとなる、第1のキャリアおよび第2のキャリアを含む信号となる。
なお、DP−OOK信号Paの生成のために直交偏波多重された各OOK信号s1,s2は、互いの周波数が異なるため干渉しない。
図1に示すように、光受信機100Aは、IL(Interleaver:インタリーバ)1と、O/E(光/電気変換器)2a,2bと、ダウンサンプリング器3と、演算器4と、レベル調整器5Aと、加算器6Aa,6Abと、識別器7a,7bとを備える。
IL1は、予め定められた光の透過特性(透過率)を有する1入力2出力の非対称なフィルタであり、1つの光信号が入力されると、一方の出力側から第1波長の信号を多く出力し、他方の出力側から第1波長に対称な第2波長の信号を多く出力するものである。このIL1は、透過特性がWDMグリッドでクロスし、入力レンジの幅であるFSR(Full-Scale Range)がWDMグリッドと等倍又は2倍の周期を持っている。言い換えれば、IL1は、FSRが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタである。
IL1は、DP−OOK信号Paを透過する際に、一方のO/E2aに繋がる出力側の信号としてOOK信号s1を透過し易く、他方のO/E2bに繋がる出力側の信号としてOOK信号s2を透過し易くなっている。
更に説明すると、IL1は、例えばCh1の送信側のOOK信号s1を、Ch2のOOK信号s2よりも2倍多く透過し、この透過信号i1をO/E2aへ出力する。この場合、透過信号i1は、i1=(s1×2)+(s2×1)で表される。
同様に、IL1は、例えばCh2の送信側のOOK信号s2を、Ch1のOOK信号s1よりも2倍多く透過し、この透過信号i2をO/E2bへ出力する。この場合、透過信号i2は、i2=(s1×1)+(s2×2)で表される。
なお、IL1による、OOK信号s1,s2の透過率(または透過量)の比は、上記に限定されず、適宜変更することができる。
上記のようなIL1において、キャリア周波数f0±f/2のOOK信号s1,s2からなるDP−OOK信号Paに対して、2つの出力ポートの透過特性の交点は、中心位置f0と一致する。
O/E2a,2bは、IL1からの2つの出力、つまり、光信号である透過信号i1,i2をそれぞれ直接検波し、電気信号e1,e2に変換して出力する。O/E2a,2bは、例えば、入力光に応じて、蓄電容量が変化する半導体素子とすることができるが、これに限定されない。O/E2aは、電気信号e1を、ダウンサンプリング器3とレベル調整器5Aとに分岐して出力する。O/E2bは、電気信号e2を、ダウンサンプリング器3とレベル調整器5Aとに分岐して出力する。
ダウンサンプリング器3は、O/E2a,2bからの出力となる電気信号e1,e2をダウンサンプリングする。ダウンサンプリング器3が用いるサンプリング周波数は、O/E2a,2bが、透過信号i1,i2から電気信号e1,e2に変換するときに用いたサンプリング周波数よりも小さい。ダウンサンプリング器3は、電気信号e1をダウンサンプリングすると低速のデジタル信号d1(低速デジタル信号)を生成し、演算器4に出力する。また、ダウンサンプリング器3は、電気信号e2をダウンサンプリングすると低速のデジタル信号d2を生成し、演算器4に出力する。
演算器4は、ダウンサンプリング器3からの出力となるデジタル信号d1,d2から偏波分離行列の係数を計算する。偏波分離行列は、直交偏波多重されており、互いに独立となるOOK信号s1,s2が異なる強度比率で混在しているデジタル信号d1,d2から、OOK信号s1,s2を取り出すための分離行列である。源信号となるOOK信号s1,s2が2成分であり、観測信号となるデジタル信号d1,d2も2成分であるため、偏波分離行列は、2×2行列となる。偏波分離行列の係数は、2×2行列の各成分hij(i,j=1,2)である。
演算器4は、周知の統計的アルゴリズムを用いることで、ダウンサンプリングしたデジタル信号d1,d2からであっても、偏波分離行列を推定することができる。周知の統計的アルゴリズムは、例えば、非特許文献4に記載されているICA(Independent Componet Analysis)とすることができるが、これに限定されない。演算器4は、偏波分離行列の推定値として、偏波分離行列の係数hijを計算し、レベル調整器5Aに出力する。
レベル調整器5Aは、O/E2a,2bから分岐して出力された電気信号e1,e2の信号レベル(信号強度)を、演算器4から出力された、偏波分離行列の係数hijに従い調整する。レベル調整器5Aは、例えば、係数別調整器5A1〜5A4を備えることができる。
係数別調整器5A1は、O/E2aから出力された電気信号e1の信号レベルを演算器4から出力された係数h11に従い調整することができる。係数別調整器5A1は、信号レベルの調整によって、電気信号e1から調整信号xA1を生成し、加算器6Aaに出力する。
係数別調整器5A2は、O/E2bから出力された電気信号e2の信号レベルを演算器4から出力された係数h12に従い調整することができる。係数別調整器5A2は、信号レベルの調整によって、電気信号e2から調整信号xA2を生成し、加算器6Aaに出力する。
係数別調整器5A3は、O/E2aから出力された電気信号e1の信号レベルを演算器4から出力された係数h21に従い調整することができる。係数別調整器5A3は、信号レベルの調整によって、電気信号e1から調整信号xA3を生成し、加算器6Abに出力する。
係数別調整器5A4は、O/E2bから出力された電気信号e2の信号レベルを演算器4から出力された係数h22に従い調整することができる。係数別調整器5A4は、信号レベルの調整によって、電気信号e2から調整信号xA4を生成し、加算器6Abに出力する。
レベル調整器5Aは、調整信号xA1〜xA4をデジタル信号として生成することもできるし、アナログ信号として生成することもできる。
加算器6Aaは、レベル調整器5Aから出力された調整信号xA1,xA2を加算する。加算器6Aaは、調整信号xA1,xA2を加算して加算信号yA1を生成し、識別器7aに出力する。
加算器6Abは、レベル調整器5Aから出力された調整信号xA3,xA4を加算する。加算器6Abは、調整信号xA3,xA4を加算して加算信号yA2を生成し、識別器7bに出力する。
加算器6Aa,6Abは、加算信号yA1,yA2をデジタル信号として生成することもできるし、アナログ信号として生成することもできる。
識別器7aは、加算器6Aaから出力された加算信号yA1からOOK信号s1を復元し、抽出する。また、識別器7bは、加算器6Abから出力された加算信号yA2からOOK信号s2を復元し、抽出する。識別器7a,7bによるOOK信号s1,s2の復元、抽出の手法は周知であり、詳細な説明は省略する。
識別器7a,7bが抽出したOOK信号s1,s2はデジタル信号であり、所定のデジタル信号処理が実行される。例えば、光送信機(図示せず)において、Ch1,Ch2によって出力される第1のキャリア、第2のキャリアを光変調してOOK信号s1,s2を生成するために用いた第1のデータ、第2のデータを求める演算処理が実行される。
図1に示す、ダウンサンプリング器3、演算器4、レベル調整器5A、加算器6Aa,6Ab、および、識別器7a,7bは、光受信機100AのDSP(Digital Signal Processor:デジタル信号処理器)を構成することができる。光受信機100AのDSPは、光受信機100A内で、復元、抽出されたデジタル信号に対して、偏波分離行列の係数の変動に追従する範囲で低速な周波数間隔(周波数グリッド)で信号処理をすることができる。また、光受信機100AのDSPは、信号処理の結果に応じて、偏波分離行列の係数hijを更新することができる。よって、レベル調整器5Aによる、信号レベルの調整は最適化される。
上記によれば、本実施形態の光受信機100Aは、高速な処理を必要とする、レベル調整器5Aおよび加算器6Aa,6Abにおいて、繰り返し演算が行われることはなく、繰り返し演算用のバッファメモリを不要とすることができる。その結果、光受信機100Aの回路規模を抑制することができる。
また、ダウンサンプリング器3のダウンサンプリングにより、O/E2a,2bからの出力となる電気信号e1,e2の信号処理をするときの計算量は大幅に低減される。その結果、信号のボーレート以上で動作する超高速の電気回路を必要とせず、光受信機100Aの回路規模の抑制に資する。
したがって、偏波多重分離技術を用いた光受信機を小型化することができる。
≪第2の実施形態≫
第2の実施形態について、主に、第1の実施形態と相違する点について説明し、重複する点については説明を省略する。
図2に示すように、第2の実施形態の光受信機100Bは、IL1と、O/E2a,2bと、ADC(Digital Analog Converter:第1のA/D変換器)8a,8bと、ダウンサンプリング器3と、演算器4と、デジタルレベル調整器5Bと、デジタル加算器6Ba,6Bbと、識別器7a,7bとを備える。IL1と、O/E2a,2bと、ダウンサンプリング器3と、演算器4と、識別器7a,7bは、第1の実施形態の光受信機100A(図1)が備えるものと同様である。
O/E2aは、電気信号e1をADC8aに出力する。O/E2bは、電気信号e2をADC8bに出力する。
ADC8a,8bはそれぞれ、アナログ信号である電気信号e1,e2をデジタル信号c1,c2に変換する。ADC8aは、デジタル信号c1を、ダウンサンプリング器3とデジタルレベル調整器5Bとに分岐して出力する。ADC8bは、デジタル信号c2を、ダウンサンプリング器3とデジタルレベル調整器5Bとに分岐して出力する。
ダウンサンプリング器3は、ADC8a,8bからの出力となるデジタル信号c1,c2をダウンサンプリングする。ダウンサンプリング器3が用いるサンプリング周波数は、ADC8a,8bが、電気信号e1,e2からデジタル信号c1,c2に変換するときに用いたサンプリング周波数よりも小さい。ダウンサンプリング器3は、デジタル信号c1をダウンサンプリングすると低速のデジタル信号d1を生成し、演算器4に出力する。また、ダウンサンプリング器3は、デジタル信号c2をダウンサンプリングすると低速のデジタル信号d2を生成し、演算器4に出力する。
演算器4は、偏波分離行列の推定値として、偏波分離行列の係数xhijを計算し、デジタルレベル調整器5Bに出力する。
デジタルレベル調整器5Bは、ADC8a,8bから分岐して出力されたデジタル信号c1,c2の信号レベル(信号強度)を、演算器4から出力された、偏波分離行列の係数xhijに従い調整する。デジタルレベル調整器5Bは、レベル調整器5A(図1)と比較して、出力される信号がデジタル信号に限定されたものに相当する。デジタルレベル調整器5Bは、例えば、係数別調整器5B1〜5B4を備えることができる。
係数別調整器5B1は、ADC8aから出力されたデジタル信号c1の信号レベルを演算器4から出力された係数xh11に従い調整することができる。係数別調整器5B1は、信号レベルの調整によって、デジタル信号c1から調整信号xB1を生成し、デジタル加算器6Baに出力する。
係数別調整器5B2は、ADC8bから出力されたデジタル信号c2の信号レベルを演算器4から出力された係数xh12に従い調整することができる。係数別調整器5B2は、信号レベルの調整によって、デジタル信号c2から調整信号xB2を生成し、デジタル加算器6Baに出力する。
係数別調整器5B3は、ADC8aから出力されたデジタル信号c1の信号レベルを演算器4から出力された係数xh21に従い調整することができる。係数別調整器5B3は、信号レベルの調整によって、デジタル信号c1から調整信号xB3を生成し、デジタル加算器6Bbに出力する。
係数別調整器5A4は、ADC8bから出力されたデジタル信号c2の信号レベルを演算器4から出力された係数xh22に従い調整することができる。係数別調整器5B4は、信号レベルの調整によって、デジタル信号c2から調整信号xB4を生成し、デジタル加算器6Bbに出力する。
デジタルレベル調整器5Bは、デジタル信号c1,c2を処理するデジタル回路の一部として構成することができる。また、デジタルレベル調整器5Bは、調整信号xB1〜xB4をデジタル信号として生成する。
デジタル加算器6Ba,6Baは、加算器6Aa,6Ab(図1)と比較して、入力される信号がデジタル信号に限定されたものに相当する。
デジタル加算器6Baは、デジタルレベル調整器5Bから出力された調整信号xB1,xB2を加算する。デジタル加算器6Baは、調整信号xB1,xB2を加算して加算信号yB1を生成し、識別器7aに出力する。
デジタル加算器6Bbは、デジタルレベル調整器5Bから出力された調整信号xB3,xB4を加算する。デジタル加算器6Bbは、調整信号xB3,xB4を加算して加算信号yB2を生成し、識別器7bに出力する。
デジタル加算器6Ba,6Bbは、デジタル信号c1,c2を処理するデジタル回路の一部として構成することができる。また、デジタル加算器6Ba,6Bbは、加算信号yB1,yB2をデジタル信号として生成する。
識別器7aは、デジタル加算器6Baから出力された加算信号yB1からOOK信号s1を復元し、抽出する。また、識別器7bは、加算器6Bbから出力された加算信号yB2からOOK信号s2を復元し、抽出する。
図2に示す、ダウンサンプリング器3、演算器4、デジタルレベル調整器5B、デジタル加算器6Ba,6Bb、および、識別器7a,7bは、光受信機100BのDSPを構成することができる。
第2の実施形態の光受信機100Bによれば、レベル調整器および加算器をデジタル回路として構成することで、光受信機100Bを大量生産する場合には、量産効果により製造コストを低減することができる。
≪第3の実施形態≫
第3の実施形態について、主に、第1の実施形態と、第2の実施形態と相違する点について説明し、重複する点については説明を省略する。
図3に示すように、第3の実施形態の光受信機100Cは、IL1と、O/E2a,2bと、ADC9a,9b(第2のA/D変換器)と、演算器4と、アナログレベル調整器5Cと、アナログ加算器6Ca,6Cbと、識別器7a,7bとを備える。IL1と、O/E2a,2bと、演算器4と、識別器7a,7bは、第1の実施形態の光受信機100A(図1)が備えるものと同様である。
O/E2aは、電気信号e1を、ADC9aとアナログレベル調整器5Cとに分岐して出力する。O/E2bは、電気信号e2を、ADC9bとアナログレベル調整器5Cとに分岐して出力する。
ADC9a,9bはそれぞれ、アナログ信号である電気信号e1,e2をデジタル信号d1,d2に変換する。また、ADC9a,9bは、ダウンサンプリング器3(図1、図2)として機能し、電気信号e1,e2をダウンサンプリングする。ADC9a,9bが用いるサンプリング周波数は、O/E2a,2bが、透過信号i1,i2から電気信号e1,e2に変換するときに用いたサンプリング周波数よりも小さい。ADC9aは、電気信号e1をダウンサンプリングすると低速のデジタル信号d1を生成し、演算器4に出力する。また、ADC9bは、電気信号e2をダウンサンプリングすると低速のデジタル信号d2を生成し、演算器4に出力する。
演算器4は、偏波分離行列の推定値として、偏波分離行列の係数xhijを計算し、アナログレベル調整器5Cに出力する。
アナログレベル調整器5Cは、O/E2a,2bから分岐して出力された電気信号e1,e2の信号レベル(信号強度)を、演算器4から出力された、偏波分離行列の係数xhijに従い調整する。アナログレベル調整器5Cは、レベル調整器5A(図1)と比較して、出力される信号がアナログ信号に限定されたものに相当する。アナログレベル調整器5Cは、例えば、係数別調整器5C1〜5C4を備えることができる。
係数別調整器5C1は、O/E2aから出力された電気信号e1の信号レベルを演算器4から出力された係数xh11に従い調整することができる。係数別調整器5C1は、信号レベルの調整によって、電気信号e1から調整信号xC1を生成し、アナログ加算器6Caに出力する。
係数別調整器5C2は、O/E2bから出力された電気信号e2の信号レベルを演算器4から出力された係数xh12に従い調整することができる。係数別調整器5C2は、信号レベルの調整によって、電気信号e2から調整信号xC2を生成し、アナログ加算器6Caに出力する。
係数別調整器5C3は、O/E2aから出力された電気信号e1の信号レベルを演算器4から出力された係数xh21に従い調整することができる。係数別調整器5C3は、信号レベルの調整によって、電気信号e1から調整信号xC3を生成し、アナログ加算器6Cbに出力する。
係数別調整器5C4は、O/E2bから出力された電気信号e2の信号レベルを演算器4から出力された係数xh22に従い調整することができる。係数別調整器5C4は、信号レベルの調整によって、電気信号e2から調整信号xC4を生成し、アナログ加算器6Cbに出力する。
アナログレベル調整器5Cは、アナログ信号となる電気信号e1,e2を処理するアナログ回路一部として構成することができる。また、アナログレベル調整器5Cは、調整信号xC1〜xC4をアナログ信号として生成する。
アナログ加算器6Ca,6Caは、加算器6Aa,6Ab(図1)と比較して、入力される信号がアナログ信号に限定されたものに相当する。
アナログ加算器6Caは、アナログレベル調整器5Cから出力された調整信号xC1,xC2を加算する。アナログ加算器6Caは、調整信号xC1,xC2を加算して加算信号yC1を生成し、識別器7aに出力する。
アナログ加算器6Cbは、アナログレベル調整器5Cから出力された調整信号xC3,xC4を加算する。アナログ加算器6Cbは、調整信号xC3,xC4を加算して加算信号yC2を生成し、識別器7bに出力する。
アナログ加算器6Ca,6Caは、アナログ信号となる電気信号e1,e2を処理するアナログ回路一部として構成することができる。また、アナログ加算器6Ca,6Caは、加算信号yC1,yC2をアナログ信号として生成する。
識別器7aは、アナログ加算器6Caから出力された加算信号yC1からOOK信号s1を復元し、抽出する。また、識別器7bは、アナログ加算器6Cbから出力された加算信号yC2からOOK信号s2を復元し、抽出する。
図3に示す、ADC9a,9b、演算器4、アナログレベル調整器5C、アナログ加算器6Ca,6Ca、および、識別器7a,7bは、光受信機100CのDSPを構成することができる。
第3の実施形態の光受信機100Cによれば、光受信機の製造が少量の場合には、レベル調整器および加算器をアナログ回路として構成することで、デジタル回路の製造に必要な複数回のフォトマスクの設計・製造が不要となるため光受信機100Cの製造の初期コストを低減することができる。
≪実施例≫
第2の実施形態における光受信機100Bの実施例について説明する。本実施例では、光受信機100Bを備えた光伝送システムにおいて、光伝送システムが備える光送信機から光受信機100Bに送信される送信信号として、例えば、周波数間隔:14GHzにおける、異なる2波長の光信号×25Gbit/sのDP−OOK信号を用いた。また、光送信機と光受信機100Bとをつなぐ光伝送路として、80kmのシングルモードファイバ(SMF)を用いた。このような条件下で、SMF伝送後の伝送特性を評価した。
図4は、本実施例における、サンプリングレートとビットエラーレート(BER)との関係を示すグラフである。グラフの横軸を構成するサンプリングレート(S/s)を80GS/sとしてデジタル信号c1,c2(図2)をサンプリングした場合、光受信機100Bの識別器7aで復元、抽出されたOOK信号s1,s2は、光受信機100Bに入力された上記送信信号に対して、BERが約3.0E−3(3.0×10−3)を示した(図4中、最右のプロット参照)。
ここで、ダウンサンプリング器3によって、デジタル信号c1,c2をダウンサンプリングし、サンプリングレートを80GS/sから80kS/sまで徐々に落としつつ、BERを測定した。その結果、図4に示すように、BERは、ほぼ一定値を示し、サンプリングレートを80kS/s(図4中、最左のプロット参照)のように低速にしても、BERの基準値(3.8E−3)を下回るようにすることができた。
図4に示すグラフの結果は、演算器4による偏波分離行列の係数の計算、デジタルレベル調整器5Bによる信号レベルの調整、および、デジタル加算器6Ba,6Bbの加算処理によって、ダウンサンプリングを行っても同等の伝送性能を実現できることを意味する。よって、従来では、超高速の信号処理をする専用DSPを必要としていたところ、本発明を用いれば、汎用の安価なCPU(低速)で代用することができる。その結果、従来技術と比較して、コストや消費電力の点で大幅な改善が見込まれる。
図4の実施例がもたらす結果は、デジタル信号に対して、信号レベルの調整や加算処理を行う光受信機100Bに関するものであった。しかし、当該結果は、アナログ信号に対して、信号レベルの調整や加算処理を行う光受信機100C(第3の実施形態)に対してもあてはまる。また、当該結果は、光受信機100B,100Cの発明を包含する光受信機100Aに対してもあてはまる。
(その他)
(a):第1の実施形態のレベル調整器5Aに関して、レベル調整器5Aの構成(例えば、係数別調整器の個数は任意)、レベル調整器5Aに電気信号e1,e2が入力されるときの入力態様、および、レベル調整器5Aから調整信号xA1〜xA4が出力されるときの出力態様は、図1に示したものに限定されず、さまざまな構成や態様をとることができる。レベル調整器5Aの主機能は、入力された電気信号e1,e2を、偏波分離行列の係数hijに従い調整し、複数の調整信号を加算器6Aa,6Abに出力することである。
また、第1の実施形態の加算器6Aa,6Abに関して、加算器6Aa,6Abの構成(例えば、加算器は単体でもよい)、加算器6Aa,6Abに調整信号xA1〜xA4が入力されるときの入力態様、および、加算器6Aa,6Abから加算信号yA1,yA2が出力されるときの出力態様(加算信号は1種類でもよい)は、図1に示したものに限定されず、さまざまな構成や態様をとることができる。加算器の主機能は、入力された複数の調整信号を加算し、加算信号を識別器7a,7bに出力することである。
また、第1の実施形態の識別器7a,7bに関して、識別器7a,7bの構成(例えば、識別器は単体でもよい)、識別器7a,7bに加算信号yA1,yA2が入力されるときの入力態様、および、識別器7a,7bからOOK信号s1,s2を復元、抽出するときの復元、抽出態様は、図1に示したものに限定されず、さまざまな構成や態様をとることができる。識別器の主機能は、入力された加算信号からOOK信号s1,s2を復元、抽出することである。
(b):上記(a)の説明は、第2の実施形態(図2)のデジタルレベル調整器5B、デジタル加算器6Ba,6Bb、識別器7a,7bにもあてはまり、第3の実施形態(図3)のアナログレベル調整器5C、アナログ加算器6Ca,6Cb、識別器7a,7bにもあてはまる。
(c):各実施形態で説明した種々の技術を適宜組み合わせた技術を実現することもできる。
100A〜100C 光受信機
1 IL(インタリーバ)
2a,2b O/E(光/電気変換器)
3 ダウンサンプリング器
4 演算器
5A レベル調整器
5B デジタルレベル調整器
5C アナログレベル調整器
6Aa,6Ab 加算器
6Ba,6Bb デジタル加算器
6Ca,6Cb アナログ加算器
7a,7b 識別器
8a,8b ADC(第1のA/D変換器)
9a,9b ADC(第2のA/D変換器)

Claims (3)

  1. 2つの光信号を直交偏波多重した偏波多重信号を受信する光受信機であって、
    前記偏波多重信号を、光の透過特性に関して非対称となる2つの透過信号に分岐するインタリーバと、
    前記分岐された透過信号を電気信号に変換する光/電気変換器と、
    前記変換された電気信号をダウンサンプリングして、低速デジタル信号を生成するダウンサンプリング器と、
    前記生成した低速デジタル信号から偏波分離行列の係数を計算する演算器と、
    前記変換された電気信号の信号レベルを、前記計算した係数に従い調整して、複数の調整信号を生成するレベル調整器と、
    前記生成した調整信号を加算して、加算信号を生成する加算器と、
    前記生成した加算信号から、前記2つの光信号を復元、抽出する識別器と、を備える、
    ことを特徴とする光受信機。
  2. アナログ信号となる前記電気信号をデジタル信号に変換する第1のA/D変換器、をさらに備え、
    前記レベル調整器および前記加算器を、前記変換したデジタル信号を処理するデジタル回路として構成する、
    ことを特徴とする請求項1に記載の光受信機。
  3. アナログ信号となる前記電気信号をデジタル信号に変換するとともに、前記ダウンサンプリング器として機能する第2のA/D変換器、をさらに備え、
    前記レベル調整器および前記加算器を、前記電気信号を処理するアナログ回路として構成する、
    ことを特徴とする請求項1に記載の光受信機。
JP2018220822A 2018-11-27 2018-11-27 光受信機 Active JP7074035B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018220822A JP7074035B2 (ja) 2018-11-27 2018-11-27 光受信機
US17/296,572 US11689294B2 (en) 2018-11-27 2019-11-15 Optical receiver
PCT/JP2019/044878 WO2020110778A1 (ja) 2018-11-27 2019-11-15 光受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220822A JP7074035B2 (ja) 2018-11-27 2018-11-27 光受信機

Publications (2)

Publication Number Publication Date
JP2020088614A true JP2020088614A (ja) 2020-06-04
JP7074035B2 JP7074035B2 (ja) 2022-05-24

Family

ID=70852882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220822A Active JP7074035B2 (ja) 2018-11-27 2018-11-27 光受信機

Country Status (3)

Country Link
US (1) US11689294B2 (ja)
JP (1) JP7074035B2 (ja)
WO (1) WO2020110778A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074035B2 (ja) * 2018-11-27 2022-05-24 日本電信電話株式会社 光受信機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266282A1 (en) * 2009-04-15 2010-10-21 Nec Laboratories America, Inc. Parallel Digital Coherent Detection Using Symmetrical Optical Interleaver and Direct Optical Down Conversion
WO2018079598A1 (ja) * 2016-10-28 2018-05-03 日本電信電話株式会社 光受信機、光受信方法、及び光通信システム
JP2018519732A (ja) * 2015-05-29 2018-07-19 オクラロ テクノロジー リミテッド 光マルチキャリア送信のためのインタリーバ伝達関数の電子的補償
WO2019004040A1 (ja) * 2017-06-27 2019-01-03 日本電信電話株式会社 光送信機、光受信機及び光伝送システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754511B1 (en) * 2000-02-04 2004-06-22 Harris Corporation Linear signal separation using polarization diversity
US8095019B2 (en) * 2008-07-30 2012-01-10 Alcatel Lucent Digital clock and data recovery scheme
JP5141498B2 (ja) * 2008-10-30 2013-02-13 富士通株式会社 光送受信システム,光送信器,光受信器および光送受信方法
WO2010128577A1 (ja) * 2009-05-07 2010-11-11 日本電気株式会社 コヒーレント受信機
JP5482273B2 (ja) * 2010-02-12 2014-05-07 富士通株式会社 光受信器
JP5760419B2 (ja) * 2010-12-13 2015-08-12 富士通株式会社 光送信装置および光送信方法
JP5120507B2 (ja) * 2011-02-01 2013-01-16 日本電気株式会社 光受信器、偏光分離装置および偏光分離方法
JP2013034065A (ja) * 2011-08-01 2013-02-14 Nec Corp 偏波多重光受信機、偏波多重システムおよび偏波多重光受信方法
WO2013051244A1 (ja) * 2011-10-05 2013-04-11 日本電気株式会社 信号処理装置及び信号処理方法
JP5978925B2 (ja) * 2012-11-01 2016-08-24 富士通株式会社 光デジタルコヒーレント受信器
JP6287866B2 (ja) * 2013-02-07 2018-03-07 日本電気株式会社 信号処理装置及び信号処理方法
EP3393096B1 (en) * 2016-01-27 2022-07-20 Mitsubishi Electric Corporation Receiving device
EP3465949B1 (en) * 2016-06-23 2020-12-02 Huawei Technologies Co., Ltd. Apparatus and method for processing a digital signal in a frequency domain linear equalizer
JP7074035B2 (ja) * 2018-11-27 2022-05-24 日本電信電話株式会社 光受信機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266282A1 (en) * 2009-04-15 2010-10-21 Nec Laboratories America, Inc. Parallel Digital Coherent Detection Using Symmetrical Optical Interleaver and Direct Optical Down Conversion
JP2018519732A (ja) * 2015-05-29 2018-07-19 オクラロ テクノロジー リミテッド 光マルチキャリア送信のためのインタリーバ伝達関数の電子的補償
WO2018079598A1 (ja) * 2016-10-28 2018-05-03 日本電信電話株式会社 光受信機、光受信方法、及び光通信システム
WO2019004040A1 (ja) * 2017-06-27 2019-01-03 日本電信電話株式会社 光送信機、光受信機及び光伝送システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIKUCHI, KAZURO: "Electronic polarization-division demultiplexing based on digital signal processing in intensity-modu", OPTICS EXPRESS, vol. Vol.22, Issue.2, JPN6020001333, 2014, US, pages 1971 - 1980, ISSN: 0004747815 *
MATSUDA, TOSHIYA ET AL.: "Dual-Polarization Intensity-Modulated Signal Transmission with Direct-Detection by Using Asymmetrica", 2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), JPN6020001335, 23 September 2018 (2018-09-23), US, pages 1 - 3, XP033447644, ISSN: 0004747816, DOI: 10.1109/ECOC.2018.8535363 *
MATSUDA, TOSHIYA ET AL.: "Polarization Multiplexing and Demultiplexing Technique for Large Capacity Small Optical Module by us", 2018 IEEE PHOTONICS CONFERENCE (IPC), JPN6020001334, 30 September 2018 (2018-09-30), US, pages 1 - 2, XP033442259, ISSN: 0004747817, DOI: 10.1109/IPCon.2018.8527254 *

Also Published As

Publication number Publication date
US20220352990A1 (en) 2022-11-03
WO2020110778A1 (ja) 2020-06-04
JP7074035B2 (ja) 2022-05-24
US11689294B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
EP3080943B1 (en) Optical transceiver and method with channel binding, clock forwarding, and integrate-and-dump receivers
JP6405833B2 (ja) 信号処理装置及び信号処理方法
JP5437858B2 (ja) 光伝送システム
US10998973B2 (en) Signal combining device and signal combining method
US20120045208A1 (en) Coherent receiver
CN110870232B (zh) 光学发送器、光学接收器和光学传输系统
US9160459B2 (en) Equalization signal processor, optical receiver including the same, and method for equalization signal processing
US20130202021A1 (en) System and Method for Polarization De-Multiplexing in a Coherent Optical Receiver
US20120148235A1 (en) Control circuit, communication system, and control method
US8699889B2 (en) Polarization demultiplexing using independent component analysis
CN108631882B (zh) 用于相干光学传输中相邻信道代价的监测和校正的方法
US20120263468A1 (en) Generation of Optical Quadrature Duobinary Format Using Optical Delay
WO2020110778A1 (ja) 光受信機
CN114665976A (zh) 一种基于Kramers-Kronig的集成自相干接收机信号处理方法及系统
CN110768728B (zh) 一种偏振无关光场重建与码间干扰补偿系统与方法
US8165477B2 (en) Light receiving apparatus using DQPSK demodulation method, and DQPSK demodulation method
WO2019131396A1 (ja) 信号処理装置及び信号処理方法
Roberts 100G–key technology enablers of 100Gbit/s in carrier networks
US8730562B1 (en) Parallel optical sampler
US20230155688A1 (en) Self-Coherent Optical Transmission System and Receiver
CN105871456B (zh) 基于延迟采样的信号质量监测
JP2000269892A (ja) 波形等化機能付き光受信器および光受信の等化制御方法
Djordjevic Components, modules, and subsystems
US20230247334A1 (en) Grouping of optical passbands for loading in an optical transmission spectrum using an affinity identifier
WO2022180846A1 (ja) 光中継装置、光伝送システム及び光中継方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7074035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150