WO2019004040A1 - 光送信機、光受信機及び光伝送システム - Google Patents

光送信機、光受信機及び光伝送システム Download PDF

Info

Publication number
WO2019004040A1
WO2019004040A1 PCT/JP2018/023574 JP2018023574W WO2019004040A1 WO 2019004040 A1 WO2019004040 A1 WO 2019004040A1 JP 2018023574 W JP2018023574 W JP 2018023574W WO 2019004040 A1 WO2019004040 A1 WO 2019004040A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
signals
grid
orthogonal polarization
Prior art date
Application number
PCT/JP2018/023574
Other languages
English (en)
French (fr)
Inventor
松田 俊哉
徹 保米本
佳奈 益本
片山 勝
克俊 行田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201880043735.9A priority Critical patent/CN110870232B/zh
Priority to US16/626,468 priority patent/US10951344B2/en
Priority to JP2019526842A priority patent/JP6829766B2/ja
Publication of WO2019004040A1 publication Critical patent/WO2019004040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical transmitter for transmitting a multicarrier optical signal, an optical receiver for receiving a multicarrier optical signal, and an optical transmission system.
  • the development of 100 GbE standardization and optical modules is progressing against the background of rapid traffic increase in data centers.
  • the mainstream of the 100 GbE optical module is composed of IM-DD (Intensity Modulation-Direct Detection) transceivers with different 4 wavelength optical signals x 25 Gbit / s.
  • IM-DD Intensity Modulation-Direct Detection
  • CFP Central gigabit Form Factor Pluggable
  • QSFP Quad Small Form-factor Pluggable
  • WDM wavelength division multiplexing
  • small modules that are optical transceivers such as XFP (10 Gigabit Small Form Factor Pluggable) and SFP + (Small Form-Factor Pluggable Plus), which are standards for 10 G, have started to be marketed, and using these optical modules It is possible to construct a low cost WDM system.
  • XFP Gigabit Small Form Factor Pluggable
  • SFP + Small Form-Factor Pluggable Plus
  • PAM Pulse-Amplitude Modulation
  • PAM 8 Pulse-Amplitude Modulation
  • the present invention has been made in view of such circumstances, and provides an optical transmitter, an optical receiver, and an optical transmission system capable of realizing long distance transmission by miniaturizing an optical module for performing optical communication. To be an issue.
  • the invention according to claim 1 is an optical transmitter for transmitting an orthogonal polarization multiplexed optical signal to an optical receiver through an optical fiber transmission line, wherein the optical transmitter has a predetermined frequency.
  • a light source that emits two optical carrier waves with a peak component of a frequency centered on a grid and having a central position sandwiching a predetermined frequency difference, and the two optical carriers are modulated with data of bit strings of 0 and 1 respectively 2
  • An optical transmitter comprising: an optical modulator for outputting one on / off modulation signal; and a polarizer for orthogonal polarization multiplexing of the two on / off modulation signals and outputting as the optical signal.
  • the optical receiver when the optical receiver receives the orthogonal polarization multiplexed optical signal, the peak components of the respective optical carriers sandwiching the frequency grid which is the center position of the frequencies of the two optical carriers are predetermined. The frequency difference goes away. If this frequency difference is used, it becomes possible to obtain two different reception signals, and by performing signal processing on this reception signal, it is possible to restore each on / off modulation signal in which each optical carrier is modulated by data. Each data to modulate an optical carrier can be obtained. Since the allowable loss value of the optical fiber transmission line is larger than that of a multilevel pulse amplitude modulation signal such as a four-level pulse amplitude modulation signal, the on-off modulation signal can be transmitted even if the optical fiber transmission line is lengthened.
  • the on / off modulation signal can be generated by a small and simple optical modulator that modulates the optical carrier with data of bit strings of 0 and 1, it is possible to miniaturize the optical transmitter equipped with this optical modulator. Can. Therefore, it is possible to realize long distance transmission by miniaturizing the optical module that carries the optical communication by mounting the optical transmitter.
  • the invention according to claim 2 is that the optical modulator outputs two quaternary pulse amplitude modulation signals obtained by modulating the two optical carriers with a pulse signal of four levels, respectively, and the polarizer is characterized in that The optical transmitter according to claim 1, wherein two four-value pulse amplitude modulation signals are orthogonal polarization multiplexed and output as the optical signal.
  • the optical fiber transmission line is lengthened accordingly Even if it can be transmitted. Therefore, long distance transmission can be realized.
  • the invention according to claim 3 modulates two optical carrier waves, each having a predetermined frequency difference and a peak component of a frequency separated by a predetermined frequency difference, with data of bit strings of 0 and 1, respectively.
  • An optical receiver for receiving, via an optical fiber transmission line, an optical signal obtained by orthogonal polarization multiplexing of two modulated on-off modulation signals, having an intersection on a frequency grid and having a full scale range of frequency grid intervals
  • An interleaver that transmits and branches two signals having different combining ratios of the optical signal components of the orthogonal polarization multiplexing by a filter having a transmission characteristic of light having a period equal to or twice as large and having an asymmetric output
  • a detector for detecting and converting the two branched signals into an electric signal, an A / D converter for converting the two electric signals converted by the detector into a digital signal, and the A / D converter.
  • An optical receiver characterized in that the two digital signals converted by the converter and a digital signal processor for restoring the
  • the on-off modulation signal to be restored has a larger allowable loss value of the optical fiber transmission line than a multi-level pulse amplitude modulation signal such as a four-level pulse amplitude modulation signal (Non-patent document 2). Transmission becomes possible even if it is long. Further, since the on / off modulation signal is obtained by modulating the optical carrier with data of bit strings of 0 and 1, it can be easily restored.
  • the arithmetic circuit configuration of the digital signal processor that performs the restoration can be made small and simple, it is possible to miniaturize the optical receiver on which the digital signal processor is mounted. Therefore, it is possible to realize long distance transmission by miniaturizing the optical module that carries the optical communication by mounting the optical receiver.
  • each of the two optical carrier waves having a predetermined frequency grid as a center and the peak components of the frequency sandwiching the center position with a predetermined frequency difference are 2 M values (M is 2 or more positive
  • signal Optical reception characterized by comprising: an A / D converter for converting; and a digital signal processor for recovering a 4-value pulse amplitude modulation signal on the transmission side from the two digital signals converted by the A / D converter. Machine.
  • the optical fiber transmission line is lengthened accordingly Even if it can be transmitted. Therefore, long distance transmission can be realized.
  • the invention according to claim 5 is an optical transmitter for outputting orthogonal polarization multiplexed optical signals, and an optical multiplexer for wavelength multiplexing optical signals output from a plurality of optical transmitters and outputting a wavelength multiplexed signal.
  • the optical receiver performs processing of modulating with the data of bit strings of 0 and 1 respectively, orthogonal polarization multiplexing of the two modulated on / off modulation signals, and outputting as an optical signal, and the optical receiver performs processing on the wavelength division multiplexing grid As well as having an intersection point, the full scale range is A filter having transmission characteristics of light having a division multiple grid interval and a period equal to or twice as large, and transmitting two signals having different combining ratios of the optical signal components of the orthogonal polarization multiplexing by a filter whose output is asymmetric
  • the optical transmission system is characterized in that processing is performed to branch, convert the branched two signals into digital signals after detection, and restore an on / off modulation signal on the transmission side from the converted two digital signals.
  • the optical receiver when the optical receiver receives the orthogonal polarization multiplexed optical signal in the wavelength multiplexing signal transmitted from the optical transmitter and transmitted through the optical fiber transmission line, the frequencies of the two optical carrier waves The peak components of the respective optical carrier waves sandwiching the wavelength division multiplexing grid which is the center position of are separated by a predetermined frequency difference. For this reason, it is possible to restore each on-off modulation signal obtained by modulating each optical carrier with data of bit strings of 0 and 1, respectively.
  • This on / off modulation signal has a larger allowable loss value of the optical fiber transmission line than a multi-level pulse amplitude modulation signal such as a four-level pulse amplitude modulation signal, so transmission becomes possible even if the optical fiber transmission line is lengthened accordingly .
  • the on / off modulation signal can be generated by a small and simple optical modulator that modulates the optical carrier with data of bit strings of 0 and 1, it is possible to miniaturize the optical transmitter equipped with this optical modulator. Can. Furthermore, the on / off modulation signal can be easily restored on the receiving side, and the arithmetic circuit configuration of the digital signal processor that performs restoration can be made small and simple. Therefore, the optical receiver having the digital signal processor can be miniaturized. Therefore, it is possible to realize long distance transmission by miniaturizing an optical module that carries an optical communication by mounting an optical transmitter and an optical module that carries an optical communication by mounting an optical receiver.
  • one of the two optical carrier waves having a predetermined wavelength division multiplex grid as a center and peak components of the frequencies sandwiching the central position separated by a predetermined frequency difference is selected.
  • the optical receiver includes: a first optical modulator that modulates with first data of one bit string; and a second optical modulator that modulates the other with second data of bit strings of 0 and 1 different from the first data.
  • two optical modulators are used in the optical transmitter to modulate two optical carriers with the first and second data of the 0 and 1 bit string
  • the optical receiver is provided with two photodetectors. It detects using one. Since the operation speed for detecting the 0 and 1 levels of the light detector is fast, the reception sensitivity of the light receiver is improved. When the reception sensitivity is improved, the transmission capacity can be increased while avoiding shortening of the distance of the optical fiber transmission line.
  • optical transmitter is centered on the given wavelength division multiplexing grid, two optical carrier peak component of the frequency sandwiching the center position separated by a predetermined frequency difference, each 2 M Modulate with a pulse signal of a value (M is a positive integer of 2 or more), perform processing of orthogonal polarization multiplexing of two 2 M- value pulse amplitude modulation signals obtained by this modulation, and outputting as an optical signal
  • the optical receiver has an intersection on the wavelength division multiplexing grid and has a light transmission characteristic in which the full scale range has a period equal to or twice as large as the wavelength division multiplexing grid interval, and the output is asymmetric.
  • the filter transmits and branches two signals having different combining ratios of the optical signal components of the orthogonal polarization multiplexing, converts the two branched signals into digital signals after detection, and converts the two converted digital signals.
  • the optical receiver when the optical receiver receives the orthogonal polarization multiplexed optical signal in the wavelength multiplexing signal transmitted from the optical transmitter and transmitted through the optical fiber transmission line, the frequencies of the two optical carrier waves The peak components of the respective optical carrier waves sandwiching the wavelength division multiplexing grid which is the center position of are separated by a predetermined frequency difference. Therefore, it is possible to restore each four-value pulse amplitude modulation signal obtained by modulating each optical carrier with a four-level pulse signal. Since the 4-level pulse amplitude modulation signal has a larger allowable loss value of the optical fiber transmission line than, for example, an 8-level pulse amplitude modulation signal or the like having a greater number of modulation levels, the optical fiber transmission line is lengthened accordingly Even if it can be transmitted. Therefore, long distance transmission can be realized.
  • an optical transmitter an optical receiver, and an optical transmission system which realize long distance transmission by miniaturizing an optical module for performing optical communication.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission system using an optical transmitter and an optical receiver according to an embodiment of the present invention.
  • the horizontal axis indicates the frequency of the optical signal
  • the left vertical axis indicates the intensity of the optical signal
  • the right vertical axis indicates the transmittance of the optical signal
  • the peak component of the carrier frequency and the transmission state of the reception signal The horizontal axis indicates the frequency of the optical signal
  • the left vertical axis indicates the intensity of the optical signal
  • the right vertical axis indicates the transmittance of the optical signal
  • the transmission signal when the peak component of the carrier frequency on the Ch1 side is higher than that on the Ch2 side FIG.
  • FIG. 1 It is a block diagram which shows the structure of the optical transmission system using the optical transmitter which concerns on the specific example of this embodiment, and an optical receiver.
  • the horizontal axis indicates the loss value [dB] of the VOA
  • the left vertical axis indicates the EVM (EVM of DP-OOK [%]) of the DP-OOK signal to the loss value
  • the right vertical axis is equivalent to the DP-OOK signal on the left vertical axis
  • EVM EVMofPAM4 [%]
  • PAM4 signal which is a multi-level modulation-demodulation signal of the bit rate of.
  • BitError Rate vertical axis
  • the normalization frequency interval horizontal axis
  • FIG. 7B is a waveform diagram of reception data of one channel h obtained by converting the DP-OOK signal shown in FIG. 7A into a digital signal by an ADC in an optical receiver.
  • FIG. 7B is a sampling waveform diagram of the output of ICA in the DSP in the optical receiver, of the DP-OOK signal shown in FIG. 7A. It is a figure which shows BitError Rate (vertical axis
  • FIG. 8B is a waveform diagram of reception data of one channel obtained by converting the DP-PAM signal shown in FIG. 8A into a digital signal by an ADC in an optical receiver. It is a sampling waveform figure of the ICA output in DSP in an optical receiver of the DP-PAM signal shown to FIG. 8A.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission system using an optical transmitter and an optical receiver according to an embodiment of the present invention.
  • the optical transmission system 10 shown in FIG. 1 includes an optical module 11 on the transmission side, an optical multiplexer 30, an optical fiber transmission path 40, an optical demultiplexer 50, and an optical module 12 on the reception side.
  • each of the optical modules 11 and 12 is a pluggable type in which the device can be freely attached and detached
  • the optical module 11 on the transmission side includes a plurality of optical transmitters 20a, 20b,.
  • the light module 12 on the receiving side includes a plurality of light receivers 60a, 60b,.
  • WDM wavelength division multiplexing
  • frequency grids of 50 GHz spacing have 80 waves to 96 waves each different in wavelength.
  • Each of the optical transmitters 20a to 20n and the optical receivers 60a to 60n is deployed in a number corresponding to 80 to 96 of the number of wavelengths.
  • the WDM frequency grid is also referred to as a WDM grid.
  • Each of the optical transmitters 20a to 20n includes a TLS (tunable laser sources) 21a and 21b and an OM (optical modulator) 22a and 22b, as represented by the optical transmitter 20a.
  • PBS Polarization Beam Splitter
  • These components will be described on behalf of the optical transmitter 20a.
  • the OM 22a constitutes a first light modulator described in the claims
  • the OM 22b constitutes a second light modulator described in the claims.
  • the two TLSs 21a and 21b are wavelength variable laser light sources, and emit carriers (optical carrier waves) c1 and c2 of two channels of different frequencies.
  • One of the two channels is called Ch1 (first channel), and the other is called Ch2 (second channel).
  • each TLS 21a and 21b emits carriers c1 and c2 of Ch1 and Ch2 from which the peak component of the carrier frequency is separated to a predetermined frequency difference ⁇ f (see FIG. 2) to the OMs 22a and 22b.
  • One OM 22a outputs a Ch1 OOK (On Off Keying) signal s1 by optically modulating the carrier c1 of Ch1 emitted from the TLS 21a with data D1 (first data).
  • the other OM 22b outputs a Ch2 OOK signal s2 by optically modulating the carrier c2 of Ch2 emitted from the TLS 21b with data D2 (second data).
  • Data D1 and D2 are bit strings of 0 and 1, respectively. As shown in FIG.
  • the OOK signals s1 and s2 of Ch1 and Ch2 are carriers c1 and c2 of which the frequency difference between the peak components P1 and P2 of the carrier frequency across the WDM grid at the center position f0 of the frequencies of Ch1 and Ch2 is ⁇ f. It becomes a signal including c2.
  • FIG. 2 shows the frequency of the optical signal on the horizontal axis, the intensity of the optical signal on the left vertical axis, and the transmittance of the optical signal on the right vertical axis.
  • the period (for example, 50 GHz) of the WDM grid of ⁇ fg interval is shown on both sides of the center position f0 of the frequencies of Ch1 and Ch2. That is, f0 ⁇ fg and f0 ⁇ 2 ⁇ fg are sequentially shown on the left side of f0, and f0 + ⁇ fg and f0 + 2 ⁇ fg are sequentially shown on the right side.
  • the horizontal solid curve i1 (x1) shown in the upper part of FIG. 2 is the transmitted signal i1 (FIG. 1) transmitted through the IL 61 of the light receivers 60a to 60n described later or the received signal x1 (FIG. 1) is shown.
  • the dashed horizontal curve i2 (x2) shows the transmitted signal i2 (FIG. 1) transmitted through the IL 61 or the received signal x2 (FIG. 1) obtained by digitizing the signal i2.
  • An arrow Y1 protruding rightward from a broken line frame surrounding the transmission signals i1 and i2 indicates that the transmittance of each of the curves i1 (x1) and i2 (x2) is represented by the transmittance of the right vertical axis.
  • a mountain-shaped solid curve P1a shown in the lower part of FIG. 2 represents a spread frequency spectrum when the carrier c1 of Ch1 is modulated with the data D1 on the transmission side.
  • a mountain-shaped wavy curve P2a represents a spread frequency spectrum when the carrier c2 of Ch2 is modulated with data D2 on the transmission side.
  • An arrow Y2 protruding leftward from a dashed line frame surrounding peak components P1 and P2 of the carrier frequency and the frequency spectrum P1a and P2a is a peak component P1 and P2 of the frequency of the carriers c1 and c2 and a frequency spectrum P1a and P2a of a mountain shape Indicates that the intensity of is represented by the intensity on the left vertical axis.
  • the PBS 23 shown in FIG. 1 generates a DP (Dual Polarization) -OOK signal Pa by multiplexing the OOK signals s1 and s2 of Ch1 and Ch2 with orthogonal polarization.
  • the DP-OOK signal Pa is output to the optical multiplexer 30.
  • DP-OOK signals Pb to Pn are output to the optical multiplexer 30 also from the other optical transmitters 20b to 20n.
  • the orthogonal polarization multiplexed OOK signals s1 and s2 have different wavelengths.
  • the optical multiplexer 30 wavelength-multiplexes the DP-OOK signals Pa to Pn output from the optical transmitters 20 a to 20 n to generate a wavelength multiplexed signal m 1 and transmits the wavelength multiplexed signal m 1 to the optical fiber transmission line 40.
  • the DP-OOK signals Pa to Pn do not interfere because all the wavelengths of the orthogonal polarization multiplexed OOK signals s 1 and s 2 are different.
  • an EDFA Erbium Doped Fiber Amplifier: not shown
  • the EDFA is an optical amplifier for compensating for the transmission loss of the optical fiber transmission line 40.
  • the optical demultiplexer 50 demultiplexes the wavelength multiplexed signal m1 transmitted through the optical fiber transmission line 40 into DP-OOK signals Pa to Pn for each of the optical transmitters 20a to 20n.
  • the demultiplexed DP-OOK signals Pa to Pn are input to the optical receivers 60a to 60n corresponding to the respective optical transmitters 20a to 20n.
  • Each of the optical receivers 60a to 60n includes an IL (Interleaver) 61, a PD (Photo Detector: photo detector or photodiode) 62a and 62b, and an ADC (ADC), as shown as a representative of the optical receiver 60a.
  • a digital analog converter (A / D converter) 63a and 63b, and a DSP (Digital Signal Processor: digital signal processor) 64 are provided. These components will be described as a representative of the optical receiver 60a.
  • the PDs 62a and 62b constitute a detector described in the claims. Also, the PD 62a constitutes a first light detector in the claims, and the PD 62b constitutes a second light detector in the claims.
  • the IL 61 is a 1-input 2-output asymmetric filter having a predetermined light transmission characteristic (transmittance), and when one optical signal is input, a large number of signals of the first wavelength are output from one output side. It outputs a large number of signals of the second wavelength symmetrical to the first wavelength from the other output side.
  • the transmission characteristics cross at the WDM grid, and the FSR (Full-Scale Range), which is the width of the input range, has a cycle equal to or twice that of the WDM grid.
  • the IL 61 is a filter having a light transmission characteristic in which the FSR has a cycle equal to or twice as large as the frequency grid interval, and the output is asymmetric.
  • the IL 61 transmits the DP-OOK signal Pa from the optical demultiplexer 50, that is, the DP-OOK signal Pa in which the OOK signals s1 and s2 of Ch1 and Ch2 are orthogonal polarization multiplexed, to one PD 62a.
  • the OOK signal s1 of Ch1 is easily transmitted as a signal on the output side connected, and the OOK signal s2 of Ch2 is easily transmitted as a signal on the output side connected to the other PD 62b.
  • the PDs 62a and 62b illustrated in FIG. 1 are semiconductor elements whose storage capacity changes according to input light, and convert an optical signal into an electrical signal.
  • the PD 62a converts the transmission signal i1, which is an optical signal, into an electric signal e1, and outputs the electric signal e1 to the ADC 63a.
  • the PD 62b converts the transmission signal i2, which is an optical signal, into an electric signal e2, and outputs the electric signal e2 to the ADC 63b.
  • the ADC 63a converts the electric signal e1 which is an analog signal into a digital reception signal x1 and outputs the digital reception signal x1 to the DSP 64.
  • the ADC 63 b converts the electric signal e 2 which is an analog signal into a digital reception signal x 2 and outputs the digital reception signal x 2 to the DSP 64.
  • Equation (3) can be obtained by removing ⁇ t from equation (2).
  • I 1 (t) and I 2 (t) Signals obtained by directly detecting the above s 1 (t) and s 2 (t) with a photodetector (PD) are I 1 (t) and I 2 (t), respectively. Considering that the band of PD is sufficiently narrow compared to ⁇ , I 1 (t) and I 2 (t) are expressed by the following equations.
  • the electric field transmittance for s 1 (t), s 2 (t) on the output side connected to PD 62 a of IL 61 is ⁇ h 11 , ⁇ h 12 , the output of PD 62 a is e 1 (t), and the output side connected to the other PD 62 b
  • the electric field transmittance for s 1 (t) and s 2 (t) is ⁇ h 21 , ⁇ h 22 and the output of PD 62 b is e 2 (t), e 1 (t) and e 2 (t) are It is expressed by a formula.
  • sampling data x1 and x2 of two received signals obtained by adding together OOK signals s1 and s2 which are intensity signals of Ch1 and Ch2 at different combining ratios are obtained.
  • the DSP 64 restores the direct detection signals I1 and I2 of the OOK signals s1 and s2 in which the carriers c1 and c2 of Ch1 and Ch2 on the transmission side are modulated by the data D1 and D2 from the two sampling data x1 and x2, An arithmetic process is performed to obtain data D1 and D2 from the detection signals I1 and I2.
  • This arithmetic processing is performed as follows. That is, since the OOK signals s1 and s2 of Ch1 and Ch2 are independent, the detection signals I1 and I2 are directly restored using an algorithm for separating two different signals, and the restored direct detection signals I1 and I2 The data D1 and D2 are obtained from.
  • the above algorithm is described, for example, in the independent component analysis described in Non-Patent Document 1.
  • the DSP 64 restores the direct detection signals I1 and I2 by using the following equation (8) in the algorithm.
  • H is a weighting factor for setting the direct detection signals I1 and I2 of the OOK signals s1 and s2 represented by the equation (7) to different combining ratios.
  • n is a positive integer representing the number of times of sampling
  • ⁇ T is a sampling interval.
  • the process of restoring the direct detection signals I1 and I2 of the OOK signals s1 and s2 will be further described using the above equation (8). Since the sampling data x1 and x2 input to the DSP 64 are equivalent to e1 and e2 as described above, they will be described using e1 and e2 below.
  • the component of the OOK signal s1 of Ch1 becomes large (Ch1> Ch2) in the reception signal e1 and the component of the OOK signal s2 of Ch2 becomes large (Ch1 ⁇ Ch2) in the reception signal e2.
  • the Ch1 and Ch2 signal components are orthogonal to each other in the respective carriers c1 and c2. Therefore, when they are received as they are, their respective intensities are combined. Therefore, it can not be determined which of the signal components of the carriers c1 and c2 is "1" or "0".
  • the reception signals e1 and e2 are represented by multiplying the direct detection signals I1 and I2 of the OOK signals s1 and s2 by the matrix H. From this, two different conditional expressions are obtained as shown in the above expression (8). By solving this equation (8), the direct detection signals I1 and I2 of the original transmission signals OOK signals s1 and s2 can be obtained (restored).
  • the interleaver characteristics are the same at WDM grid intervals, for example, f 0 ⁇ f g and f 0 + ⁇ f g. Therefore, even when the transmission signal wavelength shifts to another frequency grid, reception can be performed in the same manner. That is, no matter what frequency grid the OOK signals s1 and s2 are sent from the transmission side, the reception side receives the reception signals e1 and e2 in the same manner and directly detects the OOK signals s1 and s2. I1 and I2 can be restored.
  • the direct detection signals I1 and I2 of the OOK signals s1 and s2 restored by the DSP 64 are also binary OOK signals, and have higher reception sensitivity than PAM4 (quaternary pulse amplitude modulation) of the same bit rate. Also, since the determinant of order 2 holds for the DP-OOK signal of an arbitrary WDM grid as in the above equation (1), the optical module for transmitting and receiving the DP-OOK signal of an arbitrary WDM grid is also possible. , It becomes possible to apply the technique of this embodiment.
  • FIG. 5 A configuration of an optical transmission system 10A according to a specific example of the present embodiment is shown in FIG. 5, and a simulation operation of transmitting and receiving the optical signal will be described. However, in FIG. 5, the same elements as those in FIG.
  • the optical transmission system 10A of FIG. 5 is different from the optical transmission system 10 (FIG. 1) in that only one optical transmitter 20a and one optical receiver 60a are provided. (Variable Optical Attenuator) 41 and EDFA 42 are connected.
  • the optical transmission system 10A does not include the optical multiplexer 30 on the receiving side.
  • the VOA 41 is a variable optical attenuator that simulates the transmission loss (loss value) of the optical fiber transmission line 40.
  • the EDFA 42 is an optical amplifier for compensating for transmission loss, as described above. If the transmission loss is large, it is necessary to increase the gain of the EDFA 42. However, when the gain is increased, the noise also increases, and the influence of the noise makes it impossible to receive an optical signal. For this reason, in general, the distance of the optical fiber transmission line 40 is limited.
  • the optical transmission system 10A is an operation of transmitting and receiving an optical signal by the pair of optical transmitters 20a and the optical receiver 60a, and is the same as the optical transmission system 10 (FIG. 1) described above.
  • the EVM Error Vector
  • Magnitude: error vector amplitude) (non-patent documents 2, 3) is used for evaluation.
  • EVM is an indicator of the quality of the digital modulation signal, and indicates the amount of error of the received signal.
  • ICA Independent Component Analysis
  • the horizontal axis of FIG. 6 indicates the loss value [dB] of the VOA 41, and the left vertical axis indicates the EVM (EVM of DP-OOK [%]) of the DP-OOK signal Pa with respect to the loss value.
  • An arrow Y11 protruding leftward from the frame surrounding the DP-OOK signal Pa indicates that the EVM of the DP-OOK signal Pa is represented by a percentage of the left vertical axis.
  • EVM EVM of PAM 4 [%]
  • EVM EVM of PAM 4 [%]
  • PAM 4 signal 71 which is a multi-level modulation / demodulation signal of a bit rate equivalent to the DP-OOK signal on the left vertical axis is shown together on the right vertical axis.
  • An arrow Y12 projecting rightward from the frame surrounding the PAM4 signal 71 indicates that the EVM of the PAM4 signal 71 is expressed as a percentage of the right vertical axis. That is, the vertical axes of DP-OOK [%] and EAM [%] of PAM 4 are adjusted so that their bit error rates become equal.
  • the measurement example is made by the pair of optical transmitters 20a and the optical receiver 60a, it is configured by a plurality of optical transmitters 20a to 20n and optical receivers 60a to 60n (see FIG. 1). Similar results can be expected in the case.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • BER bit error rate
  • the blind equalization algorithm As the blind equalization algorithm, the fastICA (independent component analysis) algorithm was used as described above.
  • the blind equalization algorithm is used to derive transmission signals s1 and s2 from the reception data x1 and x2 of the optical receiver 60a.
  • FIG. 7A after transmitting the 25 Gbit / s DP-OOK signal Pa1 transmitted from the optical transmitter 20a (FIG. 5) for 50 km (described as 25GDP-OOK @ 50 km in FIG. 7A), the variable optical attenuator (FIG.
  • the bit error rate (vertical axis) with respect to the normalized frequency interval (horizontal axis) when the optical input level to the optical receiver 60a is set to -19 dBm using the VOA 41) is shown.
  • Normalized subcarrier spacing is ⁇ f / baud rate (baud rate).
  • the frequency interval ⁇ f / baud rate on the horizontal axis is a 12.5 Gbaud signal with a scale “1.0” of 12.5 GHz. That is, the frequency interval is changed using a 25 Gbit / s DP-OOK signal Pa1 in which two 12.5 Gbaud signals are multiplexed (2 bits) as a transmission signal.
  • the BER below the FEC limit is achieved when the normalized frequency interval is 0.4 or more.
  • the reception waveform of channel 1 without fastICA is shown in FIG. 7B with respect to DP-OOK signal Pa1 at normalized frequency interval 0.4, and the reception waveform of channel 1 with fast ICA is shown in FIG. 7C.
  • the waveform shown in FIG. 7B is received by the optical receiver 60a.
  • the transmitted signal i1 of Ch1 transmitted through one of the ILs 61 is converted into an electrical signal e1 by the PD 62a and then converted into a digital signal by the ADC 63a Waveform.
  • This is a waveform corresponding to x1 of the above-mentioned equation (8), and the OOK signals s1 and s2 of Ch1 and Ch2 in the optical transmitter 20a are mixed at a predetermined ratio.
  • a waveform obtained by performing signal processing on the reception data x1 with the DSP 64 and estimating the OOK signals s1 and s2 becomes a waveform shown in FIG. 7C. That is, although the two OOK signals s1 and s2 are mixed and the waveforms shown in FIG. 7B can not be determined, as shown in FIG. 7C, the two OOK signals s1 and s2 can be determined by separating them. Thus, it can be seen that polarized signals can be separated by using fast ICA.
  • the DSP 64 when the DSP 64 performs the 1 and 0 determination on the sampling waveform (the waveform shown in FIG. 7C) of the ICA output in the DSP 64, it becomes data D1 and D2.
  • the 1 and 0 of the data D1 and D2 are compared with the original data D1 and D2 on the transmission side to derive the BER.
  • variable optical attenuator After transmitting the 50 Gbit / s DP-PAM4 signal Pb1 transmitted from the optical transmitter 20a (FIG. 5) for 25 km (described as 50 GDP-PAM 4 @ 25 km in FIG. 8A), the variable optical attenuator
  • the bit error rate (vertical axis) with respect to the normalized frequency interval (horizontal axis) when the optical input level to the optical receiver 60a is set to -19 dBm using the VOA 41) is shown.
  • the conditions of the scale of the horizontal axis and the vertical axis and the FEC limit are the same as in FIG. 7A.
  • the BER below the FEC limit was achieved when the normalized frequency interval on the horizontal axis in FIG. 8A was 0.6 or more. From this, it can be understood that the optical transmission system 10 of the present invention is also effective for the PAM4 signal Pb1.
  • FIG. 8A for comparison, after transmitting 25 km (denoted as 25 GSP-PAM 4 @ 25 km in the figure) of single polarization 25 Gbit / s SP-PAM 4 signal Pc 1, add this BER as ⁇ Pc 1 It showed.
  • the received waveform of channel 1 (Ch1) without fastICA is shown in FIG. 8B
  • the received waveform of channel 1 with fast ICA is shown. It is shown in FIG. 8C.
  • the waveform shown in FIG. 8C is an output waveform of a DFE (Decision Feedback Equalization: not shown) as a digital filter that makes a decision for a multilevel signal in the DSP 64.
  • the waveform in FIG. 8B is the same as the waveform at 25 km in FIG. 7B.
  • the transmission distance is extended from 25 km to 50 km. Nevertheless, it can be seen that better transmission characteristics are obtained.
  • the DP according to the present invention
  • the superiority of the transmission characteristics of the PAM4 signal Pb1 to the SP-PAM16 signal can be understood.
  • the DP-PAM4 signal Pb1 has less degradation than the SP-PAM16 signal.
  • the optical transmission system 10 having the optical transmitters 20a to 20n and the optical receivers 60a to 60n connected via the optical fiber transmission line 40 according to the present embodiment has the following characteristic configuration.
  • the optical transmission system 10 includes optical transmitters 20a to 20n that output DP-OOK signals Pa to Pn as orthogonal polarization multiplexed optical signals, and DP-OOK signals output from a plurality of optical transmitters 20a to 20n.
  • an optical demultiplexer 50 for demultiplexing the wavelength multiplexed signal m1 into DP-OOK signals Pa to Pn which are optical signals of each wavelength through the optical fiber transmission line 40, and an optical demultiplexer 50 And an optical receiver 60a that receives the DP-OOK signals Pa to pn.
  • the optical transmitter (for example, 20a) of the optical transmission system 10 is configured to include TLSs 21a and 21b as light sources, OMs 22a and 22b as optical modulators, and a PBS 23 as a polarizer.
  • the TLSs 21a and 21b center on a predetermined frequency grid, and emit carriers c1 and c2 of Ch1 and Ch2 in which peak components P1 and P2 (FIG. 2) of frequencies sandwiching the center position are separated by a predetermined frequency.
  • the OMs 22a and 22b output Ch1 and Ch2 OOK signals s1 and s2 obtained by modulating the carriers c1 and c2 of Ch1 and Ch2 with data D1 and D2 of bit strings 0 and 1 respectively.
  • the PBS 23 orthogonal polarization multiplexes the OOK signals s1 and s2 of Ch1 and Ch2 and outputs a DP-OOK signal Pa.
  • the optical receiver (for example, 60a) is configured to include an interleaver IL 61, PDs 62a and 62b, ADCs 63a and 63b, and a DSP 64.
  • the IL 61 has cross points on the frequency grid and has a transmission characteristic of light whose full scale range has a period equal to or twice as large as the frequency grid interval, and a filter whose output is asymmetric is
  • the signals of Ch1 and Ch2 different in the synthesis ratio of the components of the DP-OOK signal Pa are transmitted and branched.
  • the PDs 62a and 62b detect the branched transmission signals i1 and i2 of Ch1 and Ch2 and convert them into electric signals e1 and e2 of Ch1 and Ch2.
  • the ADCs 63a and 63b convert the electric signals e1 and e2 of Ch1 and Ch2 into reception data x1 and x2 of Ch1 and Ch2 which are digital signals.
  • the DSP 64 restores the direct detection signals I1 and I2 of the OOK signals s1 and s2 on the transmission side from the received data x1 and x2 of Ch1 and Ch2.
  • Data D1 and D2 are obtained from the direct detection signals I1 and I2.
  • the orthogonal polarization multiplexed DP-OOK signals Pa to Pn in the wavelength multiplexing signal transmitted from the optical transmitter (for example, 20a) and transmitted through the optical fiber transmission line 40 can be received by the optical receiver (for example, 60a), peak components P1 and P2 of carriers c1 and c2 sandwiching a wavelength division multiplexing grid which is the center position of the frequencies of carriers c1 and c2 of Ch1 and Ch2 are separated by a predetermined frequency difference. Therefore, it is possible to restore the direct detection signals I1 and I2 of the OOK signals s1 and s2 obtained by modulating the carriers c1 and c2 with the data D1 and D2 of the bit strings 0 and 1, respectively.
  • the direct detection signals I1 and I2 can be transmitted even if the optical fiber transmission line 40 is lengthened accordingly Become.
  • the OOK signals s1 and s2 can be generated by the OM 22a and 22b having a small and simple configuration in which the carriers c1 and c2 are modulated with data D1 and D2 of bit strings of 0 and 1, respectively, optical transmission on which the OMs 22a and 22b are mounted
  • the machine 20a can be miniaturized.
  • the OOK signals s1 and s2 can be easily restored on the receiving side, and the arithmetic circuit configuration of the DSP 64 that performs the restoration can be made small and simple.
  • the optical receiver 60a on which the DSP 64 is mounted can be miniaturized. Therefore, it is possible to realize long distance transmission by miniaturizing the optical module that carries the optical communication by mounting the optical transmitter 20a and the optical module that carries the optical communication by mounting the optical receiver 60a.
  • the optical transmitter 20a modulates the carriers c1 and c2 of Ch1 and Ch2 with data D1 and D2 by using two OMs 22a and 22b, and detects by using two PDs 62a and 62b by the optical receiver 60a. There is. Since the operation speed of the PDs 62a and 62b for detecting the 0 and 1 levels is high, the reception sensitivity of the optical receiver 60a is improved. When the reception sensitivity is improved, the transmission capacity can be increased while the distance of the optical fiber transmission line 40 is prevented from being shortened.
  • each of the OMs 22a and 22b modulates each of the carriers c1 and c2 of Ch1 and Ch2 with data D1 and D2, respectively, to convert Ch1 and Ch2 Output OOK signals s1 and s2.
  • PAM4 signals quadternary pulse amplitude modulation signals of Ch1 and Ch2 are output instead of the OOK signals s1 and s2 of Ch1 and Ch2.
  • PAM4 is 4-level pulse amplitude modulation, and a bit string consisting of "0" and “1” is divided into four voltage levels, that is, “00", “L1 voltage”, and “01” “L2 voltage”. , [10] is [L3 voltage] and [11] is [L4 voltage], and the optical carrier wave is modulated by a pulse signal of four levels (voltage levels).
  • each of the carriers c1 and c2 of Ch1 and Ch2 may be modulated with a pulse signal of four levels to output PAM4 signals of Ch1 and Ch2.
  • the PBS 23 orthogonally polarization multiplexes the PAM 4 signals of Ch 1 and Ch 2 and outputs them to the optical multiplexer 30.
  • the IL 61 splits and transmits orthogonal polarization multiplexed Ch1 and Ch2 PAM4 signals and outputs the transmission signals i1 and i2 to the PDs 62a and 62b.
  • the PDs 62a and 62b directly detect the orthogonal polarization multiplexed Ch1 and Ch2 PAM4 signals as the transmission signals i1 and i2, respectively, and convert them into electric signals e1 and e2.
  • the ADCs 63a and 63b convert the electric signals e1 and e2 that are analog signals into digital reception data x1 and x2, and output the digital reception data x1 and x2.
  • the orthogonal polarization multiplexed Ch1 and Ch2 PAM4 signals as the transmission signals i1 and i2 transmitted through the IL 61 are directly detected by the PDs 62a and 62b, respectively, and converted into digital signals by the ADCs 63a and 63b.
  • two received data x1 and x2 are obtained by adding the PAM4 signals which are intensity signals of each Ch1 and Ch2 at different combining ratios.
  • the DSP 64 restores a PAM4 signal in which the carriers c1 and c2 of the transmitting side Ch1 and Ch2 are modulated by a pulse signal of four levels from the two received signals x1 and x2, and from this PAM4 signal An arithmetic process is performed to obtain a pulse signal.
  • the polarization multiplexed PAM2 M signal (2 M value pulse amplitude modulation signal) (M is a positive integer of 2 or more) is more than the 2 2 M value pulse amplitude modulation signal of the same transmission capacity, etc. Since the allowable loss value of the optical fiber transmission line 40 is large, transmission becomes possible even if the optical fiber transmission line 40 is lengthened accordingly. Therefore, long distance transmission can be realized.
  • Optical transmission system 11 Optical module on the transmission side 12
  • PBS (polarizer) Reference Signs List 30 optical multiplexer 40
  • optical fiber transmission line 50 optical demultiplexer 60a to 60n optical receiver 61 IL (interleaver) 62a, 62b PD (light detector) 63a, 63b
  • ADC A / D converter
  • 64 DSP digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本発明に関わる光伝送システムは、光送信機(20a~20n)が、所定の波長分割多重グリッドの中心位置を挟んだ周波数のピーク成分が所定周波数差離れた2つの光搬送波を各々、0,1のビット列のデータで変調し、2つのオンオフ変調信号を直交偏波多重して光信号で出力する。光受信機(60a~60n)が、波長分割多重グリッド上に交点を持ち、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称のフィルタにより、直交偏波多重の光信号成分の合成比が異なる2信号を透過して分岐し、分岐された2信号を検波後にデジタル信号に変換し、2つのデジタル信号から送信側のオンオフ変調信号を復元する。

Description

光送信機、光受信機及び光伝送システム
 本発明は、マルチキャリア光信号を送信する光送信機、マルチキャリア光信号を受信する光受信機及び光伝送システムに関する。
 データセンタの急速なトラフィック増大を背景として、100GbEの標準化及び光モジュールの開発が進展している。100GbEの光モジュールの主流は、異なる4波長の光信号×25Gbit/sのIM-DD(Intensity Modulation-Direct Detection)送受信機で構成されている。データセンタ内の光トランシーバ等の光インタフェースとして、CFP(Centum gigabit Form factor Pluggable)4やQSFP(Quad Small Form-factor Pluggable)28といった、より小型省電力のモジュールの開発が進んでいる。
 一方、直接データセンタ間を接続するために、波長分割多重(WDM:Wavelength Division Multiplexing)グリッドの任意の光信号を出力する光モジュールの開発が進んでいる。例えば、10G用の規格であるXFP(10 Gigabit Small Form Factor Pluggable)やSFP+(Small Form-Factor Pluggable Plus)等の光トランシーバである小型モジュールの市販が始まっており、これらの光モジュールを用いることでコストが低いWDMシステムの構築が可能となる。
"A. Hyvarinen, "Independent component analysis: algorithms and applications," Neural Network, vol.13, no.4-5, pp. 411-430 June (2000). W. Freude et al., "Quality Metrics for Optical Signals:Eye Diagram, Q-factor, OSNR, EVM and BER," Proc. ICTON 2012, Mo.B1.5, (2012). A. Vigano et al., "Performance Analysis in a PAM-4 Fiber Transmission IM-DD with Pre-compensation Filter," WSEAS Trans. Communications, vol.15, pp.317-322, (2016). E. Oja et al., "The FastICA Algorithm Revisited: Convergence Analysis," IEEE Trans. Neural Networks, vol.17, no.6, pp.1370-1381, November (2006).
 上述した異なる波長の光信号を用いる100GbE及び40GbEの光モジュールをWDMシステムに適用する場合、光モジュール内部の光分波器に大型の波長可変機能を備える必要があり、小型化の障害となっていた。
 波長分割多重に依らず、大容量波長可変光インタフェースを実現するには、多値変復調方式であるPAM(Pulse-Amplitude Modulation:パルス振幅変調)4やPAM8等を用いる方法がある。しかし、PAM等による多値変復調方式では、例えばX軸にシンボル(点)が配列されるので、多値変調を行うとシンボル間の距離が縮む。このように、変調信号のシンボル間距離が短くなると受信感度が低下し、光ファイバ伝送路等の伝送距離が大幅に短くなってしまう。
 本発明は、このような事情に鑑みてなされたものであり、光通信を行う光モジュールを小型化して長距離伝送を実現することができる光送信機、光受信機及び光伝送システムを提供することを課題とする。
 上記課題を解決するための手段として、請求項1に係る発明は、直交偏波多重された光信号を光ファイバ伝送路を介して光受信機へ送信する光送信機であって、所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を出射する光源と、前記2つの光搬送波を各々、0,1のビット列のデータで変調した2つのオンオフ変調信号を出力する光変調器と、前記2つのオンオフ変調信号を直交偏波多重して前記光信号として出力する偏光器とを備えることを特徴とする光送信機である。
 この構成によれば、光受信機で直交偏波多重された光信号を受信した際に、2つの光搬送波の周波数の中心位置である周波数グリッドを挟んだ各光搬送波のピーク成分が、所定の周波数差離れる。この周波数差を利用すれば、2つの異なる受信信号を得ることが可能となり、この受信信号に信号処理を施すことで、各光搬送波を各々データで変調した各オンオフ変調信号を復元できるので、各光搬送波を変調する各データを得ることができる。オンオフ変調信号は、4値パルス振幅変調信号等の多値パルス振幅変調信号よりも光ファイバ伝送路の許容損失値が大きいので、その分、光ファイバ伝送路を長くしても伝送可能となる。また、オンオフ変調信号は、光搬送波を0,1のビット列のデータで変調する小型且つ単純な構成の光変調器で生成可能なので、この光変調器を搭載する光送信機の小型化を図ることができる。従って、光送信機を搭載して光通信を行う光モジュールを小型化して長距離伝送を実現することができる。
 請求項2に係る発明は、前記光変調器が、前記2つの光搬送波を各々、4値のレベルのパルス信号で変調した2つの4値パルス振幅変調信号を出力し、前記偏光器は、前記2つの4値パルス振幅変調信号を直交偏波多重して前記光信号として出力することを特徴とする請求項1に記載の光送信機である。
 この構成によれば、各光搬送波を4値のレベルのパルス信号で変調した各4値パルス振幅変調信号を復元できる。4値パルス振幅変調信号は、これよりも変調するレベルの数が多い例えば16値パルス振幅変調信号等よりも光ファイバ伝送路の許容損失値が大きいので、その分、光ファイバ伝送路を長くしても伝送可能となる。従って、長距離伝送を実現することができる。
 請求項3に係る発明は、所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、0,1のビット列のデータで変調し、変調された2つのオンオフ変調信号を直交偏波多重した光信号を、光ファイバ伝送路を介して受信する光受信機であって、周波数グリッド上に交点を持つと共に、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐するインタリーバと、前記分岐された2つの信号を検波して電気信号に変換する検波器と、前記検波器で変換された2つの電気信号をデジタル信号に変換するA/D変換器と、前記A/D変換器で変換された2つのデジタル信号から送信側のオンオフ変調信号を復元するデジタル信号処理器とを備えることを特徴とする光受信機である。
 この構成によれば、送信側の2つの光搬送波がデータで変調されたオンオフ変調信号を復元し、この復元されたオンオフ変調信号から送信側のデータを得ることができる。復元されるオンオフ変調信号は、4値パルス振幅変調信号等の多値パルス振幅変調信号よりも光ファイバ伝送路の許容損失値が大きい(非特許文献2)ので、その分、光ファイバ伝送路を長くしても伝送可能となる。また、オンオフ変調信号は、光搬送波を0,1のビット列のデータで変調したものなので、容易に復元することができる。このため、その復元を行うデジタル信号処理器の演算回路構成を小型且つ単純な構成とできるので、このデジタル信号処理器を搭載する光受信機の小型化を図ることができる。従って、光受信機を搭載して光通信を行う光モジュールを小型化して長距離伝送を実現することができる。
 請求項4に係る発明は、所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、2値(Mは2以上の正の整数)のレベルのパルス信号で変調し、変調された2つの2値パルス振幅変調信号を直交偏波多重した光信号を、光ファイバ伝送路を介して受信する光受信機であって、周波数グリッド上に交点を持つと共に、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐するインタリーバと、前記分岐された2つの信号を検波して電気信号に変換する検波器と、前記検波器で変換された2つの電気信号をデジタル信号に変換するA/D変換器と、前記A/D変換器で変換された2つのデジタル信号から送信側の4値パルス振幅変調信号を復元するデジタル信号処理器とを備えることを特徴とする光受信機である。
 この構成によれば、送信側の2つの光搬送波が4値のレベルのパルス信号で変調された4値パルス振幅変調信号を復元することができる。4値パルス振幅変調信号は、これよりも変調するレベルの数が多い例えば8値パルス振幅変調信号等よりも光ファイバ伝送路の許容損失値が大きいので、その分、光ファイバ伝送路を長くしても伝送可能となる。従って、長距離伝送を実現することができる。
 請求項5に係る発明は、直交偏波多重された光信号を出力する光送信機と、複数の光送信機から出力された光信号を波長多重して波長多重信号を出力する光合波器と、当該光合波器から出力される波長多重信号を光ファイバ伝送路を介して各波長の光信号に分波する光分波器と、当該光分波器で分波された光信号を受信する光受信機とを有する光伝送システムであって、前記光送信機は、所定の波長分割多重グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、0,1のビット列のデータで変調し、変調された2つのオンオフ変調信号を直交偏波多重して光信号として出力する処理を行い、前記光受信機は、前記波長分割多重グリッド上に交点を持つと共に、フルスケールレンジが波長分割多重グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタによって前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐し、当該分岐された2つの信号を検波後にデジタル信号に変換し、変換された2つのデジタル信号から送信側のオンオフ変調信号を復元する処理を行うことを特徴とする光伝送システムである。
 この構成によれば、光送信機から送信され、光ファイバ伝送路を伝送してきた波長多重信号中の直交偏波多重された光信号を光受信機で受信した際に、2つの光搬送波の周波数の中心位置である波長分割多重グリッドを挟んだ各光搬送波のピーク成分が、所定の周波数差離れる。このため、各光搬送波を各々0,1のビット列のデータで変調した各オンオフ変調信号を復元できる。このオンオフ変調信号は、4値パルス振幅変調信号等の多値パルス振幅変調信号よりも光ファイバ伝送路の許容損失値が大きいので、その分、光ファイバ伝送路を長くしても伝送可能となる。
 また、オンオフ変調信号は、光搬送波を0,1のビット列のデータで変調する小型且つ単純な構成の光変調器で生成可能なので、この光変調器を搭載する光送信機の小型化を図ることができる。更に、オンオフ変調信号は、受信側で容易に復元でき、復元を行うデジタル信号処理器の演算回路構成を小型且つ単純な構成とできる。このため、デジタル信号処理器を搭載する光受信機の小型化を図ることができる。
 従って、光送信機を搭載して光通信を行う光モジュールと、光受信機を搭載して光通信を行う光モジュールとを小型化して、長距離伝送を実現することができる。
 請求項6に係る発明は、前記光送信機は、所定の波長分割多重グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波の、一方を0,1のビット列の第1データで変調する第1光変調器と、他方を前記第1データと異なる0,1のビット列の第2データで変調する第2光変調器とを備え、前記光受信機は、前記フィルタにより分岐された2つの信号の、一方を検波する第1光検出器と、他方を検波する第2光検出器とを備えることを特徴とする請求項5に記載の光伝送システムである。
 この構成によれば、光送信機で光変調器を2つ使用して2つの光搬送波を、0,1のビット列の第1及び第2データで変調し、光受信機で光検出器を2つ使って検波している。光検出器の0,1のレベルを検波する動作速度は速いので、光受信機の受信感度が良くなる。受信感度が良くなると、光ファイバ伝送路の距離が短くなることを回避しながら伝送容量を増加させることができる。
 請求項7に係る発明は、前記光送信機は、所定の波長分割多重グリッドを中心とし、この中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を、各々2値(Mは2以上の正の整数)のレベルのパルス信号で変調し、この変調により得られる2つの2値パルス振幅変調信号を直交偏波多重して光信号として出力する処理を行い、前記光受信機は、前記波長分割多重グリッド上に交点を持つと共に、フルスケールレンジが波長分割多重グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐し、当該分岐された2つの信号を検波後にデジタル信号に変換し、当該変換された2つのデジタル信号から送信側の2値パルス振幅変調信号を復元する処理を行うことを特徴とする請求項5に記載の光伝送システムである。
 この構成によれば、光送信機から送信され、光ファイバ伝送路を伝送してきた波長多重信号中の直交偏波多重された光信号を光受信機で受信した際に、2つの光搬送波の周波数の中心位置である波長分割多重グリッドを挟んだ各光搬送波のピーク成分が、所定の周波数差離れる。このため、各光搬送波を4値のレベルのパルス信号で変調した各4値パルス振幅変調信号を復元できる。4値パルス振幅変調信号は、これよりも変調するレベルの数が多い例えば8値パルス振幅変調信号等よりも光ファイバ伝送路の許容損失値が大きいので、その分、光ファイバ伝送路を長くしても伝送可能となる。従って、長距離伝送を実現することができる。
 本発明によれば、光通信を行う光モジュールを小型化して長距離伝送を実現する光送信機、光受信機及び光伝送システムを提供することができる。
本発明の実施形態に係る光送信機及び光受信機を用いた光伝送システムの構成を示すブロック図である。 横軸に光信号の周波数を示し、左縦軸に光信号の強度、右縦軸に光信号の透過率を示し、キャリア周波数のピーク成分や受信信号の透過状態を示す図である。 横軸に光信号の周波数を示し、左縦軸に光信号の強度、右縦軸に光信号の透過率を示し、Ch1側のキャリア周波数のピーク成分がCh2側よりも高い場合の透過信号を表す図である。 横軸に光信号の周波数を示し、左縦軸に光信号の強度、右縦軸に光信号の透過率を示し、Ch2側のキャリア周波数のピーク成分がCh1側よりも高い場合の透過信号を表す図である。 本実施形態の具体例に係る光送信機及び光受信機を用いた光伝送システムの構成を示すブロック図である。 横軸にVOAの損失値[dB]、左縦軸にその損失値に対するDP-OOK信号のEVM(EVMofDP-OOK[%])を示し、右縦軸に左縦軸のDP-OOK信号と同等のビットレートの多値変復調信号であるPAM4信号のEVM(EVMofPAM4[%])を示す図である。 25Gbit/sのDP-OOK信号の正規化周波数間隔(横軸)に対するBitError Rate(縦軸)を示す図である。 図7Aに示すDP-OOK信号を、光受信機におけるADCによりデジタル信号に変換した一方のチャンネルhの受信データの波形図である。 図7Aに示すDP-OOK信号の、光受信機におけるDSP内のICA出力のサンプリング波形図である。 50Gbit/sのDP-PAM信号の正規化周波数間隔(横軸)に対するBitError Rate(縦軸)を示す図である。 図8Aに示すDP-PAM信号を、光受信機におけるADCによりデジタル信号に変換した一方のチャンネルの受信データの波形図である。 図8Aに示すDP-PAM信号の、光受信機におけるDSP内のICA出力のサンプリング波形図である。
 以下、本発明の実施形態を、図面を参照して説明する。
<実施形態の構成>
 図1は、本発明の実施形態に係る光送信機及び光受信機を用いた光伝送システムの構成を示すブロック図である。
 図1に示す光伝送システム10は、送信側の光モジュール11と、光合波器30と、光ファイバ伝送路40と、光分波器50と、受信側の光モジュール12とを備えて構成されている。但し、各光モジュール11,12は、機器を自在に着脱可能なプラガブル型であって、送信側の光モジュール11は、各々が着脱自在な複数の光送信機20a,20b,…,20nを備える。受信側の光モジュール12は、各々が着脱自在な複数の光受信機60a,60b,…,60nを備える。
 WDM(波長分割多重)では、例えば、50GHzの間隔の周波数グリッドで、各々波長が異なる80波~96波を有する。各々の光送信機20a~20n及び光受信機60a~60nは、その波長数の80~96に対応した数、配備される。なお、WDMの周波数グリッドを、WDMグリッドとも称す。
 各光送信機20a~20nは、光送信機20aに代表して示すように、TLS(Tunable laser sources:波長可変レーザ光源)21a,21bと、OM(optical modulator:光変調器)22a,22bと、PBS(Polarization Beam Spliter:偏光器)23とを備えて構成されている。これら構成要素を光送信機20aを代表して説明する。なお、OM22aは請求項記載の第1光変調器を構成し、OM22bは請求項記載の第2光変調器を構成する。
 2つのTLS21a,21bは、波長可変レーザ光源であり、異なる周波数の2チャンネルのキャリア(光搬送波)c1,c2を出射するものである。2チャンネルの一方をCh1(第1チャンネル)と称し、他方をCh2(第2チャンネル)と称す。更に説明すると、各TLS21a,21bは、キャリア周波数のピーク成分が予め定められた周波数差Δf(図2参照)離れるCh1とCh2のキャリアc1,c2を、OM22a,22bへ出射する。
 一方のOM22aは、TLS21aから出射されたCh1のキャリアc1を、データD1(第1データ)で光変調することによりCh1のOOK(On Off Keying:オンオフ変調)信号s1を出力する。他方のOM22bは、TLS21bから出射されたCh2のキャリアc2を、データD2(第2データ)で光変調することによりCh2のOOK信号s2を出力する。データD1,D2は、0,1のビット列である。Ch1とCh2のOOK信号s1,s2は、図2に示すように、Ch1とCh2の周波数の中心位置f0のWDMグリッドを挟んだキャリア周波数のピーク成分P1,P2の周波数差がΔfのキャリアc1,c2を含む信号となる。
 図2は、横軸に光信号の周波数を示し、左縦軸に光信号の強度、右縦軸に光信号の透過率を示す。横軸上には、Ch1とCh2の周波数の中心位置f0の両側に、Δfg間隔のWDMグリッドの周期(例えば、50GHz)を示している。つまり、f0の左側にf0-Δfg、f0-2Δfgを順に示し、右側にf0+Δfg、f0+2Δfgを順に示している。
 図2の上方に示す横方向の実線曲線i1(x1)は、後述する光受信機60a~60nのIL61を透過した透過信号i1(図1)又はこの信号i1をデジタル化した受信信号x1(図1)を示す。横方向の破線曲線i2(x2)は、IL61を透過した透過信号i2(図1)又はこの信号i2をデジタル化した受信信号x2(図1)を示す。透過信号i1,i2を囲む破線枠から右方向に突出る矢印Y1は、各曲線i1(x1),i2(x2)の透過率が、右縦軸の透過率で表されることを示す。
 図2の下方に示す山形の実線曲線P1aは、送信側においてCh1のキャリアc1にデータD1で変調を掛けた際に拡がった周波数スペクトルを表す。山形の波線曲線P2aは、送信側においてCh2のキャリアc2にデータD2で変調を掛けた際に拡がった周波数スペクトルを表す。キャリア周波数のピーク成分P1,P2及び周波数スペクトルP1a,P2aを囲む破線枠から左方向に突出る矢印Y2は、キャリアc1,c2の周波数のピーク成分P1,P2と、山形の周波数スペクトルP1a,P2aとの強度が、左縦軸の強度で表されることを示す。
 図1に示すPBS23は、Ch1とCh2のOOK信号s1,s2を、直交偏波で多重することにより、DP(Dual Polarization:二重偏波)-OOK信号Paを生成する。このDP-OOK信号Paは、光合波器30へ出力される。これと同様に、他の光送信機20b~20nからもDP-OOK信号Pb~Pnが光合波器30へ出力される。全てのDP-OOK信号Pa~Pnにおいて、直交偏波多重されたOOK信号s1,s2は全ての波長が異なっている。
 光合波器30は、各光送信機20a~20nから出力されるDP-OOK信号Pa~Pnを波長多重して波長多重信号m1を生成し、光ファイバ伝送路40へ伝送する。この伝送時に、各DP-OOK信号Pa~Pnは、各々において直交偏波多重されたOOK信号s1,s2の全ての波長が異なるので干渉しない。
 光ファイバ伝送路40の途中には、図示せぬEDFA(Erbium Doped Fiber Amplifier:エルビウム添加光ファイバ増幅器)が接続されている。EDFAは、光ファイバ伝送路40の伝送損失を補償するための光アンプである。
 光分波器50は、光ファイバ伝送路40を伝送されて来た波長多重信号m1を、光送信機20a~20n毎のDP-OOK信号Pa~Pnに分波する。この分波されたDP-OOK信号Pa~Pnは、各々の光送信機20a~20nに対応する光受信機60a~60nに入力される。
 各光受信機60a~60nは、光受信機60aに代表して示すように、IL(Interleaver:インタリーバ)61と、PD(Photo Detector:光検出器、又はフォトダイオード)62a,62bと、ADC(Digital Analog Converter:A/D変換器)63a,63bと、DSP(Digital Signal Processor:デジタル信号処理器)64とを備えて構成されている。これら構成要素を光受信機60aのものを代表して説明する。なお、PD62a,62bは、請求項記載の検波器を構成する。また、PD62aは請求項記載の第1光検出器を構成し、PD62bは請求項記載の第2光検出器を構成する。
 IL61は、予め定められた光の透過特性(透過率)を有する1入力2出力の非対称なフィルタであり、1つの光信号が入力されると、一方の出力側から第1波長の信号を多く出力し、他方の出力側から第1波長に対称な第2波長の信号を多く出力するものである。このIL61は、透過特性がWDMグリッドでクロスし、入力レンジの幅であるFSR(Full-Scale Range)がWDMグリッドと等倍又は2倍の周期を持っている。言い換えれば、IL61は、FSRが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタである。
 このIL61は、光分波器50からのDP-OOK信号Pa、つまり、Ch1とCh2のOOK信号s1,s2が直交偏波多重されたDP-OOK信号Paを透過する際に、一方のPD62aに繋がる出力側の信号としてCh1のOOK信号s1を透過し易く、他方のPD62bに繋がる出力側の信号としてCh2のOOK信号s2を透過し易くなっている。
 図1に示すPD62a,62bは、入力光に応じて、蓄電容量が変化する半導体素子であり、光信号を電気信号に変換するものである。PD62aは、光信号である透過信号i1を電気信号e1に変換し、ADC63aへ出力する。PD62bは、光信号である透過信号i2を電気信号e2に変換し、ADC63bへ出力する。
 ADC63aは、アナログ信号である電気信号e1をデジタルの受信信号x1に変換し、DSP64へ出力する。ADC63bは、アナログ信号である電気信号e2をデジタルの受信信号x2に変換し、DSP64へ出力する。
 光信号sの伝搬方向をzとすると、z軸と直交するx軸方向とy軸方向への直交成分s1x,s1yに分解することが可能であり、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 …(1)
 
 ここで、|A1x|,|A1y|はそれぞれの振幅、ωは光信号キャリアの角周波数、kは波数、δは位相差である。z=0における式(1)は、s(z,t)=s(t)とすると以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 …(2)
 式(2)からωtを除去すると、次の式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
  …(3)
 
 これは楕円を表す式であり、s(t)の電界は時間と共に楕円の軌道を描いて回転する。このとき、角周波数がω’=ω+Δωで、s(t)に直交する偏光状態の光信号s(t)は次の式(4)で表される。但し、|A2x(t)|,|A2y(t)|は、|A1x(t)|/|A1y(t)|=|A2y(t)|/|A2x(t)|を満たす。
Figure JPOXMLDOC01-appb-M000004
 …(4)
 
 上記s(t),s(t)をフォトディテクタ(PD)で直接検波して得られる信号をそれぞれI(t),I(t)とする。PDの帯域はωに比べて十分に狭いことを考慮すると、I(t),I(t)は以下の式で表される。
Figure JPOXMLDOC01-appb-M000005
 …(5)
 ここで、s(t),s(t)がある光フィルタを通過する場合を考える。光フィルタのs(t),s(t)に対する電界透過率を√h,√h(0<h<1,i=1,2)とすると、光フィルタ通過後のs(t),s(t)を同時にPDで直接検波して得られる信号e(t)は次の式で表される。
Figure JPOXMLDOC01-appb-M000006
 …(6)
 
 式(6)より、e(t)におけるs(t),s(t)の差周波Δωの成分は、s(t),s(t)が直交する場合は打ち消され、e(t)はそれぞれを直接検波した強度信号I(t),I(t)の線形結合で表されることが分かる。
 IL61のPD62aに繋がる出力側のs(t),s(t)に対する電界透過率を√h11,√h12、PD62aの出力をe(t)、他方のPD62bに繋がる出力側のs(t),s(t)に対する電界透過率を√h21,√h22、PD62bの出力をe(t)とすると、e(t),e(t)は次の式で表される。
Figure JPOXMLDOC01-appb-M000007
 …(7)
 
 つまり、IL61を透過した透過信号i1,i2としての直交偏波多重されたCh1とCh2のOOK信号s1,s2を、各PD62a,62bでそれぞれ直接検波し、ADC63a,63bでデジタル信号に変換する処理を行う。この処理によって、各Ch1,Ch2の強度信号であるOOK信号s1,s2を、異なる合成比で足し合わせた2つの受信信号のサンプリングデータx1,x2が得られる。
 DSP64は、2つのサンプリングデータx1,x2から、送信側のCh1とCh2のキャリアc1,c2がデータD1,D2で変調されたOOK信号s1,s2の直接検波信号I1,I2を復元し、この直接検波信号I1,I2からデータD1,D2を求める演算処理を行う。この演算処理は次のように行われる。即ち、各Ch1とCh2のOOK信号s1,s2は独立なため、異なる2つの信号を分離する処理を行うアルゴリズムを用いて直接検波信号I1,I2を復元し、復元された直接検波信号I1,I2からデータD1,D2を求める。上記アルゴリズムは、例えば非特許文献1に記載された独立成分分析法等に記載されている。
 ここでは、DSP64は、アルゴリズムにおいて下式(8)を用いることで、直接検波信号I1,I2を復元する。但し、Hは、式(7)で示したOOK信号s1,s2の直接検波信号I1,I2を異なる合成比とするための重み係数である。また、nはサンプリング回数を表す正整数であり、t0はn=1における時刻、ΔTはサンプリング間隔である。
Figure JPOXMLDOC01-appb-M000008
 …(8)
 
 ここで、上式(8)を用いてOOK信号s1,s2の直接検波信号I1,I2を復元する処理について更に説明する。DSP64に入力されるサンプリングデータx1,x2は、上述したように、e1,e2と等価なため、以下e1,e2を用いて説明する。IL61を透過することにより、受信信号e1ではCh1のOOK信号s1の成分が大きく(Ch1>Ch2)なり、受信信号e2ではCh2のOOK信号s2の成分が大きく(Ch1<Ch2)なる。Ch1とCh2の信号成分は、各キャリアc1,c2が直交しているので、そのまま受信すると、それぞれの強度が合成された状態となっている。このため、どちらのキャリアc1,c2の信号成分が「1」か「0」か判別がつかない。
 しかし、前述したように、受信信号e1,e2はOOK信号s1,s2の直接検波信号I1,I2に行列Hをかけた形で表される。このことから、上式(8)のように異なる2つの条件式が得られる。この式(8)を解けば元の送信信号であるOOK信号s1,s2の直接検波信号I1,I2が得られる(復元される)ことになる。
 IL61のインタリーバは周期性があるので、WDMグリッド間隔の例えばf0-Δfgとf0+Δfgにおいて、インタリーバ特性が同じ特性となっている。このため、送信信号波長が他の周波数グリッドに移った場合でも同じように受信できる。つまり、送信側から各OOK信号s1,s2が、どのような周波数グリッドで送られてきても、受信側では受信信号e1,e2を同じように受信して、OOK信号s1,s2の直接検波信号I1,I2を復元できる。
 なお、DSP64で復元したOOK信号s1,s2の直接検波信号I1,I2も、2値OOK信号であり、同等のビットレートのPAM4(4値パルス振幅変調)に比べて高い受信感度を持つ。また、任意のWDMグリッドのDP-OOK信号に対しても上式(1)と同様に次数2の行列式が成り立つので、任意のWDMグリッドのDP-OOK信号を送受信する光モジュールに対しても、本実施形態の技術を適用することが可能となる。
<実施形態の具体例>
 本実施形態の具体例による光伝送システム10Aの構成を図5に示し、その光信号送受信のシミュレーション動作について説明する。但し、図5において、図1と同一要素には同一符号を付し、その説明を省略する。
 図5の光伝送システム10Aが、光伝送システム10(図1)と異なる点は、光送信機20a及び光受信機60aが各々1台のケースであり、光ファイバ伝送路40の途中に、VOA(Variable Optical Attenuator)41と、EDFA42が接続されていることにある。なお、光伝送システム10Aでは、受信側に光合波器30を備えない。
 VOA41は、光ファイバ伝送路40の伝送損失(損失値)を模擬する可変光減衰器である。
 EDFA42は、前述した通り、伝送損失を補償するための光アンプである。伝送損失が大きいと、EDFA42のゲインを大きくする必要がある。しかし、ゲインを大きくすると雑音も大きくなり、この雑音の影響で光信号を受信できなくなる。このため、一般的に、光ファイバ伝送路40の距離が制限されている。
 この光伝送システム10Aは、一対の光送信機20a及び光受信機60aによる光信号の送受信動作であり、上述した光伝送システム10(図1)と同じである。光伝送システム10Aでは、送信信号として、周波数間隔6.25GHzの2×25.8Gbit/sのDP-OOK信号Paを用い、伝送路損失を模擬したVOA41の損失値に対する受信特性をEVM(Error Vector Magnitude:エラーベクトル振幅)(非特許文献2,3)を用いて評価している。EVMは、デジタル変調信号の品質の指標であり、受信信号の誤り量を示すものである。また、DSP64が用いるアルゴリズムとしては、非特許文献4等に記載の周知のfastICA( Independent Component Analysis:独立成分分析)アルゴリズムを用いた。
 図6の横軸にVOA41の損失値[dB]を示し、左縦軸にその損失値に対するDP-OOK信号PaのEVM(EVMofDP-OOK[%])を示す。DP-OOK信号Paを囲む枠から左方向に突出る矢印Y11は、DP-OOK信号PaのEVMが左縦軸のパーセンテージで表されることを示す。
 また、比較対象として、右縦軸に、左縦軸のDP-OOK信号と同等のビットレートの多値変復調信号であるPAM4信号71のEVM(EVMofPAM4[%])を併せて示す。PAM4信号71を囲む枠から右方向に突出る矢印Y12は、PAM4信号71のEVMが右縦軸のパーセンテージで表されることを示す。
 つまり、DP-OOK[%]とPAM4のEVM[%]は、それぞれのビットエラーレートが等しくなるよう縦軸が調整してある。
 DP-OOK信号PaとPAM4信号71とを、図6に横方向の波線73で示すBER(ビットエラーレート)=10-12に相当するEVM[%]で比較すると、PAM4信号71における許容損失値が13.5dBに対して、本実施形態のDP-OOK信号Paを用いることで27dBまで拡大している。これは、DP-OOK信号Paでは、VOA41の損失値をPAM4信号71よりも13dB位増やしても受信可能であることを示す。
 つまり、光ファイバ伝送路40の損失係数が0.45dB/kmの場合、PAM4信号71の伝送距離は、13.5dB÷0.45dB/km=30kmである。DP-OOK信号Paの伝送距離は、27dB÷0.45dB/km=60kmである。このことから本実施形態の具体例では、60km-30km=30kmの光ファイバ伝送路40の延長化が可能となる。
 本具体例では、1対の光送信機20aと光受信機60aによる測定例となっているが、複数の光送信機20a~20n及び光受信機60a~60n(図1参照)で構成される場合も同様の結果が期待できる。
<実験結果>
 次に、図5に示した光伝送システム10Aの構成により光信号送受信の実験を行った際の結果について説明する。但し、図5の光送信機20aとVOA41間に次の光ファイバが入った構成で実験した。光ファイバの長さは、DP-OOKの場合が50km、DP-PAM4の場合が25kmであり、何れもEDFA42への入力レベルが一定になるようにVOA41で調整した。
 但し、送信信号として、周波数間隔Δf、中心波長1552.52nmの12.5Gbaudの偏波多重強度信号を用い、光損失が0.28dB/kmのITU-T(International Telecommunication Union Telecommunication Standardization Sector)国際標準規格G.652の光ファイバ伝送後の符号誤り率(Bit Error Rate:BER)を測定し、伝送特性を評価した。
 なお、ブラインド等化アルゴリズムは、上記同様、fastICA(独立成分分析)アルゴリズムを用いた。ブラインド等化アルゴリズムは、光受信機60aの受信データx1,x2から送信信号s1,s2を導出するために用いる。
 図7Aに、光送信機20a(図5)から送信された25Gbit/sのDP-OOK信号Pa1を50km(図7Aには25GDP-OOK@50kmと記載)伝送後、可変光アッテネータ(図5のVOA41)を用いて光受信機60aへの光入力レベルを-19dBmに設定した場合の、正規化周波数間隔(横軸)に対するBit Error Rate(縦軸)を示す。
 但し、正規化周波数間隔(Normalized subcarrier spacing)は、Δf/baud rate(ボーレート)である。横軸の周波数間隔Δf/baud rateは、目盛「1.0」が周波数間隔12.5GHzの12.5Gbaud信号である。つまり、送信信号として、12.5Gbaudを2つ多重(2bit)した25Gbit/sのDP-OOK信号Pa1を用いて、周波数間隔を変化させたものである。
 上述したように、本実験結果(図7A)では横軸のパラメータのふり方がシミュレーションの場合(図6)とは異なっている。つまり、ある損失値(例えば、図6の19dB)で波長間隔を変えたらどうなるかの実験を行った。
 FEC(Forward Error Correction:誤り訂正)リミットを横破線で示すBER=3.8×10-3とすると、正規化周波数間隔が0.4以上でFECリミット以下のBERを達成した。正規化周波数間隔0.4のDP-OOK信号Pa1に対して、fastICAが無い場合のチャンネル1の受信波形を図7Bに示し、fast ICAが有る場合のチャンネル1の受信波形を図7Cに示す。
 図7Bに示す波形は、光受信機60aで受信され、例えば、一方のIL61を透過したCh1の透過信号i1をPD62aで電気信号e1に変換後、ADC63aによりデジタル信号に変換したCh1の受信データx1の波形である。これは、上述の式(8)のx1に相当する波形であり、光送信機20aにおけるCh1及びCh2のOOK信号s1,s2が所定の割合で混ざったものである。
 受信データx1をDSP64で信号処理して、OOK信号s1,s2を推定した波形が、図7Cに示す波形となる。即ち、図7Bに示す波形は2つのOOK信号s1,s2が混合しており双方の波形を判別できないが、図7Cのように、2つのOOK信号s1,s2を分離すると判別可能となる。このように、fast ICAを用いることで偏波信号が分離できていることが分かる。
 即ち、DSP64内のICA出力のサンプリング波形(図7Cに示す波形)を、DSP64で1,0判定を行うとデータD1,D2となる。このデータD1,D2の1,0を、送信側の元のデータD1,D2と比較してBERを導出している。
 次に、図8Aに、光送信機20a(図5)から送信された50Gbit/sのDP-PAM4信号Pb1を25km(図8Aには50GDP-PAM4@25kmと記載)伝送後、可変光アッテネータ(VOA41)を用いて光受信機60aへの光入力レベルを-19dBmに設定した場合の、正規化周波数間隔(横軸)に対するBit Error Rate(縦軸)を示す。なお、横軸及び縦軸の目盛及びFECリミットの条件は、図7Aと同様である。
 DP-PAM4信号Pb1によれば、図8Aの横軸の正規化周波数間隔が0.6以上でFECリミット以下のBERを達成した。このことから、本発明の光伝送システム10がPAM4信号Pb1に対しても有効であることが分かる。なお、図8Aには、比較のために、単一偏波の25Gbit/sのSP-PAM4信号Pc1を25km(図には25GSP-PAM4@25kmと記載)伝送後、このBERを□Pc1で追記して示した。
 また、正規化周波数間隔0.6のDP-PAM4信号Pb1に対して、fastICAが無い場合のチャンネル1(Ch1)の受信波形を図8Bに示し、fast ICAが有る場合のチャンネル1の受信波形を図8Cに示す。
 但し、図8Cに示す波形は、DSP64内において多値信号用の判定を行うディジタルフィルタとしての図示せぬDFE(Decision Feedback Equalization:判定帰還型等化器)の出力波形である。図8Bの波形は、図7Bの25km地点の波形と同じである。
 図8Aに示す同一ビットレートの単一偏波PAM4信号Pb1に対して、図7Aに示す正規化周波数間隔0.6以上のDP-OOK信号Pa1では、伝送距離が25kmから50kmに長延化したにも関わらず、より良い伝送特性が得られていることが分かる。
 また、図8Aにおいて、25Gbit/sのSP-PAM4信号Pc1と、50Gbit/sのDP-PAM4信号Pb1とを比較すると、同一の光入力レベルでも伝送特性の劣化が僅かに留まっていることが分かる。
 同一ボーレートの50Gbit/sのSP-PAM16信号(図示せず)が、SP-PAM4信号Pc1に対して、理論的に約12dB以上の光入力レベルが必要であることを考慮すると、本発明によるDP-PAM4信号Pb1のSP-PAM16信号に対する伝送特性の優位性が分かる。言い換えれば、SP-PAM16信号よりもDP-PAM4信号Pb1の方は劣化が少ない。
<実施形態の効果>
 以上説明したように、本実施形態の光ファイバ伝送路40を介して接続される光送信機20a~20n及び光受信機60a~60nを有する光伝送システム10を、次のような特徴構成とした。光伝送システム10は、直交偏波多重された光信号としてのDP-OOK信号Pa~Pnを出力する光送信機20a~20nと、複数の光送信機20a~20nから出力されたDP-OOK信号Pa~Pnを波長多重して波長多重信号m1を光ファイバ伝送路40へ出力する光合波器30とを有する。更に、波長多重信号m1を光ファイバ伝送路40を介して各波長の光信号であるDP-OOK信号Pa~Pnに分波する光分波器50と、光分波器50で分波されたDP-OOK信号Pa~pnを受信する光受信機60aとを有する。
 (1)光伝送システム10の光送信機(例えば20a)は、光源としてのTLS21a,21bと、光変調器としてのOM22a,22bと、偏光器としてのPBS23とを備えて構成されている。
 TLS21a,21bは、所定の周波数グリッドを中心とし、この中心位置を挟んだ周波数のピーク成分P1,P2(図2)が所定の周波数差離れたCh1とCh2のキャリアc1,c2を出射する。OM22a,22bは、Ch1とCh2のキャリアc1,c2を各々、0,1のビット列のデータD1,D2で変調したCh1とCh2のOOK信号s1,s2を出力する。PBS23は、Ch1とCh2のOOK信号s1,s2を直交偏波多重してDP-OOK信号Paを出力するようにした。
 光受信機(例えば60a)は、インタリーバであるIL61と、PD62a,62bと、ADC63a,63bと、DSP64とを備えて構成されている。
 IL61は、周波数グリッド上に交点を持つと共に、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、直交偏波多重のDP-OOK信号Paの成分の合成比が異なるCh1とCh2の信号を透過して分岐する。PD62a,62bは、その分岐されたCh1とCh2の透過信号i1,i2信号を検波して、Ch1とCh2の電気信号e1,e2に変換する。ADC63a,63bは、Ch1とCh2の電気信号e1,e2をデジタル信号であるCh1とCh2の受信データx1,x2に変換する。DSP64は、Ch1とCh2の受信データx1,x2から送信側のOOK信号s1,s2の直接検波信号I1,I2を復元する。この直接検波信号I1,I2からデータD1,D2を求める。
 この構成によれば、光送信機(例えば20a)から送信され、光ファイバ伝送路40を伝送してきた波長多重信号中の直交偏波多重されたDP-OOK信号Pa~Pnを光受信機(例えば60a)で受信した際に、Ch1とCh2のキャリアc1,c2の周波数の中心位置である波長分割多重グリッドを挟んだ各キャリアc1,c2のピーク成分P1,P2が、所定の周波数差離れる。このため、各キャリアc1,c2を各々0,1のビット列のデータD1,D2で変調した各OOK信号s1,s2の直接検波信号I1,I2を復元できる。この直接検波信号I1,I2は、PAM4信号等の多値パルス振幅変調信号よりも光ファイバ伝送路40の許容損失値が大きいので、その分、光ファイバ伝送路40を長くしても伝送可能となる。
 また、OOK信号s1,s2は、キャリアc1,c2を0,1のビット列のデータD1,D2で変調する小型且つ単純な構成のOM22a,22bで生成可能なので、このOM22a,22bを搭載する光送信機20aの小型化を図ることができる。更に、OOK信号s1,s2は、受信側で容易に復元でき、復元を行うDSP64の演算回路構成を小型且つ単純な構成とできる。このため、DSP64を搭載する光受信機60aの小型化を図ることができる。従って、光送信機20aを搭載して光通信を行う光モジュールと、光受信機60aを搭載して光通信を行う光モジュールとを小型化して、長距離伝送を実現することができる。
 また、光送信機20aでOM22a,22bを2つ使用してCh1とCh2のキャリアc1,c2を、データD1,D2で変調し、光受信機60aでPD62a,62bを2つ使って検波している。PD62a,62bの0,1のレベルを検波する動作速度は速いので、光受信機60aの受信感度が良くなる。受信感度が良くなると、光ファイバ伝送路40の距離が短くなることを回避しながら伝送容量を増加させることができる。
<実施形態の変形例>
 図1に示す実施形態の光伝送システム10では、光受信機60a~60nにおいて、各OM22a,22bが、Ch1とCh2のキャリアc1,c2の各々をデータD1,D2で変調して、Ch1とCh2のOOK信号s1,s2を出力していた。
 変形例では、Ch1とCh2のOOK信号s1,s2に代え、Ch1とCh2のPAM4信号(4値パルス振幅変調信号)を出力するようにした。
 ここで、PAM4は、4値パルス振幅変調であり、「0」と「1」から成るビット列を、4つの電圧レベル、即ち、「00」を「L1電圧」、「01」を「L2電圧」、「10」を[L3電圧」、「11」を「L4電圧」とした4値のレベル(電圧レベル)のパルス信号で、光搬送波を変調する方式である。
 そこで、各OM22a,22bにおいて、Ch1とCh2のキャリアc1,c2の各々を、4値のレベルのパルス信号で変調して、Ch1とCh2のPAM4信号を出力するようにしてもよい。この場合、PBS23は、Ch1とCh2のPAM4信号を直交偏波多重して光合波器30へ出力する。
 また、光受信機60a~60nにおいて、IL61は、直交偏波多重されたCh1とCh2のPAM4信号を分岐して透過し、この透過信号i1,i2をPD62a,62bへ出力する。PD62a,62bは、透過信号i1,i2としての直交偏波多重されたCh1とCh2のPAM4信号をそれぞれ直接検波し、電気信号e1,e2に変換する。ADC63a,63bは、アナログ信号である電気信号e1,e2をデジタルの受信データx1,x2に変換し、DSP64へ出力する。
 つまり、IL61を透過した透過信号i1,i2としての直交偏波多重されたCh1とCh2のPAM4信号を、各PD62a,62bでそれぞれ直接検波し、ADC63a,63bでデジタル信号に変換する処理を行う。この処理によって、各Ch1,Ch2の強度信号であるPAM4信号を、異なる合成比で足し合わせた2つの受信データx1,x2が得られる。
 DSP64は、2つの受信信号x1,x2から、送信側のCh1とCh2のキャリアc1,c2が4値のレベルのパルス信号で変調されたPAM4信号を復元し、このPAM4信号から4値のレベルのパルス信号を求める演算処理を行う。
 この変形例のように、偏波多重PAM2信号(2値パルス振幅変調信号)(Mは2以上の正の整数)は、これと同じ伝送容量の22M値パルス振幅変調信号等よりも光ファイバ伝送路40の許容損失値が大きいので、その分、光ファイバ伝送路40を長くしても伝送可能となる。従って、長距離伝送を実現することができる。
 その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
 10,10A 光伝送システム
 11 送信側の光モジュール
 12 受信側の光モジュール
 20a~20n 光送信機
 21 TLS
 21a,21b TLS(光源)
 22a,22b OM(光変調器)
 23 PBS(偏光器)
 30 光合波器
 40 光ファイバ伝送路
 50 光分波器
 60a~60n 光受信機
 61 IL(インタリーバ)
 62a,62b PD(光検出器)
 63a,63b ADC(A/D変換器)
 64 DSP(デジタル信号処理器)

Claims (7)

  1.  直交偏波多重された光信号を光ファイバ伝送路を介して光受信機へ送信する光送信機であって、
     所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を出射する光源と、
     前記2つの光搬送波を各々、0,1のビット列のデータで変調した2つのオンオフ変調信号を出力する光変調器と、
     前記2つのオンオフ変調信号を直交偏波多重して前記光信号として出力する偏光器と
     を備えることを特徴とする光送信機。
  2.  前記光変調器は、前記2つの光搬送波を各々、4値のレベルのパルス信号で変調した2つの4値パルス振幅変調信号を出力し、
     前記偏光器は、前記2つの4値パルス振幅変調信号を直交偏波多重して前記光信号として出力する
     ことを特徴とする請求項1に記載の光送信機。
  3.  所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、0,1のビット列のデータで変調し、変調された2つのオンオフ変調信号を直交偏波多重した光信号を、光ファイバ伝送路を介して受信する光受信機であって、
     周波数グリッド上に交点を持つと共に、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐するインタリーバと、
     前記分岐された2つの信号を検波して電気信号に変換する検波器と、
     前記検波器で変換された2つの電気信号をデジタル信号に変換するA/D変換器と、
     前記A/D変換器で変換された2つのデジタル信号から送信側のオンオフ変調信号を復元するデジタル信号処理器と
     を備えることを特徴とする光受信機。
  4.  所定の周波数グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、2値(Mは2以上の正の整数)のレベルのパルス信号で変調し、変調された2つの2値パルス振幅変調信号を直交偏波多重した光信号を、光ファイバ伝送路を介して受信する光受信機であって、
     周波数グリッド上に交点を持つと共に、フルスケールレンジが周波数グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐するインタリーバと、
     前記分岐された2つの信号を検波して電気信号に変換する検波器と、
     前記検波器で変換された2つの電気信号をデジタル信号に変換するA/D変換器と、
     前記A/D変換器で変換された2つのデジタル信号から送信側の4値パルス振幅変調信号を復元するデジタル信号処理器と
     を備えることを特徴とする光受信機。
  5.  直交偏波多重された光信号を出力する光送信機と、複数の光送信機から出力された光信号を波長多重して波長多重信号を出力する光合波器と、当該光合波器から出力される波長多重信号を光ファイバ伝送路を介して各波長の光信号に分波する光分波器と、当該光分波器で分波された光信号を受信する光受信機とを有する光伝送システムであって、
     前記光送信機は、所定の波長分割多重グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を各々、0,1のビット列のデータで変調し、変調された2つのオンオフ変調信号を直交偏波多重して光信号として出力する処理を行い、
     前記光受信機は、前記波長分割多重グリッド上に交点を持つと共に、フルスケールレンジが波長分割多重グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタによって前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐し、当該分岐された2つの信号を検波後にデジタル信号に変換し、変換された2つのデジタル信号から送信側のオンオフ変調信号を復元する処理を行う
     ことを特徴とする光伝送システム。
  6.  前記光送信機は、所定の波長分割多重グリッドを中心とし、中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波の、一方を0,1のビット列の第1データで変調する第1光変調器と、他方を前記第1データと異なる0,1のビット列の第2データで変調する第2光変調器とを備え、
     前記光受信機は、前記フィルタにより分岐された2つの信号の、一方を検波する第1光検出器と、他方を検波する第2光検出器とを備える
     ことを特徴とする請求項5に記載の光伝送システム。
  7.  前記光送信機は、所定の波長分割多重グリッドを中心とし、この中心位置を挟んだ周波数のピーク成分が所定の周波数差離れた2つの光搬送波を、各々2値(Mは2以上の正の整数)のレベルのパルス信号で変調し、この変調により得られる2つの2値パルス振幅変調信号を直交偏波多重して光信号として出力する処理を行い、
     前記光受信機は、前記波長分割多重グリッド上に交点を持つと共に、フルスケールレンジが波長分割多重グリッド間隔と等倍又は2倍の周期を持つ光の透過特性を有し、出力が非対称であるフィルタにより、前記直交偏波多重の光信号成分の合成比が異なる2つの信号を透過して分岐し、当該分岐された2つの信号を検波後にデジタル信号に変換し、当該変換された2つのデジタル信号から送信側の2値パルス振幅変調信号を復元する処理を行う
     ことを特徴とする請求項5に記載の光伝送システム。
PCT/JP2018/023574 2017-06-27 2018-06-21 光送信機、光受信機及び光伝送システム WO2019004040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880043735.9A CN110870232B (zh) 2017-06-27 2018-06-21 光学发送器、光学接收器和光学传输系统
US16/626,468 US10951344B2 (en) 2017-06-27 2018-06-21 Optical transmitter, optical receiver, and optical transmission system
JP2019526842A JP6829766B2 (ja) 2017-06-27 2018-06-21 光送信機、光受信機及び光伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124728 2017-06-27
JP2017-124728 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019004040A1 true WO2019004040A1 (ja) 2019-01-03

Family

ID=64742922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023574 WO2019004040A1 (ja) 2017-06-27 2018-06-21 光送信機、光受信機及び光伝送システム

Country Status (4)

Country Link
US (1) US10951344B2 (ja)
JP (1) JP6829766B2 (ja)
CN (1) CN110870232B (ja)
WO (1) WO2019004040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088614A (ja) * 2018-11-27 2020-06-04 日本電信電話株式会社 光受信機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139371B2 (ja) * 2020-03-19 2022-09-20 アンリツ株式会社 誤り率測定装置及びデータ分割表示方法
US11621795B2 (en) * 2020-06-01 2023-04-04 Nubis Communications, Inc. Polarization-diversity optical power supply
CN112839268B (zh) * 2020-12-31 2022-07-22 杭州电子科技大学 一种基于简化相干的光纤接入网传输系统及方法
CN113347397B (zh) * 2021-06-08 2022-07-29 飞昂创新科技南通有限公司 一种数字音视频信号及带外信号的全光传输电路及方法
CN117795869A (zh) * 2021-08-17 2024-03-29 昕诺飞控股有限公司 用于调制光学通信的光源复用
WO2023043738A1 (en) * 2021-09-14 2023-03-23 University Of Southern California Multiplexed transmission by optical beam transformation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004682A1 (ja) * 2007-06-29 2009-01-08 Fujitsu Limited 光受信回路
JP2010041707A (ja) * 2008-07-31 2010-02-18 Nec Lab America Inc 100ギガビット/秒以上の光伝送チャネルの生成方法
JP2010166242A (ja) * 2009-01-14 2010-07-29 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置及び方法
US20120008950A1 (en) * 2010-07-07 2012-01-12 Tyco Electronics Subsea Communications Llc Orthogonally-Combining Interleaving Filter Multiplexer and Systems and Methods Using Same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021166A1 (en) * 2008-02-22 2010-01-28 Way Winston I Spectrally Efficient Parallel Optical WDM Channels for Long-Haul MAN and WAN Optical Networks
JP5476697B2 (ja) * 2008-09-26 2014-04-23 富士通株式会社 光信号送信装置
US8121480B2 (en) * 2009-01-30 2012-02-21 Agilent Technologies, Inc. Methods and apparatus for recovering first and second transmitted optical waves from a polarization multiplexed optical wave
WO2011086696A1 (ja) * 2010-01-18 2011-07-21 株式会社日立製作所 光通信システム、光送信器、光受信器及び光トランスポンダ
JP6058135B2 (ja) * 2012-08-09 2017-01-11 ゼットティーイー(ユーエスエー)インコーポレーテッド コヒーレントデュオバイナリ整形pm−qpsk信号処理方法及び装置
JP5438856B1 (ja) * 2013-03-22 2014-03-12 日本電信電話株式会社 光送受信システム、送信器、受信器および光送受信方法
CN105071894B (zh) * 2015-08-03 2017-10-24 西南交通大学 一种基于相位追踪的非正交偏振复用相位调制信号传输方法
JPWO2017164037A1 (ja) * 2016-03-24 2018-12-13 日本電気株式会社 光源装置
US10623104B2 (en) * 2016-04-12 2020-04-14 Cable Television Laboratories, Inc Fiber communication systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004682A1 (ja) * 2007-06-29 2009-01-08 Fujitsu Limited 光受信回路
JP2010041707A (ja) * 2008-07-31 2010-02-18 Nec Lab America Inc 100ギガビット/秒以上の光伝送チャネルの生成方法
JP2010166242A (ja) * 2009-01-14 2010-07-29 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置及び方法
US20120008950A1 (en) * 2010-07-07 2012-01-12 Tyco Electronics Subsea Communications Llc Orthogonally-Combining Interleaving Filter Multiplexer and Systems and Methods Using Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088614A (ja) * 2018-11-27 2020-06-04 日本電信電話株式会社 光受信機
WO2020110778A1 (ja) * 2018-11-27 2020-06-04 日本電信電話株式会社 光受信機
JP7074035B2 (ja) 2018-11-27 2022-05-24 日本電信電話株式会社 光受信機

Also Published As

Publication number Publication date
JP6829766B2 (ja) 2021-02-10
CN110870232A (zh) 2020-03-06
JPWO2019004040A1 (ja) 2019-11-07
CN110870232B (zh) 2021-07-20
US10951344B2 (en) 2021-03-16
US20200127757A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6829766B2 (ja) 光送信機、光受信機及び光伝送システム
US20230040543A1 (en) Systems and methods for coherent optics in an access network
Puttnam et al. High capacity transmission systems using homogeneous multi-core fibers
Eiselt et al. Real-time 200 Gb/s (4× 56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator
JP5892299B1 (ja) 光伝送方法および光伝送システム
WO2018014565A1 (zh) 用于发送和接收数据的方法及设备
US20140301736A1 (en) Directly modulated multi-level optical signal generator and method thereof
Shim et al. 20-Gb/s polar RZ 4-PAM transmission over 20-km SSMF using RSOA and direct detection
US10256934B2 (en) Chirp managed laser generation for next generation passive optical networks
Gunning et al. Dispersion tolerance of coherent WDM
Onidare et al. Optical dispersion compensation using different modulation formats
Salgals et al. Research of M-PAM and duobinary modulation formats for use in high-speed WDM-PON systems
Salgals et al. Evaluation of 4-PAM, NRZ and duobinary modulation formats performance for use in 20 Gbit/s DWDM-PON optical access systems
Rajalakshmi et al. Investigation of different modulation formats for extended reach NG-PON2 using RSOA
Pradhan et al. Hybrid multiplexing (otdm/wdm) technique for fiber optic communication
Korra et al. Performance analysis of cost-efficient high-speed up to 32 Gbit/s WDM-PON next-generation access network with dispersion compensation
Almufti et al. Experimental Investigation and Comparison of Modulation Types for High Capacity Broadband Transmission System to Support 5G Networks
Arnould Ultra-wideband and high symbol rate transmission systems for next-generation optical fiber communications
ES2947235T3 (es) Sistemas, receptores y dispositivos de transmisión óptica, y métodos para recibir señales ópticas
Choi et al. Feasibility demonstration of flexible Tx/Rx for spectrum defragmentation in elastic optical networks
Kashi Implications of Fiber Nonlinearities on Coherent Optical Fiber Communications
Chandrasekhar et al. 40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission
Li et al. Flexible coherent PON system based on cost-effective heterodyne detection of PDM-PAM-n signal
García-Yañez et al. Technical feasibility of a 400 Gb/s unamplified WDM coherent transmission system for Ethernet over 40 km of single-mode fiber
Rademacher et al. Record Spectral Efficient Transmission of 11.24 Bit/s/Hz/mode over 30 km Few-Mode Fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825527

Country of ref document: EP

Kind code of ref document: A1