JP2020087751A - Terminal welding device - Google Patents

Terminal welding device Download PDF

Info

Publication number
JP2020087751A
JP2020087751A JP2018221536A JP2018221536A JP2020087751A JP 2020087751 A JP2020087751 A JP 2020087751A JP 2018221536 A JP2018221536 A JP 2018221536A JP 2018221536 A JP2018221536 A JP 2018221536A JP 2020087751 A JP2020087751 A JP 2020087751A
Authority
JP
Japan
Prior art keywords
resistance
contact
external terminal
terminal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221536A
Other languages
Japanese (ja)
Other versions
JP6988776B2 (en
Inventor
優文 門井
Masafumi Kadoi
優文 門井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018221536A priority Critical patent/JP6988776B2/en
Publication of JP2020087751A publication Critical patent/JP2020087751A/en
Application granted granted Critical
Publication of JP6988776B2 publication Critical patent/JP6988776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a terminal welding device capable of obtaining a value close to contact resistance Ra between the top surface of a protruding portion of an external terminal connection portion and an electrode terminal portion of a battery to a good extent before resistance welding.SOLUTION: A terminal welding device 100 includes a first electrode rod 110 that is brought into contact with an electrode terminal portion 15 of a battery 10, a second electrode rod 115 that is brought into contact with a peripheral portion 23d of an external terminal connecting portion 23 of an external terminal member 20 and presses the peripheral portion 23d to bring the top surface 23cn of a protruding portion 23c into contact with the electrode terminal portion 15, a first resistance measuring probe 120 brought into contact with the electrode terminal portion 15, a second resistance measuring probe 125 brought into contact with a base end surface 23cm of the protruding portion 23c, and a resistance detection unit 160 that detects an inter-probe resistance value Rk between the first resistance measuring probe 120 and the second resistance measuring probe 125.SELECTED DRAWING: Figure 3

Description

本発明は、突出部及び周囲部を含む外部端子接続部を有する外部端子部材のうち、突出部の頂面を、電池の一方の電極端子部に当接させて、外部端子接続部を電極端子部に抵抗溶接する端子溶接装置に関する。 The present invention relates to an external terminal member having an external terminal connecting portion including a projecting portion and a peripheral portion, a top surface of the projecting portion is brought into contact with one electrode terminal portion of a battery to connect the external terminal connecting portion to the electrode terminal. The present invention relates to a terminal welding device for resistance welding to a portion.

外部端子部材の外部端子接続部を、電池の正または負の電極端子部に溶接した電池モジュールが知られている。例えば特許文献1に、このような電池モジュールが記載されている。この特許文献1では、バスバ(外部端子部材)の円板状の溶接部(外部端子接続部)と円筒型電池の一方の接続端子部(電極端子部)との溶接を、以下の手法により行っている。 There is known a battery module in which an external terminal connecting portion of an external terminal member is welded to a positive or negative electrode terminal portion of a battery. For example, Patent Document 1 describes such a battery module. In this patent document 1, a disc-shaped welded portion (external terminal connection portion) of a bus bar (external terminal member) and one connection terminal portion (electrode terminal portion) of a cylindrical battery are welded by the following method. ing.

即ち、バスバ(外部端子部材)の円板状の溶接部(外部端子接続部)を、中央の突出部がその周囲を円環状に取り巻く周囲部よりも突出した形状に形成する。そして、端子溶接装置の一対の電極棒のうち、一方の電極棒を円筒型電池の接続端子部(電極端子部)に当接させると共に、他方の電極棒をバスバ(外部端子部材)の溶接部(外部端子接続部)に押し付け、溶接部(外部端子接続部)の突出部の頂面を円筒型電池の接続端子部(電極端子部)に当接させる(特許文献1の図10等を参照)。そして、一方の電極棒と他方の電極棒との間に溶接電流を流して、バスバ(外部端子部材)の溶接部(外部端子接続部)を円筒型電池の接続端子部(電極端子部)に抵抗溶接している。 That is, the disk-shaped welded portion (external terminal connecting portion) of the bus bar (external terminal member) is formed in a shape in which the central protruding portion projects more than the peripheral portion surrounding the circumference thereof in an annular shape. Then, of the pair of electrode rods of the terminal welding device, one electrode rod is brought into contact with the connection terminal portion (electrode terminal portion) of the cylindrical battery, and the other electrode rod is welded to the bus bar (external terminal member). It is pressed against the (external terminal connection part), and the top surface of the projection of the welded part (external terminal connection part) is brought into contact with the connection terminal part (electrode terminal part) of the cylindrical battery (see FIG. 10 of Patent Document 1 and the like). ). Then, a welding current is passed between the one electrode rod and the other electrode rod, and the welded portion (external terminal connection portion) of the bus bar (external terminal member) is connected to the connection terminal portion (electrode terminal portion) of the cylindrical battery. Resistance welding.

特開2017−174521号公報JP, 2017-174521, A

しかしながら、溶接部(外部端子接続部)の突出部の形状バラツキや、この突出部を円筒型電池の接続端子部(電極端子部)に押圧する押圧力のバラツキによって、突出部の頂面と円筒型電池の接続端子部(電極端子部)との接触抵抗が異なってしまう。このため、この接触抵抗の大きさを考慮しないで抵抗溶接を行うと、溶接バラツキが生じる。即ち、この接触抵抗が小さすぎると、抵抗溶接の際に突出部の頂面と接続端子部(電極端子部)との接触部分で生じる熱量が少なすぎて十分な溶接ができない。一方、この接触抵抗が大きすぎると、抵抗溶接の際に接触部分で生じる熱量が多すぎて溶接部分が溶けて破断するなどの問題が生じ得る。 However, due to variations in the shape of the protrusion of the welded portion (external terminal connection) and variations in the pressing force that presses this protrusion against the connection terminal (electrode terminal) of the cylindrical battery, the top surface of the protrusion and the cylinder The contact resistance with the connection terminal (electrode terminal) of the battery is different. Therefore, if resistance welding is performed without considering the magnitude of this contact resistance, welding variations occur. That is, if this contact resistance is too small, the amount of heat generated at the contact portion between the top surface of the protrusion and the connection terminal portion (electrode terminal portion) during resistance welding is too small to perform sufficient welding. On the other hand, if the contact resistance is too large, the amount of heat generated at the contact portion during resistance welding may be too large and the weld portion may melt and break.

本発明は、かかる現状に鑑みてなされたものであって、外部端子部材の外部端子接続部を電池の一方の電極端子部に抵抗溶接するのに先立ち、外部端子接続部の突出部の頂面と電池の電極端子部との接触抵抗Raに近い値を程度良く取得できる端子溶接装置を提供するものである。 The present invention has been made in view of the above situation, and prior to resistance welding the external terminal connecting portion of the external terminal member to one electrode terminal portion of the battery, the top surface of the protruding portion of the external terminal connecting portion is formed. The present invention provides a terminal welding device that can obtain a value close to the contact resistance Ra between the battery and the electrode terminal of the battery with good accuracy.

上記課題を解決するための本発明の一態様は、中央の突出部がその周囲を環状に取り巻く周囲部よりも突出した外部端子接続部を有する外部端子部材のうち、上記突出部の頂面を、電池の一方の電極端子部に当接させて、上記外部端子接続部を上記電極端子部に抵抗溶接する端子溶接装置であって、上記電極端子部に当接して導通する第1電極棒と、上記外部端子接続部の上記周囲部に当接して導通すると共に、この周囲部を上記電極端子部側に押圧して、上記突出部の上記頂面を上記電極端子部に当接させる第2電極棒と、上記電極端子部に当接して導通する第1抵抗測定プローブと、上記外部端子接続部の上記突出部のうち、上記頂面とは反対側の基端面に当接して導通する第2抵抗測定プローブと、上記第1抵抗測定プローブと上記第2抵抗測定プローブとの間のプローブ間抵抗値Rkを検知する抵抗検知部と、を備える端子溶接装置である。 One aspect of the present invention for solving the above-mentioned problem is that, in the external terminal member having the external terminal connecting portion that is protruded from the peripheral portion in which the central protruding portion surrounds the periphery thereof, the top surface of the protruding portion is A terminal welding device for resistance welding the external terminal connection portion to the electrode terminal portion by abutting on one electrode terminal portion of a battery, the first electrode rod being in contact with the electrode terminal portion and conducting. A second contacting part of the external terminal connecting part is brought into contact with the peripheral part to conduct electricity, and the peripheral part is pressed against the electrode terminal part side so that the top surface of the protruding part abuts on the electrode terminal part. An electrode rod, a first resistance measuring probe that comes into contact with the electrode terminal portion to conduct electricity, and a first resistance probe that comes into contact with and comes into contact with a base end surface of the protrusion of the external terminal connection portion opposite to the top surface. It is a terminal welding device provided with a 2 resistance measurement probe and a resistance detection part which detects inter-probe resistance value Rk between the 1st resistance measurement probe and the 2nd resistance measurement probe.

上述の端子溶接装置では、抵抗溶接を行う一対の電極棒(第1電極棒及び第2電極棒)のほか、上述の一対の抵抗測定プローブ(第1抵抗測定プローブ及び第2抵抗測定プローブ)と抵抗検知部とを備える。これらにより、外部端子部材の外部端子接続部を電池の電極端子部に抵抗溶接するのに先立ち、抵抗測定プローブ間のプローブ間抵抗値Rkを検知できるため、外部端子接続部の突出部の頂面と電池の電極端子部との接触抵抗Raに近い値を取得できる。特に、上述の端子溶接装置では、第2抵抗測定プローブを、外部端子接続部の突出部の頂面と電池の電極端子部との接触部分の直ぐ近く、具体的には、突出部のうち頂面とは反対側の基端面に当接させる。これにより、第2抵抗測定プローブから、突出部の頂面と電極端子部との接触部分までの距離を短く導体抵抗を小さくでき、また、第2抵抗測定プローブを安定して接触させ得るので、プローブ間抵抗値Rkとして、より接触抵抗Raに近い値を安定して取得できる。 In the above-mentioned terminal welding device, in addition to a pair of electrode rods (first electrode rod and second electrode rod) for resistance welding, a pair of resistance measurement probes (first resistance measurement probe and second resistance measurement probe) described above. And a resistance detector. With these, the resistance value Rk between the probes between the resistance measuring probes can be detected before the resistance welding of the external terminal connecting portion of the external terminal member to the electrode terminal portion of the battery, so that the top surface of the protruding portion of the external terminal connecting portion can be detected. It is possible to acquire a value close to the contact resistance Ra between the battery and the electrode terminal of the battery. In particular, in the above-described terminal welding device, the second resistance measuring probe is installed in the vicinity of the contact portion between the top surface of the protruding portion of the external terminal connecting portion and the electrode terminal portion of the battery, specifically, the top of the protruding portion. The base end face opposite to the face is brought into contact. Accordingly, the distance from the second resistance measuring probe to the contact portion between the top surface of the protrusion and the electrode terminal portion can be shortened, and the conductor resistance can be reduced, and the second resistance measuring probe can be stably contacted. A value closer to the contact resistance Ra can be stably obtained as the inter-probe resistance value Rk.

実施形態に係る電池モジュールの部分上面図である。FIG. 3 is a partial top view of the battery module according to the embodiment. 実施形態に係る電池モジュールの図1におけるA−A部分断面図である。It is an AA partial sectional view in FIG. 1 of the battery module according to the embodiment. 実施形態に係る端子溶接装置を示す説明図である。It is explanatory drawing which shows the terminal welding apparatus which concerns on embodiment. 実施形態に係る端子溶接装置を用いた抵抗溶接工程のフローチャートである。It is a flow chart of a resistance welding process using a terminal welding device concerning an embodiment. 実施形態に係り、一対の抵抗測定プローブ間のプローブ間抵抗値Rkを検知する様子を示す説明図である。FIG. 7 is an explanatory diagram showing a manner of detecting an inter-probe resistance value Rk between a pair of resistance measurement probes according to the embodiment. 実施形態に係り、外部端子部材の外部端子接続部を電池の負極端子部に抵抗溶接する様子を示す説明図である。FIG. 6 is an explanatory view showing a manner of resistance welding an external terminal connecting portion of an external terminal member to a negative electrode terminal portion of a battery according to the embodiment.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に本実施形態に係る電池モジュール1の部分上面図及び部分断面図を示す。なお、図2並びに後述する図5及び図6の円筒型電池10では、電池内部の図示を省略し、電池ケース11の断面のみを示してある。また、以下では、電池モジュール1の縦方向BH、横方向CH及び高さ方向DHを、図1及び図2に示す方向と定めて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are a partial top view and a partial cross-sectional view of a battery module 1 according to this embodiment. In addition, in the cylindrical battery 10 of FIG. 2 and FIGS. 5 and 6 described later, the inside of the battery is omitted and only the cross section of the battery case 11 is shown. Moreover, below, the vertical direction BH, the horizontal direction CH, and the height direction DH of the battery module 1 are set and demonstrated as the direction shown in FIG.1 and FIG.2.

この電池モジュール1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両に搭載される車載用の電池モジュールである。電池モジュール1は、複数の円筒型電池(以下、単に「電池」ともいう)10を互いに並列に接続したものであり、電池10のほか、電池10を保持する電池保持部材(不図示)、電池10の負極端子部(電極端子部)15同士を接続する負極側の外部端子部材20、電池10の正極端子部(電極端子部,不図示)同士を接続する正極側の外部端子部材(不図示)等から構成される。 The battery module 1 is a vehicle-mounted battery module mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric vehicle, or the like. The battery module 1 is formed by connecting a plurality of cylindrical batteries (hereinafter, also simply referred to as “batteries”) 10 in parallel with each other. In addition to the batteries 10, a battery holding member (not shown) that holds the batteries 10, a battery The negative electrode side external terminal member 20 that connects the negative electrode terminal portions (electrode terminal portions) 15 of the battery 10 and the positive electrode side external terminal member (not shown) that connects the positive electrode terminal portions (the electrode terminal portions, not shown) of the battery 10 to each other. ) Etc.

このうち電池10は、円筒型(円柱状)で密閉型のリチウムイオン二次電池(具体的には18650型のリチウムイオン二次電池)である。この電池10は、円筒状で金属(本実施形態では炭素鋼)からなる電池ケース11の内部に、帯状の正極板と帯状の負極板とを一対の帯状のセパレータを介して互いに重ねて円筒状に捲回した電極体(不図示)が非水電解液(不図示)と共に収容されている。
電池10の軸線方向(図1中、紙面に直交する方向、図2中、上下方向)の一方端(図2中、下方)には、電池内部で電極体の正極板に接続して導通する凸状の正極端子部(不図示)が設けられている。一方、電池10の軸線方向の他方端(図2中、上方)に位置する電池ケース11の底面部は、電池内部で電極体の負極板に接続して導通する円板状の負極端子部15である。
Among them, the battery 10 is a cylindrical (cylindrical) and sealed type lithium ion secondary battery (specifically, 18650 type lithium ion secondary battery). The battery 10 has a cylindrical battery case 11 made of metal (carbon steel in the present embodiment), in which a belt-shaped positive electrode plate and a belt-shaped negative electrode plate are superposed on each other via a pair of belt-shaped separators. The electrode body (not shown) wound around is housed together with the non-aqueous electrolytic solution (not shown).
At one end (downward in FIG. 2) of the battery 10 in the axial direction (the direction orthogonal to the paper surface in FIG. 1, vertical direction in FIG. 2), the battery 10 is connected to the positive electrode plate of the electrode body to conduct electricity. A convex positive electrode terminal portion (not shown) is provided. On the other hand, the bottom surface portion of the battery case 11 located at the other end (upper side in FIG. 2) in the axial direction of the battery 10 is a disk-shaped negative electrode terminal portion 15 that is connected to the negative electrode plate of the electrode body to conduct electricity inside the battery. Is.

電池モジュール1を構成する各電池10は、いずれも、負極端子部15を高さ方向DHの上方DSに向け、正極端子部(不図示)を高さ方向DHの下方DKに向け、互いに平行にかつ高さを揃えた状態で配置されている。そして、各電池10の負極端子部15は、後述する負極側の外部端子部材20に接続(溶接)されており、これにより負極端子部15同士が互いに導通している。一方、各電池10の正極端子部は、負極側の外部端子部材20とほぼ同様な形態の正極側の外部端子部材(不図示)に接続(溶接)されており、これにより正極端子部同士が互いに導通している。 In each of the batteries 10 constituting the battery module 1, the negative electrode terminal portion 15 faces the upper DS in the height direction DH, and the positive electrode terminal portion (not shown) faces the lower DK in the height direction DH so as to be parallel to each other. And they are arranged in the same height. Then, the negative electrode terminal portion 15 of each battery 10 is connected (welded) to an external terminal member 20 on the negative electrode side, which will be described later, so that the negative electrode terminal portions 15 are electrically connected to each other. On the other hand, the positive electrode terminal portion of each battery 10 is connected (welded) to a positive electrode side external terminal member (not shown) having substantially the same configuration as the negative electrode side external terminal member 20, whereby the positive electrode terminal portions are connected to each other. They are in conduction with each other.

次に、負極側の外部端子部材20について説明する。この外部端子部材20は、金属板材(本実施形態では銅板材)にプレス打ち抜き加工を行って形成したものであり、全体として見ると板状である。具体的には、外部端子部材20は、各電池10に対応した位置に円孔の貫通孔21hがそれぞれ設けられた板状の外部端子本体部21を有する。外部端子本体部21の各貫通孔21h内には、円板状の外部端子接続部23と、この外部端子接続部23と外部端子本体部21との間を結ぶ帯状の連結部25とがそれぞれ設けられている。 Next, the external terminal member 20 on the negative electrode side will be described. The external terminal member 20 is formed by press punching a metal plate material (copper plate material in this embodiment), and has a plate shape as a whole. Specifically, the external terminal member 20 has a plate-shaped external terminal body portion 21 in which circular through holes 21h are provided at positions corresponding to the respective batteries 10. In each of the through holes 21h of the external terminal body portion 21, a disk-shaped external terminal connection portion 23 and a belt-shaped connection portion 25 that connects the external terminal connection portion 23 and the external terminal body portion 21 are respectively provided. It is provided.

外部端子本体部21は、電池モジュール1を構成する各電池10を上方DSから覆うようにして、各電池10の負極端子部15の上方DSに配置されており、上方DSから外部端子部材20を平面視したとき(図1参照)、各貫通孔21hの径方向内側に各電池10の負極端子部15が位置する。
連結部25は、外部端子本体部21の貫通孔21hの周縁から径方向内側でかつ斜め下方DKに帯状に延出しており、連結部25の先端に外部端子接続部23が設けられている。
外部端子接続部23は、円板状で、中央の突出部23cがその周囲を円環状に取り巻く周囲部23dよりも下方DKに突出した形状を有する。外部端子接続部23の突出部23cと電池10の負極端子部15とは、後述するように抵抗溶接されており、突出部23cと負極端子部15との溶接部(溶接ナゲット)30が形成されている。
The external terminal main body portion 21 is arranged above the negative electrode terminal portion 15 of each battery 10 so as to cover each battery 10 constituting the battery module 1 from the upper DS, and the external terminal member 20 is connected from the upper DS to the external terminal member 20. When viewed in a plan view (see FIG. 1), the negative electrode terminal portion 15 of each battery 10 is located inside the through hole 21h in the radial direction.
The connecting portion 25 extends in a band shape radially inward and obliquely downward DK from the peripheral edge of the through hole 21h of the external terminal main body portion 21, and the external terminal connecting portion 23 is provided at the tip of the connecting portion 25.
The external terminal connecting portion 23 is disk-shaped, and has a shape in which a central protruding portion 23c protrudes downward DK from a peripheral portion 23d surrounding the periphery thereof in an annular shape. The protruding portion 23c of the external terminal connecting portion 23 and the negative electrode terminal portion 15 of the battery 10 are resistance-welded as described later, and a welded portion (welding nugget) 30 between the protruding portion 23c and the negative electrode terminal portion 15 is formed. ing.

次いで、上記電池モジュール1の製造方法について説明する(図3〜図6参照)。まず、複数の電池10を用意し、各電池10の負極端子部15を上方DSに、正極端子部を下方DKにそれぞれ向け、互いに平行にかつ高さを揃えた状態で、各電池10を電池保持部材(不図示)に保持させる。 Next, a method for manufacturing the battery module 1 will be described (see FIGS. 3 to 6). First, a plurality of batteries 10 are prepared, and the negative electrode terminal portions 15 of the respective batteries 10 are directed to the upper side DS and the positive electrode terminal portions are directed to the lower side DK, respectively. It is held by a holding member (not shown).

次に、負極側の外部端子部材20を用意し、外部端子部材20の各外部端子接続部23の突出部23cを、保持された各電池10の負極端子部15にそれぞれ抵抗溶接する。この溶接は、図3に概略を示す端子溶接装置100を用いて行う。この端子溶接装置100は、溶接電流YAを流す一対の電極棒(第1電極棒110及び第2筒状電極棒115)、一対の抵抗測定プローブ(第1抵抗測定プローブ120及び第2抵抗測定プローブ125)、可変電流源130、定電流源140、電圧計145、パーソナルコンピュータ(PC)150等から構成される。なお、本実施形態では、定電流源140、電圧計145及びPC150によって前述の抵抗検知部160を構成する。 Next, the external terminal member 20 on the negative electrode side is prepared, and the protruding portions 23c of the external terminal connection portions 23 of the external terminal member 20 are resistance-welded to the negative electrode terminal portions 15 of the held batteries 10, respectively. This welding is performed using the terminal welding device 100 schematically shown in FIG. This terminal welding device 100 includes a pair of electrode rods (first electrode rod 110 and second cylindrical electrode rod 115) through which a welding current YA flows, and a pair of resistance measuring probes (first resistance measuring probe 120 and second resistance measuring probe). 125), a variable current source 130, a constant current source 140, a voltmeter 145, a personal computer (PC) 150, and the like. In the present embodiment, the constant current source 140, the voltmeter 145, and the PC 150 constitute the resistance detection unit 160 described above.

このうち第1電極棒110は、高さ方向DHに延びる中実丸棒である。この第1電極棒110は、図示しない移動機構によって高さ方向DHに移動可能に構成されており、上方DSから外部端子部材20の貫通孔21h内に挿入されて、第1電極棒110の先端部110sが電池10の負極端子部15に当接して導通する。 Of these, the first electrode rod 110 is a solid round rod extending in the height direction DH. The first electrode rod 110 is configured to be movable in the height direction DH by a moving mechanism (not shown), is inserted into the through hole 21h of the external terminal member 20 from the upper DS, and the tip of the first electrode rod 110 is inserted. The portion 110s contacts the negative electrode terminal portion 15 of the battery 10 and becomes conductive.

一方、第2筒状電極棒115は、高さ方向DHに延びる中空丸棒(円筒状)である。この第2筒状電極棒115は、図示しない移動機構によって高さ方向DHに移動可能に構成されており、上方DSから外部端子部材20の貫通孔21h内に挿入されて、第2筒状電極棒115の先端部115sが、外部端子部材20の外部端子接続部23のうち円環状をなす周囲部23dに全周にわたり当接して導通する。また、第2筒状電極棒115の先端部115sは、この周囲部23dを電池10の負極端子部15側(下方DK)に押圧して、外部端子接続部23の突出部23cの頂面23cnを負極端子部15に当接させる。 On the other hand, the second tubular electrode rod 115 is a hollow round rod (cylindrical) extending in the height direction DH. The second cylindrical electrode rod 115 is configured to be movable in the height direction DH by a moving mechanism (not shown), and is inserted into the through hole 21h of the external terminal member 20 from the upper side DS to form the second cylindrical electrode. The tip portion 115s of the rod 115 abuts on the entire circumference of the annular terminal portion 23d of the external terminal connecting portion 23 of the external terminal member 20 to conduct electricity. In addition, the tip portion 115s of the second tubular electrode rod 115 presses the peripheral portion 23d toward the negative electrode terminal portion 15 side (downward DK) of the battery 10 and the top surface 23cn of the protruding portion 23c of the external terminal connection portion 23. Is brought into contact with the negative electrode terminal portion 15.

これら第1電極棒110及び第2筒状電極棒115は、電流値Iaを変更可能な可変電流源130に接続されている。一方で、この可変電流源130はPC150に接続されており、PC150からの指示により、第1電極棒110と第2筒状電極棒115との間の溶接電流経路EAに、後述する電流値Iaの溶接電流YAを流すことができるように構成されている。 The first electrode rod 110 and the second tubular electrode rod 115 are connected to a variable current source 130 capable of changing the current value Ia. On the other hand, the variable current source 130 is connected to the PC 150, and in accordance with an instruction from the PC 150, a current value Ia described later is provided in the welding current path EA between the first electrode rod 110 and the second cylindrical electrode rod 115. Of the welding current YA.

第1抵抗測定プローブ120は、高さ方向DHに延びる針状である。この第1抵抗測定プローブ120は、横方向CHに並んだ第1電極棒110と第2筒状電極棒115との間(ほぼ中間)に配置されて、図示しない移動機構によって高さ方向DHに移動可能に構成されている。第1抵抗測定プローブ120は、上方DSから外部端子部材20の貫通孔21h内に挿入されて、先端部120sが電池10の負極端子部15に当接して導通する。 The first resistance measuring probe 120 has a needle shape extending in the height direction DH. The first resistance measuring probe 120 is arranged between the first electrode rod 110 and the second tubular electrode rod 115 arranged in the lateral direction CH (almost in the middle), and is moved in the height direction DH by a moving mechanism (not shown). It is configured to be movable. The first resistance measuring probe 120 is inserted into the through hole 21h of the external terminal member 20 from the upper side DS, and the tip portion 120s comes into contact with the negative electrode terminal portion 15 of the battery 10 to conduct electricity.

また、第2抵抗測定プローブ125は、第1抵抗測定プローブ120と同様な高さ方向DHに延びる針状である。この第2抵抗測定プローブ125は、筒状をなす第2筒状電極棒115の内部に同軸に挿通されており、図示しない移動機構によって高さ方向DHに移動可能に構成されている。第2抵抗測定プローブ125の先端部125sは、外部端子接続部23のうち突出部23cの基端面23cm(頂面23cnとは反対側の面)の中央に当接して導通する。 The second resistance measuring probe 125 has a needle shape extending in the height direction DH similar to the first resistance measuring probe 120. The second resistance measuring probe 125 is coaxially inserted into the second cylindrical electrode rod 115 having a cylindrical shape, and is movable in the height direction DH by a moving mechanism (not shown). The tip portion 125s of the second resistance measuring probe 125 is brought into contact with the center of the base end surface 23cm (the surface opposite to the top surface 23cn) of the protruding portion 23c of the external terminal connecting portion 23 to conduct electricity.

これら第1抵抗測定プローブ120及び第2抵抗測定プローブ125は、定電流源140及び電圧計145に接続されている。一方で、定電流源140及び電圧計145はPC150に接続されており、PC150からの指示により、定電流源140から、第1抵抗測定プローブ120と第2抵抗測定プローブ125との間の検査電流経路EKに、一定の大きさ(電流値Ik)の検査電流YKを流すことができる共に、電圧計145で検知した第1抵抗測定プローブ120と第2抵抗測定プローブ125との間の電圧値Vkを、PC150に出力できるように構成されている。 The first resistance measuring probe 120 and the second resistance measuring probe 125 are connected to the constant current source 140 and the voltmeter 145. On the other hand, the constant current source 140 and the voltmeter 145 are connected to the PC 150, and the inspection current between the first resistance measurement probe 120 and the second resistance measurement probe 125 from the constant current source 140 is instructed by the PC 150. A test current YK having a constant magnitude (current value Ik) can be passed through the path EK, and the voltage value Vk between the first resistance measuring probe 120 and the second resistance measuring probe 125 detected by the voltmeter 145 is detected. Is output to the PC 150.

また、PC150は、上述の検査電流YKの電流値Ikと電圧値Vkから、一対の抵抗測定プローブ120,125間のプローブ間抵抗値Rkを、プローブ間抵抗値Rk=(電圧値Vk)/(電流値Ik)により算出する。なお、第1抵抗測定プローブ120及び第2抵抗測定プローブ125を含む端子溶接装置100の回路抵抗は極めて小さいので、本実施形態では無視している。 Further, the PC 150 calculates the inter-probe resistance value Rk between the pair of resistance measurement probes 120 and 125 from the current value Ik of the inspection current YK and the voltage value Vk, and the inter-probe resistance value Rk=(voltage value Vk)/( It is calculated by the current value Ik). Since the circuit resistance of the terminal welding device 100 including the first resistance measuring probe 120 and the second resistance measuring probe 125 is extremely small, it is ignored in this embodiment.

更に、PC150では、プローブ間抵抗値Rkから、外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触抵抗Raを求める。本実施形態では、検査電流経路EKをなす外部端子接続部23の突出部23c及び電池10の負極端子部15の導体抵抗Rbはほぼ一定であるため、予め実験により得た所定値を用いて、接触抵抗Ra=プローブ間抵抗値Rk(取得値)−導体抵抗Rb(所定値)により、接触抵抗Raを算出する。
なお、本実施形態では、導体抵抗Rbの大きさは、接触抵抗Raの平均値の1/100程度しかないため、導体抵抗Rbを無視し、接触抵抗Ra=プローブ間抵抗値Rkとして、プローブ間抵抗値Rkをそのまま接触抵抗Raとして用いることもできる。
Further, in the PC 150, the contact resistance Ra between the top surface 23cn of the protruding portion 23c of the external terminal connecting portion 23 and the negative electrode terminal portion 15 of the battery 10 is obtained from the inter-probe resistance value Rk. In the present embodiment, the conductor resistance Rb of the protruding portion 23c of the external terminal connecting portion 23 and the negative electrode terminal portion 15 of the battery 10 which form the inspection current path EK is substantially constant, and therefore, using a predetermined value obtained by an experiment in advance, The contact resistance Ra is calculated from the contact resistance Ra=inter-probe resistance value Rk (obtained value)-conductor resistance Rb (predetermined value).
In the present embodiment, since the conductor resistance Rb is only about 1/100 of the average value of the contact resistance Ra, the conductor resistance Rb is ignored, and the contact resistance Ra=inter-probe resistance value Rk is set between the probes. The resistance value Rk can be directly used as the contact resistance Ra.

更に、PC150では、抵抗溶接において外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触部分で生じる発熱量Qが所定発熱量となるように、接触抵抗Raに基づいて、一対の電極棒110,115間の溶接電流経路EAに流す溶接電流YAの電流値Iaを決定する。発熱量Qは、通電時間をtとして、以下の式で表すことができる。
発熱量Q=(接触抵抗Ra)×(電流値Ia)2×(通電時間t)
発熱量Q及び通電時間tには所定値を用いて、この式により、溶接電流YAの電流値Iaを算出する。更に、PC150は、この電流値Iaの溶接電流YAが、一対の電極棒110,115間の溶接電流経路EAに流れるように、可変電流源130を制御する。
Further, in the PC 150, the contact resistance Ra is set so that the heat generation amount Q generated at the contact portion between the top surface 23cn of the protrusion 23c of the external terminal connection portion 23 and the negative electrode terminal portion 15 of the battery 10 in resistance welding becomes a predetermined heat generation amount. Based on, the current value Ia of the welding current YA flowing in the welding current path EA between the pair of electrode rods 110 and 115 is determined. The heat generation amount Q can be expressed by the following formula, where t is the energization time.
Calorific value Q=(contact resistance Ra)×(current value Ia) 2 ×(energization time t)
A predetermined value is used for the heat generation amount Q and the energization time t, and the current value Ia of the welding current YA is calculated by this formula. Further, the PC 150 controls the variable current source 130 so that the welding current YA having the current value Ia flows in the welding current path EA between the pair of electrode rods 110 and 115.

次に、この端子溶接装置100を用いて外部端子部材20の外部端子接続部23と電池10の負極端子部15とを抵抗溶接する抵抗溶接工程について説明する(図3〜図6参照)。まず、電池保持部材(不図示)に保持させた各電池10の上方DSに、外部端子部材20を位置合わせをして配置する。 Next, a resistance welding process of resistance welding the external terminal connecting portion 23 of the external terminal member 20 and the negative electrode terminal portion 15 of the battery 10 using the terminal welding device 100 will be described (see FIGS. 3 to 6 ). First, the external terminal member 20 is aligned and arranged on the upper DS of each battery 10 held by a battery holding member (not shown).

そして、ステップS1(図4参照)において、端子溶接装置100のうち、一対の電極棒110,115及び一対の抵抗測定プローブ120,125を下方DKに移動させて、それぞれ所定位置に当接させる。具体的には、一対の電極棒110,115及び一対の抵抗測定プローブ120,125を下方DKに移動させて、外部端子部材20の貫通孔21h内に挿入する。このうち第1電極棒110の先端部110sは、電池10の負極端子部15に当接させる。また、第2筒状電極棒115の先端部115sは、外部端子部材20の外部端子接続部23の周囲部23dに全周にわたり当接させ、更に、この周囲部23dを下方DKに押圧して、外部端子接続部23の突出部23cの頂面23cnを負極端子部15に当接させる。 Then, in step S1 (see FIG. 4), the pair of electrode rods 110, 115 and the pair of resistance measuring probes 120, 125 of the terminal welding apparatus 100 are moved downward DK and brought into contact with respective predetermined positions. Specifically, the pair of electrode rods 110, 115 and the pair of resistance measuring probes 120, 125 are moved downward DK and inserted into the through hole 21h of the external terminal member 20. Of these, the tip portion 110 s of the first electrode rod 110 is brought into contact with the negative electrode terminal portion 15 of the battery 10. Further, the tip end portion 115s of the second tubular electrode rod 115 is brought into contact with the peripheral portion 23d of the external terminal connecting portion 23 of the external terminal member 20 over the entire circumference, and further, the peripheral portion 23d is pressed downward DK. The top surface 23cn of the protruding portion 23c of the external terminal connecting portion 23 is brought into contact with the negative electrode terminal portion 15.

また、第1抵抗測定プローブ120の先端部120sは、一対の電極棒110,115のほぼ中間において、電池10の負極端子部15に当接させる。また、第2筒状電極棒115内に挿通された第2抵抗測定プローブ125の先端部125sは、外部端子接続部23のうち突出部23cの基端面23cmの中央に当接させる。
なお、抵抗溶接が終了するまで、一対の電極棒110,115及び一対の抵抗測定プローブ120,125の上述の当接状態を維持する。
Further, the tip portion 120 s of the first resistance measuring probe 120 is brought into contact with the negative electrode terminal portion 15 of the battery 10 at approximately the middle of the pair of electrode rods 110 and 115. Further, the tip portion 125 s of the second resistance measuring probe 125 inserted into the second cylindrical electrode rod 115 is brought into contact with the center of the base end surface 23 cm of the protruding portion 23 c of the external terminal connecting portion 23.
Note that the above-mentioned contact state of the pair of electrode rods 110, 115 and the pair of resistance measuring probes 120, 125 is maintained until the resistance welding is completed.

その後、ステップS2において、一対の抵抗測定プローブ120,125間のプローブ間抵抗値Rkを検知する。具体的には、定電流源140から一対の抵抗測定プローブ120,125間に一定の大きさ(電流値Ik)の検査電流YKを流す(図5参照)。その一方で、一対の抵抗測定プローブ120,125間に生じる電圧値Vkを電圧計145で測定し、PC150に出力する。PC150では、プローブ間抵抗値Rk=(電圧値Vk)/(電流値Ik)により、プローブ間抵抗値Rkを算出する。 Then, in step S2, the inter-probe resistance value Rk between the pair of resistance measurement probes 120 and 125 is detected. Specifically, the inspection current YK having a constant magnitude (current value Ik) is passed from the constant current source 140 between the pair of resistance measurement probes 120 and 125 (see FIG. 5). On the other hand, the voltage value Vk generated between the pair of resistance measuring probes 120 and 125 is measured by the voltmeter 145 and output to the PC 150. The PC 150 calculates the inter-probe resistance value Rk from the inter-probe resistance value Rk=(voltage value Vk)/(current value Ik).

その後、ステップS3において、外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触抵抗Raを算出する。具体的には、PC150において、接触抵抗Ra=プローブ間抵抗値Rk−導体抵抗Rb(所定値)により、突出部23cの頂面23cnと負極端子部15との接触抵抗Raを算出する。
その後、ステップS4において、溶接電流YAの電流値Iaを決定する。具体的には、PC150において、抵抗溶接の際に突出部23cの頂面23cnと負極端子部15との接触部分で生じる発熱量Qが所定発熱量となるように、発熱量Q=(接触抵抗Ra)×(電流値Ia)2×(通電時間t)により、溶接電流YAの電流値Iaを算出する。
Then, in step S3, the contact resistance Ra between the top surface 23cn of the protruding portion 23c of the external terminal connection portion 23 and the negative electrode terminal portion 15 of the battery 10 is calculated. Specifically, in the PC 150, the contact resistance Ra between the top surface 23cn of the protruding portion 23c and the negative electrode terminal portion 15 is calculated from the contact resistance Ra=probe resistance Rk−conductor resistance Rb (predetermined value).
Then, in step S4, the current value Ia of the welding current YA is determined. Specifically, in the PC 150, the heat generation amount Q=(contact resistance) so that the heat generation amount Q generated at the contact portion between the top surface 23cn of the protrusion 23c and the negative electrode terminal portion 15 during resistance welding becomes a predetermined heat generation amount. The current value Ia of the welding current YA is calculated by Ra)×(current value Ia) 2 ×(energization time t).

次に、ステップS5において、決定した電流値Iaで抵抗溶接を行う。具体的には、PC150は、可変電流源130を制御して、一対の電極棒110,115間の溶接電流経路EA(負極端子部15及びこれに接触した外部端子接続部23のうち、第1電極棒110が当接した部位から、第2筒状電極棒115が当接した部位に至るまでの電流経路)に、決定した電流値Iaの溶接電流YAを流して、外部端子接続部23の突出部23cを電池10の負極端子部15に抵抗溶接し、突出部23cと負極端子部15との溶接部30を形成する。このように溶接電流YAの電流値Iaを適切な大きさにして抵抗溶接を行うことにより、抵抗溶接の際に突出部23cの頂面23cnと負極端子部15との接触部分で生じる発熱量Qを一定にすることができるので、突出部23cの頂面23cnと負極端子部15との接触抵抗Raにバラツキがあっても、溶接バラツキを抑制できる。 Next, in step S5, resistance welding is performed at the determined current value Ia. Specifically, the PC 150 controls the variable current source 130 so as to control the welding current path EA between the pair of electrode rods 110 and 115 (the negative electrode terminal portion 15 and the first external terminal connecting portion 23 in contact therewith). A welding current YA having a determined current value Ia is passed through a current path from a portion where the electrode rod 110 is in contact to a portion where the second cylindrical electrode rod 115 is in contact with the external terminal connecting portion 23. The protrusion 23c is resistance-welded to the negative electrode terminal portion 15 of the battery 10 to form a welded portion 30 between the protrusion 23c and the negative electrode terminal portion 15. By performing resistance welding with the current value Ia of the welding current YA set to an appropriate value in this manner, the amount of heat generated Q at the contact portion between the top surface 23cn of the protrusion 23c and the negative electrode terminal portion 15 during resistance welding. Therefore, even if the contact resistance Ra between the top surface 23cn of the protrusion 23c and the negative electrode terminal portion 15 varies, the welding variation can be suppressed.

溶接が終了した後は、ステップS6において、一対の電極棒110,115及び一対の抵抗測定プローブ120,125を上方DSに移動させて、それぞれ元の位置に戻す。
その後は、以上で説明した抵抗溶接工程を繰り返し行って、電池モジュール1を構成するすべての電池10の負極端子部15に、外部端子部材20の各外部端子接続部23の突出部23cをそれぞれ抵抗溶接する。これにより、各電池10の負極端子部15同士が外部端子部材20を介して互いに導通する。
After the welding is completed, in step S6, the pair of electrode rods 110, 115 and the pair of resistance measuring probes 120, 125 are moved to the upper DS and returned to their original positions.
After that, the resistance welding process described above is repeatedly performed so that the protruding portions 23c of the external terminal connecting portions 23 of the external terminal members 20 are respectively connected to the negative electrode terminal portions 15 of all the batteries 10 constituting the battery module 1. Weld. As a result, the negative electrode terminal portions 15 of the batteries 10 are electrically connected to each other via the external terminal member 20.

次に、正極側の外部端子部材(不図示)を用意し、外部端子部材と各電池10の正極端子部(不図示)とを接続(溶接)する。かくして、各電池10が互いに並列に接続された電池モジュール1が完成する。 Next, an external terminal member (not shown) on the positive electrode side is prepared, and the external terminal member and the positive electrode terminal portion (not shown) of each battery 10 are connected (welded). Thus, the battery module 1 in which the batteries 10 are connected in parallel with each other is completed.

上述の端子溶接装置100では、抵抗溶接を行う一対の電極棒(第1電極棒110及び第2筒状電極棒115)のほか、一対の抵抗測定プローブ(第1抵抗測定プローブ120及び第2抵抗測定プローブ125)と抵抗検知部160とを備える。これらにより、外部端子部材20の外部端子接続部23を電池10の負極端子部15に抵抗溶接するのに先立ち、抵抗測定プローブ120,125間のプローブ間抵抗値Rkを検知できるため、外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触抵抗Raに近い値を取得できる。 In the terminal welding device 100 described above, in addition to the pair of electrode rods (the first electrode rod 110 and the second tubular electrode rod 115) that perform resistance welding, the pair of resistance measuring probes (the first resistance measuring probe 120 and the second resistance). The measurement probe 125) and the resistance detection unit 160 are provided. With these, the probe-to-probe resistance value Rk between the resistance measuring probes 120 and 125 can be detected before the external terminal connecting portion 23 of the external terminal member 20 is resistance-welded to the negative electrode terminal portion 15 of the battery 10. A value close to the contact resistance Ra between the top surface 23cn of the protruding portion 23c of the portion 23 and the negative electrode terminal portion 15 of the battery 10 can be acquired.

特に、端子溶接装置100では、第2抵抗測定プローブ125を、外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触部分の直ぐ近く、具体的には、突出部23cの基端面23cmに当接させている。これにより、第2抵抗測定プローブ125の先端部125sから、突出部23cの頂面23cnと負極端子部15との接触部分までの距離を短く導体抵抗を小さくでき、また、第2抵抗測定プローブ125の先端部125sを安定して接触させ得るので、プローブ間抵抗値Rkとして、より接触抵抗Raに近い値を安定して取得できる。 In particular, in the terminal welding device 100, the second resistance measuring probe 125 is provided in the immediate vicinity of the contact portion between the top surface 23cn of the protruding portion 23c of the external terminal connecting portion 23 and the negative electrode terminal portion 15 of the battery 10, specifically, The protrusion 23c is brought into contact with the base end surface 23cm. Accordingly, the distance from the tip portion 125s of the second resistance measurement probe 125 to the contact portion between the top surface 23cn of the protrusion 23c and the negative electrode terminal portion 15 can be shortened, and the conductor resistance can be reduced, and the second resistance measurement probe 125 can be used. Since the tip portion 125s of the probe can be stably contacted, a value closer to the contact resistance Ra can be stably acquired as the inter-probe resistance value Rk.

また、本実施形態では、第1抵抗測定プローブ120も、突出部23cの頂面23cnと負極端子部15との接触部分に近づけている。具体的には、第1抵抗測定プローブ120を一対の電極棒110,115の間に配置している。これにより、第1抵抗測定プローブ120の先端部120sから、突出部23cの頂面23cnと負極端子部15との接触部分までの距離も短く導体抵抗を小さくできるため、プローブ間抵抗値Rkとして、更に接触抵抗Raに近い値を取得できる。 Further, in the present embodiment, the first resistance measuring probe 120 is also brought close to the contact portion between the top surface 23cn of the protruding portion 23c and the negative electrode terminal portion 15. Specifically, the first resistance measuring probe 120 is arranged between the pair of electrode rods 110 and 115. Accordingly, the distance from the tip portion 120s of the first resistance measuring probe 120 to the contact portion between the top surface 23cn of the protruding portion 23c and the negative electrode terminal portion 15 is short, and the conductor resistance can be reduced. Further, a value close to the contact resistance Ra can be acquired.

更に、端子溶接装置100では、抵抗溶接において外部端子接続部23の突出部23cの頂面23cnと電池10の負極端子部15との接触部分で生じる発熱量Qが所定発熱量となるように、接触抵抗Raの大きさに基づいて、溶接電流YAの電流値Iaを変更している。このように溶接電流YAの電流値Iaを適切な値にして抵抗溶接を行うことにより、抵抗溶接の際に突出部23cの頂面23cnと負極端子部15との接触部分で生じる発熱量Qを一定にすることができるので、突出部23cの頂面23cnと負極端子部15との接触抵抗Raにバラツキがあっても、溶接バラツキを抑制できる。 Furthermore, in the terminal welding device 100, in resistance welding, the heat generation amount Q generated at the contact portion between the top surface 23cn of the protruding portion 23c of the external terminal connection portion 23 and the negative electrode terminal portion 15 of the battery 10 becomes a predetermined heat generation amount, The current value Ia of the welding current YA is changed based on the magnitude of the contact resistance Ra. By performing resistance welding with the current value Ia of the welding current YA set to an appropriate value in this manner, the heat generation amount Q generated at the contact portion between the top surface 23cn of the protrusion 23c and the negative electrode terminal portion 15 during resistance welding is reduced. Since it can be kept constant, even if the contact resistance Ra between the top surface 23cn of the protruding portion 23c and the negative electrode terminal portion 15 varies, welding variation can be suppressed.

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、電池10の負極端子部15に外部端子部材20の外部端子接続部23を抵抗溶接する工程において、本発明の端子溶接装置100を用いることを例示したが、これに限られない。電池10の正極端子部に外部端子部材の外部端子接続部を抵抗溶接する工程において、端子溶接装置100を用いてもよい。
Although the present invention has been described above according to the embodiment, it goes without saying that the present invention is not limited to the embodiment and can be appropriately modified and applied without departing from the scope of the invention.
For example, in the embodiment, the terminal welding device 100 of the present invention is used in the step of resistance welding the external terminal connecting portion 23 of the external terminal member 20 to the negative electrode terminal portion 15 of the battery 10, but the present invention is not limited to this. Absent. The terminal welding device 100 may be used in the step of resistance welding the external terminal connecting portion of the external terminal member to the positive electrode terminal portion of the battery 10.

また、実施形態の端子溶接装置100の使用方法では、ステップS3で求めた接触抵抗Raの大きさに基づいて、ステップS4で溶接電流YAの電流値Iaを決定し、ステップS5においてこの電流値Iaで抵抗溶接を行うことによって、溶接バラツキを抑制したが、これに限定されない。端子溶接装置100の別の使用方法として、例えば、ステップS3で求めた接触抵抗Raが所定範囲よりも大きい場合や小さい場合には、一旦、電極棒110,115を上方DSに移動させた後に、再度、電極棒110,115を下方DKに移動させて、負極端子部15及び外部端子接続部23に当接し直す。その後、再度ステップS2,S3を行って接触抵抗Raを求め、接触抵抗Raが所定範囲に収まったのを確認した後に、予め決めた所定の電流値による抵抗溶接を行うこともできる。このように突出部23cの頂面23cnと負極端子部15との接触抵抗Raを同程度の大きさに揃えることによっても、溶接バラツキを抑制できる。 Further, in the method of using the terminal welding apparatus 100 of the embodiment, the current value Ia of the welding current YA is determined in step S4 based on the magnitude of the contact resistance Ra obtained in step S3, and the current value Ia is determined in step S5. By performing the resistance welding in the above, variations in welding were suppressed, but the present invention is not limited to this. As another method of using the terminal welding device 100, for example, when the contact resistance Ra obtained in step S3 is larger or smaller than a predetermined range, after temporarily moving the electrode rods 110 and 115 to the upper DS, The electrode rods 110 and 115 are again moved to the lower DK to re-contact with the negative electrode terminal portion 15 and the external terminal connecting portion 23. After that, steps S2 and S3 are performed again to obtain the contact resistance Ra, and after confirming that the contact resistance Ra falls within a predetermined range, resistance welding with a predetermined current value can be performed. By making the contact resistance Ra between the top surface 23cn of the protruding portion 23c and the negative electrode terminal portion 15 uniform in this way, welding variations can also be suppressed.

1 電池モジュール
10 円筒型電池(電池)
15 負極端子部(電極端子部)
20 外部端子部材
23 外部端子接続部
23c 突出部
23cn (突出部の)頂面
23cm (突出部の)基端面
23d 周囲部
25 連結部
30 溶接部(溶接ナゲット)
100 端子溶接装置
110 第1電極棒(電極棒)
115 第2筒状電極棒(電極棒)
120 第1抵抗測定プローブ(抵抗測定プローブ)
125 第2抵抗測定プローブ(抵抗測定プローブ)
130 可変電流源
140 定電流源
145 電圧計
150 パーソナルコンピュータ(PC)
160 抵抗検知部
YK 検査電流
YA 溶接電流
Ik (検査電流の)電流値
Ia (溶接電流の)電流値
Vk (抵抗測定プローブ間の)電圧値
EK 検査電流経路
EA 溶接電流経路
Rk (検査電流経路の)プローブ間抵抗値
Ra (外部端子接続部の突出部の頂面と電池の負極端子部との)接触抵抗
Rb (検査電流経路の)導体抵抗
Q 発熱量
t 通電時間
1 Battery Module 10 Cylindrical Battery (Battery)
15 Negative electrode terminal (electrode terminal)
20 External Terminal Member 23 External Terminal Connection 23c Projection 23cn Top 23cm (of Projection) Base End 23d (Projection) Peripheral 25 Connection 30 Weld (Welding Nugget)
100 terminal welding device 110 first electrode rod (electrode rod)
115 Second cylindrical electrode rod (electrode rod)
120 First resistance measurement probe (resistance measurement probe)
125 Second resistance measurement probe (resistance measurement probe)
130 Variable Current Source 140 Constant Current Source 145 Voltmeter 150 Personal Computer (PC)
160 Resistance Detector YK Inspection Current YA Welding Current Ik (Inspection Current) Current Value Ia (Welding Current) Current Value Vk (Between Resistance Measuring Probes) Voltage Value EK Inspection Current Path EA Welding Current Path Rk (Inspection Current Path) ) Resistance value between probes Ra (contact between the top surface of the protruding portion of the external terminal connection portion and the negative electrode terminal of the battery) Rb (resistance of the inspection current path) Conductor resistance Q Heat generation amount t Energization time

Claims (1)

中央の突出部がその周囲を環状に取り巻く周囲部よりも突出した外部端子接続部を有する外部端子部材のうち、上記突出部の頂面を、電池の一方の電極端子部に当接させて、上記外部端子接続部を上記電極端子部に抵抗溶接する
端子溶接装置であって、
上記電極端子部に当接して導通する第1電極棒と、
上記外部端子接続部の上記周囲部に当接して導通すると共に、この周囲部を上記電極端子部側に押圧して、上記突出部の上記頂面を上記電極端子部に当接させる第2電極棒と、
上記電極端子部に当接して導通する第1抵抗測定プローブと、
上記外部端子接続部の上記突出部のうち、上記頂面とは反対側の基端面に当接して導通する第2抵抗測定プローブと、
上記第1抵抗測定プローブと上記第2抵抗測定プローブとの間のプローブ間抵抗値Rkを検知する抵抗検知部と、を備える
端子溶接装置。
Of the external terminal member having an external terminal connecting portion projecting more than the peripheral portion in which the central projecting portion surrounds the circumference thereof annularly, the top surface of the projecting portion is brought into contact with one of the electrode terminal portions of the battery, A terminal welding device for resistance welding the external terminal connecting portion to the electrode terminal portion,
A first electrode rod that is in contact with the electrode terminal portion and is electrically connected;
A second electrode that abuts on the peripheral portion of the external terminal connecting portion to conduct electricity, and presses the peripheral portion toward the electrode terminal portion side so that the top surface of the protruding portion abuts on the electrode terminal portion. With a stick
A first resistance measuring probe that is in contact with the electrode terminal portion and is conductive;
A second resistance measuring probe that is in contact with a base end surface of the protruding portion of the external terminal connecting portion that is opposite to the top surface and that is conductive;
A terminal welding device, comprising: a resistance detection unit that detects an inter-probe resistance value Rk between the first resistance measurement probe and the second resistance measurement probe.
JP2018221536A 2018-11-27 2018-11-27 Terminal welding equipment Active JP6988776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221536A JP6988776B2 (en) 2018-11-27 2018-11-27 Terminal welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221536A JP6988776B2 (en) 2018-11-27 2018-11-27 Terminal welding equipment

Publications (2)

Publication Number Publication Date
JP2020087751A true JP2020087751A (en) 2020-06-04
JP6988776B2 JP6988776B2 (en) 2022-01-05

Family

ID=70908651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221536A Active JP6988776B2 (en) 2018-11-27 2018-11-27 Terminal welding equipment

Country Status (1)

Country Link
JP (1) JP6988776B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113686A (en) * 2021-03-03 2021-07-13 浙江天能新材料有限公司 Method and assembly line for processing welding spots on electrode surface of columnar battery
CN114871549A (en) * 2022-05-31 2022-08-09 深圳市鹏煜威科技有限公司 Welding equipment for shell, wiring terminal and protection box
JP2023521313A (en) * 2020-07-15 2023-05-24 エルジー エナジー ソリューション リミテッド Electrode lead bending and welding device and electrode lead welding method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231264A (en) * 1988-03-10 1989-09-14 Furukawa Battery Co Ltd:The Resistance welding method and resistance welding circuit device in lead storage battery
US20110281151A1 (en) * 2010-05-12 2011-11-17 Samsung Sdi Co., Ltd. Battery pack
JP2015198071A (en) * 2014-04-03 2015-11-09 トヨタ自動車株式会社 bus bar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231264A (en) * 1988-03-10 1989-09-14 Furukawa Battery Co Ltd:The Resistance welding method and resistance welding circuit device in lead storage battery
US20110281151A1 (en) * 2010-05-12 2011-11-17 Samsung Sdi Co., Ltd. Battery pack
JP2015198071A (en) * 2014-04-03 2015-11-09 トヨタ自動車株式会社 bus bar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521313A (en) * 2020-07-15 2023-05-24 エルジー エナジー ソリューション リミテッド Electrode lead bending and welding device and electrode lead welding method using the same
CN113113686A (en) * 2021-03-03 2021-07-13 浙江天能新材料有限公司 Method and assembly line for processing welding spots on electrode surface of columnar battery
CN114871549A (en) * 2022-05-31 2022-08-09 深圳市鹏煜威科技有限公司 Welding equipment for shell, wiring terminal and protection box

Also Published As

Publication number Publication date
JP6988776B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6988776B2 (en) Terminal welding equipment
KR102151175B1 (en) Electrode damage inspection electrode damage method of pouch type secondary battery
CN110023028B (en) Apparatus and method for inspecting welding of secondary battery
JP2010085107A (en) Inspection tool, electrode structure and method of manufacturing electrode structure
KR101798688B1 (en) Function test jig of battery cell
JP2021526303A (en) Busbar for battery cell connection, battery pack and its manufacturing method
TW201442415A (en) Bar-type probe and measurement equipment for solar cell
JP2010212183A (en) Short circuit testing device of battery
JP5974967B2 (en) Battery inspection method and battery manufacturing method
CN103766012A (en) Flexible printed circuit board and production method therefor
CN108535660A (en) The detection device and its detection method of a kind of group of battery modules junction conduction
JP2009262159A (en) Direct welding apparatus and welding method
JP2018122338A (en) Weld strength inspection method
JP6573258B2 (en) Rechargeable battery inspection device and rechargeable battery inspection method
KR20210127034A (en) Welding inspection device and inspection method for secondary battery
KR101764299B1 (en) Nail for penetration test of secondary battery and secondary battery penetration test device using thereof
JP2977189B2 (en) Conductive contact pin
EP4215307A1 (en) Welding apparatus for button-type secondary battery
JP2020087754A (en) Fixed state inspection device, fixed state inspection method, and assembled battery manufacturing method
JP2018510332A (en) Method and apparatus for testing battery connections
KR20230021474A (en) Welding inspection deviec of battery and welding inspection method of battery
CN113063824A (en) Method for monitoring welding quality of laser welding
KR20220090911A (en) Welding inspection device of cylindrical battery tab
CN112985984A (en) Many electric core solder joints quality detection device
JP2532799B2 (en) Welding work placement condition determination method for cylindrical batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151