JP2018122338A - Weld strength inspection method - Google Patents

Weld strength inspection method Download PDF

Info

Publication number
JP2018122338A
JP2018122338A JP2017017330A JP2017017330A JP2018122338A JP 2018122338 A JP2018122338 A JP 2018122338A JP 2017017330 A JP2017017330 A JP 2017017330A JP 2017017330 A JP2017017330 A JP 2017017330A JP 2018122338 A JP2018122338 A JP 2018122338A
Authority
JP
Japan
Prior art keywords
load
displacement amount
inspection
welded portion
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017017330A
Other languages
Japanese (ja)
Inventor
紀明 山本
Noriaki Yamamoto
紀明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017017330A priority Critical patent/JP2018122338A/en
Publication of JP2018122338A publication Critical patent/JP2018122338A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a weld strength inspection method which can inspect the weld strength of a weld part by applying an inspection load thereto, and can properly inspect the weld part in which the weld strength is lowered due to the applied inspection load.SOLUTION: A weld strength inspection method for inspecting the weld strength of a weld part 27 in a creeping direction EH comprises: a load displacement amount measurement process S1 for fixing either of a first member 10 and a second member 23, pressing the other to the creeping direction EH, applying a preset inspection load Pc to the weld part 27, and measuring a load displacement amount ΔLa of the second member 23 with respect to the first member 10 which is generated in the creeping direction EH; and a residual displacement amount measurement process S3 for measuring a residual displacement amount ΔLb of the second member 23 with respect to the first member 10 in the creeping direction EH which remains even after the release of the inspection load Pc.SELECTED DRAWING: Figure 4

Description

本発明は、第1部材の第1接合面と第2部材の第2接合面とが溶接部を介して接合された構造体のうち、上記溶接部の溶接強度を検査する溶接強度検査方法に関する。   The present invention relates to a weld strength inspection method for inspecting the weld strength of the welded portion of a structure in which the first joint surface of the first member and the second joint surface of the second member are joined via the welded portion. .

2つの部材を溶接した溶接部を有する構造体、例えば、電池の電極端子部の端子面とバスバの導通部の接続面とを対向させた状態で、溶接部を介して接合した電池モジュールが知られている。このような電池モジュールなどの構造体を製造するにあたり、2つの部材の溶接部の溶接強度を検査したい場合がある。但し、必要な溶接強度を確保できているか否かを溶接部に非接触で判断することは難しい。このため、溶接強度の検査方法としては、2つの部材(第1部材及び第2部材)のうち、いずれか一方の部材を固定し他方を押圧して、溶接部に検査荷重を印加し、第1部材に対する第2部材の変位量に基づいて、溶接部の溶接強度を判定することが考えられる。
なお、関連する従来技術として、特許文献1が挙げられる。この特許文献1には、線材の両端部が端子よりもはみ出した状態で、線材と端子が溶接された溶接部を検査する手法が開示されている。
A structure having a welded portion in which two members are welded, for example, a battery module joined via a welded portion in a state where the terminal surface of the electrode terminal portion of the battery and the connecting surface of the conductive portion of the bus bar are opposed to each other is known. It has been. In manufacturing such a structure such as a battery module, it may be desired to inspect the weld strength of the welded portion of the two members. However, it is difficult to determine whether or not the necessary welding strength can be ensured without contacting the weld. For this reason, as a method for inspecting the welding strength, one of the two members (the first member and the second member) is fixed, the other is pressed, an inspection load is applied to the welded portion, It is conceivable to determine the welding strength of the welded portion based on the amount of displacement of the second member relative to one member.
In addition, patent document 1 is mentioned as a related prior art. Patent Document 1 discloses a technique for inspecting a welded portion where a wire and a terminal are welded in a state where both ends of the wire protrude beyond the terminal.

特開2000−74787号公報JP 2000-74787 A

しかしながら、溶接強度の検査の際に溶接部に印加した検査荷重によって溶接部が損傷し、却って溶接強度が大きく低下してしまうことがある。上述の溶接強度の検査方法だけでは、このような検査時に印加した検査荷重によって溶接強度が大きく低下したものが混入することを避けることができなかった。   However, the welded portion may be damaged by the inspection load applied to the welded portion during the weld strength inspection, and the weld strength may be greatly reduced. Only by the above-described welding strength inspection method, it has been unavoidable that the welding strength greatly decreased due to the inspection load applied during such inspection.

本発明は、かかる現状に鑑みてなされたものであって、第1部材と第2部材との溶接部の溶接強度を、溶接部に検査荷重を印加して検査できると共に、検査時に印加した検査荷重によって溶接強度が低下したものを適切に検知できる溶接強度検査方法を提供することを目的とする。   The present invention has been made in view of the current situation, and can inspect the welding strength of the welded portion between the first member and the second member by applying an inspection load to the welded portion, and an inspection applied during the inspection. It aims at providing the welding strength inspection method which can detect appropriately what the welding strength fell with the load.

上記課題を解決するための本発明の一態様は、第1部材の第1接合面と、第2部材の上記第1接合面に対向する第2接合面とが溶接部を介して接合された構造体のうち、上記溶接部の上記第1接合面及び上記第2接合面に沿う沿面方向の溶接強度を検査する溶接強度検査方法であって、上記第1部材及び上記第2部材のいずれか一方を固定し他方を上記沿面方向に押圧して、上記溶接部に予め定めた検査荷重を印加し、上記沿面方向に生じた上記第1部材に対する上記第2部材の負荷変位量ΔLaを測定する負荷変位量測定工程と、上記検査荷重の解放後も残留する上記沿面方向についての上記第1部材に対する上記第2部材の残留変位量ΔLbを測定する残留変位量測定工程と、を備える溶接強度検査方法である。   In one aspect of the present invention for solving the above-described problem, a first joint surface of a first member and a second joint surface facing the first joint surface of a second member are joined via a welded portion. A weld strength inspection method for inspecting a weld strength in a creeping direction along the first joint surface and the second joint surface of the welded portion of the structure, wherein either the first member or the second member One is fixed and the other is pressed in the creeping direction, a predetermined inspection load is applied to the welded portion, and a load displacement amount ΔLa of the second member relative to the first member generated in the creeping direction is measured. Weld strength inspection comprising: a load displacement amount measurement step; and a residual displacement amount measurement step of measuring a residual displacement amount ΔLb of the second member with respect to the first member in the creeping direction remaining after the inspection load is released. Is the method.

上述の溶接強度検査方法では、第1部材と第2部材との溶接部に検査荷重を印加し、第1部材に対する第2部材の負荷変位量ΔLaを測定するので、この負荷変位量ΔLaの大きさに基づいて、溶接部が必要な溶接強度を確保できているか否かを判定できる。
加えて、この溶接強度検査方法では、上述の検査荷重を開放した後も残留する第1部材に対する第2部材の残留変位量ΔLbを測定する。仮に検査時に溶接部に印加した検査荷重によって溶接部が大きく損傷し溶接強度が大きく低下した場合には、この残留変位量ΔLbの値が大きくなる。このため、残留変位量ΔLbの大きさにより、検査時に印加した検査荷重によって溶接強度が低下してしまったものを適切に検知できる。
In the welding strength inspection method described above, an inspection load is applied to the welded portion between the first member and the second member, and the load displacement amount ΔLa of the second member relative to the first member is measured. Based on this, it can be determined whether or not the welded part has the required welding strength.
In addition, in this welding strength inspection method, the residual displacement amount ΔLb of the second member relative to the first member remaining even after the inspection load is released is measured. If the welded part is greatly damaged due to the inspection load applied to the welded part at the time of inspection and the welding strength is greatly reduced, the value of the residual displacement amount ΔLb becomes large. For this reason, it is possible to appropriately detect a case where the welding strength has been reduced by the inspection load applied at the time of inspection based on the magnitude of the residual displacement amount ΔLb.

実施形態に係る電池モジュールの部分上面図である。It is a partial top view of the battery module which concerns on embodiment. 実施形態に係る電池モジュールの図1におけるA−A部分断面図である。It is an AA fragmentary sectional view in Drawing 1 of a battery module concerning an embodiment. 実施形態に係る溶接強度検査方法のフローチャートである。It is a flowchart of the welding strength inspection method which concerns on embodiment. 実施形態に係り、溶接強度検査を示す説明図である。It is explanatory drawing which concerns on embodiment and shows a weld strength test | inspection. 実施形態に係り、溶接強度検査の検査時間Tと荷重P及び変位量ΔLとの関係を示すグラフである。It is a graph which shows the relationship between inspection time T of welding strength inspection, load P, and displacement amount (DELTA) L according to embodiment.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態において溶接強度検査の対象となる構造体である電池モジュール1の部分上面図及び部分断面図を示す。なお、図2の円筒型電池10では、電池内部に収容された電極体等の図示を省略し、電池ケース11等の断面のみを示してある。また、以下では、図1及び図2における左右方向を電池モジュール1の横方向CH、図1における上下方向を電池モジュール1の縦方向DH、図2における上下方向を電池モジュール1の高さ方向GHとして説明する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 show a partial top view and a partial cross-sectional view of a battery module 1 that is a structure that is a target of a welding strength inspection in the present embodiment. In the cylindrical battery 10 of FIG. 2, illustration of an electrode body and the like housed in the battery is omitted, and only a cross section of the battery case 11 and the like is shown. 1 and 2, the horizontal direction CH of the battery module 1, the vertical direction in FIG. 1 is the vertical direction DH of the battery module 1, and the vertical direction in FIG. 2 is the height direction GH of the battery module 1. Will be described.

この電池モジュール1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車などの車両に搭載される車載用の電池モジュールである。電池モジュール1は、複数の円筒型電池10を並列に接続したものであり、これらの円筒型電池10のほか、円筒型電池10の正極端子部(電極端子部)15同士を接続する正極バスバ20、円筒型電池10の負極端子部(不図示)同士を接続する負極バスバ(不図示)、複数の円筒型電池10を保持する電池保持部材(不図示)等から構成される。   The battery module 1 is an in-vehicle battery module mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. The battery module 1 is formed by connecting a plurality of cylindrical batteries 10 in parallel. In addition to the cylindrical batteries 10, a positive electrode bus bar 20 that connects positive terminal portions (electrode terminal portions) 15 of the cylindrical batteries 10 to each other. , A negative electrode bus bar (not shown) for connecting negative electrode terminal portions (not shown) of the cylindrical battery 10, a battery holding member (not shown) for holding a plurality of cylindrical batteries 10, and the like.

このうち各々の円筒型電池10は、円筒型(円柱状)で密閉型のリチウムイオン二次電池(具体的には18650型のリチウムイオン二次電池)である。この円筒型電池10は、円筒状の電池ケース11の内部に、帯状の正極板と帯状の負極板とを一対の帯状のセパレータを介して互いに重ねて円筒状に捲回した電極体(不図示)が非水電解液(不図示)と共に収容されてなる。また、各々の円筒型電池10は、いずれも、正極端子部15を高さ方向GHの上方(図2中、上方)に、負極端子部(不図示)を高さ方向GHの下方(図2中、下方)に向け、互いに平行にかつ高さを揃えた状態で配置されている。   Each of the cylindrical batteries 10 is a cylindrical (columnar) and sealed lithium ion secondary battery (specifically, 18650 type lithium ion secondary battery). This cylindrical battery 10 includes an electrode body (not shown) in which a belt-like positive electrode plate and a belt-like negative electrode plate are overlapped with each other via a pair of belt-like separators inside a cylindrical battery case 11 and wound into a cylindrical shape. ) Together with a non-aqueous electrolyte (not shown). In each cylindrical battery 10, the positive electrode terminal portion 15 is above the height direction GH (upward in FIG. 2), and the negative electrode terminal portion (not shown) is below the height direction GH (FIG. 2). They are arranged in parallel with each other and at the same height.

円筒型電池10の軸線方向の一方端(図2中、上方)には、電池内部で電極体の正極板と導通する凸状の正極端子部15が設けられている。この正極端子部15は、環状の絶縁部材17を介して電池ケース11と絶縁しつつ電池ケース11に固定されている。各々の正極端子部15の端子面15mは、後述する正極バスバ20のバスバ導通部23の下面23mに当接しており、これにより、正極端子部15同士が正極バスバ20を介して互いに導通している。   At one end (upward in FIG. 2) of the cylindrical battery 10 in the axial direction, a convex positive electrode terminal portion 15 that is electrically connected to the positive electrode plate of the electrode body is provided inside the battery. The positive electrode terminal portion 15 is fixed to the battery case 11 while being insulated from the battery case 11 via an annular insulating member 17. A terminal surface 15m of each positive electrode terminal portion 15 is in contact with a lower surface 23m of a bus bar conduction portion 23 of the positive electrode bus bar 20 described later, whereby the positive electrode terminal portions 15 are electrically connected to each other via the positive electrode bus bar 20. Yes.

正極バスバ20は、金属板材にプレス打ち抜き加工及び曲げ加工を行うことにより形成されており、各円筒型電池10を正極端子部15側(高さ方向GHの上方)から覆う板状のバスバ本体部21を有する。このバスバ本体部21には、複数の貫通孔21hが形成されている。正極バスバ20を高さ方向GHの上方から平面視したとき(図1参照)、各貫通孔21h内に各円筒型電池10の正極端子部15が露出している。また、各貫通孔21h内には、正極端子部15に接続するバスバ導通部23及び腕部25が設けられている。   The positive electrode bus bar 20 is formed by press punching and bending a metal plate material, and a plate-like bus bar main body that covers each cylindrical battery 10 from the positive electrode terminal portion 15 side (above the height direction GH). 21. A plurality of through holes 21 h are formed in the bus bar main body 21. When the positive electrode bus bar 20 is viewed from above in the height direction GH (see FIG. 1), the positive electrode terminal portion 15 of each cylindrical battery 10 is exposed in each through hole 21h. In addition, in each through hole 21h, a bus bar conduction portion 23 and an arm portion 25 that are connected to the positive electrode terminal portion 15 are provided.

具体的には、バスバ本体部21のうち各貫通孔21hの周縁から、腕部25が径方向内側に斜め下方に延出しており、腕部25の先端にバスバ導通部23が設けられている。このバスバ導通部23は、平面視矩形状で、その中央部23cが高さ方向GHの下方に突出した形状を有する。この中央部23cの下面23mは、円筒型電池10の正極端子部15の端子面15mに溶接部27を介して接合されている。具体的には、バスバ導通部23の中央部23cの下面23mと、正極端子部15の端子面15mとの当接部分の中央部分に、バスバ導通部23と正極端子部15との溶接部(溶接ナゲット)27が形成されている。   Specifically, the arm portion 25 extends obliquely downward inward in the radial direction from the periphery of each through hole 21 h in the bus bar main body portion 21, and the bus bar conduction portion 23 is provided at the tip of the arm portion 25. . The bus bar conduction portion 23 has a rectangular shape in plan view, and has a center portion 23c protruding downward in the height direction GH. A lower surface 23 m of the central portion 23 c is joined to a terminal surface 15 m of the positive electrode terminal portion 15 of the cylindrical battery 10 via a welded portion 27. Specifically, a welded portion between the bus bar conductive portion 23 and the positive electrode terminal portion 15 (on the central portion of the contact portion between the lower surface 23 m of the central portion 23 c of the bus bar conductive portion 23 and the terminal surface 15 m of the positive electrode terminal portion 15 ( A weld nugget) 27 is formed.

なお、本実施形態では、円筒型電池10が前述の「第1部材」に該当し、円筒型電池10の正極端子部15の端子面15mが前述の「第1接合面」に該当する。また、正極バスバ20のバスバ導通部23が前述の「第2部材」に該当し、バスバ導通部23の下面23mが前述の「第2接合面」に該当する。また、高さ方向GHに直交する方向(横方向CH及び縦方向DHを含む方向)EHが、端子面(第1接合面)15m及び接合面(第2接合面)23mに沿う前述の「沿面方向」(図2参照)である。   In this embodiment, the cylindrical battery 10 corresponds to the “first member” described above, and the terminal surface 15 m of the positive electrode terminal portion 15 of the cylindrical battery 10 corresponds to the “first bonding surface” described above. In addition, the bus bar conductive portion 23 of the positive bus bar 20 corresponds to the “second member” described above, and the lower surface 23 m of the bus bar conductive portion 23 corresponds to the “second joint surface” described above. In addition, the above-mentioned “creepage” in which the direction (including the horizontal direction CH and the vertical direction DH) EH perpendicular to the height direction GH is along the terminal surface (first bonding surface) 15 m and the bonding surface (second bonding surface) 23 m. Direction "(see FIG. 2).

一方、円筒型電池10の軸線方向の他方端(図2中、上方)に位置する電池ケース11の底面部は、電池内部で電極体の負極板と導通する円板状の負極端子部(不図示)である。各々の負極端子部は、負極バスバ(不図示)に接続しており、これにより、負極端子部同士が負極バスバを介して互いに導通している。   On the other hand, the bottom surface of the battery case 11 located at the other end in the axial direction of the cylindrical battery 10 (upward in FIG. 2) is a disc-shaped negative electrode terminal portion (not shown) that conducts with the negative electrode plate of the electrode body inside the battery. (Illustrated). Each negative electrode terminal portion is connected to a negative electrode bus bar (not shown), whereby the negative electrode terminal portions are electrically connected to each other via the negative electrode bus bar.

次いで、上述の電池モジュール1のうち、各溶接部27の沿面方向EHの溶接強度を検査する溶接強度検査方法について説明する(図3〜図5参照)。まず、この溶接強度を検査するための溶接強度検査装置100について説明する(図4参照)。この溶接強度検査装置100は、電池モジュール1を所定位置に固定する固定治具(不図示)と、溶接部27に沿面方向EHに荷重P(N)を印加する荷重印加手段110と、上記荷重Pの大きさを測定する荷重測定手段120と、円筒型電池10に対するバスバ導通部23の沿面方向EHの変位量ΔL(μm)を測定する変位量測定手段130とを備える。   Next, a welding strength inspection method for inspecting the welding strength in the creeping direction EH of each welded portion 27 in the battery module 1 will be described (see FIGS. 3 to 5). First, a welding strength inspection apparatus 100 for inspecting the welding strength will be described (see FIG. 4). The welding strength inspection apparatus 100 includes a fixing jig (not shown) that fixes the battery module 1 in a predetermined position, a load applying unit 110 that applies a load P (N) to the welded portion 27 in the creeping direction EH, and the load A load measuring unit 120 that measures the size of P and a displacement amount measuring unit 130 that measures a displacement amount ΔL (μm) in the creeping direction EH of the bus bar conducting portion 23 relative to the cylindrical battery 10 are provided.

このうち荷重印加手段110は、バスバ導通部23に当接して、バスバ導通部23を沿面方向EH(具体的には、横方向CHの一方側CH1)に押圧する押圧部材111と、サーボモータ等を含み、この押圧部材111を沿面方向EH(具体的には、横方向CH)に移動可能に構成された移動装置113とを有する。
また、荷重測定手段120は、本実施形態では厚み方向に掛かる荷重を検知可能な板状のロードセルであり、荷重印加手段110の押圧部材111と移動装置113との間に配置されている。これにより、押圧部材111がバスバ導通部23を押圧したときに溶接部27に掛かる荷重Pを測定できる。
また、変位量測定手段130は、荷重印加手段110の押圧部材111の沿面方向EH(横方向CH)の位置を測定可能に配置されたレーザ変位計を有する。
Of these, the load applying means 110 abuts on the bus bar conducting portion 23 and presses the bus bar conducting portion 23 in the creeping direction EH (specifically, one side CH1 in the lateral direction CH), a servo motor, and the like. And a moving device 113 configured to be able to move the pressing member 111 in the creeping direction EH (specifically, the horizontal direction CH).
The load measuring means 120 is a plate-shaped load cell capable of detecting a load applied in the thickness direction in the present embodiment, and is disposed between the pressing member 111 of the load applying means 110 and the moving device 113. Thereby, when the pressing member 111 presses the bus bar conducting portion 23, the load P applied to the welded portion 27 can be measured.
Further, the displacement measuring means 130 has a laser displacement meter arranged so as to be able to measure the position in the creeping direction EH (lateral direction CH) of the pressing member 111 of the load applying means 110.

次いで、上述の溶接強度検査装置100を用いた溶接強度検査方法について説明する。まず、電池モジュール1を固定治具(不図示)の上に載せて、電池モジュール1を構成する各円筒型電池10を固定治具に対して固定する。
そして、負荷変位量測定工程S1において、バスバ導通部23を沿面方向EH(横方向CHの一方側CH1)に押圧して溶接部27に予め定めた検査荷重Pc(本実施形態ではPc=70N)を印加し、沿面方向EH(横方向CH)に生じた円筒型電池10に対するバスバ導通部23の負荷変位量ΔLa(μm)を測定する。
Next, a welding strength inspection method using the above-described welding strength inspection apparatus 100 will be described. First, the battery module 1 is placed on a fixing jig (not shown), and each cylindrical battery 10 constituting the battery module 1 is fixed to the fixing jig.
Then, in the load displacement amount measuring step S1, the bus bar conducting portion 23 is pressed in the creeping direction EH (one side CH1 in the lateral direction CH), and a predetermined inspection load Pc is applied to the welded portion 27 (Pc = 70N in this embodiment). Is applied, and the load displacement amount ΔLa (μm) of the bus bar conduction portion 23 with respect to the cylindrical battery 10 generated in the creeping direction EH (lateral direction CH) is measured.

具体的には、荷重印加手段110の移動装置113によって押圧部材111を沿面方向EH(横方向CHの一方側CH1)に移動させて、図4に示すように押圧部材111をバスバ導通部23に当接させる。なお、図5においては、検査時刻T1(本実施形態ではT1=0.30sec)に、押圧部材111がバスバ導通部23に当接する。
更に、移動装置113により押圧部材111を沿面方向EH(横方向CHの一方側CH1)に移動させて、荷重測定手段120で測定される荷重Pが検査荷重Pcとなるまで、押圧部材111でバスバ導通部23を沿面方向EH(横方向CHの一方側CH1)に押圧する。図5に示すように、荷重測定手段120で測定される荷重Pは徐々に大きくなり、検査時刻T2(本実施形態ではT2=0.35sec)で荷重Pが検査荷重Pcに達する。この時点で、溶接部27には、沿面方向EH(横方向CH)に検査荷重Pcが印加されている。
Specifically, the pressing member 111 is moved in the creeping direction EH (one side CH1 in the lateral direction CH) by the moving device 113 of the load applying means 110, and the pressing member 111 is moved to the bus bar conduction portion 23 as shown in FIG. Make contact. In FIG. 5, the pressing member 111 contacts the bus bar conduction portion 23 at the inspection time T1 (T1 = 0.30 sec in this embodiment).
Further, the pressing member 111 is moved by the moving device 113 in the creeping direction EH (one side CH1 of the lateral direction CH) until the load P measured by the load measuring means 120 becomes the inspection load Pc. The conduction portion 23 is pressed in the creeping direction EH (one side CH1 in the lateral direction CH). As shown in FIG. 5, the load P measured by the load measuring means 120 gradually increases, and the load P reaches the inspection load Pc at the inspection time T2 (T2 = 0.35 sec in this embodiment). At this time, the inspection load Pc is applied to the welded portion 27 in the creeping direction EH (lateral direction CH).

その後、検査時刻T2から検査時刻T3(本実施形態ではT3=0.90sec)まで、この検査荷重Pcが溶接部27に印加した状態を維持する。そして、変位量測定手段130により、検査時刻T1における押圧部材111の沿面方向EH(横方向CH)の位置L1と、検査時刻T3における押圧部材111の沿面方向EH(横方向CH)の位置L2とから、円筒型電池10に対するバスバ導通部23の沿面方向EHの負荷変位量ΔLa=L1−L2を求める。   Thereafter, the state in which the inspection load Pc is applied to the welded portion 27 is maintained from the inspection time T2 to the inspection time T3 (T3 = 0.90 sec in the present embodiment). Then, by the displacement measuring means 130, the position L1 in the creeping direction EH (lateral direction CH) of the pressing member 111 at the inspection time T1, and the position L2 in the creeping direction EH (lateral direction CH) of the pressing member 111 at the inspection time T3. From this, the load displacement amount ΔLa = L1−L2 in the creeping direction EH of the bus bar conduction portion 23 with respect to the cylindrical battery 10 is obtained.

その後、負荷変位量判定工程S2において、負荷変位量測定工程S1で得られた負荷変位量ΔLaの大きさに基づいて、当該溶接部27が必要な溶接強度を確保できているか否かを判定する。具体的には、得られた負荷変位量ΔLaを予め定めた基準負荷変位量ΔLrと比較し、負荷変位量ΔLaが基準負荷変位量ΔLr以下である場合(ΔLa≦ΔLr)に、溶接部27が必要な溶接強度を確保できていると判定する。図5に、変位量ΔLを実線(良)、一点鎖線(不良1)及び二点鎖線(不良2)でそれぞれ示す3つの例のうち、実線(良)及び二点鎖線(不良2)の例では、負荷変位量ΔLaが基準負荷変位量ΔLr以下であるため、これらの例では、溶接部27が必要な溶接強度を確保できていると判定される。   Thereafter, in the load displacement amount determination step S2, it is determined whether or not the welded portion 27 has a required welding strength based on the magnitude of the load displacement amount ΔLa obtained in the load displacement amount measurement step S1. . Specifically, the obtained load displacement amount ΔLa is compared with a predetermined reference load displacement amount ΔLr. When the load displacement amount ΔLa is equal to or less than the reference load displacement amount ΔLr (ΔLa ≦ ΔLr), the welded portion 27 is It is determined that the necessary welding strength can be secured. FIG. 5 shows an example of a solid line (good) and a two-dot chain line (defect 2) among three examples in which the displacement ΔL is indicated by a solid line (good), a one-dot chain line (defect 1), and a two-dot chain line (defect 2). Then, since the load displacement amount ΔLa is equal to or less than the reference load displacement amount ΔLr, in these examples, it is determined that the welded portion 27 can secure the necessary welding strength.

一方、負荷変位量ΔLaが基準負荷変位量ΔLrよりも大きい場合(ΔLa>ΔLr)には、溶接部27の溶接強度が不十分であると判定する。図5に示した上述の3つの例のうち、一点鎖線(不良1)の例では、負荷変位量ΔLaが基準負荷変位量ΔLrよりも大きいため、この例では、溶接部27の溶接強度が不十分であると判定される。なお、この一点鎖線(不良1)の例では、溶接部27の溶接強度が低すぎたため、検査荷重Pcを印加したときに、溶接部27が弾性変形の範囲を超えて大きく塑性変形した。このため、負荷変位量ΔLaが大きくなったと考えられる。   On the other hand, when the load displacement amount ΔLa is larger than the reference load displacement amount ΔLr (ΔLa> ΔLr), it is determined that the welding strength of the welded portion 27 is insufficient. Among the above three examples shown in FIG. 5, in the example of the alternate long and short dash line (defect 1), the load displacement amount ΔLa is larger than the reference load displacement amount ΔLr. Determined to be sufficient. In the example of the alternate long and short dash line (defect 1), the weld strength of the welded portion 27 was too low. Therefore, when the inspection load Pc was applied, the welded portion 27 was greatly plastically deformed beyond the elastic deformation range. For this reason, it is considered that the load displacement amount ΔLa has increased.

次に、残留変位量測定工程S3において、移動装置113によって押圧部材111を沿面方向EHのうち、押圧した方向の反対側(横方向CHの他方側CH2)に移動させて、荷重測定手段120で測定される荷重Pが荷重P=0となるまで、溶接部27に掛かる荷重Pを徐々に減らす。図5においては、検査時刻T4(本実施形態ではT4=1.00sec)で、荷重P=0となる。そして、荷重P(検査荷重Pc)の解放後も残留する沿面方向EH(横方向CH)についての円筒型電池10に対するバスバ導通部23の残留変位量ΔLb(μm)を測定する。具体的には、変位量測定手段130により、溶接部27に掛かる荷重P=0となった検査時刻T4における押圧部材111の沿面方向EH(横方向CH)の位置L3を測定し、この位置L3と、前述の検査時刻T1における押圧部材111の沿面方向EH(横方向CH)の位置L1とから、円筒型電池10に対するバスバ導通部23の沿面方向EHの残留変位量ΔLb=L1−L3を求める。   Next, in the residual displacement measurement step S3, the pressing member 111 is moved to the opposite side of the creeping direction EH by the moving device 113 (the other side CH2 of the lateral direction CH) by the load measuring means 120. The load P applied to the welded portion 27 is gradually reduced until the load P to be measured becomes the load P = 0. In FIG. 5, the load P = 0 at the inspection time T4 (T4 = 1.00 sec in this embodiment). Then, a residual displacement amount ΔLb (μm) of the bus bar conducting portion 23 with respect to the cylindrical battery 10 in the creeping direction EH (lateral direction CH) remaining after the release of the load P (inspection load Pc) is measured. Specifically, the displacement measuring means 130 measures the position L3 in the creeping direction EH (lateral direction CH) of the pressing member 111 at the inspection time T4 when the load P = 0 applied to the welded portion 27, and this position L3. From the position L1 in the creeping direction EH (lateral direction CH) of the pressing member 111 at the above-described inspection time T1, the residual displacement amount ΔLb = L1-L3 in the creeping direction EH of the bus bar conducting portion 23 with respect to the cylindrical battery 10 is obtained. .

その後、残留変位量判定工程S4において、残留変位量測定工程S3で得られた残留変位量ΔLbの大きさに基づいて、検査時に印加した検査荷重Pcによって溶接部27の溶接強度が低下していないかを判定する。具体的には、得られた残留変位量ΔLbを予め定めた基準残留変位量ΔLsと比較し、残留変位量ΔLbが基準残留変位量ΔLs以下である場合(ΔLb≦ΔLs)に、検査荷重Pcの印加で溶接部27の溶接強度が低下していないと判定する。   Thereafter, in the residual displacement determination step S4, the welding strength of the welded portion 27 is not reduced by the inspection load Pc applied during the inspection based on the magnitude of the residual displacement ΔLb obtained in the residual displacement measurement step S3. Determine whether. Specifically, the obtained residual displacement amount ΔLb is compared with a predetermined reference residual displacement amount ΔLs, and when the residual displacement amount ΔLb is equal to or smaller than the reference residual displacement amount ΔLs (ΔLb ≦ ΔLs), the inspection load Pc It determines with the welding strength of the welding part 27 not falling by application.

図5に示した前述の3つの例のうち、実線(良)の例では、残留変位量ΔLbが基準残留変位量ΔLs以下であるため、この例では、検査荷重Pcの印加で溶接部27の溶接強度が低下していないと判定される。なお、この実線(良)の例では、溶接部27の溶接強度が十分に大きいため、検査荷重Pcの印加が溶接部27の主に弾性変形の範囲内で行われた。このため、検査荷重Pcを解放した後、溶接部27は弾性変形によって殆ど元の形に戻ったため、残留変位量ΔLbが小さくなったと考えられる。   Of the above-described three examples shown in FIG. 5, in the solid line (good) example, the residual displacement amount ΔLb is equal to or less than the reference residual displacement amount ΔLs. It is determined that the welding strength has not decreased. In the example of the solid line (good), the weld strength of the welded portion 27 is sufficiently high, so that the inspection load Pc is applied mainly within the range of the elastic deformation of the welded portion 27. For this reason, after the inspection load Pc is released, the welded portion 27 has almost returned to its original shape due to elastic deformation, and it is considered that the residual displacement amount ΔLb has become smaller.

一方、残留変位量ΔLbが基準残留変位量ΔLsよりも大きい場合(ΔLb>ΔLs)には、溶接部27の溶接強度が低下していると判定する。
図5に示した上述の3つの例のうち、一点鎖線(不良1)及び二点鎖線(不良2)の例では、残留変位量ΔLbが基準残留変位量ΔLsよりも大きいため、これらの例では、溶接部27の溶接強度が低下していると判定される。
なお、一点鎖線(不良1)の例では、前述のように、溶接部27の溶接強度が低すぎたため、検査荷重Pcを印加したときに、溶接部27が弾性変形の範囲を超えて大きく塑性変形した。このため、検査荷重Pcを解放した後の残留変位量ΔLbも大きくなったと考えられる。
On the other hand, when the residual displacement amount ΔLb is larger than the reference residual displacement amount ΔLs (ΔLb> ΔLs), it is determined that the welding strength of the welded portion 27 is reduced.
Among the above-described three examples shown in FIG. 5, in the examples of the one-dot chain line (defect 1) and the two-dot chain line (defect 2), the residual displacement amount ΔLb is larger than the reference residual displacement amount ΔLs. It is determined that the welding strength of the welded portion 27 is reduced.
In the example of the alternate long and short dash line (defect 1), as described above, the weld strength of the welded portion 27 is too low, so that when the inspection load Pc is applied, the welded portion 27 is greatly plasticized beyond the elastic deformation range. Deformed. For this reason, it is considered that the residual displacement amount ΔLb after the inspection load Pc is released is also increased.

また、二点鎖線(不良2)の例では、一点鎖線(不良1)の例よりも溶接部27の溶接強度が大きく、検査荷重Pcを印加したときに、溶接部27が弾性変形の範囲を超えて塑性変形したが、その塑性変形量は少なかった。このため、前述のように、負荷変位量ΔLaは基準負荷変位量ΔLr以下であった。しかし、塑性変形を生じたことで、検査により溶接部27の溶接強度が低下してしまった。本例では、この塑性変形により生じる残留変位量ΔLbが基準残留変位量ΔLsよりも大きいため、この残留変位量判定工程S4において検査荷重Pcの印加で溶接部27の溶接強度が低下したと判定できる。   Further, in the example of the two-dot chain line (defect 2), the weld strength of the welded portion 27 is larger than that in the example of the one-dot chain line (defect 1). However, the amount of plastic deformation was small. For this reason, as described above, the load displacement amount ΔLa is equal to or less than the reference load displacement amount ΔLr. However, since the plastic deformation occurred, the weld strength of the welded portion 27 was reduced by the inspection. In this example, since the residual displacement amount ΔLb caused by the plastic deformation is larger than the reference residual displacement amount ΔLs, it can be determined that the welding strength of the welded portion 27 has decreased due to the application of the inspection load Pc in the residual displacement amount determination step S4. .

次に、未判定溶接部判断工程S5において、電池モジュール1に含まれる複数の溶接部27のうち、上述の負荷変位量測定工程S1、負荷変位量判定工程S2、残留変位量測定工程S3及び残留変位量判定工程S4を行っていない未判定の溶接部27があるか否かを判断する。ここで、YES、即ち、負荷変位量測定工程S1〜残留変位量判定工程S4を行っていない未判定の溶接部27が残っている場合には、その溶接部27に対しても同様に、負荷変位量測定工程S1〜残留変位量判定工程S4を行う。一方、NO、即ち、負荷変位量測定工程S1〜残留変位量判定工程S4を行っていない未判定の溶接部27がない場合(すべての溶接部27に対して負荷変位量測定工程S1〜残留変位量判定工程S4を終了した場合)には、不良品除去工程S6に進む。   Next, in the undetermined weld portion determination step S5, among the plurality of weld portions 27 included in the battery module 1, the above-described load displacement amount measurement step S1, load displacement amount determination step S2, residual displacement amount measurement step S3, and residual It is determined whether there is an undetermined welded portion 27 that has not been subjected to the displacement amount determining step S4. Here, when YES, that is, when the undetermined welded portion 27 not subjected to the load displacement measuring step S1 to the residual displacement determining step S4 remains, the load is similarly applied to the welded portion 27 as well. A displacement amount measurement step S1 to a residual displacement amount determination step S4 are performed. On the other hand, NO, that is, when there is no undetermined welded portion 27 that has not been subjected to the load displacement measuring step S1 to the residual displacement determining step S4 (the load displacement measuring step S1 to the residual displacement for all the welded portions 27). When the quantity determination step S4 is completed), the process proceeds to a defective product removal step S6.

次に、不良品除去工程S6において、電池モジュール1に含まれるすべての溶接部27について、負荷変位量判定工程S2で良好と判定され、かつ、残留変位量判定工程S4でも良好と判定された電池モジュール1のみを、良品の電池モジュール1とし、それ以外の電池モジュール1を不良品として除去する。   Next, in the defective product removal step S6, for all the welded portions 27 included in the battery module 1, the battery that is determined to be good in the load displacement amount determination step S2 and that is also determined to be good in the residual displacement amount determination step S4. Only the module 1 is a good battery module 1 and the other battery modules 1 are removed as defective products.

以上で説明したように、溶接強度検査方法では、円筒型電池10とバスバ導通部23との溶接部27に検査荷重Pcを印加し、円筒型電池10に対するバスバ導通部23の負荷変位量ΔLaを測定するので、この負荷変位量ΔLaの大きさに基づいて、溶接部27が必要な溶接強度を確保できているか否かを判定できる。
加えて、この溶接強度検査方法では、検査荷重Pcを開放した後も残留する円筒型電池10に対するバスバ導通部23の残留変位量ΔLbを測定する。仮に検査時に溶接部27に印加した検査荷重Pcによって溶接部27が大きく損傷し溶接強度が大きく低下した場合には、この残留変位量ΔLbの値が大きくなる。このため、残留変位量ΔLbの大きさにより、検査時に印加した検査荷重Pcによって溶接強度が低下してしまったものを適切に検知できる。
As described above, in the welding strength inspection method, the inspection load Pc is applied to the welded portion 27 between the cylindrical battery 10 and the bus bar conductive portion 23, and the load displacement amount ΔLa of the bus bar conductive portion 23 with respect to the cylindrical battery 10 is set. Since the measurement is performed, it can be determined whether or not the welding portion 27 has a required welding strength based on the magnitude of the load displacement amount ΔLa.
In addition, in this welding strength inspection method, the residual displacement amount ΔLb of the bus bar conduction portion 23 with respect to the cylindrical battery 10 remaining after the inspection load Pc is released is measured. If the welded portion 27 is greatly damaged by the inspection load Pc applied to the welded portion 27 during the inspection and the welding strength is greatly reduced, the value of the residual displacement amount ΔLb increases. For this reason, it is possible to appropriately detect a case where the welding strength is reduced by the inspection load Pc applied at the time of inspection based on the magnitude of the residual displacement amount ΔLb.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、円筒型電池10の正極端子部15と正極バスバ20のバスバ導通部23との溶接部27の溶接強度を検査する場合に、本発明を適用することを例示したが、これに限られない。円筒型電池10の負極端子部と負極バスバのバスバ導通部との溶接部の溶接強度を検査する場合に、本発明を適用することもできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the present invention is exemplified when the welding strength of the welded portion 27 between the positive terminal portion 15 of the cylindrical battery 10 and the bus bar conductive portion 23 of the positive bus bar 20 is inspected. Not limited to. The present invention can also be applied when inspecting the welding strength of the welded portion between the negative electrode terminal portion of the cylindrical battery 10 and the bus bar conduction portion of the negative electrode bus bar.

また、実施形態では、負荷変位量測定工程S1において、検査時刻T2から検査時刻T3まで、溶接部27に検査荷重Pcを印加し続けたが、これに限られない。例えば、溶接部27に検査荷重Pcが印加された後は、所定時間が経過するのを待つことなく直ちに、溶接部27に掛かる荷重Pを減らしてもよい。このようにして負荷変位量ΔLaを測定した場合でも、負荷変位量判定工程S2において、溶接部27が必要な溶接強度を確保できているか否かを判定できる。更に、残留変位量測定工程S3で得られた残留変位量ΔLbに基づいて、残留変位量判定工程S4において、検査荷重Pcによって溶接部27の溶接強度が低下していないかを判定できる。   In the embodiment, in the load displacement amount measurement step S1, the inspection load Pc is continuously applied to the welded portion 27 from the inspection time T2 to the inspection time T3. However, the present invention is not limited to this. For example, after the inspection load Pc is applied to the welded portion 27, the load P applied to the welded portion 27 may be reduced immediately without waiting for a predetermined time to elapse. Even when the load displacement amount ΔLa is measured in this way, it is possible to determine whether or not the welded portion 27 can ensure the required welding strength in the load displacement amount determination step S2. Furthermore, based on the residual displacement amount ΔLb obtained in the residual displacement amount measurement step S3, it can be determined in the residual displacement amount determination step S4 whether the weld strength of the welded portion 27 is reduced by the inspection load Pc.

1 電池モジュール(構造体)
10 円筒型電池(第1部材)
15 正極端子部(電極端子部)
15m 端子面(第1接合面)
20 正極バスバ
21 バスバ本体部
23 バスバ導通部(第2部材)
23m 下面(第2接合面)
27 溶接部
110 荷重印加手段
120 荷重測定手段
130 変位量測定手段
EH 沿面方向
P 荷重
Pc 検査荷重
ΔL 変位量
ΔLa 負荷変位量
ΔLr 基準負荷変位量
ΔLb 残留変位量
ΔLs 基準残留変位量
S1 負荷変位量測定工程
S2 負荷変位量判定工程
S3 残留変位量測定工程
S4 残留変位量判定工程
S5 未判定溶接部判断工程
S6 不良品除去工程
1 Battery module (structure)
10 Cylindrical battery (first member)
15 Positive terminal (electrode terminal)
15m terminal surface (first joint surface)
20 Positive bus bar 21 Bus bar body 23 Bus bar conduction part (second member)
23m bottom surface (second joint surface)
27 Welded part 110 Load applying means 120 Load measuring means 130 Displacement measuring means EH Creeping direction P Load Pc Inspection load ΔL Displacement amount ΔLa Load displacement amount ΔLr Reference load displacement amount ΔLb Residual displacement amount ΔLs Reference residual displacement amount S1 Measurement of load displacement amount Step S2 Load displacement amount determination step S3 Residual displacement amount measurement step S4 Residual displacement amount determination step S5 Undetermined welded portion determination step S6 Defective product removal step

Claims (1)

第1部材の第1接合面と、第2部材の上記第1接合面に対向する第2接合面とが溶接部を介して接合された構造体のうち、上記溶接部の上記第1接合面及び上記第2接合面に沿う沿面方向の溶接強度を検査する溶接強度検査方法であって、
上記第1部材及び上記第2部材のいずれか一方を固定し他方を上記沿面方向に押圧して、上記溶接部に予め定めた検査荷重を印加し、上記沿面方向に生じた上記第1部材に対する上記第2部材の負荷変位量ΔLaを測定する負荷変位量測定工程と、
上記検査荷重の解放後も残留する上記沿面方向についての上記第1部材に対する上記第2部材の残留変位量ΔLbを測定する残留変位量測定工程と、を備える
溶接強度検査方法。
Of the structure in which the first joint surface of the first member and the second joint surface facing the first joint surface of the second member are joined via the welded portion, the first joint surface of the welded portion. And a weld strength inspection method for inspecting the weld strength in the creeping direction along the second joint surface,
One of the first member and the second member is fixed, the other is pressed in the creeping direction, a predetermined inspection load is applied to the welded portion, and the first member generated in the creeping direction is applied. A load displacement amount measuring step for measuring the load displacement amount ΔLa of the second member;
A residual displacement measuring step for measuring a residual displacement amount ΔLb of the second member with respect to the first member in the creeping direction remaining even after the inspection load is released.
JP2017017330A 2017-02-02 2017-02-02 Weld strength inspection method Pending JP2018122338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017330A JP2018122338A (en) 2017-02-02 2017-02-02 Weld strength inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017330A JP2018122338A (en) 2017-02-02 2017-02-02 Weld strength inspection method

Publications (1)

Publication Number Publication Date
JP2018122338A true JP2018122338A (en) 2018-08-09

Family

ID=63110781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017330A Pending JP2018122338A (en) 2017-02-02 2017-02-02 Weld strength inspection method

Country Status (1)

Country Link
JP (1) JP2018122338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579364A (en) * 2020-05-19 2020-08-25 胡家润 Lithium battery tab welding strength detection device
KR102581730B1 (en) * 2023-02-22 2023-09-22 주식회사 시스템알앤디 Fixing state-inspection apparatus for sensing terminals of battery module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579364A (en) * 2020-05-19 2020-08-25 胡家润 Lithium battery tab welding strength detection device
CN111579364B (en) * 2020-05-19 2022-12-27 广东贝尔试验设备有限公司 Lithium battery tab welding strength detection device
KR102581730B1 (en) * 2023-02-22 2023-09-22 주식회사 시스템알앤디 Fixing state-inspection apparatus for sensing terminals of battery module

Similar Documents

Publication Publication Date Title
EP3511107B1 (en) System and method for inspecting welding of secondary battery
KR102151175B1 (en) Electrode damage inspection electrode damage method of pouch type secondary battery
KR101810659B1 (en) Electrode Terminal Welding Device of Battery Cell Assembly Comprising Battery Cells and Welding Process Using the Same
KR20170110331A (en) Method of Inspecting Welding State Using Pressure Gauge
JP2010153275A (en) Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP2018122338A (en) Weld strength inspection method
JP5438190B2 (en) Current collector plate shaping device
US20190217413A1 (en) Battery production method and battery production device
JP5974967B2 (en) Battery inspection method and battery manufacturing method
US20220365122A1 (en) Insulation resistance inspection system for battery module cell pouch
JP4720221B2 (en) Manufacturing method of secondary battery
KR101152645B1 (en) Method of Inspecting Welding State on Welding Portion of Cell
WO2018220902A1 (en) Structure for connecting electric wire, and auxiliary terminal
US11888173B2 (en) System and method for inspecting degree of alignment of battery module
JP2020087751A (en) Terminal welding device
KR101521433B1 (en) Welding Test Device of Novel Structure
KR102291156B1 (en) An apparatus and method for detecting electrode damage in pouch type secondary battery
CN111220458B (en) Fixed state inspection device, fixed state inspection method, and battery pack manufacturing method
JP6930488B2 (en) Li precipitation evaluation method
CN219284864U (en) Battery cell welding part inspection equipment
CN219891335U (en) Welding detection mechanism
KR102023722B1 (en) Apparatus For Testing Welding Characteristics Between Electrode Lead And Bus Bar For Welding And Method Of Using The Same
KR20140112466A (en) Welding Test Device of Novel Structure
US20230009074A1 (en) System for detecting poor weld in welded portion of battery module, and method thereof
US11777181B2 (en) Metal plate for resistance welding and resistance welding method using the same