JP2020087556A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2020087556A
JP2020087556A JP2018216358A JP2018216358A JP2020087556A JP 2020087556 A JP2020087556 A JP 2020087556A JP 2018216358 A JP2018216358 A JP 2018216358A JP 2018216358 A JP2018216358 A JP 2018216358A JP 2020087556 A JP2020087556 A JP 2020087556A
Authority
JP
Japan
Prior art keywords
hydrogen
reforming
fuel cell
combustion
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018216358A
Other languages
English (en)
Inventor
浩康 河内
Hiroyasu Kawachi
浩康 河内
聡 針生
Satoshi Hario
聡 針生
峻史 水野
Takashi Mizuno
峻史 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018216358A priority Critical patent/JP2020087556A/ja
Publication of JP2020087556A publication Critical patent/JP2020087556A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池の発電状態を安定化させつつ、システム効率を向上させることができる燃料電池システムを提供する。【解決手段】燃料電池システム1は、アンモニアガスを水素に分解して改質ガスを生成する改質部14と、アンモニアガスを燃焼する燃焼部15とを有する改質器5と、改質部14により生成された改質ガスを水素と残ガスとに分離する水素分離器8と、水素分離器8により分離された水素と空気とを用いて発電を行う燃料電池10と、水素分離器8と燃焼部15の上流側とを接続し、水素分離器8から燃焼部15に供給される残ガスが流れる残ガス流路30と、改質部14及び燃焼部15に供給されるアンモニアガスの流量を調整する流量調整弁17,20と、改質器5が起動されると、流量調整弁17,20を開くように制御し、その後流量調整弁20を閉じるように制御する制御ユニット12とを備える。【選択図】図1

Description

本発明は、燃料電池システムに関する。
従来の燃料電池システムとしては、例えば特許文献1に記載されている技術が知られている。特許文献1に記載の燃料電池システムは、水素を消費して発電を行う燃料電池と、この燃料電池に供給するための水素含有の改質ガスを生成する熱交換型改質器とを主要構成要素として構成されている。熱交換型改質器は、改質触媒が担持され、炭化水素ガスと水蒸気とを触媒反応させることで水素ガスを含む改質ガスを生成する改質部と、燃焼用の酸化触媒が担持され、改質部が改質反応を行うための熱を供給する加熱部とを含んで構成されている。改質部には、炭化水素ガスを改質部に供給する原料ポンプが原料供給ラインを介して接続されている。加熱部には、冷却オフガスと燃料電池のアノードからのアノードオフガスとを混合するガス混合器が接続されている。
特開2007−290901号公報
しかしながら、上記従来技術においては、水素含有の改質ガス中に未分解の原料ガスが残存していると、燃料電池に不要なガスが供給されることになるため、燃料電池の発電状態が不安定になることがある。そこで、燃料電池の発電状態を安定化させつつ、燃料電池システムのシステム効率を向上させることが望まれている。
本発明の目的は、燃料電池の発電状態を安定化させつつ、システム効率を向上させることができる燃料電池システムを提供することである。
本発明の一態様に係る燃料電池システムは、アンモニアガスを水素に分解して水素を含有した改質ガスを生成する改質部と、アンモニアガスを燃焼してアンモニアガスの燃焼熱を改質部に供給する燃焼部とを有する改質器と、改質部に供給されるアンモニアガスが流れる第1アンモニアガス流路と、燃焼部に供給されるアンモニアガスが流れる第2アンモニアガス流路と、燃焼部に供給される酸化性ガスが流れる酸化性ガス流路と、改質部により生成された改質ガスを水素と残ガスとに分離する水素分離部と、水素分離部により分離された水素と酸化性ガスとを用いて発電を行う燃料電池と、水素分離部と燃焼部の上流側とを接続し、水素分離部から燃焼部に供給される残ガスが流れる残ガス流路と、第1アンモニアガス流路に配設され、改質部に供給されるアンモニアガスの流量を調整する第1流量調整弁と、第2アンモニアガス流路に配設され、燃焼部に供給されるアンモニアガスの流量を調整する第2流量調整弁と、第1流量調整弁及び第2流量調整弁を制御する制御部とを備え、制御部は、改質器が起動されると、第1流量調整弁及び第2流量調整弁を開くように制御し、その後第2流量調整弁を閉じるように制御する。
このような燃料電池システムにおいては、改質器が起動されると、第1流量調整弁及び第2流量調整弁が開くため、改質器の改質部及び燃焼部の両方にアンモニアガスが供給される。このため、燃焼部においてアンモニアガスが燃焼し、その燃焼熱が燃焼部から改質部に供給される。そして、改質部では、燃焼部からの燃焼熱により改質が行われることで、水素を含有した改質ガスが生成される。改質ガスは、水素分離部によって水素と残ガスとに分離される。そして、分離された水素が燃料電池に供給され、燃料電池において発電が行われる。このように水素分離部により分離された水素が燃料電池に供給されるため、不要な未燃のアンモニアガスが燃料電池に供給されにくくなる。これにより、燃料電池の発電状態が安定化する。
改質器の起動期間が経過した後は、第2流量調整弁が閉じるため、燃焼部へのアンモニアガスの供給が停止する。しかし、水素分離部により分離された残ガスが残ガス流路を流れて燃焼部に供給されるため、燃焼部において残ガスが燃焼し、その燃焼熱が燃焼部から改質部に供給される。このため、改質部では、改質が継続される。このように水素分離部により分離された残ガスが燃焼部における燃焼用のガスとして利用されるため、燃焼部へのアンモニアガスの供給量が少なくて済む。これにより、燃料電池システムのシステム効率が向上する。
燃料電池システムは、燃料電池の発電量を検出する検出部を更に備え、制御部は、第2流量調整弁を閉じるように制御した後、検出部により検出された燃料電池の発電量に応じて第1流量調整弁及び第2流量調整弁の開度を制御してもよい。
このような構成では、改質器の起動期間が経過した後に、燃料電池の発電量が変化したときは、燃料電池の発電量に応じて改質部及び燃焼部へのアンモニアガスの供給量が調整されるため、燃料電池の発電状態が更に安定化する。
改質部の改質率をaとし、水素分離部の水素分離率をbとし、改質部に供給されるアンモニアガスの物質量をN(mol)とし、燃焼部で発生した燃焼熱に対する改質部での改質の吸熱に利用される熱の割合を有効熱効率cとしたときに、下記式が成り立ってもよい。
Figure 2020087556
このような構成では、改質器の起動期間が経過した後に、水素分離部により分離された残ガスが改質部での改質に有効利用されるため、燃料電池システムのシステム効率が一層向上する。
水素分離部と燃料電池との間には、水素分離部により分離された水素を冷却する冷却部が配置されていてもよい。このような構成では、燃料電池に供給される水素の温度を燃料電池の稼動温度に適した温度に設定することができる。
本発明によれば、燃料電池の発電状態を安定化させつつ、燃料電池システムのシステム効率を向上させることができる。
本発明の第1実施形態に係る燃料電池システムを示す概略構成図である。 図1に示された水素分離器の構造を示す図である。 図1に示された制御ユニットにより実行される制御処理手順の詳細を示すフローチャートである。 本発明の第2実施形態に係る燃料電池システムを示す概略構成図である。 図4に示された制御ユニットにより実行される制御処理手順の詳細を示すフローチャートである。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。
図1は、本発明の第1実施形態に係る燃料電池システムを示す概略構成図である。図1において、本実施形態の燃料電池システム1は、例えば燃料電池自動車に搭載される。燃料電池システム1は、アンモニアタンク2と、気化器3と、空気供給部4と、熱交換型の改質器5と、ヒータ6と、触媒7と、水素分離器8と、冷却器9、燃料電池10と、温度センサ11と、制御ユニット12とを備えている。
アンモニアタンク2は、燃料であるアンモニア(NH)を液体状態で貯蔵するタンクである。気化器3は、アンモニア流路13を介してアンモニアタンク2と接続されている。気化器3は、ポンプ(図示せず)によりアンモニアタンク2から導出された液体状態のアンモニアを気化させて、アンモニアガスを生成する。
空気供給部4は、酸化性ガスである空気を改質器5及び燃料電池10に供給する。空気供給部としては、例えば送風機等が用いられる。
改質器5は、気化器3により生成されたアンモニアガスを改質して、水素を含有した改質ガスを生成する。改質器5は、アンモニアガスを水素に分解する改質触媒14aを含む改質部14と、アンモニアガスを燃焼する燃焼触媒15aを含み、アンモニアガスの燃焼熱を改質部14に供給する燃焼部15とを有している。改質触媒14aとしては、例えばルテニウム(Ru)またはロジウム(Rh)等が用いられる。燃焼触媒15aとしては、例えば白金(Pt)またはロジウム(Rh)等が用いられる。
改質部14及び燃焼部15は、例えば仕切り板(図示せず)を介して積層されている。燃焼部15で発生した燃焼熱は、仕切り板を通って改質部14に伝わる。改質部14及び燃焼部15の数としては、1つずつであってもよいし、複数ずつであってもよい。改質部14及び燃焼部15の数が複数ずつである場合には、改質部14及び燃焼部15は交互に積層される。
改質部14は、アンモニアガス流路16(第1アンモニアガス流路)を介して気化器3と接続されている。アンモニアガス流路16は、改質部14に供給されるアンモニアガスが流れる流路である。アンモニアガス流路16には、改質部14に供給されるアンモニアガスの流量を調整する電磁式の流量調整弁17(第1流量調整弁)が配設されている。
改質部14には、アンモニアガスが導入される。改質部14は、燃焼部15で発生した燃焼熱及び改質触媒14aによってアンモニアを水素及び窒素に分解する。具体的には、下記式のように、燃焼熱によりアンモニアの分解反応が起こり(吸熱反応)、水素がリッチな状態の改質ガスが生成される。なお、改質ガスには、少量のアンモニアが含まれていてもよい。
NH⇔3/2H+1/2N
燃焼部15は、アンモニアガス流路18(第2アンモニアガス流路)を介して気化器3と接続されていると共に、空気流路19(酸化性ガス流路)を介して空気供給部4と接続されている。アンモニアガス流路18は、燃焼部15に供給されるアンモニアガスが流れる流路である。空気流路19は、燃焼部15に供給される空気が流れる流路である。
アンモニアガス流路18には、燃焼部15に供給されるアンモニアガスの流量を調整する電磁式の流量調整弁20(第2流量調整弁)が配設されている。空気流路19は、アンモニアガス流路18における流量調整弁20と燃焼部15との間の部分に接続されている。空気流路19には、燃焼部15に供給される空気の流量を調整する電磁式の流量調整弁21が配設されている。
燃焼部15には、アンモニアガス及び空気が導入される。燃焼部15は、燃焼触媒15aによってアンモニアを酸化させることで、燃焼熱を発生させる。具体的には、下記式のように、一部のアンモニアと空気中の酸素とが化学反応し、アンモニアの酸化反応により燃焼熱が発生する(発熱反応)。このような発熱反応により、窒素及び水を含む燃焼ガスが生成される。なお、燃焼ガスには、少量のアンモニアが含まれていてもよい。
NH+3/4O⇔1/2N+3/2H
ヒータ6は、改質器5を含む燃料電池システム1の起動時に、改質部14及び燃焼部15を加熱する。ヒータ6としては、例えば電熱ヒータ等が用いられる。なお、改質器5をヒータ6で直接加熱する代わりに、改質部14及び燃焼部15に供給されるアンモニアガスを加熱し、その熱で改質器5を加熱してもよい。
触媒7は、燃焼ガス流路22を介して燃焼部15と接続されている。燃焼ガス流路22は、燃焼部15により生成された燃焼ガスが流れる流路である。触媒7は、燃焼ガス流路22を流れる燃焼ガスに含まれるアンモニアを除去する。触媒7としては、例えば白金(Pt)等が用いられる。触媒7によってアンモニアが除去された燃焼ガスは、大気中に排出される。
水素分離器8は、改質ガス流路23を介して改質部14と接続されている。改質ガス流路23は、改質部14により生成された改質ガスが流れる流路である。水素分離器8は、改質部14により生成された改質ガスを水素と水素以外のガスを主成分とする残ガスとに分離する水素分離部である。改質ガスは、水素、窒素及び未燃のアンモニアを含んでいる。残ガスは、窒素及び未燃のアンモニアを含んでいる。また、残ガスは、少量の水素も含んでもよい。
水素分離器8は、例えば図2に示されるように、水素分離管24と、この水素分離管24の内部に配置されたパラジウム膜25とを有している。水素分離管24には、改質ガスが導入される改質ガス入口部24aと、水素が導出される水素出口部24bと、残ガスが導出される残ガス出口部24cとが設けられている。改質ガス入口部24aは、改質ガス流路23と接続されている。パラジウム膜25は、改質ガス中の水素のみが透過し、改質ガス中の窒素及びアンモニアは透過できない金属膜である。なお、水素分離器8としては、VまたはNb等といった非Pd系の合金膜、あるいはシリカ等の多孔質無機膜系の分離膜を用いてもよい。
冷却器9は、水素流路26を介して水素分離器8と接続されている。水素流路26は、水素分離器8により分離された水素が流れる流路であり、水素分離管24の水素出口部24bと接続されている。冷却器9は、水素分離器8により分離された水素を冷却する冷却部である。冷却器9は、水素を燃料電池10の稼動温度に適した温度(例えば100℃〜200℃程度)まで冷却する。冷却器9としては、例えば冷却水により熱交換を行う熱交換器等が用いられる。
燃料電池10は、水素流路27を介して冷却器9と接続されていると共に、空気流路28を介して空気供給部4と接続されている。燃料電池10は、冷却器9により冷却された水素と空気中の酸素とを化学反応させて、発電を行う。燃料電池10としては、例えば固体高分子型の燃料電池(PEFC:polymerelectrolyte fuel cell)が用いられる。空気流路28には、燃料電池10に供給される空気の流量を調整する電磁式の流量調整弁29が配設されている。
水素分離器8と改質器5の燃焼部15の上流側とは、残ガス流路30を介して接続されている。残ガス流路30の一端は、水素分離管24の残ガス出口部24cに接続されている。残ガス流路30の他端は、アンモニアガス流路18における流量調整弁20と燃焼部15との間の部分に接続されている。残ガス流路30は、水素分離器8から燃焼部15に供給される残ガスが流れる流路である。残ガス流路30には、水素分離器8から燃焼部15に残ガスを送り込むポンプ31が配設されている。なお、改質部14の圧力を大気圧以上(例えば0.5MPa)にしておけば、ポンプ31は不要である。
温度センサ11は、改質器5の改質部14の温度を検出するセンサである。温度センサ11は、例えば改質触媒14aの温度を検出する。
制御ユニット12は、CPU、RAM、ROM及び入出力インターフェース等により構成されている。制御ユニット12は、温度センサ11の検出信号に基づいて所定の処理を行い、流量調整弁17,20及び流量調整弁21,29を制御する制御部である。制御ユニット12による制御処理については、後で詳述する。
ここで、改質部14の改質率をaとし、水素分離器8の水素分離率をbとし、改質部14に供給されるアンモニアガスの物質量をN(mol)としたときに、改質ガス流路23を流れる改質ガスの組成としては、H:N×a×3/2、N:N×a×1/2、NH:N×(1−a)である。同様に、水素流路26を流れる水素ガスの組成としては、H:(N×a×3/2)×bである。同様に、残ガス流路30を流れる残ガスの組成としては、H:(N×a×3/2)×(1−b)、N:N×a×1/2、NH:N×(1−a)である。
アンモニアを分解して水素を生成するためには、改質部14で下記の反応を進行させる必要がある。この反応は吸熱反応である。
NH改質:NH⇔1/2N+3/2H−46kJ/mol(吸熱)
アンモニアの改質に必要な熱を供給するためには、燃焼部15でアンモニアあるいは/及び水素と酸素との触媒反応により熱を発生させ、この熱を熱源として利用する。
NH燃焼:NH+3/4O⇔1/2N+3/2HO+315kJ/mol(発熱)
燃焼 :H+1/2O⇔HO+284kJ/mol(発熱)
そこで、改質部14及び水素分離器8は、改質部14の改質率をaとし、水素分離器8の水素分離率をbとし、改質部14に供給されるアンモニアガスの物質量をN(mol)とし、燃焼部15で発生した燃焼熱に対する改質部14での改質の吸熱に利用される熱の割合を有効熱効率cとしたときに、下記式が成り立つように構成されている。
Figure 2020087556
つまり、改質部14での改質の吸熱に利用される熱を残ガスの燃焼熱で除した値は、有効熱効率c以上である。この場合には、水素分離器8により分離された残ガスを効率良く燃焼部15における燃焼用のガスとして利用することができる。なお、有効熱効率cは、改質器5の断熱性及び熱抵抗等といった改質器5の設計によって決まる。
図3は、制御ユニット12により実行される制御処理手順の詳細を示すフローチャートである。なお、本処理は、イグニッションスイッチ(図示せず)がONされると実行され、イグニッションスイッチがOFFされると終了する。また、本処理の実行前は、流量調整弁17,20及び流量調整弁21,29は、何れも全閉状態となっている。
図3において、制御ユニット12は、まず温度センサ11の検出値を取得する(手順S101)。続いて、制御ユニット12は、温度センサ11により検出された改質部14の温度が起動温度以上であるかどうかを判断する(手順S102)。起動温度は、改質器5が起動されて、改質部14及び燃焼部15においてアンモニアが空気と反応して燃焼可能になる温度である。起動温度は、例えば200℃程度である。
制御ユニット12は、改質部14の温度が起動温度以上でないと判断したときは、手順S101を再度実行する。制御ユニット12は、改質部14の温度が起動温度以上であると判断したときは、流量調整弁17,20及び流量調整弁21,29を所定の開度で開くように制御する(手順S103)。これにより、改質部14にアンモニアガスが供給され、燃焼部15にアンモニアガス及び空気が供給され、燃料電池10に空気が供給される。
続いて、制御ユニット12は、温度センサ11の検出値を取得する(手順S104)。続いて、制御ユニット12は、温度センサ11により検出された改質部14の温度が定常動作温度以上であるかどうかを判断する(手順S105)。定常動作温度は、改質部14を定常動作させる温度である。定常動作温度は、起動温度よりも高い温度(例えば400℃〜500℃程度)である。
制御ユニット12は、改質部14の温度が定常動作温度以上でないと判断したときは、手順S104を再度実行する。制御ユニット12は、改質部14の温度が定常動作温度以上であると判断したときは、流量調整弁17を開いたまま流量調整弁20を全閉するように制御する(手順S106)。これにより、改質部14へのアンモニアガスの供給は継続するが、燃焼部15へのアンモニアガスの供給は停止する。
以上において、イグニッションスイッチ(図示せず)がONされると、燃料電池システム1の運転が開始される。すると、ヒータ6により改質器5の改質部14及び燃焼部15が加熱されるため、改質部14及び燃焼部15の温度が上昇する。そして、改質部14の温度が起動温度に達すると、流量調整弁17,20及び流量調整弁21,29が所定の開度で開弁するため、改質部14にアンモニアガスが供給されると共に、燃焼部15にアンモニアガス及び空気が供給される。また、燃料電池10に空気が供給される。
これにより、燃焼部15においてアンモニアの燃焼熱が発生し、その燃焼熱が改質部14に供給される。このため、改質部14において改質が開始され、水素を含む改質ガスが生成される。改質ガスは、水素分離器8によって水素と残ガスとに分離される。水素は、冷却器9により冷却された後、燃料電池10に供給される。そして、燃料電池10において、水素と空気中の酸素とを用いて発電が行われる。また、窒素及び未燃のアンモニアを含む残ガスは、ポンプ31によって燃焼部15に戻される。
その後、改質部14の温度が定常動作温度に達すると、流量調整弁17は開弁したままの状態であるが、流量調整弁20は閉弁するため、燃焼部15へのアンモニアガスの供給が停止する。これにより、燃焼部15では、残ガスのみの燃焼熱が発生する。そして、残ガスの燃焼熱が改質部14に供給されるため、改質部14において改質が継続される。
ここで、例えば改質部14の改質率aが90%であり、水素分離器8の水素分離率bが87%であり、有効熱効率cが50%である場合、改質部14に供給されるNHの物質量が1.0molであり、燃焼部15に供給されるNHの物質量が0molであるとき、改質部14から出力されるH、N、NHの物質量は、それぞれ1.35mol、0.45mol、0.10molである。このとき、改質部14の改質吸熱は、41.4kJである。
また、水素分離器8により分離されたHの物質量は1.17molである。水素分離器8により分離された残ガスに含まれるH、N、NHの物質量は、それぞれ0.176mol、0.45mol、0.10molである。このとき、燃焼部15の燃焼発熱は、81.5kJである。従って、改質部14の改質吸熱/残ガスの燃焼熱は、0.508(=41.4kJ/81.5kJ)である。つまり、改質部14の改質吸熱/残ガスの燃焼熱の割合は50.8%で、有効熱効率cとほぼ同じ値となり、熱バランスが取れた状態となる。
以上のように本実施形態にあっては、改質器5が起動されると、流量調整弁17,20が開くため、改質器5の改質部14及び燃焼部15の両方にアンモニアガスが供給される。このため、燃焼部15においてアンモニアガスが燃焼し、その燃焼熱が燃焼部15から改質部14に供給される。そして、改質部14では、燃焼部15からの燃焼熱により改質が行われることで、水素を含有した改質ガスが生成される。改質ガスは、水素分離器8によって水素と残ガスとに分離される。そして、分離された水素が燃料電池10に供給され、燃料電池10において発電が行われる。このように水素分離器8により分離された水素が燃料電池10に供給されるため、不要な未燃のアンモニアガスが燃料電池10に供給されにくくなる。これにより、燃料電池10の発電状態が安定化する。
改質器5の起動期間が経過した後は、流量調整弁20が閉じるため、燃焼部15へのアンモニアガスの供給が停止する。しかし、水素分離器8により分離された残ガスが残ガス流路30を流れて燃焼部15に供給されるため、燃焼部15において残ガスが燃焼し、その燃焼熱が燃焼部15から改質部14に供給される。このため、改質部14では、改質が継続される。このように水素分離器8により分離された残ガスが燃焼部15における燃焼用のガスとして利用されるため、燃焼部15へのアンモニアガスの供給量が少なくて済む。これにより、燃料電池システム1のシステム効率が向上する。
また、本実施形態では、改質部14の改質率をaとし、水素分離器8の水素分離率をbとし、改質部14に供給されるアンモニアガスの物質量をN(mol)とし、燃焼部15で発生した燃焼熱に対する改質部14での改質の吸熱に利用される熱の割合を有効熱効率cとしたときに、下記式が成り立つ。
Figure 2020087556
従って、改質器5の起動期間が経過した後に、水素分離器8により分離された残ガスが改質部14での改質に有効利用されるため、燃料電池システム1のシステム効率が一層向上する。
また、本実施形態では、水素分離器8と燃料電池10との間に、水素分離器8により分離された水素を冷却する冷却器9が配置されているので、燃料電池10に供給される水素の温度を燃料電池10の稼動温度に適した温度に設定することができる。
また、本実施形態では、改質器5の起動時に、燃焼部15にアンモニアガスが供給されると共に、改質された水素ガスの一部も燃焼部15に供給されるため、改質器5の起動時間を短縮することができる。
図4は、本発明の第2実施形態に係る燃料電池システムを示す概略構成図である。図4において、本実施形態の燃料電池システム1は、上記の第1実施形態における構成に加え、発電量検出部41を備えている。発電量検出部41は、燃料電池10の発電量を検出する。発電量検出部41は、燃料電池10の発電量として、例えば燃料電池10の出力電力または出力電圧を検出する。
また、燃料電池システム1は、上記の第1実施形態における制御ユニット12に代えて、制御ユニット42を備えている。制御ユニット42は、温度センサ11及び発電量検出部41の検出信号に基づいて所定の処理を行い、流量調整弁17,20及び流量調整弁21,29を制御する制御部である。
図5は、制御ユニット42により実行される制御処理手順の詳細を示すフローチャートである。図5において、制御ユニット42は、上記の制御ユニット12と同様に、図2に示された手順S101〜S106を実行する。
制御ユニット42は、手順S106を実行した後、発電量検出部41により検出された燃料電池10の発電量が変化したかどうかを判断する(手順S107)。制御ユニット42は、燃料電池10の発電量が変化していないと判断したときは、手順S107を再度実行する。制御ユニット42は、燃料電池10の発電量が変化したと判断したときは、燃料電池10の発電量に応じて流量調整弁17,20の開度を変更するように制御する(手順S108)。これにより、改質部14及び燃焼部15に供給されるアンモニアガスの流量が変化する。
例えば、制御ユニット42は、燃料電池10の発電量が増加したときは、流量調整弁17,20の開度を大きくするように制御する。これにより、改質部14及び燃焼部15に供給されるアンモニアガスの流量が増加するため、改質が促進される。制御ユニット42は、燃料電池10の発電量が減少したときは、流量調整弁17,20の開度を小さくするように制御する。これにより、改質部14及び燃焼部15に供給されるアンモニアガスの流量が減少するため、改質が抑制される。
そして、制御ユニット42は、手順S108を実行した後、手順S107を再度実行する。
このように本実施形態では、改質器5の起動期間が経過した後に、燃料電池10の発電量が変化したときは、燃料電池10の発電量に応じて改質部14及び燃焼部15へのアンモニアガスの供給量が調整されるため、燃料電池10の発電状態が更に安定化する。また、改質部14及び燃焼部15へのアンモニアガスの供給量が変わることで、燃焼部15の燃焼発熱と改質部14の改質吸熱との熱バランスが崩れたときでも、熱バランスの調整が可能となる。
なお、本発明は、上記実施形態には限定されない。例えば上記実施形態では、温度センサ11により検出された改質部14の温度が定常動作温度以上であるときに、流量調整弁20を閉じるように制御しているが、特にその形態には限られず、例えば改質器5が起動されてから所定時間経過後に、流量調整弁20を閉じるように制御してもよい。
また、上記実施形態では、酸化性ガスとして空気を使用しているが、特にその形態には限られず、酸化性ガスとして酸素を使用してもよい。
また、上記実施形態では、固体高分子型の燃料電池10が使用されているが、燃料電池10のタイプとしては、特に固体高分子型には限られず、固体酸化物型またはアルカリ型等であってもよい。固体酸化物型の燃料電池10が使用される場合には、水素分離器8と燃料電池10との間に冷却器9を配置しなくてもよい。
1…燃料電池システム、5…改質器、8…水素分離器(水素分離部)、9…冷却器(冷却部)、10…燃料電池、12…制御ユニット(制御部)、14…改質部、15…燃焼部、16…アンモニアガス流路(第1アンモニアガス流路)、17…流量調整弁(第1流量調整弁)、18…アンモニアガス流路(第2アンモニアガス流路)、19…空気流路(酸化性ガス流路)、20…流量調整弁(第2流量調整弁)、30…残ガス流路、41…発電量検出部(検出部)、42…制御ユニット(制御部)。

Claims (4)

  1. アンモニアガスを水素に分解して前記水素を含有した改質ガスを生成する改質部と、前記アンモニアガスを燃焼して前記アンモニアガスの燃焼熱を前記改質部に供給する燃焼部とを有する改質器と、
    前記改質部に供給される前記アンモニアガスが流れる第1アンモニアガス流路と、
    前記燃焼部に供給される前記アンモニアガスが流れる第2アンモニアガス流路と、
    前記燃焼部に供給される酸化性ガスが流れる酸化性ガス流路と、
    前記改質部により生成された前記改質ガスを水素と残ガスとに分離する水素分離部と、
    前記水素分離部により分離された前記水素と前記酸化性ガスとを用いて発電を行う燃料電池と、
    前記水素分離部と前記燃焼部の上流側とを接続し、前記水素分離部から前記燃焼部に供給される前記残ガスが流れる残ガス流路と、
    前記第1アンモニアガス流路に配設され、前記改質部に供給される前記アンモニアガスの流量を調整する第1流量調整弁と、
    前記第2アンモニアガス流路に配設され、前記燃焼部に供給される前記アンモニアガスの流量を調整する第2流量調整弁と、
    前記第1流量調整弁及び前記第2流量調整弁を制御する制御部とを備え、
    前記制御部は、前記改質器が起動されると、前記第1流量調整弁及び前記第2流量調整弁を開くように制御し、その後前記第2流量調整弁を閉じるように制御する燃料電池システム。
  2. 前記燃料電池の発電量を検出する検出部を更に備え、
    前記制御部は、前記第2流量調整弁を閉じるように制御した後、前記検出部により検出された前記燃料電池の発電量に応じて前記第1流量調整弁及び前記第2流量調整弁の開度を制御する請求項1に記載の燃料電池システム。
  3. 前記改質部の改質率をaとし、前記水素分離部の水素分離率をbとし、前記改質部に供給される前記アンモニアガスの物質量をN(mol)とし、前記燃焼部で発生した燃焼熱に対する前記改質部での改質の吸熱に利用される熱の割合を有効熱効率cとしたときに、下記式が成り立つ請求項1または2記載の燃料電池システム。
    Figure 2020087556
  4. 前記水素分離部と前記燃料電池との間には、前記水素分離部により分離された前記水素を冷却する冷却部が配置されている請求項1〜3の何れか一項記載の燃料電池システム。
JP2018216358A 2018-11-19 2018-11-19 燃料電池システム Pending JP2020087556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216358A JP2020087556A (ja) 2018-11-19 2018-11-19 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216358A JP2020087556A (ja) 2018-11-19 2018-11-19 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2020087556A true JP2020087556A (ja) 2020-06-04

Family

ID=70908933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216358A Pending JP2020087556A (ja) 2018-11-19 2018-11-19 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2020087556A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049870A1 (ja) * 2020-09-03 2022-03-10 株式会社豊田自動織機 改質システム
CN115285937A (zh) * 2022-07-12 2022-11-04 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统
JP7291819B1 (ja) 2022-02-08 2023-06-15 株式会社三井E&S アンモニア固体酸化物形燃料電池システム、運転方法、及びプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049870A1 (ja) * 2020-09-03 2022-03-10 株式会社豊田自動織機 改質システム
JP7291819B1 (ja) 2022-02-08 2023-06-15 株式会社三井E&S アンモニア固体酸化物形燃料電池システム、運転方法、及びプログラム
JP2023115414A (ja) * 2022-02-08 2023-08-21 株式会社三井E&S アンモニア固体酸化物形燃料電池システム、運転方法、及びプログラム
CN115285937A (zh) * 2022-07-12 2022-11-04 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统
CN115285937B (zh) * 2022-07-12 2023-06-16 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统

Similar Documents

Publication Publication Date Title
JP4724029B2 (ja) 改質装置の運転停止方法
KR100762685B1 (ko) 개질기 및 이를 채용한 연료전지 시스템
EP1840997B1 (en) Method of starting solid oxide fuel cell system
JP4105758B2 (ja) 燃料電池システム
JP5643712B2 (ja) 燃料電池モジュール
WO2001048851A1 (fr) Dispositif de production d'energie et procede de fonctionnement
JPH1167256A (ja) 燃料電池システム
WO2003027006A2 (en) Fuel reforming system
JP2020087556A (ja) 燃料電池システム
JP2020070213A (ja) 改質システム
JP2008108546A (ja) 燃料電池システム
WO2007119736A1 (ja) 水素生成装置、これを備える燃料電池システムおよびその運転方法
JP2021017389A (ja) 改質システム
JP2017103218A (ja) 固体酸化物型燃料電池システム
JP4902165B2 (ja) 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム
JP4429032B2 (ja) 水素含有ガス生成装置の運転方法及び水素含有ガス生成装置
JP2004018357A (ja) 改質反応器システム
JP5249622B2 (ja) 水素含有ガス生成装置の起動方法
JP2003317778A (ja) 燃料電池の排ガス燃焼器、及び燃料電池発電システム
JPH11302001A (ja) 一酸化炭素除去器及び燃料電池発電システム
JP2015140285A (ja) 水素含有ガス生成装置の運転方法及び水素含有ガス生成装置
JP3986419B2 (ja) 水素含有ガス生成装置及びその水素含有ガス生成量調整方法
JP4917791B2 (ja) 燃料電池システム
JP2005306659A (ja) 水素製造装置
JP2004256357A (ja) 改質装置