JP2020084226A - 金属粉末の製造方法 - Google Patents

金属粉末の製造方法 Download PDF

Info

Publication number
JP2020084226A
JP2020084226A JP2018216038A JP2018216038A JP2020084226A JP 2020084226 A JP2020084226 A JP 2020084226A JP 2018216038 A JP2018216038 A JP 2018216038A JP 2018216038 A JP2018216038 A JP 2018216038A JP 2020084226 A JP2020084226 A JP 2020084226A
Authority
JP
Japan
Prior art keywords
cooling fluid
fan
molten metal
flow
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018216038A
Other languages
English (en)
Other versions
JP7135763B2 (ja
Inventor
進太郎 石川
Shintaro Ishikawa
進太郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018216038A priority Critical patent/JP7135763B2/ja
Publication of JP2020084226A publication Critical patent/JP2020084226A/ja
Application granted granted Critical
Publication of JP7135763B2 publication Critical patent/JP7135763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】凝集を抑制した金属粉末を製造できる金属粉末の製造方法を提供することを目的とする。【解決手段】原料金属を溶融した溶融金属を流下させ、溶融金属流を形成する溶融金属流形成工程と、前記溶融金属流に対して冷却流体を供給する冷却流体供給工程とを有し、前記冷却流体供給工程では、前記冷却流体を吐出した際の前記冷却流体の輪郭形状が扇形となる扇形ノズルを、前記溶融金属流を囲むように複数配置し、複数の前記扇形ノズルが吐出した前記冷却流体が前記溶融金属流の流れ方向に沿って旋回流を形成する金属粉末の製造方法を提供する。【選択図】図1

Description

本発明は、金属粉末の製造方法に関する。
金属粉末は電子材料や、工具、触媒等の各種用途において使用されており、重要な素材である。そして、金属粉末の製造装置については従来から各種方法が検討されており、例えば、溶融金属を流下させつつ、該溶融金属の流れに対して水等の冷却流体を噴射して粉末化する水アトマイズ法等が知られている。
例えば特許文献1には、水アトマイズ法による金属粉末の製造方法であって、当該水アトマイズ法における水ジェット圧力が60MPaを超え180MPa以下であり、水ジェット流量が80L/min以上190L/min以下、水ジェット頂角が10°以上30°以下であることを特徴とする金属粉末の製造方法が開示されている。
特許文献1においては、水ジェットを発生させるノズルの構成例として、2本の直管が並行して設けられているV形ジェット式ノズルや、円環状の曲管を有する円錐形ジェット式ノズル等も開示されている。
特開2016−141817号公報
しかしながら、例えば特許文献1に開示されている円環状の曲管を有する円錐形ジェット式ノズル等の従来のノズルを用いた場合、得られる金属粉末が凝集しやすかった。このため、凝集を抑制した金属粉末を製造できる金属粉末の製造方法が求められていた。
そこで上記従来技術が有する問題に鑑み、本発明の一側面では、凝集を抑制した金属粉末を製造できる金属粉末の製造方法を提供することを目的とする。
上記課題を解決するため本発明の一態様によれば、
原料金属を溶融した溶融金属を流下させ、溶融金属流を形成する溶融金属流形成工程と、
前記溶融金属流に対して冷却流体を供給する冷却流体供給工程とを有し、
前記冷却流体供給工程では、前記冷却流体を吐出した際の前記冷却流体の輪郭形状が扇形となる扇形ノズルを、前記溶融金属流を囲むように複数配置し、複数の前記扇形ノズルが吐出した前記冷却流体が前記溶融金属流の流れ方向に沿って旋回流を形成する金属粉末の製造方法を提供する。
本発明の一態様によれば、凝集を抑制した金属粉末を製造できる金属粉末の製造方法を提供することができる。
本発明に係る金属粉末の製造方法で好適に用いることができる金属粉末製造装置の断面図。 本発明に係る金属粉末の製造方法で好適に用いることができる金属粉末製造装置が有する冷却流体供給部の説明図。 図1のX−X´線での断面図。 扇形ノズルを回転させる場合の構成の説明図。 実施例1で得られた金属粉末の粒度分布。 実施例1で得られた金属粉末のSEM画像。 比較例1で用いた冷却流体供給部の説明図。 比較例1で得られた金属粉末の粒度分布。 比較例1で得られた金属粉末のSEM画像。
以下、本発明を実施するための形態について図面を用いながら説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
本発明の発明者は、凝集を抑制した金属粉末を製造できる金属粉末の製造方法について鋭意検討を行った。その結果、アトマイズ法、より具体的には水アトマイズ法、もしくはガスアトマイズ法を用いた金属粉末の製造方法において、溶融金属流に対して複数の扇形ノズルから冷却流体を供給し、旋回流を形成することで、凝集を抑制した金属粉末を製造できることを見出し、本発明を完成させた。
ここではまず、本実施形態の金属粉末の製造方法で好適に用いることができる金属粉末製造装置の構成例について説明する。
[金属粉末製造装置]
本実施形態の金属粉末製造装置は、溶融金属を流下させる溶融金属供給部と、溶融金属供給部の下方に配置され、溶融金属供給部から流下した溶融金属流に対して冷却流体を供給する冷却流体供給部と、を有することができる。
そして、冷却流体供給部は、冷却流体を吐出した際の冷却流体の輪郭形状が扇形となる扇形ノズルを、溶融金属流を囲むように複数有し、複数の扇形ノズルが吐出した冷却流体が溶融金属流の流れ方向に沿って旋回流を形成することができる。
図1に本実施形態の金属粉末製造装置の、溶融金属流13の中心を通る面での断面構成例を示す。また、図2に冷却流体供給部の斜視図を、図3に、図1のX−X´線での断面図をそれぞれ模式的に示す。
図1に示す様に、本実施形態の金属粉末製造装置10は、溶融金属供給部11と、冷却流体供給部12とを有することができる。
(溶融金属供給部)
溶融金属供給部11は、製造する金属粉末の金属成分を溶融した溶融金属を調製、供給する部材であり、例えば、図1に示す様に坩堝111と、その周囲に配置した加熱手段112と、断熱材113等を有することができる。
坩堝111の材質は特に限定されず、内部に収容する溶融金属114の温度に対する耐熱性を有する部材であればよく、例えば各種金属や、セラミックスを用いることができる。坩堝111には、溶融金属を流下し、溶融金属流13を形成するため、開口部111Aを設けておくことができる。開口部111Aを設ける場所等は特に限定されないが、通常溶融金属流13は坩堝111の下方に形成されることから、開口部111Aは、坩堝111の底部に形成しておくことが好ましい。開口部111Aのサイズ等は特に限定されず、例えば形成する金属粉末の粒径等に応じて、その開口径を選択することができる。
また、加熱手段112の構成についても特に限定されず、坩堝111内に収容した原料金属が溶融する温度まで加熱できるように構成されていればよく、例えば抵抗加熱や、高周波加熱等の加熱手段を用いることができる。
断熱材113についても特に限定されず、溶融金属114の温度に応じて断熱材の種類や厚さを選択することができる。断熱材としては、例えばカーボンフェルトや、アルミナ等の各種セラミック材料を用いた断熱材等を用いることができる。
また、溶融金属供給部11は、上述の坩堝111に開口部111Aを設けた場合に、坩堝111内に充填した溶融金属の原料である原料金属を溶融させる間、溶融した原料金属が坩堝111外に流出しないよう、ストッパー115を有することもできる。ストッパー115の構成も特に限定されないが、開口部111Aを塞ぐことが可能な形状を有することができる。ストッパー115には、例えば支持部116を介してエアシリンダー117等のストッパー115を移動させることができる手段を接続しておき、ストッパー115を移動させることで、開口部111Aを閉口、開口できる様に構成することもできる。
例えば溶融金属114が酸化しやすい金属の場合等、溶融金属114の周囲の雰囲気を制御する必要がある場合には、溶融金属供給部11は、坩堝111の周囲の雰囲気を制御できるようにチャンバー118や、図示しないチャンバー118内に置換する気体を供給する各種ガス供給手段や、チャンバー118とガス供給手段との間を接続する配管等を設けておくこともできる。なお、チャンバー118を設け、チャンバー118内の気体の圧力を調整することで、溶融金属流13の流速等を調整するように構成することもできる。
(冷却流体供給部)
冷却流体供給部12は、溶融金属供給部11の下方に配置され、溶融金属供給部11から流下した溶融金属流13に対して冷却流体を供給することができる。
冷却流体供給部12は、扇形ノズル121A〜121Dを、溶融金属流13を囲むように複数有することができる。なお、図1〜図3においては、冷却流体供給部12が扇形ノズル121A〜121Dを4個有する例を用いて説明しているが、係る形態に限定されるものではない。冷却流体供給部12が有する扇形ノズルの数は特に限定されず、後述するように、複数の扇形ノズルが吐出した冷却流体が、溶融金属流13の流れ方向、すなわち図1における上下方向に沿って旋回流を形成できるように、その個数を選択することができる。
冷却流体供給部12は、例えば扇形ノズルを3個以上8個以下有することが好ましく、3個以上6個以下有することがより好ましい。これは冷却流体供給部12が3個以上の扇形ノズルを有することで、十分な旋回流を形成することができるからである。また、扇形ノズルを8個よりも多く設けようとすると、装置が大型化したり、扇形ノズルと溶融金属流13との間の距離が長くなり、却って旋回流が生じにくくなる恐れがあるからである。
扇形ノズル121A〜121Dは、図2に示すように冷却流体21A〜21Dを吐出した際に、該冷却流体を略平面状に吐出することができる。そして、扇形ノズル121A〜121Dは、該平面と垂直上方から見た場合に、該冷却流体の形状、具体的には該冷却流体の輪郭形状が扇型となるノズルである。なお、図1〜図3においては記載を省略しているが、各扇形ノズル121A〜121Dには冷却流体を供給するための図示しない配管を接続しておくことができる。
本発明の発明者の検討によれば、扇形ノズル121A〜121Dを、溶融金属流13を囲むように複数配置することで、各扇形ノズル121A〜121Dから吐出された冷却流体が衝突する位置よりも下流側で冷却流体の旋回流を形成することができる。そして、係る旋回流により溶融金属流13を粉砕しながら冷却することで、凝集を抑制した金属粉末を得ることができる。
扇形ノズル121A〜121Dの配置は特に限定されるものではない。上述のように、各扇形ノズルから吐出された冷却流体が衝突する位置よりも下流側において、冷却流体の旋回流を形成できるように、その配置を選択することができる。
ここで、図3に、図1におけるX−X´線での断面図、すなわち、溶融金属流13の流れ方向に沿って上方から見た場合の図を示す。
図3に示したように、扇形ノズル121A〜121Dは、溶融金属流13を囲むように、また溶融金属流13と、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dとが対向するように配置されている。
そして、溶融金属流13の流れ方向に沿って上方から見た場合に、溶融金属流の中心を軸心が通るように扇形ノズルを配置した際の扇形ノズルの軸心を基準軸心とすると、扇形ノズルは、その吐出孔が基準軸心から1mm以上20mm以下離れるように配置することが好ましく、1mm以上10mm以下となるように配置することがより好ましく、1mm以上8mm以下となるように配置することがさらに好ましい。
ここで、図3においては、溶融金属流13の中心を、その軸心が通るように、すなわち各扇形ノズルの軸心が一点で重複するように、配置した場合の扇形ノズル31A〜31Dの配置を点線で示している。なお扇形ノズル31A〜31Dは、以下の基準軸心を説明するために便宜的に示したものである。また、軸心とは各扇形ノズルの中心軸を意味している。そして、扇形ノズル31A〜31Dの軸心を基準軸心A´〜D´とした場合に、実際に配置する扇形ノズル121A〜121Dは、その吐出孔1211A〜1211Dと、基準軸心A´〜D´との間の距離L〜Lがそれぞれ1mm以上20mm以下となるように配置することが好ましく、1mm以上10mm以下となるように配置することがより好ましく、1mm以上8mm以下となるように配置することがさらに好ましい。なお、吐出孔1211A〜1211Dは一定の幅を有することから、上記距離L〜Lは、吐出孔1211A〜1211Dの中央位置における基準軸心A´〜D´からの距離を意味する。
これは、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dを、基準軸心から1mm以上離れた位置に配置することで、より確実に旋回流を形成できるため、好ましいからである。ただし、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dを、基準軸心から20mmよりも離れた位置に配置しようとすると、金属粉末製造装置10が大型化したり、扇形ノズルと溶融金属流13との間の距離が長くなり、却って旋回流が生じにくくなる恐れがあるためである。
なお、冷却流体供給部12は、既述の様に複数の扇形ノズル121A〜121Dを有することから、基準軸心A´〜D´と、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dとの間の距離L〜Lは、扇形ノズルごとに異なっていても良い。ただし、同じ金属粉末製造装置10の中では、各扇形ノズル121A〜121Dの基準軸心A´〜D´と、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dとの間の距離L〜Lは一定であることが、強い旋回流を形成する観点から好ましい。
また、上述のように扇形ノズル121A〜121Dの吐出孔1211A〜1211Dが、基準軸心A´〜D´と所定距離離れるように配置する場合、扇形ノズルは、図3における基準軸心A´〜D´の上方または下方、もしくは左側または右側のいずれに配置することもできる。ただし、同じ金属粉末製造装置10においては、図3における溶融金属流13を中心とした円Oの円周方向に沿って、同じ方向に基準軸心A´〜D´から扇形ノズル121A〜121Dの吐出孔1211A〜1211Dが離れて位置するように配置することが好ましい。これは、図3における溶融金属流13を中心とした円Oの円周方向に沿って、同じ方向に基準軸心A´〜D´から扇形ノズル121A〜121Dの吐出孔1211A〜1211Dが離れて位置するように配置することで特に強い旋回流を形成できるためである。
また、扇形ノズル121A〜121Dは、その軸心A〜Dを回転軸として回転させ、配置することもできる。扇形ノズルを回転させて、配置する場合、扇形ノズルから供給する冷却流体の輪郭である扇形の弦が水平となる場合の扇形ノズルの位置を基準として、扇形ノズルを軸心を回転軸として5度以上45度以下回転して配置することが好ましく、5度以上30度以下回転して配置することがより好ましく、5度以上20度以下回転して配置することがさらに好ましい。
すなわち、図4に示すように、扇形ノズル121Aから供給する冷却流体の輪郭41である扇形の弦411が水平な場合を基準として、軸心Aを回転軸として扇形ノズルを矢印Rに沿った方向、もしくは矢印Rと反対側の方向に回転させ、配置することができる。例えば扇形ノズル121Aを矢印Rに沿って回転させることができ、この場合扇形ノズル121Aから供給する冷却流体の輪郭42である扇形の弦421が、基準となる上記弦411との間に、扇形ノズル121Aを回転させた角度と同じ角度θを形成することになる。
ここでは扇形ノズル121Aを例に説明したが、他の扇形ノズル121B〜121Dにおいても同様に回転させ、配置することもできる。
このように、扇形ノズル121A〜121Dを、その軸心を回転軸として5度以上45度以下回転させて配置することで、特に強い旋回流を形成することができるため好ましい。
冷却流体供給部12は、既述の様に複数の扇形ノズル121A〜121Dを有することから、扇形ノズル121A〜121Dをその軸心A〜Dを回転軸として回転させ、配置する場合、それぞれの扇形ノズル121A〜121Dの回転の程度は扇形ノズルごとに異なっていても良い。ただし、同じ冷却流体供給部12の中では、各扇形ノズル121A〜121Dの回転の程度は同じとしておくことが、強い旋回流を形成する観点から好ましい。
なお、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dの高さ方向、すなわち図1における上下方向の位置は特に限定されないが、複数の扇形ノズル121A〜121Dの吐出孔1211A〜1211Dは、その高さ方向の位置が同じとなるように配置されていることが好ましい。
また、扇形ノズル121A〜121Dから供給する冷却流体の種類は特に限定されず、アトマイズ法で用いられる各種冷却流体を用いることができ、例えば水や、不活性ガス、空気、酸素等の各種ガスを用いることができる。
冷却流体供給部12において、溶融金属流13に対して、冷却流体を供給し、旋回流を形成することで、溶融金属流13は、粉砕され、冷却される。このため、図1に示すように、冷却流体供給部12の下方では、金属粉末と冷却流体の混合流131が形成され、冷却流体供給部12の周囲、及び下方を囲むように配置された筐体14の下部において、金属粉末と冷却流体との混合物15を回収できる。
そして、例えば筐体14の下部には、ポンプ16が接続された配管を設けておくことができ、該配管に接続された図示しないろ過装置や、フィルター等の、金属粉末と、冷却流体とを分離する分離装置により金属粉末を冷却流体から分離し、回収することができる。
なお、溶融金属流13の溶融金属が酸化しやすい金属の場合等、溶融金属流13の周囲の雰囲気を制御する必要がある場合には、筐体14内の雰囲気を制御できるように、筐体14内に気体を供給する各種ガス供給手段や、筐体14とガス供給手段との間を接続する配管等を設けておくこともできる。
以上に説明した、本実施形態の金属粉末製造装置によれば、冷却流体供給部12において、複数の扇形ノズルから吐出した冷却流体が溶融金属流の流れ方向に沿って旋回流を形成することができる。そして、旋回流により溶融金属流を粉砕しながら冷却することで、凝集を抑制した金属粉末を得ることができる。
[金属粉末の製造方法]
次に、本実施形態の金属粉末の製造方法の構成例について説明する。なお、本実施形態の金属粉末の製造方法は、既述の金属粉末製造装置を用いて好適に実施することができる。このため、既に説明した事項については説明を一部省略する。
本実施形態の金属粉末の製造方法は、以下の工程を有することができる。
原料金属を溶融した溶融金属を流下させ、溶融金属流を形成する溶融金属流形成工程。
溶融金属流に対して冷却流体を供給する冷却流体供給工程。
冷却流体供給工程では、冷却流体を吐出した際の冷却流体の輪郭形状が扇形となる扇形ノズルを、溶融金属流を囲むように複数配置し、複数の扇形ノズルが吐出した冷却流体が溶融金属流の流れ方向に沿って旋回流を形成することができる。
(溶融金属流形成工程)
溶融金属流形成工程では、例えば既述の金属粉末製造装置10の溶融金属供給部11において、原料である原料金属を溶融することができる。
具体的には、坩堝111内に原料金属を導入し、加熱手段112により加熱することで、原料金属を溶融し、溶融金属114を形成することができる。
なお、既述の様に、例えば坩堝111の下方には開口部111Aを設けておくことができるため、原料金属を溶融し、溶融金属114となるまでは、ストッパー115の位置を下げ、開口部111Aを塞ぎ、溶融金属流13が形成されないようにしておくことが好ましい。ストッパー115は、例えば支持部116を介してエアシリンダー117に接続しておき、エアシリンダー117により上下に移動させるように構成することができる。
また、溶融金属114が空気中の成分と反応する恐れがある場合には、チャンバー118内を不活性雰囲気等の雰囲気に制御しておくことが好ましい。
そして、原料金属を溶融し、坩堝111内に溶融金属114が形成された後、例えばストッパー115を上方に上げ、坩堝111の底部に設けられた開口部111Aより溶融金属を流下させ、溶融金属流13を形成できる。
(冷却流体供給工程)
冷却流体供給工程では、溶融金属供給部11の下方に配置された冷却流体供給部12が、溶融金属供給部11から流下した溶融金属流13に対して冷却流体を供給することができる。
既述の様に冷却流体供給部12は、扇形ノズル121A〜121Dを、溶融金属流13を囲むように複数有することができる。なお、図1〜図3においては、冷却流体供給部12が扇形ノズル121A〜121Dを4個有する例を用いて説明しているが、係る形態に限定されるものではなく、吐出した冷却流体が旋回流を形成できるように、任意の数の扇形ノズルを、所望の位置に配置することができる。
冷却流体供給部12は、例えば扇形ノズルを3個以上8個以下有することが好ましく、3個以上6個以下有することがより好ましい。
また、溶融金属流13の流れ方向に沿って上方から見た場合に、溶融金属流の中心を軸心が通るように扇形ノズルを配置した際の扇形ノズルの軸心を基準軸心とすると、扇形ノズルは、その吐出孔が基準軸心から1mm以上20mm以下離れるように配置することが好ましく、1mm以上10mm以下離れるように配置することがより好ましく、1mm以上8mm以下離れるように配置することがさらに好ましい。
扇形ノズル121A〜121Dを回転させて配置する場合、扇形ノズルから供給する冷却流体の輪郭である扇形の弦が水平となる場合の扇形ノズルの位置を基準として、扇形ノズルを、軸心を回転軸として5度以上45度以下回転して配置することが好ましく、5度以上30度以下回転して配置することがより好ましく、5度以上20度以下回転して配置することがさらに好ましい。
なお、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dの高さ方向、すなわち図1における上下方向の位置は特に限定されない。複数の扇形ノズル121A〜121Dの吐出孔1211A〜1211Dは、その高さ方向の位置が同じとなるように配置されていることが好ましい。
扇形ノズル121A〜121Dから供給する冷却流体の供給圧や、供給量等は特に限定されず、溶融金属流13を粉砕、冷却し、所望の粒径の金属粉末が得られるように任意に選択することができる。
また、扇形ノズル121A〜121Dから供給する冷却流体の種類は特に限定されず、アトマイズ法で用いられる各種冷却流体を用いることができ、例えば水や、不活性ガス、空気、酸素等の各種ガスを用いることができる。
冷却流体供給工程において、溶融金属流に対して、冷却流体を供給し、旋回流を形成することで、溶融金属流13は、粉砕され、冷却される。このため、図1に示すように、冷却流体供給部12の下方では、金属粉末と冷却流体の混合流131が形成され、冷却流体供給部12の周囲、及び下方を囲むように配置された筐体14の下部において、金属粉末と冷却流体との混合物15として、金属粉末を得ることができる。
本実施形態の金属粉末の製造方法は、上述の溶融金属流形成工程、及び冷却流体供給工程に加えて任意の工程を有することもできる。
本実施形態の金属粉末の製造方法は、例えば、冷却流体供給工程の後に得られる金属粉末と冷却流体との混合物を回収する回収工程を有することができる。
また、金属粉末と冷却流体との混合物から、金属粉末を分離する分離工程をさらに有することもできる。冷却流体が水等の液体の場合には、金属粉末と冷却流体との混合物から、金属粉末を分離する手段としてろ過装置等の分離手段を用いることができる。また、冷却流体が気体の場合には、金属粉末と冷却流体との混合物から、金属粉末を分離する手段としてフィルター等の分離手段を用いることができる。
以上に説明した、本実施形態の金属粉末の製造方法によれば、冷却流体供給部において、複数の扇形ノズルから吐出した冷却流体が溶融金属流の流れ方向に沿って旋回流を形成することができる。そして、旋回流により溶融金属流を粉砕しながら冷却することで、凝集を抑制した金属粉末を得ることができる。
なお、ここまで説明した本実施形態の金属粉末製造装置や、金属粉末の製造方法において用いる原料金属や、製造する金属粉末の種類は特に限定されず、各種原料金属を用い、各種金属粉末を製造することができる。
具体的には例えば、本実施形態の金属粉末製造装置や、金属粉末の製造方法では、銅、ニッケル、コバルトから選択された1種類以上の金属を含有する材料を原料金属として好適に用いることができる。また、本実施形態の金属粉末製造装置や、金属粉末の製造方法によれば、例えば銅、ニッケル、コバルトから選択された1種類以上の金属を含有する金属粉末を好適に製造することができる。
近年は例えばリチウムイオン二次電池の正極材料等、貴金属を多く含有する材料が電子部品等で用いられており、資源保護や、資源の有効活用の観点から、廃棄後に貴金属等の金属を回収することが求められている。そして、本実施形態の金属粉末製造装置や、金属粉末の製造方法によれば、各種原料金属を溶融し、容易かつ安価に金属粉末を製造できる。このため、本実施形態の金属粉末製造装置や、金属粉末の製造方法は、このような回収した貴金属成分を含有する材料を原料(原料金属)として好適に用いることもできる。
以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
[実施例1]
図1に示した金属粉末製造装置10を用いて、以下の手順により金属粉末の製造を行った。
(溶融金属流形成工程)
金属粉末製造装置10のアルミナ製の坩堝111内に原料金属として、銅(Cu)、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)をそれぞれ秤量し、導入した。各原料の質量比がCu:Ni:Fe:Mn=74:24:1.5:0.5となるように、各原料を秤量し、坩堝111に入れた。図1に示したように、坩堝111の周囲には、加熱手段112である高周波加熱用の誘導コイルや、断熱材113を配置しておいた。
なお、原料金属を坩堝111に導入する際、支持部116を介してエアシリンダー117により、ストッパー115の位置を下げ、開口部111Aを塞ぎ、開口部111Aから溶融した原料金属が流出しないようにしておいた。また、チャンバー118、及び筐体14内にアルゴンガスを導入し、溶融金属114が酸化しないように構成しておいた。
そして、加熱手段112により1500℃まで加熱することで、原料金属を溶融し、溶融金属114を形成した。溶融金属114を形成後、支持部116を介してエアシリンダー117により、ストッパー115を上方に上げ、坩堝111の底部に設けられた開口部111Aより溶融金属を流下させ、溶融金属流13を形成した。なお、開口部111Aは円形状を有しており、その直径は2mmとした。
(冷却流体供給工程)
冷却流体供給工程では、溶融金属供給部11の下方に配置された冷却流体供給部12から、溶融金属供給部11から流下した溶融金属流13に対して冷却流体である水を噴射、供給した。
図1〜図3に示すように、用いた冷却流体供給部12は、4個の扇形ノズル121A〜121Dを、溶融金属流13を囲むように配置しており、各扇形ノズル121A〜121Dから吐出された冷却流体が衝突する位置よりも下流側で冷却流体の旋回流を形成することを予め確認しておいた。
なお、図3に示したように、溶融金属流13の流れ方向に沿って上方から見た場合に、各扇形ノズル121A〜121Dは、基準軸心A´〜D´と、扇形ノズル121A〜121Dの吐出孔1211A〜1211Dとの間の距離L〜Lが1.5mmとなるように配置した。この際、図3に示したように、扇形ノズル121A〜121Dは、溶融金属流13を中心とした円Oの円周方向に沿って、右回り方向に基準軸心A´〜D´から扇形ノズル121A〜121Dの吐出孔1211A〜1211Dが離れて位置するように配置した。
また、吐出した冷却流体の輪郭形状の扇形の弦が水平な場合の扇形ノズル121A〜121Dの位置を基準として、扇形ノズル121A〜121Dを、軸心を回転軸として10度回転させて上記位置に配置した。なお、扇形ノズル121A〜121Dを回転させる際、扇形ノズル121A〜121Dのノズル孔が形成された面と反対の面側から見た場合に、右回りとなるように、すなわち図4中の矢印Rと同じ方向に10度回転させた。
(回収工程)
図1に示すように、冷却流体供給部12の下方では、金属粉末と冷却流体の混合流131が形成され、冷却流体供給部12の周囲、及び下方を囲むように配置された筐体14の下部において、金属粉末と冷却流体である水との混合物15を回収した。
(分離工程)
筐体14の下部には、予めポンプ16が接続された配管が設けられており、金属粉末と冷却流体である水との混合物15をポンプ16により図示しないろ過装置へと搬送し、金属粉末を水から分離し、回収した。
回収した金属粉末について、レーザー回折・散乱法粒度分布測定機(堀場製作所社製 LA−950V2)を用いて粒度分布を測定した。測定結果を図5に示す。
また、回収した金属粉末をSEM(日本電子株式会社 電界放出形走査電子顕微鏡JSM−7100F)により観察した。SEM画像を図6に示す。
[比較例1]
冷却流体供給工程において、冷却流体をコーン型形状となるように供給する冷却流体供給手段を用いた点以外は実施例1と同様にして、金属粉末を製造した。
図7に、用いた冷却流体供給部の説明図を示す。図7は冷却流体供給部70をその下方、すなわち溶融金属流13の流れ方向下流側から見た、溶融金属流13の中心軸を通る面での断面図を模式的に示している。
本比較例で用いた冷却流体供給部70は、溶融金属流13を取り囲むように、冷却流体を供給するためのノズル孔71が環状に設けられており、供給した冷却流体711が溶融金属流13の流れ方向に沿って、溶融金属流13側に接近し、コーン型の形状となる。なお、本比較例で用いた冷却流体供給部70は、旋回流を形成しないことを確認した。
回収した金属粉末の粒度分布を図8に、SEM画像を図9にそれぞれ示す。
図5に示したように、実施例1で得られた金属粉末は、粒度分布は1つの山から構成されており、凝集を抑制した金属粉末を得られていることを確認できた。一方、比較例1で得られた金属粉末は、図8に示したように、粒度分布が2つの山81、82から構成されており、得られた金属粉末が凝集していることを確認できた。
10 金属粉末製造装置
11 溶融金属供給部
114 溶融金属
12 冷却流体供給部
121A〜121D 扇形ノズル
1211A〜1211D 吐出孔
A〜D 軸心
A´〜D´ 基準軸心
13 溶融金属流
21A〜21D 冷却流体

Claims (5)

  1. 原料金属を溶融した溶融金属を流下させ、溶融金属流を形成する溶融金属流形成工程と、
    前記溶融金属流に対して冷却流体を供給する冷却流体供給工程とを有し、
    前記冷却流体供給工程では、前記冷却流体を吐出した際の前記冷却流体の輪郭形状が扇形となる扇形ノズルを、前記溶融金属流を囲むように複数配置し、複数の前記扇形ノズルが吐出した前記冷却流体が前記溶融金属流の流れ方向に沿って旋回流を形成する金属粉末の製造方法。
  2. 前記溶融金属流の流れ方向に沿って上方から見た場合に、前記溶融金属流の中心を軸心が通るように前記扇形ノズルを配置した際の前記軸心を基準軸心とすると、前記扇形ノズルは、その吐出孔が前記基準軸心から1mm以上20mm以下離れるように配置されている請求項1に記載の金属粉末の製造方法。
  3. 前記扇形ノズルから供給する前記冷却流体の輪郭である扇形の弦が水平な場合の前記扇形ノズルの位置を基準として、前記扇形ノズルを、軸心を回転軸として5度以上45度以下回転して配置している請求項1または請求項2に記載の金属粉末の製造方法。
  4. 前記扇形ノズルを3個以上8個以下有する請求項1〜請求項3のいずれか1項に記載の金属粉末の製造方法。
  5. 前記原料金属が、銅、ニッケル、コバルトから選択された1種類以上の金属を含有する請求項1〜請求項4のいずれか1項に記載の金属粉末の製造方法。
JP2018216038A 2018-11-16 2018-11-16 金属粉末の製造方法 Active JP7135763B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216038A JP7135763B2 (ja) 2018-11-16 2018-11-16 金属粉末の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216038A JP7135763B2 (ja) 2018-11-16 2018-11-16 金属粉末の製造方法

Publications (2)

Publication Number Publication Date
JP2020084226A true JP2020084226A (ja) 2020-06-04
JP7135763B2 JP7135763B2 (ja) 2022-09-13

Family

ID=70906686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216038A Active JP7135763B2 (ja) 2018-11-16 2018-11-16 金属粉末の製造方法

Country Status (1)

Country Link
JP (1) JP7135763B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160799A (zh) * 2020-09-11 2022-03-11 三菱动力株式会社 金属粉末制造装置及其气体喷射器
KR102476685B1 (ko) * 2022-06-28 2022-12-13 고려아연 주식회사 황산구리 전해액 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496756B1 (ja) * 1969-09-04 1974-02-15
JPH01123012A (ja) * 1987-11-09 1989-05-16 Kawasaki Steel Corp 微粉製造用ノズル
JPH0578713A (ja) * 1991-09-24 1993-03-30 Kobe Steel Ltd 金属粉末製造用のノズル装置
JP2009035799A (ja) * 2007-08-03 2009-02-19 Dowa Metals & Mining Co Ltd 銅電解液原料の製造方法及びこれを用いた銅の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496756B1 (ja) * 1969-09-04 1974-02-15
JPH01123012A (ja) * 1987-11-09 1989-05-16 Kawasaki Steel Corp 微粉製造用ノズル
JPH0578713A (ja) * 1991-09-24 1993-03-30 Kobe Steel Ltd 金属粉末製造用のノズル装置
JP2009035799A (ja) * 2007-08-03 2009-02-19 Dowa Metals & Mining Co Ltd 銅電解液原料の製造方法及びこれを用いた銅の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160799A (zh) * 2020-09-11 2022-03-11 三菱动力株式会社 金属粉末制造装置及其气体喷射器
JP2022046880A (ja) * 2020-09-11 2022-03-24 三菱重工業株式会社 金属粉末製造装置及びそのガス噴射器
JP7218335B2 (ja) 2020-09-11 2023-02-06 三菱重工業株式会社 金属粉末製造装置及びそのガス噴射器
CN114160799B (zh) * 2020-09-11 2024-04-09 三菱重工业株式会社 金属粉末制造装置及其气体喷射器
KR102476685B1 (ko) * 2022-06-28 2022-12-13 고려아연 주식회사 황산구리 전해액 제조 방법
WO2024005307A1 (ko) * 2022-06-28 2024-01-04 고려아연 주식회사 황산구리 전해액 제조 방법

Also Published As

Publication number Publication date
JP7135763B2 (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
CN104084596B (zh) 非晶态粉末的制备方法及装置
CN107096925B (zh) 一种新型的等离子体雾化制备球型粉末系统
US4787935A (en) Method for making centrifugally cooled powders
US10654106B2 (en) Process for producing metals and metal alloys using mixing cold hearth
CN107900366B (zh) 气雾化连续制备3d打印用钛或钛合金粉末的装置及方法
CN104923797A (zh) 用于激光选区熔化技术的Inconel625镍基合金粉末的制备方法
CN113134617B (zh) 等离子球化脱氧3d打印金属粉体制备装置
AU2018379291B2 (en) Metal powder manufacturing device, gas injector for same, and crucible
JP6006861B1 (ja) 金属粉末の製造装置及びその製造方法
JP2020084226A (ja) 金属粉末の製造方法
JP4488651B2 (ja) 熱プラズマによるセラミック又は金属の球状粉末の製造方法および装置
CN111470481B (zh) 一种等离子体反应雾化制备高纯氮化铝球形粉末的方法
KR100800505B1 (ko) 금속분말 제조장치
JP6533352B1 (ja) 高速流体噴射装置
CN109967755A (zh) 一种球形微细金属粉体生产系统及其方法
CN113618071B (zh) 用于制备增材制造用高球形度金属粉末的雾化室、装置及方法
JP2020084225A (ja) 金属粉末製造装置
US4869469A (en) System for making centrifugally cooling metal powders
EP3659731B1 (en) Metal powder production apparatus
JP3244493U (ja) 導電材料超微粉体の製造装置
CN1172762C (zh) 电磁振荡雾化制粉工艺及装置
CN113134605B (zh) 等离子球化脱氧3d打印金属粉体制备方法
KR101517584B1 (ko) 미세분말 제조장치 및 방법
JPH02243701A (ja) 金属粉末の処理方法
KR101835719B1 (ko) 다단 분쇄 미세분말 제조장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7135763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150