JP2020070742A - 制御装置 - Google Patents
制御装置 Download PDFInfo
- Publication number
- JP2020070742A JP2020070742A JP2018204090A JP2018204090A JP2020070742A JP 2020070742 A JP2020070742 A JP 2020070742A JP 2018204090 A JP2018204090 A JP 2018204090A JP 2018204090 A JP2018204090 A JP 2018204090A JP 2020070742 A JP2020070742 A JP 2020070742A
- Authority
- JP
- Japan
- Prior art keywords
- parking period
- learning
- neural network
- future
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 claims abstract description 86
- 238000000034 method Methods 0.000 claims description 120
- 230000008569 process Effects 0.000 claims description 111
- 238000012545 processing Methods 0.000 claims description 39
- 238000012549 training Methods 0.000 claims description 20
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 description 55
- 238000002485 combustion reaction Methods 0.000 description 40
- 238000004364 calculation method Methods 0.000 description 31
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 230000006870 function Effects 0.000 description 13
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/11—Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1405—Neural network control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
- G08G1/141—Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
- G08G1/143—Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
- G08G1/145—Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
- G08G1/148—Management of a network of parking areas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0004—In digital systems, e.g. discrete-time systems involving sampling
- B60W2050/0005—Processor details or data handling, e.g. memory registers or chip architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0014—Adaptive controllers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0037—Mathematical models of vehicle sub-units
- B60W2050/0039—Mathematical models of vehicle sub-units of the propulsion unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/06—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
- B60W2050/065—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot by reducing the computational load on the digital processor of the control computer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/10—Historical data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1412—Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Analytical Chemistry (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
まず、図1を参照して実施形態に係る制御装置が用いられる内燃機関1の構成について説明する。図1は、車両に搭載される内燃機関1の概略的な構成図である。図1に示したように、内燃機関1は、機関本体10、燃料供給装置20、吸気系30、排気系40、排気ガス再循環(EGR)システム50、及び制御システム60を備える。
前述したように、本実施形態によるECU61の処理部64は、ニューラルネットワークを用いた学習済みモデルを用いて、内燃機関1の性能を表す種々のパラメータ(出力パラメータ)の値を算出する。以下では、図3を参照して、演算部82で用いられるニューラルネットワークについて説明する。
本実施形態では、誤差逆伝播法を用いて、ニューラルネットワーク内における各重みwの値及びバイアスbの値が学習される。この誤差逆伝播法は周知であり、したがって、誤差逆伝播法についてはその概要を以下に簡単に説明する。なお、バイアスbは重みwの一種なので、以下の説明では、バイアスbは重みwの一つとされている。さて、図3に示したようなニューラルネットワークにおいて、L=2、L=3又はL=4の各層のノードへの入力値u(L)における重みをw(L)で表すと、誤差関数Eの重みw(L)による微分、すなわち、勾配∂E/∂w(L)は、書き換えると、次式で示されるようになる。
次に、図4を参照して、ニューラルネットワークを用いた具体的なモデルの例について説明する。図4は、演算部82において用いられるニューラルネットワークの一例を示す図である。
ところで、図4に示したニューラルネットワークの学習(すなわち、重みwの値及びバイアスbの値の学習)は、ニューラルネットワークを用いた学習済みモデルを使用して制御される内燃機関1が車両に搭載される前に行われる。すなわち、各車両の出荷前に事前に行われる。
ニューラルネットワークの再学習にあたっては、ニューラルネットワークを再学習する際に使用する訓練データの個数(データ量)を多くするほど、再学習後の学習済みモデルの推定精度を向上させることができる。しかしながら、ニューラルネットワークを再学習する際に使用する訓練データの個数が多くなるほど、ECU61の演算負荷が高くなると共にニューラルネットワークの再学習に必要な時間も長くなる。
図7は、ECU61によって実施される本実施形態による各工程の処理時間算出制御について説明するフローチャートである。ECU61は、本ルーチンを、例えば所定距離を走行したときや、訓練データを作成するために記憶部63に記憶させていたデータのデータ量が所定量以上になったときなど、ニューラルネットワークの再学習に必要な十分な訓練データ、すなわちニューラルネットワークを用いた学習済みモデルの予測精度を向上させることが可能な量の訓練データを取得できたと判断できる所定のタイミングで実施する。
図8は、ECU61によって実施される本実施形態による学習計画作成制御について説明するフローチャートである。ECU61は、本ルーチンを、例えば前述した各工程の処理時間算出制御が終了したタイミングで実施する。
図9は、ECU61によって実施される本実施形態による学習計画に従った学習制御について説明するフローチャートである。ECU61は、本ルーチンを、例えば所定の演算周期で繰り返し実施する。
61 ECU(制御装置)
84 学習部
85 駐車期間予測部
86 学習計画作成部
Claims (7)
- ニューラルネットワークを用いた学習済みモデルに入力パラメータを入力することによって得られた出力パラメータに基づいて、少なくとも1つの制御部品が制御される車両に搭載された制御装置であって、
前記車両の将来の駐車期間を予測する駐車期間予測部と、
前記将来の駐車期間の予測結果に基づいて、前記学習済みモデルの再学習を前記将来の駐車期間中に行うための学習計画を作成する学習計画作成部と、
を備える制御装置。 - 前記学習計画作成部は、
前記将来の駐車期間の予測結果に基づいて前記将来の駐車期間の時間長さを算出し、
前記学習済みモデルの再学習を完了させることが可能な時間長さを有する前記将来の駐車期間において前記学習済みモデルの再学習が行われるように、前記学習計画を作成する、
請求項1に記載の制御装置。 - 前記学習済みモデルの再学習を行うために必要な工程が予め複数の工程に分割されており、
前記学習計画作成部は、
前記将来の駐車期間の時間長さと前記複数の工程毎の処理時間とに基づいて、前記将来の駐車期間のうちの近い将来の駐車期間から順に、その駐車期間内に完了させることが可能な工程を、前記複数の工程のうちの上流の工程から順次割り当てていくことによって、前記学習計画を作成する、
請求項1に記載の制御装置。 - 前記将来の駐車期間の予測結果に基づいて、前記将来の駐車期間の時間長さを算出し、
前記学習済みモデルの再学習時に使用するデータのデータ量に基づいて、前記複数の工程毎の処理時間を算出する、
請求項3に記載の制御装置。 - 前記学習計画に従って、前記学習済みモデルの再学習を行う学習部をさらに備える、
請求項1から請求項4までのいずれか1項に記載の制御装置。 - 前記学習計画に従って、前記学習済みモデルの再学習を行う学習部をさらに備え
前記学習部は、
現在の駐車期間が、前記駐車期間予測部によって予測された前記将来の駐車期間のいずれの駐車期間であるかを判断し、
現在の駐車期間に、前記学習計画作成部によって割り当てられた工程がある場合には、その工程の処理を実施する、
請求項3又は請求項4に記載の制御装置。 - 前記複数の工程のうちの1つの工程は、訓練データを用いて実際に前記学習済みモデルの再学習を実行する再学習工程であり、
前記学習計画作成部は、
前記将来の駐車期間の時間長さが所定長さ以上の駐車期間に前記再学習工程を割り当てる、
請求項3、請求項4又は請求項6に記載の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018204090A JP6773099B2 (ja) | 2018-10-30 | 2018-10-30 | 制御装置 |
DE102019127482.6A DE102019127482B4 (de) | 2018-10-30 | 2019-10-11 | Steuereinrichtung |
CN201910988666.5A CN111120122B (zh) | 2018-10-30 | 2019-10-17 | 控制装置 |
US16/660,808 US11436488B2 (en) | 2018-10-30 | 2019-10-23 | Control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018204090A JP6773099B2 (ja) | 2018-10-30 | 2018-10-30 | 制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020070742A true JP2020070742A (ja) | 2020-05-07 |
JP6773099B2 JP6773099B2 (ja) | 2020-10-21 |
Family
ID=70326937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018204090A Expired - Fee Related JP6773099B2 (ja) | 2018-10-30 | 2018-10-30 | 制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11436488B2 (ja) |
JP (1) | JP6773099B2 (ja) |
CN (1) | CN111120122B (ja) |
DE (1) | DE102019127482B4 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022002449A (ja) * | 2020-06-22 | 2022-01-06 | 日本ユニシス株式会社 | 電力管理システムおよび電力管理方法 |
WO2024127672A1 (ja) * | 2022-12-16 | 2024-06-20 | 三菱電機株式会社 | 推論装置および推論方法 |
WO2024127671A1 (ja) * | 2022-12-16 | 2024-06-20 | 三菱電機株式会社 | 推論装置および推論方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6896037B2 (ja) * | 2019-10-02 | 2021-06-30 | 三菱電機株式会社 | 内燃機関の制御装置及び制御プログラム |
JP6795116B1 (ja) * | 2020-06-08 | 2020-12-02 | トヨタ自動車株式会社 | 車両、及びサーバ |
CN111896883A (zh) * | 2020-07-30 | 2020-11-06 | 重庆长安汽车股份有限公司 | 一种车载蓄电池可支持的停车时长预测方法及预警方法 |
JP7074166B2 (ja) * | 2020-08-07 | 2022-05-24 | トヨタ自動車株式会社 | サーバ、車両の制御装置、および車両の機械学習システム |
JP7010343B1 (ja) * | 2020-08-20 | 2022-01-26 | トヨタ自動車株式会社 | 機械学習装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206390A (ja) * | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | ソフトウェア管理装置及びソフトウェア管理サーバ |
JP2009167968A (ja) * | 2008-01-18 | 2009-07-30 | Mitsubishi Motors Corp | 空燃比制御装置及び空燃比制御方法 |
JP2011053954A (ja) * | 2009-09-02 | 2011-03-17 | Toyota Motor Corp | ソフトウェア更新装置 |
WO2012002231A1 (ja) * | 2010-06-29 | 2012-01-05 | トヨタ自動車株式会社 | 制御装置 |
JP2015525924A (ja) * | 2012-07-09 | 2015-09-07 | トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム | 計算機を用いて動的挙動と相互作用するための人工記憶システム及び方法 |
JP2017046498A (ja) * | 2015-08-27 | 2017-03-02 | 株式会社デンソー | 車両の使用予測システム |
JP2017215888A (ja) * | 2016-06-02 | 2017-12-07 | 住友電気工業株式会社 | 制御装置、プログラム更新方法、およびコンピュータプログラム |
JP2018037022A (ja) * | 2016-09-02 | 2018-03-08 | 株式会社オートネットワーク技術研究所 | 車載更新システム、車載更新装置及び通信装置の更新方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5454358A (en) * | 1993-02-26 | 1995-10-03 | Toyota Jidosha Kabushiki Kaisha | Driving power control apparatus for internal combustion engine |
US5992383A (en) * | 1996-05-28 | 1999-11-30 | U.S. Philips Corporation | Control unit having a disturbance predictor, a system controlled by such a control unit, an electrical actuator controlled by such a control unit, and throttle device provided with such an actuator |
CA2648972A1 (en) * | 2007-12-24 | 2009-06-24 | Yaron Mayer | System and method for improved electric cars and/or electric car batteries and/or improved infrastructures for recharging electric cars |
GB0823447D0 (en) * | 2007-12-24 | 2009-01-28 | Mayer Yaron | System and method for improved electric cars and/or electric car batteries and/or improved infrastructures for recharging electric cars |
US9037387B2 (en) * | 2010-06-08 | 2015-05-19 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
JP5426520B2 (ja) | 2010-11-24 | 2014-02-26 | 本田技研工業株式会社 | 内燃機関の制御装置 |
JP2012153257A (ja) * | 2011-01-26 | 2012-08-16 | Toyota Motor Corp | 車両用駆動装置の制御装置 |
CN102855773A (zh) * | 2012-09-13 | 2013-01-02 | 东南大学 | 一种停车场有效泊位占有率短时预测方法 |
CN102867407B (zh) * | 2012-09-13 | 2014-07-09 | 东南大学 | 一种停车场有效泊位占有率多步预测方法 |
WO2014154227A1 (en) * | 2013-03-27 | 2014-10-02 | Volvo Truck Corporation | Method for determining fuel blend in a dual fuel mixture |
DE112016006542T5 (de) | 2016-03-02 | 2018-11-15 | Sumitomo Electric Industries, Ltd. | Steuervorrichtung, Programmaktualisierungsverfahren und Computerprogramm |
CN106548254B (zh) * | 2016-11-16 | 2020-05-05 | 上海理工大学 | 一种有效停车泊位的预测方法 |
KR102406507B1 (ko) * | 2017-03-27 | 2022-06-10 | 현대자동차주식회사 | 딥러닝 기반 자율주행 차량 제어 장치, 그를 포함한 시스템 및 그 방법 |
CN107622301B (zh) * | 2017-08-16 | 2021-01-05 | 温州大学 | 一种停车场空余停车泊位数的预测方法 |
US11055364B2 (en) * | 2017-11-30 | 2021-07-06 | International Business Machines Corporation | Parking search time estimation using cognitive analytics |
CN108010378B (zh) * | 2017-12-20 | 2020-05-22 | 中国科学院深圳先进技术研究院 | 停车场泊位占用率预测方法、装置、设备及存储介质 |
CN108091166B (zh) * | 2017-12-25 | 2021-02-26 | 中国科学院深圳先进技术研究院 | 可用停车位数目变化的预测方法、装置、设备及存储介质 |
CN108417032B (zh) * | 2018-03-19 | 2020-05-29 | 中景博道城市规划发展有限公司 | 一种城市中心区路边停车需求分析预测方法 |
CN108961816B (zh) * | 2018-07-19 | 2020-03-24 | 泰华智慧产业集团股份有限公司 | 基于优化lstm模型的道路停车泊位预测方法 |
-
2018
- 2018-10-30 JP JP2018204090A patent/JP6773099B2/ja not_active Expired - Fee Related
-
2019
- 2019-10-11 DE DE102019127482.6A patent/DE102019127482B4/de active Active
- 2019-10-17 CN CN201910988666.5A patent/CN111120122B/zh active Active
- 2019-10-23 US US16/660,808 patent/US11436488B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004206390A (ja) * | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | ソフトウェア管理装置及びソフトウェア管理サーバ |
JP2009167968A (ja) * | 2008-01-18 | 2009-07-30 | Mitsubishi Motors Corp | 空燃比制御装置及び空燃比制御方法 |
JP2011053954A (ja) * | 2009-09-02 | 2011-03-17 | Toyota Motor Corp | ソフトウェア更新装置 |
WO2012002231A1 (ja) * | 2010-06-29 | 2012-01-05 | トヨタ自動車株式会社 | 制御装置 |
JP2015525924A (ja) * | 2012-07-09 | 2015-09-07 | トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム | 計算機を用いて動的挙動と相互作用するための人工記憶システム及び方法 |
JP2017046498A (ja) * | 2015-08-27 | 2017-03-02 | 株式会社デンソー | 車両の使用予測システム |
JP2017215888A (ja) * | 2016-06-02 | 2017-12-07 | 住友電気工業株式会社 | 制御装置、プログラム更新方法、およびコンピュータプログラム |
JP2018037022A (ja) * | 2016-09-02 | 2018-03-08 | 株式会社オートネットワーク技術研究所 | 車載更新システム、車載更新装置及び通信装置の更新方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022002449A (ja) * | 2020-06-22 | 2022-01-06 | 日本ユニシス株式会社 | 電力管理システムおよび電力管理方法 |
JP7153278B2 (ja) | 2020-06-22 | 2022-10-14 | Biprogy株式会社 | 電力管理システムおよび電力管理方法 |
WO2024127672A1 (ja) * | 2022-12-16 | 2024-06-20 | 三菱電機株式会社 | 推論装置および推論方法 |
WO2024127671A1 (ja) * | 2022-12-16 | 2024-06-20 | 三菱電機株式会社 | 推論装置および推論方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102019127482A1 (de) | 2020-04-30 |
US11436488B2 (en) | 2022-09-06 |
US20200134452A1 (en) | 2020-04-30 |
CN111120122A (zh) | 2020-05-08 |
DE102019127482B4 (de) | 2024-03-07 |
JP6773099B2 (ja) | 2020-10-21 |
CN111120122B (zh) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6773099B2 (ja) | 制御装置 | |
EP3636905B1 (en) | Control device of vehicle drive device, method of controlling vehicle drive device | |
CN111520241B (zh) | 内燃机控制装置和方法、车载电控单元和制造方法、机器学习系统及输出参数计算装置 | |
JP6702380B2 (ja) | 内燃機関の制御装置 | |
CN111022206B (zh) | 车辆用驱动装置的控制装置及方法、车载电子控制单元 | |
JP6741057B2 (ja) | 内燃機関の制御システム、電子制御ユニット、サーバ及び内燃機関の制御方法 | |
US10947909B2 (en) | Control device of internal combustion engine and control method of same and learning model for controlling internal combustion engine and learning method of same | |
JP2008038823A (ja) | 新気量検出誤差算出装置 | |
JP2020062914A (ja) | 情報提供装置 | |
KR102323282B1 (ko) | 비점화 모드에서의 연소 기관의 실린더 급기량을 결정하기 위한 방법 | |
JP2020056378A (ja) | 内燃機関の制御装置 | |
JP2020045821A (ja) | 内燃機関の制御装置 | |
CN108979880B (zh) | 用于确定内燃机的燃烧室中的气体份额的方法 | |
JP2020122401A (ja) | 内燃機関の制御装置 | |
US20200025117A1 (en) | Controller for internal combustion engine | |
CN106401770B (zh) | 用于对传感器信号进行处理的方法 | |
CN117927395A (zh) | 一种考虑不同工况的发动机控制方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200129 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200129 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200914 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6773099 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |