JP2020069496A - インダイレクトスポット溶接の溶接点の評価方法 - Google Patents

インダイレクトスポット溶接の溶接点の評価方法 Download PDF

Info

Publication number
JP2020069496A
JP2020069496A JP2018204355A JP2018204355A JP2020069496A JP 2020069496 A JP2020069496 A JP 2020069496A JP 2018204355 A JP2018204355 A JP 2018204355A JP 2018204355 A JP2018204355 A JP 2018204355A JP 2020069496 A JP2020069496 A JP 2020069496A
Authority
JP
Japan
Prior art keywords
current
welding
current value
measured
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018204355A
Other languages
English (en)
Other versions
JP7139218B2 (ja
Inventor
圭一郎 木許
Keiichiro Kimoto
圭一郎 木許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018204355A priority Critical patent/JP7139218B2/ja
Publication of JP2020069496A publication Critical patent/JP2020069496A/ja
Application granted granted Critical
Publication of JP7139218B2 publication Critical patent/JP7139218B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明では、溶接点のナゲットのできやすさを正確に評価することを課題とする。【解決手段】PPメンバ1とブラケット2の重合部Pを溶接電極で加圧すると共に、重合部Pと異なる部位に第一アース電極5を当接させて両電極間に通電するインダイレクトスポット溶接によって形成される溶接点を評価するための方法であって、インダイレクトスポット溶接時に、ブラケット2の被測定部2bを流れる電流によって形成される磁界の強度に基づいて、有効電流値IAまたは無効電流値IBあるいはその双方の電流値を測定する工程と、測定した電流値に基づいて、有効電流値IAと無効電流値IBとによって表される有効電流率Kを算出する工程と、有効電流率Kに基づいて、溶接点を評価する工程とを含むものである。【選択図】図1

Description

本発明は、インダイレクトスポット溶接により形成される溶接点の評価方法に関する。
自動車の組立工程では、金属板からなる複数の部品をスポット溶接で接合することにより車体が組み立てられる。スポット溶接としては、複数の金属板を一対の電極で挟み込んで通電するダイレクトスポット溶接が多く用いられる。しかし、部品の形状によっては、複数の金属板を一対の電極で挟み込むことができず、ダイレクトスポット溶接を適用することができないことがある。この場合、複数の金属板の重合部を溶接電極で加圧すると共に、重合部と異なる部位にアース電極を当接させた状態で両電極間に通電することにより溶接するインダイレクトスポット溶接が適用される。
しかし、インダイレクトスポット溶接では、溶接電極とアース電極とが離れて配置されることが多く、重合部以外の金属板同士の接触部(例えば、先に溶接された溶接点)を介して流れる電流(無効電流)が生じやすいため、良好なナゲットを形成することが困難であることが問題となっている。
例えば、下記の特許文献1には、金属板に予め座面を設け、この座面を溶接電極で押しつぶしながら加圧することにより、金属板同士の接触面積を小さくして電流密度を高めることで、ナゲットを形成しやすくする方法が示されている。
また、下記の特許文献2には、加圧力及び電流値を制御することにより、ナゲットを安定して得ることができるインダイレクトスポット溶接方法が示されている。
特開2002−239742号公報 特開2010−194609号公報
しかしながら、溶接点におけるナゲットのできやすさを定量的に評価する手法がなかったため、上記のような手法を試しながら試行錯誤を繰り返し、適切なナゲットが形成される溶接条件を探し出すしかなかった。
そこで、本発明者らは、溶接に寄与する有効電流経路の抵抗値と、溶接に寄与しない無効電流経路の抵抗値とをそれぞれ個別に測定し、これらの抵抗値に基づいて設定される有効電流率に基づいて、溶接点におけるナゲットのできやすさを評価することを試みた。
具体的には、図4(A)に示すように、第1の金属板101と、断面ハット形状を成した第2の金属板102と、第1の金属板101と第2の金属板102とで構成される中空部に配された断面ハット形状を成した第3の金属板103とによって構成されるワーク100について、第1の金属板101と第3の金属板103の天板部103bとの重合部Pにインダイレクトスポット溶接を施す場合の評価方法について説明する。なお、各金属板の間には、既溶接点Q1,Q2が設けられている。
まず、溶接に寄与しない無効電流経路の抵抗値RBを測定する。具体的には、抵抗測定器130の一方の端子131を、ワーク100のうち、溶接時に溶接電極を当接させる部位である重合部Pに上方から当接させる。また、抵抗測定器130の他方の端子132を、ワーク100のうち、溶接時にアース電極を当接させる部位である、一方の既溶接点Q2に下方から当接させる。この状態で、ワーク100の重合部Pを加圧することなく、両端子131、132間の電流経路の抵抗値を測定する。重合部Pを加圧していないことで、両金属板1,3の重合部Pは実質的に接触しておらず、絶縁しなくても重合部Pにほとんど電流が流れない。従って、一方の端子131→第1の金属板101→既溶接点Q1→第2の金属板102→他方の端子132という、重合部P(両金属板101,103の界面)を通らない電流経路C1が形成され、この電流経路C1を、溶接に寄与しない無効電流の電流経路とみなすことができる。
次に、溶接に寄与する有効電流経路の抵抗値RAを測定する。具体的には、図4(B)に示すように、抵抗測定器130の一方の端子131を、第1の金属板101に設けられたスリットSに挿入して、第3の金属板103の天板部103bの重合部P付近に上方から当接させる。また、抵抗測定器130の他方の端子132を、一方の既溶接点Q2に下方から当接させる。これにより、一方の端子131→第3の金属板103→既溶接点Q2→第2の金属板102→他方の端子132という電流経路C2が形成され、この電流経路C2の抵抗値を測定する。
以上のようにして測定された抵抗値RB、RAに基づいて、溶接点におけるナゲットのできやすさを評価することができる。例えば、有効電流経路の抵抗値RAと無効電流経路の抵抗値RBとの和を全体抵抗RT(=RA+RB)とし、有効電流率K’を、全体抵抗RTに対する無効電流経路の抵抗値RBの比率として求める(K’=RB/RT)。有効電流率K’は、有効電流の流れやすさを表す指標であり、有効電流率K’の値に基づいて、重合部Pにおけるナゲットのできやすさを評価することができる。
しかし、上記の測定方法では、両端子131,132間の抵抗値しか測定できないため、図4(A)あるいは図4(B)のように、両端子131,132間に、無効電流経路C1、あるいは、有効電流経路C2のいずれか一方の経路にだけ電流が流れている場合に各経路の抵抗値を測定できても、実際の溶接時のように、溶接電極が重合部Pを加圧し、第1の金属板101と天板部103bとが接触することで、無効電流経路C1と有効電流経路C2の両方に電流が流れ、その経路が一部共通しているような状況では、各経路の抵抗値を切り分けて測定することができず、有効電流率を算出することもできなかった。
ところが、金属板は電流が流れて発熱することにより、その抵抗値も変化するため、重合部Pが加圧されて電流の流れ方が変わると、各経路の抵抗値も変化してしまう。つまり、上記の測定方法で測定された抵抗値RB、RAと、実際の溶接時の抵抗値との間には乖離があり、上記の評価方法では、溶接点のナゲットのできやすさを正確に評価できているとは言えなかった。
このような事情から、本発明では、溶接点のナゲットのできやすさを正確に評価することを目的とする。
上記の課題を解決するため、本発明は、複数のワークの重合部を溶接電極で加圧すると共に、前記重合部と異なる部位にアース電極を当接させて両電極間に通電するインダイレクトスポット溶接によって形成される溶接点を評価するための方法であって、前記ワークの被測定部に電流検出手段を設け、前記電流検出手段を用いて、前記インダイレクトスポット溶接時に、前記被測定部を流れる電流によって形成される磁界の強度に基づいて、有効電流値または無効電流値あるいはその双方の電流値を測定する工程と、前記電流値に基づいて、有効電流値と無効電流値とによって表される有効電流率を算出する工程と、前記有効電流率に基づいて、溶接点を評価する工程とを含むことを特徴とする。
本発明では、ワークの被測定部に電流検出手段を設け、この被測定部を流れる電流によって形成される磁界の強度に基づいて電流値を測定する方法により、ワークの特定箇所を流れる電流値を個別に測定することができる。つまり、有効電流経路と無効電流経路のそれぞれに電流が流れ、両者の経路が一部共通しているような場合であっても、有効電流経路と無効電流経路のそれぞれの経路を流れる電流値を測定あるいは算出することができ、その電流値に基づいて、有効電流率を算出することができる。従って、実際の溶接時の電流値に基づいて有効電流率を算出でき、溶接点のナゲットのできやすさを正確に評価することができる。
本発明によれば、溶接点のナゲットのできやすさを正確に評価することができる。
本発明の一実施形態に係る電流検出手段を用いて、溶接時に流れる各電流値を測定する様子を示す概略図である。 図1のA−A線断面図である。 トロイダルコイルを示す断面図である。 抵抗測定器を用いたワークの各電流経路の抵抗値を測定する様子を示す図である。
以下、本発明の実施の形態を図面に基づいて説明する。
本実施形態では、自動車の車体の組立工程において行われるインダイレクトスポット溶接方法を示す。具体的には、例えば図1に示すように、第一ワークとしてのピラーツーピラーメンバ1(以下、PPメンバ1という)に、第二ワークとしてのブラケット2を溶接する場合について説明する。
PPメンバ1は、車体のピラー間に配設される鋼材製の筒状部材で、本実施形態では円筒状をなす。PPメンバ1の外周面側の長手方向の複数箇所には、ブラケット2を始めとした複数のブラケットが溶接され、各ブラケットに各種車載部品(例えば、ステアリング関連の部品や助手席用のエアバック等)が取り付けられる。
ブラケット2は、PPメンバ1に溶接されるフランジ部2aを有する。フランジ部2aは、PPメンバ1の長手方向に延在する。
溶接電極3、保持部4、第一アース電極5、保持部4を支持する多軸ロボット6等を備えたインダイレクトスポット溶接装置10と、インダイレクトスポット溶接装置10に接続され、溶接電極3の加圧力及び溶接電極3と各アース電極との電流値を制御する制御装置(図示省略)とを備えた設備により、PPメンバ1とフランジ部2aの重合部Pが溶接される。インダイレクトスポット溶接装置10は、溶接電極3を軸線方向に駆動して重合部を加圧する加圧手段(エアシリンダや電動シリンダ等)を備える。
第一アース電極5は、筒状をなし、その内周面側にPPメンバ1が挿入される。第一アース電極5には、第一アース電極5をその外周面側から把持する図示しない把持機構が設けられており、この把持機構により、第一アース電極5をPPメンバ1の外周面に当接させている。
図2に示すように、第一アース電極5は、編成体51と、板状部材52とからなる。編成体51は、外周面側の第一層51aと、内周面側の第二層51bとの二層構造をしており、第一層51aと第二層51bとの間に、銅製の板状部材52が介挿される。編成体51は、市販の平編み銅線を手でほぐして軟化させ、筒状にすることで形成できる。板状部材52は、第一アース電極5の長手方向(図1の左右方向)に亘って設けられる。
筒状に形成された第一アース電極5は、第二層51bを構成する銅線が、PPメンバ1の外周面に倣うようにしてPPメンバ1に接触する。これにより、第二層51bを構成する銅線とPPメンバ1との接触面積を大きくすることができ、第一アース電極5に流れる電流の電流密度が過大になることを防止し、第一アース電極の破損を防止したり、PPメンバ1表面の焼き付きや変形を抑制することができる。本実施形態では、第一アース電極5を、PPメンバ1の外周面全周を覆う筒状としたが、その一部を覆う円弧状であってもよい。また、第一層51aと第二層51bとの間に板状部材52を設けることで、第一層51aと第二層51bとを構成する銅線同士を直接接触させる場合と比較すると、各層を構成する銅線と板状部材52との接触箇所を増やし、第一アース電極5の熱伝導性を高めることができる。
図1に示すように、保持部4は、ブラケット2の一端部を把持して、ブラケット2をPPメンバ1に溶接可能な位置、つまり、フランジ部2aをPPメンバ1の外周面に対向させた位置に保持している。
保持部4は、ブラケット2の一端部を把持するための把持アーム41,42を備えている。把持アーム42は、第二アース電極としての導電部42a(図1のクロスハッチング部参照)と絶縁性の基部42bからなる。また、把持アーム41は絶縁性の部材によって構成される。
保持部4は、多軸ロボット6の先端部に取り付けられている。多軸ロボット6の駆動、および、把持アーム41の支軸を中心にした回転動作(図1の矢印参照)により、ブラケット2等の、PPメンバ1に溶接する部材を把持して溶接可能な位置まで移動させ、その位置で保持固定することができる。
溶接時には、溶接電極3がブラケット2のフランジ部2aを加圧することで、フランジ部2aとPPメンバ1との間に重合部Pを形成し、溶接電極3→ブラケット2→重合部P→PPメンバ1→第一アース電極5までの経路R1に電流を流すことで、重合部Pを溶接する。また、把持アーム42の一部である導電部42aが第二アース電極として機能し、溶接電極3→ブラケット2→導電部42aまでの経路R2にも電流が流れる。さらに、ブラケット2は、重合部Pと異なる部分である端部2cでもPPメンバ1に接触しているため、溶接電極3→ブラケット2→端部2c→PPメンバ1→第一アース電極5までの経路R3にも電流が流れている。経路R3は、経路R2から途中で分流し、経路R1に合流する経路であり、経路R1,R2とその経路の一部が共通している。経路R1に流れる電流が、重合部Pの溶接に寄与する有効電流であり、経路R2、R3に流れる電流は、溶接に直接寄与しない無効電流である。
次に、溶接時にPPメンバ1やブラケット2を流れる電流値を測定し、溶接点におけるナゲットのできやすさを評価する方法について説明する。
溶接電極3、第一アース電極5、導電部42aは、電気的に接続されており、トランス71を介して、溶接電極3に電力が供給される。溶接時に流れる全電流値を測定できる箇所、例えば、溶接電極3に接続された電線等に、第一のトロイダルコイル72が巻回されている。
ブラケット2の縦壁部の所定の位置である被測定部2bに、第二のトロイダルコイル(電流検出手段)73が巻回されている。被測定部2bは、有効電流経路R1が通らず、かつ、全ての無効電流経路R2、R3が通る部分である。
図3に示すように、第二のトロイダルコイル73は、一対の止め金具731を連結することにより、環状をなし、被測定部2bの全周を覆うように、被測定部2bに巻回される。
図1に示すように、第二のトロイダルコイル73は、例えば把持アーム41に設けることができる。具体的には、第二のトロイダルコイル73に図示しない基部を設け、この基部を介して、把持アーム41に第二のトロイダルコイル73を保持させる。そして、把持アーム41が回転して、ブラケット2の一端部を把持する動作により、第二のトロイダルコイル73がブラケット2の被測定部2bに巻回される構成としてもよい。
トロイダルコイル72、73は、電流測定器74に接続されている。電流測定器74は、各トロイダルコイルが巻回された導体(溶接電極3に接続された電線、あるいは、被測定部2b)が発生させる磁界の強度に基づいて、各導体を流れる電流を測定する。具体的には、各トロイダルコイルが巻回された導体を通過する電流により磁界が発生し、電流測定器74が、この磁界によって各トロイダルコイルの両端に誘起される電圧を積分することにより、各導体を流れる電流の値を測定する。
本実施形態の電流値の測定方法では、溶接電極3によりフランジ部2aを加圧すると共に、溶接電極3と各アース電極間(第一アース電極5、導電部42a)、つまり、経路R1,R2,R3に電流を流した状態で、電流測定器74により各電流値を測定する。具体的には、トロイダルコイル72によって検出される磁気強度により、電流測定器74が、溶接電極3から各アース電極間に流れる全電流値ITを測定する。また、トロイダルコイル73によって検出される磁界の強さにより、電流測定器74が、被測定部2bを流れる電流を測定する。前述のように、被測定部2bは、全ての無効電流経路である経路R2,R3が共通して通過する部分であり、この部分を流れる電流値を全無効電流値IBとして測定することができる。
また、全電流値ITは、全有効電流値IAと全無効電流値IBとの和であるから、全電流値ITから全無効電流値IBを差し引いて、全有効電流値IAを求めることができる(IA=IT−IB)。このように、本実施形態では、全有効電流値IAを直接測定することができなくても、全電流値ITと全無効電流値IBから全有効電流値IAを算出することができる。
そして、例えば、溶接時の有効電流率K(=IA/IT)として求めることができ、この有効電流率Kの大きさにより、重合部Pにおけるナゲットのできやすさを評価することができる。
以上のように、本実施形態の電流の測定方法によれば、経路R1と経路R3のように、有効電流経路と無効電流経路の一部が共通しているような場合であっても、溶接時の全有効電流値IAと全無効電流値IBとをそれぞれ測定あるいは算出することができ、溶接時の条件での有効電流率Kを算出することができる。従って、任意の溶接点におけるナゲットのできやすさを定量的に正確に評価することができる。従って、溶接条件(加圧力及び/又は電流値)や各ワークの設計及び組立工程(溶接点の位置・数・溶接順序、金属板の形状等)を調整して、溶接品質を向上させることができる。
また、上記のように、無効電流経路が経路R3に分流し、有効電流経路に合流している場合であっても、有効電流率Kの算出が可能であるため、図1の端部2cがPPメンバ1に接触しているか否かを問わず、各電流値の測定および有効電流率Kの算出が可能である。このように、PPメンバ1とブラケット2との接触状態にかからず、有効電流率Kの算出が可能である。なお、被測定部2bは、本実施形態の位置に限らず、経路R2と経路R3が分流するまでの適宜の位置に設定することができる。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。
また、上記の実施形態では、有効電流率Kを、全電流値ITに対する全有効電流値IAの比率とした場合を示したが、これに限られない。例えば、有効電流率Kを、全無効電流値IBに対する有効電流値IAの比率(IA/IB)としてもよい。また、有効電流率Kを各電流値の比として求めたが、各電流値から算出される各経路の抵抗値の比として求めてもよい。
以上の実施形態では、全電流値ITと全無効電流値IBを測定し、その差分により、全有効電流値IAを算出するものとした。しかし、本発明はこれに限らない。例えば、複数のトロイダルコイルを用いて、経路R1と経路R3に共通する部分の電流値と、経路R3を流れる電流値を測定し、その差分により、有効電流値IAを算出してもよい。このように、本発明では、溶接されるワークの電流経路に応じて、適宜、必要測定箇所に電流検出手段を設け、その測定結果により、全無効電流値IBや全有効電流値IAを測定あるいは算出することができる。
1 PPメンバ(第一ワーク)
2 ブラケット(第二ワーク)
2a フランジ部
2b 被測定部
3 溶接電極
4 保持部
5 第一アース電極
6 多軸ロボット
10 インダイレクトスポット溶接装置
41 把持アーム
42 把持アーム
42a 導電部(第二アース電極)
42b 基部
71 トランス
72 第一のトロイダルコイル(電流検出手段)
73 第二のトロイダルコイル
74 電流測定器
P 重合部
R1,R2,R3 経路

Claims (1)

  1. 複数のワークの重合部を溶接電極で加圧すると共に、前記重合部と異なる部位にアース電極を当接させて両電極間に通電するインダイレクトスポット溶接によって形成される溶接点を評価するための方法であって、
    前記ワークの被測定部に電流検出手段を設け、
    前記電流検出手段を用いて、前記インダイレクトスポット溶接時に、前記被測定部を流れる電流によって形成される磁界の強度に基づいて、有効電流値または無効電流値あるいはその双方の電流値を測定する工程と、
    前記電流値に基づいて、有効電流値と無効電流値とによって表される有効電流率を算出する工程と、
    前記有効電流率に基づいて、溶接点を評価する工程とを含むことを特徴とするインダイレクトスポット溶接の溶接点の評価方法。
JP2018204355A 2018-10-30 2018-10-30 インダイレクトスポット溶接の溶接点の評価方法 Active JP7139218B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204355A JP7139218B2 (ja) 2018-10-30 2018-10-30 インダイレクトスポット溶接の溶接点の評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204355A JP7139218B2 (ja) 2018-10-30 2018-10-30 インダイレクトスポット溶接の溶接点の評価方法

Publications (2)

Publication Number Publication Date
JP2020069496A true JP2020069496A (ja) 2020-05-07
JP7139218B2 JP7139218B2 (ja) 2022-09-20

Family

ID=70548879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204355A Active JP7139218B2 (ja) 2018-10-30 2018-10-30 インダイレクトスポット溶接の溶接点の評価方法

Country Status (1)

Country Link
JP (1) JP7139218B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155830U (ja) * 1974-10-25 1976-04-30
JPS61138480U (ja) * 1985-02-13 1986-08-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155830U (ja) * 1974-10-25 1976-04-30
JPS61138480U (ja) * 1985-02-13 1986-08-28

Also Published As

Publication number Publication date
JP7139218B2 (ja) 2022-09-20

Similar Documents

Publication Publication Date Title
US8278598B2 (en) Methods and systems for resistance spot welding using direct current micro pulses
US9266187B2 (en) Method of monitoring thermal response, force and current during resistance welding
US8283591B2 (en) Welding apparatus and welding method
JP7139218B2 (ja) インダイレクトスポット溶接の溶接点の評価方法
JP6971724B2 (ja) 片側スポット溶接装置及び片側スポット溶接方法
Warinsiriruk et al. Effect of double pulse MIG welding on porosity formation on aluminium 5083 fillet Joint
EP3232557B1 (en) Power-source device, joining system, and conductive processing method
JP6931692B2 (ja) 抵抗溶接装置における抵抗検出手段の接続構造と、抵抗溶接方法
WO2018050494A1 (en) Method and apparatus for cleaning and joining a joining element onto a workpiece
JP2023134976A (ja) スポット溶接のモニタリング方法及びモニタリングシステム
JP4448422B2 (ja) 抵抗溶接装置
WO2010146939A1 (ja) 非破壊検査装置
JP3540125B2 (ja) 抵抗溶接の品質検査方法
JP6949764B2 (ja) ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置
JP5450225B2 (ja) 非破壊検査装置
JP7240135B2 (ja) インダイレクトスポット溶接方法
KR102330768B1 (ko) 무전원 용접 품질 측정 장치
JP2010234424A (ja) 導体の溶接方法及びその溶接装置
KR101257164B1 (ko) 저항 점용접기의 지그 장치
JP6903386B2 (ja) インダイレクトスポット溶接方法
JP4605701B2 (ja) スポット溶接装置
JP7084680B2 (ja) インダイレクトスポット溶接の溶接点の評価方法
JP7185382B2 (ja) インダイレクトスポット溶接装置のケーブルの検査方法
JP2022062933A (ja) 溶接部の亀裂検出方法、および溶接部の亀裂検出装置
JP2006000894A (ja) スポット溶接良否判定装置、方法及びスポット溶接装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R150 Certificate of patent or registration of utility model

Ref document number: 7139218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150