JP6949764B2 - ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置 - Google Patents

ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置 Download PDF

Info

Publication number
JP6949764B2
JP6949764B2 JP2018045228A JP2018045228A JP6949764B2 JP 6949764 B2 JP6949764 B2 JP 6949764B2 JP 2018045228 A JP2018045228 A JP 2018045228A JP 2018045228 A JP2018045228 A JP 2018045228A JP 6949764 B2 JP6949764 B2 JP 6949764B2
Authority
JP
Japan
Prior art keywords
welding
protective cover
current
sensor element
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045228A
Other languages
English (en)
Other versions
JP2019158572A (ja
Inventor
浩二 江川
浩二 江川
信和 生駒
信和 生駒
トマシュ・ヴェンチェック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018045228A priority Critical patent/JP6949764B2/ja
Publication of JP2019158572A publication Critical patent/JP2019158572A/ja
Application granted granted Critical
Publication of JP6949764B2 publication Critical patent/JP6949764B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、セラミックス製のセンサ素子を備えるガスセンサの製造方法に関し、特にセンサ素子を保護する保護カバーの取付に関する。
従来より、自動車のエンジン等の内燃機関における燃焼ガスや排気ガス等の被測定ガス中の所定のガス成分の濃度を測定する装置として、ジルコニア(ZrO)等の酸素イオン伝導性固体電解質セラミックスを用いてセンサ素子を形成したガスセンサが公知である。
係るガスセンサにおいては、通常、セラミックス製の長尺板状のセンサ素子(検出素子)の一方端部側が、被測定ガスに接触可能とされているとともに、センサ素子に対して水分や汚染物質が付着することを防止すべく、センサ素子の一方端部側を囲繞してこれを保護する金属製の保護カバー(プロテクタ)が備わっている(例えば、特許文献1参照)。保護カバー(プロテクタ)は、例えば特許文献1に開示されているように、センサ素子を内部に保持するハウジング(主体金具)に溶接固定される。溶接の手法としては、スポット溶接(抵抗溶接)やレーザ溶接が例示される。
特開2010−164359号公報
例えばSUSステンレスなどからなる保護カバーをスポット溶接にてガスセンサを構成するハウジングに固定する場合、溶接棒(電極棒)が溶かされることによってスパッタ(溶接くず)が発生することがある。係るスパッタがハウジングやセンサ素子や保護カバーなどに付着すると、後工程での組立不良や、作製されたガスセンサの特性異常や、組立・検査等に用いる治工具の偏摩耗などの不具合が発生してしまうことがある。また、スパッタが発生しやすい条件での溶接は、保護カバーの溶接強度の不足や、溶接棒の短寿命化などの要因ともなり得る。それゆえ、ガスセンサの生産性や保護カバーを溶接固定する際のスパッタの抑制が求められている。
その一方で、当然ながら、保護カバーは十分な強度(溶接強度)でもってハウジングに固定される必要がある。
本発明は、上記課題に鑑みてなされたものであり、スパッタの発生を抑制し、かつ、溶接強度の確保と溶接棒の長寿命化とが実現される、ガスセンサにおけるセンサ素子保護カバーの固定方法を提供することを目的とする。
上記課題を解決するため、本発明の第1の態様は、ガスセンサの製造方法であって、センサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを嵌合する嵌合工程と、前記ハウジングに嵌合された前記保護カバーのあらかじめ定められた溶接対象領域に対し所定の溶接電流プロファイルに従ってスポット溶接を行うことにより前記保護カバーを前記ハウジングに固定する溶接工程と、を備え、前記溶接工程においては、先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の溶接棒を前記溶接対象領域に当接させることによって、前記溶接対象領域に対しあらかじめ定められた600N以上の溶接実行荷重を印加した状態で、通電開始から前記溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように定められた前記溶接電流プロファイルに従って、前記溶接電流を流すことにより、前記スポット溶接を行う、ことを特徴とする。
本発明の第2の態様は、第1の態様に係るガスセンサの製造方法であって、前記溶接工程においては、2つの前記溶接棒によって前記保護カバーの互いに対向する2箇所の前記溶接対象領域に同時に前記溶接実行荷重を印加することにより、前記2箇所を同時に溶接する、ことを特徴とする。
本発明の第3の態様は、第2の態様に係るガスセンサの製造方法であって、前記溶接工程においては、前記2つの前記溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、前記荷重が前記溶接実行荷重に達した時点で、前記2つの前記溶接棒の間に前記溶接電流を通電させる、ことを特徴とする。
本発明の第4の態様は、第1ないし第3の態様のいずれかに係るガスセンサの製造方法であって、前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、ことを特徴とする。
本発明の第5の態様は、ガスセンサにおいてセンサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを固定する、センサ素子保護カバーの固定方法であって、先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の溶接棒を前記保護カバーのあらかじめ定められた溶接対象領域に当接させることによって、前記溶接対象領域に対しあらかじめ定められた600N以上の溶接実行荷重を印加した状態で、通電開始から溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように定められた溶接電流プロファイルに従って、前記溶接電流を流すことにより、前記溶接対象領域において前記保護カバーを前記ハウジングに固定するスポット溶接を行う、ことを特徴とする。
本発明の第6の態様は、第5の態様に係るセンサ素子保護カバーの固定方法であって、2つの前記溶接棒によって前記保護カバーの互いに対向する2箇所の前記溶接対象領域に同時に前記溶接実行荷重を印加することにより、前記2箇所を同時に溶接する、ことを特徴とする。
本発明の第7の態様は、第6の態様に係るセンサ素子保護カバーの固定方法であって、前記2つの前記溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、前記荷重が前記溶接実行荷重に達した時点で、前記2つの前記溶接棒の間に前記溶接電流を通電させる、ことを特徴とする。
本発明の第8の態様は、第5ないし第7の態様のいずれかに係るセンサ素子保護カバーの固定方法であって、前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、ことを特徴とする。
本発明の第9の態様は、ガスセンサにおいてセンサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを、スポット溶接によって固定する溶接装置であって、先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の2つの溶接棒と、前記2つの溶接棒を、前記保護カバーにおいてあらかじめ定められた互いに対向する2箇所の溶接対象領域に対しそれぞれ当接させることによって、前記2つの溶接棒のそれぞれから対応する前記溶接対象領域に対して荷重を印加可能な荷重印加手段と、前記2つの溶接棒の間に溶接電流を通電させる通電手段と、を備え、前記通電手段が前記溶接電流を通電させる際の溶接電流プロファイルが、通電開始から前記溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように、定められており、前記荷重印加手段は、前記2つの溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、前記通電手段は、前記荷重があらかじめ定められた600N以上の溶接実行荷重に達した時点で、前記2つの前記溶接棒の間における前記溶接電流プロファイルに従った前記溶接電流の通電を開始させる、ことを特徴とする。
本発明の第10の態様は、第9の態様に係る溶接装置であって、前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、ことを特徴とする。
本発明の第1ないし第10の態様によれば、スパッタを発生させることなく、十分な溶接強度にて保護カバーをハウジングに対し溶接固定することができる。また、溶接棒の長寿命化も実現される。
ハウジング1に対し保護カバー2を溶接固定してガスセンサ100を得る手順を段階的に示す図である。 溶接装置1000の構成を概略的に示す図である。 溶接棒1101の形状を示す図である。 溶接電流プロファイルPFについて概念的に示す図である。 スポット径と溶接強度との関係を示す図である。 総通電時間と溶接電流ピーク値とを違えた種々の溶接電流プロファイルPFにて保護カバー2のスポット溶接を行ったときの、溶接電流ピーク値と溶接強度との関係を示す図である。 条件A〜条件Cについての溶接電流プロファイルPFを例示する図である。 溶接実行荷重を違えて保護カバー2のスポット溶接を行ったときの溶接実行荷重と溶接強度との関係を示す図である。
<ガスセンサおよび保護カバーの溶接固定の概要>
図1は、ハウジング1に対し保護カバー2を溶接固定してガスセンサ100を得る手順を段階的に示す図である。ガスセンサ100は、その内部に備わるセンサ素子10によって所定のガス成分(例えば、NOx等)を検出するためのものである。
センサ素子10は、ジルコニアなどの酸素イオン伝導性固体電解質セラミックスを主たる構成材料とする長尺の柱状あるいは薄板状の部材である。センサ素子10は、例えば、一方端部10aの側にガス導入口や内部空所などを備えるとともに、素子体表面および内部に種々の電極や配線パターンを備えた構成を有する限界電流型のセンサ素子である。係るセンサ素子10においては、内部空所に導入された被検ガスが内部空所内で還元ないしは分解されて酸素イオンが発生する。その場合、ガスセンサ100においては、センサ素子10内部を流れる酸素イオンの量が被検ガス中における当該ガス成分の濃度に比例することに基づいて、係るガス成分の濃度が求められる。ただし、本実施の形態において、センサ素子10の構成はこれに限られるものではなく、例えば被検ガスの濃度に応じて生じる2つの電極間の電位差に基づいて所定ガス成分の濃度を求める混成電位型のセンサ素子10が用いられる態様であってもよい。
なお、より詳細には、必ずしもハウジング1に対し保護カバー2を固定することでガスセンサ100が完成するわけではなく、他の部材の組み付け等が行われる場合もあるが、本実施の形態においては便宜上、ハウジング1に対し保護カバー2が溶接固定されたもの(全ての溶接対象領域において溶接が完了したもの)をガスセンサ100と称し、一部が溶接されたものを含め、ハウジング1と保護カバー2とが組み付けられてはいるが溶接固定が完了していない状態のものを、未溶接ガスセンサ100αと称する。
ハウジング1は、SUSステンレスなどからなる金属製の筒状の部材である。図1(a)に示すように、ハウジング1の内部においては、図示しない所定の固定部材によって、センサ素子10が、その一方端部10aを突出させる態様にて固定されている。また、ハウジング1においては、センサ素子10の一方端部10aが突出する側の端部(図1においては下端部)が、円筒状の被嵌合部1aとなっている。
なお、図1において図示しないハウジング1の他方端部側においては、センサ素子10をハウジング1の内部に保持固定するための構成や、センサ素子10と外部との電気的接続を得るための構成が、設けられている。
一方、保護カバー2は、例えばSUSステンレスなどからなる金属製の部材であり、その一方端部(図1においては上端部)2aが開放されている一方で他方端部(図1においては下端部)側が閉じている有底の円筒状をなしている。保護カバー2の側周面には、複数の貫通孔Hが周方向に沿って等間隔に設けられており、該貫通孔Hを通じて、保護カバー2内外の雰囲気が流通可能となっている。複数の貫通孔Hの形状や配置個数は適宜に定められてよい。また、保護カバー2は2層構造となっていてもよい。その場合、図示しない内部のカバーにも適宜の位置に貫通孔が設けられる。
また、保護カバー2の一方端部2aは、ハウジング1の被嵌合部1aに嵌合される嵌合部2cとなっており、それゆえ、嵌合部2cは、被嵌合部1aの外径に見合う内径を有している。
ハウジング1に対し保護カバー2を固定するにはまず、図1(a)において矢印AR1にて示すように、保護カバー2の嵌合部2cがハウジング1の被嵌合部1aに嵌合される。図1(b)が係る嵌合によって得られた未溶接ガスセンサ100αを示している。
未溶接ガスセンサ100αが得られると、保護カバー2をハウジング1に完全に固定するべく、スポット溶接が行われる。図1(b)に示すように、保護カバー2の嵌合部2cの外面には、スポット溶接の対象となる複数の領域(溶接対象領域)REがあらかじめ定められている。
溶接対象領域REは、嵌合部2cの周方向において等間隔に、かつ、偶数箇所に定められている。例えば、嵌合部2cの周方向において90°ずつ離隔させて4つの溶接対象領域REが定められるのが好適であるが、さらに多くの溶接対象箇所が設けられる態様であってもよい。すなわち、溶接対象領域REは、互いに180°離れた(センサ素子10を挟んで対向する)2つの溶接対象領域REの組が複数できるように、定められる。
それぞれの溶接対象領域REに対しスポット溶接がなされ、図1(c)に示すように溶接部Wが形成されることで、ハウジング1に対し保護カバー2が固定され、ガスセンサ100が得られる。
<溶接装置>
次に、本実施の形態においてハウジング1に対する保護カバー2の溶接固定に用いる溶接装置1000について説明する。図2は、溶接装置1000の構成を概略的に示す図である。
溶接装置1000は、2つの溶接実行部1100(1100A、1100B)と、溶接電源1200と、制御部1300とを有している。
2つの溶接実行部1100A、1100Bは、実際に溶接が行われる部位であり、それぞれに溶接棒1101(1101A、1101B)を有する。2つの溶接実行部1100A、1100Bは、図示しない保持手段によって未溶接ガスセンサ100αが鉛直方向に長手方向を有するように保持された状態において、互いに対称となるように、配置されている。溶接電源1200は、溶接棒1101A、1101Bの間に電流を流すための電源である。制御部1300は、溶接装置1000における溶接処理を実現するための各部の動作制御、例えば、溶接実行部1100の進退動作の制御や、溶接電源1200の印加電圧を制御することで溶接時に流れる電流の制御などを担う。
溶接装置1000においては、概略、制御部1300による制御のもと、2つの溶接実行部1100A、1100Bのそれぞれに備わる電極ホルダ1102に保持された2つの溶接棒1101(1101A、1101B)が、保護カバー2の(未溶接ガスセンサ100αの)互いに対向する2つの溶接対象領域REに対し所定の荷重を印加しつつ当接させられた状態で、溶接電源1200による電圧の印加によって電極ホルダ1102を通じて2つの溶接棒1101A、1101Bの間に所定の大きさの電流(溶接電流)Iが流されることで、2つの溶接対象領域REにおいて同時に溶接部Wを形成できるようになっている。未溶接ガスセンサ100αにおいて4箇所の溶接対象領域REが定められている場合であれば、2回の溶接処理で、保護カバー2が完全にハウジング1に固定され、ガスセンサ100が得られることになる。
溶接棒1101としては、耐熱性およびスパッタ抑制という観点から、タングステン製のものを用いる。なお、溶接棒1101は丸棒状をなしているが、その形状の詳細については後述する。
より詳細には、2つの溶接実行部1100A、1100Bのそれぞれにおいては、溶接棒1101(1101A、1101B)が、溶接電源1200と電気的に接続されている電極ホルダ1102によって、水平にかつ両者が一の直線上に位置するように、保持されている。
また、電極ホルダ1102は、溶接の実行時に溶接棒1101が溶接対象領域REに印加する荷重(加圧荷重)が一定となるように溶接棒1101を付勢する加圧追従器1103に付設されている。
そして、加圧追従器1103は、可動部1104aが水平方向において伸縮自在なエアーシリンダ1104に付設されている。溶接装置1000においては、制御部1300による制御のもと、2つの溶接実行部1100A、1100Bに備わるエアーシリンダ1104の可動部1104aが伸縮することにより、加圧追従器1103に付設されている電極ホルダ1102に保持されている溶接棒1101A、1101Bが、水平方向において進退移動可能となっている。
なお、溶接実行部1100Aに備わる加圧追従器1103にのみ、ロードセル1105が付設されている。ロードセル1105によって測定される、溶接棒1101(1101A)が溶接対象領域REに印加する荷重の大きさ(荷重値)は、制御部1300に与えられ、制御部1300によるスポット溶接の制御に用いられる。
より詳細には、2つの溶接実行部1100A、1100Bに備わるエアーシリンダ1104は、溶接処理の際、2つの溶接棒1101A、1101Bが相反する方向に同期的に進退移動するように、制御される。例えば、一方が未溶接ガスセンサ100αのある溶接対象領域REに当接する際には、他方も該溶接対象領域REに対向する溶接対象領域REに当接するように、制御される。
以上のような構成を有する、溶接装置1000におけるスポット溶接は、2つの溶接棒1101A、1101Bを対応する溶接対象領域REに対し当接させ、さらに所定の荷重を当該溶接対象領域REに対して印加させた状態で、溶接電源1200からの通電を開始することによって、実現される。
具体的には、スポット溶接開始指示が制御部1300に与えられると、制御部1300による制御のもと、2つの溶接実行部1100A、1100Bのそれぞれに備わるエアーシリンダ1104の可動部1104aの同期的な伸張が開始される。これにより、2つの溶接棒1101A、1101Bが同期的に、それぞれに対応する溶接対象領域REに近接する方向に移動させられる。エアーシリンダ1104の可動部1104aの伸張は、2つの溶接棒1101A、1101Bが該溶接対象領域REに当接した後も継続され、これによって、溶接棒1101A、1101Bが溶接対象領域REに印加する荷重が徐々に(連続的に)増大していく。このとき、溶接棒1101Aが保護カバー2に印加する荷重の値(溶接棒1101Bが保護カバー2に印加する荷重の値も実質的に同じである)は、ロードセル1105において測定される。
そして、当該荷重値が、あらかじめ設定された溶接実行荷重に到達した時点で、制御部1300は、エアーシリンダ1104の可動部1104aの伸張による2つの溶接棒1101A、1101Bの移動を停止させるとともに、制御部1300は溶接電源1200に対し溶接電流プロファイルに従った通電を行わせる。これにより、溶接実行荷重を保った状態でスポット溶接が実行され、保護カバー2の対向する2つの溶接対象領域REに溶接部Wが形成される。なお、スポット溶接の進行に伴い、先端が摩耗するなどして溶接棒1101が短くなることがあるが、溶接装置1000においては、加圧追従器1103によって、溶接実行荷重が一定に保たれるようになっている。上述のように、保護カバー2の嵌合部2cの周方向において90°ずつ離隔させて4つの溶接対象領域REが定められる場合であれば、最初の2つの溶接対象領域REに対し溶接部Wを形成した後、未溶接ガスセンサ100αの水平面内における姿勢を90°回転させたうえで、再び同様の手順にて残り2つの溶接対象領域REに対し溶接部Wを形成する。
溶接実行荷重は、600N以上とするのが好ましい。係る場合に、スパッタを生じさせることなく、かつ、十分な溶接強度にてスポット溶接が行える。なお、本実施の形態においては、溶接固定後のガスセンサ100の保護カバー2に対し周方向にねじりを与えたときに保護カバー2がハウジング1から外れてしまうトルクの大きさ(ねじりトルク)を、溶接強度と規定する。実用性の観点からは、保護カバー2の溶接強度として、29.4N・m(およそ30N・m)以上の大きさが必要であることが、本発明の発明者によってあらかじめ確認されている。溶接実行荷重を600N未満とすると、スパッタが発生しやすくなるため好ましくない。なお、溶接実行荷重は、1000N以下であればよい。
1000Nを上回ると、溶接棒1101や電極ホルダ1102の破損などの不具合が生じる可能性がある。
<溶接棒の形状>
次に、溶接棒1101の形状について説明する。図3は、溶接棒1101の形状を示す図である。図3(a)に示すように、溶接棒1101は、丸棒状をなしているが、部分Aについての拡大図である図3(b)からわかるように、その先端部1101aは概略、曲率半径Rの曲面となっている。これは、溶接時の電流の流れを一点に集中させないようにすること、および、熱影響や荷重印加を原因とする溶接棒1101の潰れ変形および摩耗の発生を抑制することを、意図したものである。実際、本実施の形態において用いる、上述した形状を有するタングステン製の溶接棒1101の、溶接回数1000回あたりの摩耗量は0.08mm〜0.12mmと極めて低く、同一の溶接棒1101によって7000回程度の溶接を行うことができる。これは例えば、ベリリウム銅製の溶接棒の7倍程度の寿命がある。
溶接棒1101の先端部1101aの曲率半径Rの大きさは、保護カバー2の溶接強度にも影響を与える。先端部1101aの曲率半径Rの値が1.5mm以上であれば、30N・m以上という溶接強度が実現される。
ただし、先端部1101aの曲率半径Rの値は6.0mm以下とすれば十分である。これは、Rが6.0mmよりも大きくなると、溶接強度が飽和する傾向があるからである。
なお、より詳細には、図3(b)に示すように、溶接棒1101の先端部1101aは一様な曲面となっているわけではなく、最先端部は、溶接棒1101の長手方向に直交する(曲率半径Rよりも小さい)直径dの円形の平坦部1101bとなっている。これは、円柱状をなす保護カバー2の表面の一部であるために溶接棒1101に対して凸な形状にて湾曲している溶接対象領域REに溶接棒1101を当接させる際の安定性を考慮したものである。直径dは、0.5mm〜2.0mm程度であるのが好ましい。直径dが0.5mmよりも小さい平坦部1101bを設けることの効果が好適に得られず、直径dが2.0mmよりも大きいと先端部1101aを設けたことの効果が損なわれるため、好ましくない。
<溶接電流プロファイル>
次に、スポット溶接の際の電流プロファイル(以下、溶接電流プロファイル)PFと溶接強度およびスパッタの発生との関係について説明する。
図4は、溶接電流プロファイルPFについて概念的に示す図である。本実施の形態において、溶接電流プロファイルPFとは、通電開始から通電終了までの間の溶接電流の時間変化を意味する。本実施の形態では、図4に示すように、通電開始(t=0)から溶接電流が所定のピーク値(溶接電流ピーク値)Ipに到達する時刻(t=tp)までは一定の時間変化率(電流増大速度)にて溶接電流を0から増大させ、溶接電流が溶接電流ピーク値Ipに到達した後は、一定の時間変化率(電流減少速度)にて溶接電流を0になるまで減少させるという溶接電流プロファイルPFを採用するものとする。溶接電流が0となった時点(t=te)で溶接終了となる。ただし、溶接電流を溶接電流ピーク値Ipにおいて一定時間維持する態様であってもよい。係る溶接電流プロファイルPFは、制御部1300が溶接電源1200の印加電圧を制御することによって実現される。
なお、当該溶接電流プロファイルPFにおいて、溶接電流が所定の電流増大速度にて0から溶接電流ピーク値Ipにまで増大させられる間をアップスロープと称し、溶接電流が所定の電流減少速度にて溶接電流ピーク値Ipから0にまで現象させられる間をダウンスロープとも称する。
本実施の形態においては、総通電時間が200msec以上となり、溶接電流ピーク値Ipが1.8kA以上となるように、溶接電流プロファイルPFを設定する。係る場合に、十分な溶接強度にて保護カバー2をハウジング1に対し溶接固定することができる。
ただし、総通電時間が200msecを超えると溶接強度が飽和する傾向があるため、総通電時間はせいぜい300msec以下で十分である。また、総通電時間が同じであれば、溶接電流ピーク値Ipが大きいほど溶接強度が大きくなる傾向があるが、溶接電流ピーク値Ipが2.5kAを上回るとスパッタが発生するため、好ましくない。
以上、説明したように、本実施の形態においては、ガスセンサにおいてセンサ素子を保持するハウジングに対し、該ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーをスポット溶接にて固定する場合において、先端が1.5mm以上6.0mm以下の曲率半径を有する曲面であるタングステン製の溶接棒を用いるようにするとともに、溶接実行荷重を600N以上とし、通電時間を200msec以上300msec以下とし、溶接電流プロファイルにおける溶接電流のピーク値を1.8kA以上2.5kA以下とする。これにより、スパッタを発生させることなく、十分な溶接強度にて保護カバーをハウジングに対し溶接固定することができる。また、溶接棒の長寿命化も実現される。
(実施例1)
図5は、溶接固定によって形成された溶接部Wの直径であるスポット径と、該溶接部Wの強度である溶接強度との関係を示す図である。なお、図5に示す結果を得るにあたっては、溶接棒1101として直径6mmのものを用い、溶接電流ピーク値は1.9kA、溶接棒1101からの印加荷重(溶接実行荷重)は600N、総通電時間は300msecとしている。
図5に示すように、保護カバー2の溶接強度はスポット径によって異なる。図5からは、スポット径が1.5mm以上であれば、30N・m以上の溶接強度が得られることがわかる。
ここで、スポット径は、先端部1101aの曲率半径Rに応じて定まる値である。例えば、スポット径が1.5mmとなるときの先端部1101aの曲率半径Rの値は1.5mmであり、スポット径が3.0mmとなるときの先端部1101aの曲率半径Rの値は6.0mmであることがあらかじめ確認されている。
よって、先端部1101aの曲率半径Rの値は1.5mm以上とすることが好ましいといえる。また、スポット径が3.0mm以上では溶接強度が飽和する傾向があることから、先端部1101aの曲率半径Rの値は6.0mm以下とすれば十分である。
(実施例2)
図6は、総通電時間を100msec(条件A)、200msec(条件B)、300msec(条件C)の3水準に違えるとともに、溶接電流ピーク値を1.4kA〜2.5kAの範囲で7水準(1.4kA、1.6kA、1.7kA、1.8kA、2.0kA、2.1kA、2.5kA)に違えた種々の溶接電流プロファイルPFにて保護カバー2のスポット溶接を行ったときの、溶接電流ピーク値と溶接強度との関係を、条件A〜条件Cのそれぞれについて示す図である。なお、先端部1101aの曲率半径Rは4mm、溶接実行荷重は600Nとした。
また、図7は、条件A〜条件Cについての溶接電流プロファイルPFを例示する図である。具体的には、図7においては、溶接電流ピーク値が2.0kAであるときの条件A〜条件Cのそれぞれについての溶接電流プロファイルPFと、溶接電流ピーク値が1.4kAであるときの条件Aについての溶接電流プロファイルPFとを例示している。
なお、図7に示すように、全ての溶接電流プロファイルPFにおいて、ダウンスロープ時間は30msecとしている。それゆえ、条件Aについては、溶接電流ピーク値の値によらず、通電開始から100−30=70msec経過した時点で溶接電流プロファイルPFがアップスロープからダウンスロープに転じ、条件B、Cについてはそれぞれ、通電開始から170msec、270msec経過した時点で溶接電流プロファイルPFがアップスロープからダウンスロープに転じている。
図6からは、溶接強度が溶接電流と通電時間とによって変化すること、および、溶接時間が同じであれば、溶接電流ピーク値が大きいほど溶接強度が大きくなることが確認される。また、溶接電流ピーク値が同じ値の場合で比較した場合、条件Aは条件B、Cに比して溶接強度が小さいこと、および、条件B、Cでは溶接電流ピーク値が2.5kAの場合を除いて溶接電流ピーク値が同じであれば溶接強度はほぼ同じであることが、確認される。なお、条件Aにおいて溶接強度が小さいのは、アップスロープの時間が短いために溶接に際して保護カバー2に十分な予熱が与えられないためであると考えられる。
より詳細には、条件Aでは溶接電流ピーク値が2.0kA以上の範囲で溶接強度が30N・m以上となり、条件Bおよび条件Cでは、溶接電流ピーク値が1.8kA以上の範囲で溶接強度が30N・m以上となった。ただし、条件A〜条件Cのいずれの場合においても、溶接電流ピーク値が2.5kAを超える溶接電流プロファイルを採用した場合、溶接部Wの近傍にスパッタが発生していた。
以上の結果からは、総通電時間は200msec以上とし、溶接電流ピーク値を1.8kA以上2.5kA以下とすれば、スパットを発生させることなく、十分な溶接強度にて保護カバー2を固定できることがわかる。
(実施例3)
図8は、溶接実行荷重を430N、570N、680N、710Nの4水準に違えて保護カバー2のスポット溶接を行ったときの溶接実行荷重と溶接強度との関係を示す図である。なお、それぞれの溶接実行荷重について10回ずつのスポット溶接を行っており、図8においては、各荷重条件での溶接強度の最小値を「−」印で示し、最大値を「●」印または「×」印で示している。なお、溶接電流ピーク値は1.9kA、総通電時間は300msec、先端部1101aの曲率半径Rは4mmとした。
「×」印を用いている、溶接実行荷重が430Nおよび570Nの場合においてはそれぞれ、10回のスポット溶接のうち、7回、2回において、スパッタが発生した。一方、「●」印を用いている、溶接実行荷重が680N、710Nの場合においては、スパッタは発生しなかった。
係る結果からは、少なくとも、溶接実行荷重を600N以上の値とした場合には、スパッタは発生しないことが確認された。
1 ハウジング
1a (ハウジングの)被嵌合部
2 保護カバー
2c (保護カバーの)嵌合部
10 センサ素子
10a (センサ素子の)一方端部
100 ガスセンサ
100α 未溶接ガスセンサ
1100(1100A、1100B) 溶接実行部
1101(1101A、1101B) 溶接棒
1101a (溶接棒の)先端部
1101b (溶接棒の)平坦部
1102 電極ホルダ
1103 加圧追従器
1104 エアーシリンダ
1104a (エアーシリンダ)可動部
1105 ロードセル
1200 溶接電源
1300 制御部
H 貫通孔
RE 溶接対象領域
W 溶接部

Claims (10)

  1. ガスセンサの製造方法であって、
    センサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを嵌合する嵌合工程と、
    前記ハウジングに嵌合された前記保護カバーのあらかじめ定められた溶接対象領域に対し所定の溶接電流プロファイルに従ってスポット溶接を行うことにより前記保護カバーを前記ハウジングに固定する溶接工程と、
    を備え、
    前記溶接工程においては、
    先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の溶接棒を前記溶接対象領域に当接させることによって、前記溶接対象領域に対しあらかじめ定められた600N以上の溶接実行荷重を印加した状態で、
    通電開始から前記溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように定められた前記溶接電流プロファイルに従って、前記溶接電流を流すことにより、前記スポット溶接を行う、
    ことを特徴とするガスセンサの製造方法。
  2. 請求項1に記載のガスセンサの製造方法であって、
    前記溶接工程においては、2つの前記溶接棒によって前記保護カバーの互いに対向する2箇所の前記溶接対象領域に同時に前記溶接実行荷重を印加することにより、前記2箇所を同時に溶接する、
    ことを特徴とするガスセンサの製造方法。
  3. 請求項2に記載のガスセンサの製造方法であって、
    前記溶接工程においては、前記2つの前記溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、前記荷重が前記溶接実行荷重に達した時点で、前記2つの前記溶接棒の間に前記溶接電流を通電させる、
    ことを特徴とするガスセンサの製造方法。
  4. 請求項1ないし請求項3のいずれかに記載のガスセンサの製造方法であって、
    前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、
    前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、
    ことを特徴とするガスセンサの製造方法。
  5. ガスセンサにおいてセンサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを固定する、センサ素子保護カバーの固定方法であって、
    先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の溶接棒を前記保護カバーのあらかじめ定められた溶接対象領域に当接させることによって、前記溶接対象領域に対しあらかじめ定められた600N以上の溶接実行荷重を印加した状態で、
    通電開始から溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように定められた溶接電流プロファイルに従って、前記溶接電流を流すことにより、前記溶接対象領域において前記保護カバーを前記ハウジングに固定するスポット溶接を行う、
    ことを特徴とするセンサ素子保護カバーの固定方法。
  6. 請求項5に記載のセンサ素子保護カバーの固定方法であって、
    2つの前記溶接棒によって前記保護カバーの互いに対向する2箇所の前記溶接対象領域に同時に前記溶接実行荷重を印加することにより、前記2箇所を同時に溶接する、
    ことを特徴とするセンサ素子保護カバーの固定方法。
  7. 請求項6に記載のセンサ素子保護カバーの固定方法であって、
    前記2つの前記溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、前記荷重が前記溶接実行荷重に達した時点で、前記2つの前記溶接棒の間に前記溶接電流を通電させる、
    ことを特徴とするセンサ素子保護カバーの固定方法。
  8. 請求項5ないし請求項7のいずれかに記載のセンサ素子保護カバーの固定方法であって、
    前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、
    前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、
    ことを特徴とするセンサ素子保護カバーの固定方法。
  9. ガスセンサにおいてセンサ素子を保持するハウジングに対し、前記ハウジングから突出しているセンサ素子の一方端部を保護する保護カバーを、スポット溶接によって固定する溶接装置であって、
    先端部に1.5mm以上6.0mm以下の曲率半径の曲面を有するタングステン製の2つの溶接棒と、
    前記2つの溶接棒を、前記保護カバーにおいてあらかじめ定められた互いに対向する2箇所の溶接対象領域に対しそれぞれ当接させることによって、前記2つの溶接棒のそれぞれから対応する前記溶接対象領域に対して荷重を印加可能な荷重印加手段と、
    前記2つの溶接棒の間に溶接電流を通電させる通電手段と、
    を備え、
    前記通電手段が前記溶接電流を通電させる際の溶接電流プロファイルが、通電開始から前記溶接電流がピーク値に到達する時刻までは一定の電流増大速度にて前記溶接電流を0から増大させ、前記溶接電流が前記ピーク値に到達した後は、一定の電流減少速度にて前記溶接電流を0になるまで減少させるように、前記通電開始から通電終了までの通電時間が200msec以上300msec以下となるように、かつ、前記ピーク値が1.8kA以上2.5kA以下となるように、定められており、
    前記荷重印加手段は、前記2つの溶接棒が前記2箇所の前記溶接対象領域に対し印加する荷重を同期的にかつ連続的に増加させ、
    前記通電手段は、前記荷重があらかじめ定められた600N以上の溶接実行荷重に達した時点で、前記2つの前記溶接棒の間における前記溶接電流プロファイルに従った前記溶接電流の通電を開始させる、
    ことを特徴とする溶接装置。
  10. 請求項9に記載の溶接装置であって、
    前記溶接棒が当接される前記溶接対象領域が前記溶接棒に対して凸な形状にて湾曲しており、
    前記溶接棒の前記溶接対象領域に当接される最先端部が、前記溶接棒の長手方向に直交する円形の平坦部となっている、
    ことを特徴とする溶接装置。
JP2018045228A 2018-03-13 2018-03-13 ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置 Active JP6949764B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045228A JP6949764B2 (ja) 2018-03-13 2018-03-13 ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045228A JP6949764B2 (ja) 2018-03-13 2018-03-13 ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置

Publications (2)

Publication Number Publication Date
JP2019158572A JP2019158572A (ja) 2019-09-19
JP6949764B2 true JP6949764B2 (ja) 2021-10-13

Family

ID=67996243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045228A Active JP6949764B2 (ja) 2018-03-13 2018-03-13 ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置

Country Status (1)

Country Link
JP (1) JP6949764B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023039141A (ja) 2021-09-08 2023-03-20 日本碍子株式会社 ガスセンサの製造方法、ガスセンサ及び保護カバー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604419B2 (ja) * 2000-09-29 2011-01-05 株式会社デンソー ガスセンサの製造方法及び製造装置
US7241370B2 (en) * 2002-08-20 2007-07-10 Ngk Spark Plug Co., Ltd. Protective covers for gas sensor, gas sensor and gas sensor manufacturing method
JP2006043731A (ja) * 2004-08-04 2006-02-16 Daihatsu Motor Co Ltd スポット溶接の通電制御方法
JP2006224148A (ja) * 2005-02-17 2006-08-31 Kobe Steel Ltd 異材の抵抗スポット溶接方法
JP6166052B2 (ja) * 2013-02-04 2017-07-19 日本アビオニクス株式会社 溶接装置
JP6530903B2 (ja) * 2014-10-22 2019-06-12 日本碍子株式会社 溶接体の製造方法及びガスセンサの製造方法
JP6226083B2 (ja) * 2015-07-10 2017-11-08 Jfeスチール株式会社 抵抗スポット溶接方法
JP6491061B2 (ja) * 2015-08-26 2019-03-27 日本碍子株式会社 ガスセンサおよびガスセンサの製造方法

Also Published As

Publication number Publication date
JP2019158572A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US9486875B2 (en) One-side spot welding method and one-side spot welding apparatus
ES2743301T3 (es) Procedimientos y sistemas para soldadura por puntos de resistencia utilizando micropulsos de corriente directa
US7808250B2 (en) Test method and apparatus for spark plug insulator
CN100553849C (zh) 在焊接夹臂上设置力传感器的装置以及安装该力传感器的方法
US8283591B2 (en) Welding apparatus and welding method
US20070007253A1 (en) System and method for clamping and resistance welding
JP6949764B2 (ja) ガスセンサの製造方法、センサ素子保護カバーの固定方法、および溶接装置
JP6971724B2 (ja) 片側スポット溶接装置及び片側スポット溶接方法
JP2006205171A (ja) 溶接装置及びそれを用いた溶接方法
JP2007050450A (ja) 抵抗溶接装置
US20110045731A1 (en) Method of producing a spark plug
JP2001126845A (ja) 内燃機関用スパークプラグの製造方法
Różowicz et al. An analysis of the microstructure, macrostructure and microhardness of NiCr-Ir joints produced by laser welding with and without preheat
ES2641861T3 (es) Máquina de soldadura con detección indirecta de la posición del elemento de sujeción de soldadura
US20160114421A1 (en) Method and device for the optimized resistance welding of metal sheets
KR101305463B1 (ko) 배터리셀의 전극 용접장치
JP6998716B2 (ja) 各層について単一パスでありかつ高い壁で溶接の量が制限されている、改善された溶接トーチおよびサブマージアーク溶接工程技法
JP7255119B2 (ja) インダイレクトスポット溶接装置及び溶接方法
JP5878843B2 (ja) スパークプラグの製造方法
JP5027172B2 (ja) ガスセンサの製造方法
KR102602613B1 (ko) 전극 팁 드레싱용 커터 및 이를 포함하는 커터 조립체
JP6354401B2 (ja) 溶接装置及び溶接方法
JP7240135B2 (ja) インダイレクトスポット溶接方法
JP2020069496A (ja) インダイレクトスポット溶接の溶接点の評価方法
KR20230130272A (ko) 용접 및 전해 연마장치와 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6949764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150