JP2020059005A - Defoaming apparatus and coating applicator - Google Patents

Defoaming apparatus and coating applicator Download PDF

Info

Publication number
JP2020059005A
JP2020059005A JP2018193236A JP2018193236A JP2020059005A JP 2020059005 A JP2020059005 A JP 2020059005A JP 2018193236 A JP2018193236 A JP 2018193236A JP 2018193236 A JP2018193236 A JP 2018193236A JP 2020059005 A JP2020059005 A JP 2020059005A
Authority
JP
Japan
Prior art keywords
liquid
flow path
fine flow
fine
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018193236A
Other languages
Japanese (ja)
Other versions
JP7202132B2 (en
Inventor
内潟 外茂夫
Tomoo Uchigata
外茂夫 内潟
元気 山下
Genki Yamashita
元気 山下
禎彦 伊藤
Sadahiko Ito
禎彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2018193236A priority Critical patent/JP7202132B2/en
Priority to PCT/JP2019/034641 priority patent/WO2020075421A1/en
Priority to TW108133535A priority patent/TWI839383B/en
Publication of JP2020059005A publication Critical patent/JP2020059005A/en
Application granted granted Critical
Publication of JP7202132B2 publication Critical patent/JP7202132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating Apparatus (AREA)
  • Dispersion Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

To remove gas, which is included in a liquid, in a short period of time.SOLUTION: A defoaming apparatus 30 comprises: a supply channel 32 through which a liquid 9 flows; a fine channel element 34 that is provided on the downstream side of the supply channel 32 and that has a plurality of fine channel holes 36 smaller in flow passage area than the supply channel 32; a tank 38 within which an expanded space 40 is provided and in which the liquid 9 passing through the fine channel holes 36 is stored; and a decompression mechanism 42 that decompresses the expanded space 40.SELECTED DRAWING: Figure 2

Description

本発明は、液体中の溶存気体及びマイクロバブル等の気体を除去するための脱泡装置、及びこの脱泡装置を備える塗布装置に関する。   The present invention relates to a defoaming device for removing gas such as dissolved gas and microbubbles in a liquid, and a coating device equipped with this defoaming device.

フレキシブルディスプレイには、基材としてポリイミドフィルムが使用される。ポリイミドフィルムは、ガラス基板上に液状であるポリイミド材料(ポリイミドワニス)を、塗布装置(スリットコーター)によって薄く塗布し、その後、乾燥、焼成の工程を経て成膜される。ポリイミドフィルムに気泡が多く混入していると製品不良となることから、成膜の際、気泡の発生を防止することが重要である。従来、液状のポリイミド材料をガラス基板上へ塗布する前に、ポリイミド材料に含まれる溶存気体及びマイクロバブル等の気体が除去される。このために、撹拌式の脱泡装置が用いられる。特許文献1には、タンク内で液体を羽根により撹拌することで液体中に含まれる気体を浮上させて除去する撹拌式の脱泡装置が開示されている。   A polyimide film is used as a base material for a flexible display. The polyimide film is formed by applying a liquid polyimide material (polyimide varnish) thinly on a glass substrate with a coating device (slit coater), and then performing drying and firing steps. It is important to prevent the generation of air bubbles during film formation, because a product defect will result if a large amount of air bubbles are mixed in the polyimide film. Conventionally, the dissolved gas and the gas such as microbubbles contained in the polyimide material are removed before the liquid polyimide material is applied onto the glass substrate. For this purpose, a stirring type defoaming device is used. Patent Document 1 discloses a stirring-type defoaming device that floats and removes gas contained in a liquid by stirring the liquid in a tank with a blade.

特開2003−103110公報JP, 2003-103110, A

特許文献1に開示されている撹拌式の脱泡装置の場合、液体中の気体の除去を完了(脱泡完了)するためには、多くの時間を要する。特に、脱泡の対象となる液体が、粘度の高いポリイミド材料(例えば、3000cpの液体)である場合、顕著である。例えば、3〜4リットルのポリイミド材料の脱泡を完了するためには4時間程度、要する。前記のようなフレキシブルディスプレイの製造のために用いられる塗布装置の場合、タンクに溜めておく液体の必要量が、例えば20リットル〜40リットルとなることがある。このような多量の液体に対して、塗布の前に脱泡を完了するためには、従来の脱泡装置では時間がかかり過ぎ、生産効率が悪くなる。   In the case of the stirring-type defoaming device disclosed in Patent Document 1, it takes a lot of time to complete the removal of the gas in the liquid (completion of defoaming). In particular, it is remarkable when the liquid to be defoamed is a highly viscous polyimide material (for example, a liquid of 3000 cp). For example, it takes about 4 hours to complete the defoaming of 3 to 4 liters of polyimide material. In the case of the coating device used for manufacturing the flexible display as described above, the required amount of the liquid stored in the tank may be, for example, 20 liters to 40 liters. For such a large amount of liquid, in order to complete defoaming before coating, the conventional defoaming device takes too much time, resulting in poor production efficiency.

そこで、本発明は、液体中に含まれている気体を短時間で除去することを目的とする。   Then, this invention aims at removing the gas contained in the liquid in a short time.

本発明は、液体が流れる供給流路と、前記供給流路の下流側に設けられ当該供給流路よりも流路面積の小さい微細流路孔を複数有する微細流路要素と、内部に拡大空間を有し前記微細流路孔を通過した前記液体を溜めるタンクと、前記拡大空間を減圧する減圧機構と、を備える。この脱泡装置によれば、タンクの拡大空間が減圧されることで、供給流路の液体は微細流路孔を通過しタンク内に流れる。拡大空間は減圧されていることから、微細流路孔を通過した液体中に含まれる気体は発泡し、更に、その液体は、微細流路孔を通過するとオリフィス作用により減圧され、発泡が促進される。よって、液体中に含まれていた気体が短時間で除去される。   The present invention provides a supply channel through which a liquid flows, a fine channel element having a plurality of fine channel holes provided on the downstream side of the supply channel and having a channel area smaller than that of the supply channel, and an enlarged space inside. And a decompression mechanism for decompressing the expanded space. According to this defoaming device, the expansion space of the tank is depressurized, so that the liquid in the supply channel passes through the fine channel holes and flows into the tank. Since the expansion space is depressurized, the gas contained in the liquid that has passed through the fine flow path holes foams, and when the liquid passes through the fine flow path holes, the pressure is reduced by the orifice action, and foaming is promoted. It Therefore, the gas contained in the liquid is removed in a short time.

また、好ましくは、前記タンクは、前記微細流路要素から当該タンクの底部側に向かって、前記液体を遠回りして誘導する誘導路を有する。この誘導路によれば、微細流路要素を通過した液体の表面に泡が付着していても、液体を誘導路に沿って流す間にその泡を消滅させやすい。   Further, preferably, the tank has a guide path for detouring and guiding the liquid from the fine flow path element toward the bottom side of the tank. According to this guide path, even if bubbles are attached to the surface of the liquid that has passed through the fine flow path element, the bubbles are likely to disappear while the liquid flows along the guide path.

また、好ましくは、前記微細流路要素の上流側に、前記供給流路よりも流路面積が拡大し前記液体を溜める液溜め空間が設けられている。この構成によれば、供給流路を流れた液体は、一旦、前記液溜め空間に入る。液溜め空間に入った液体は、微細流路要素の全体に広く分布して設けられている複数の微細流路孔から流出する。このため、タンク内の拡大空間に開放される液体の表面積が広くなり、発泡がより一層促進される。   Further, preferably, a liquid storage space having a flow passage area larger than that of the supply flow passage and storing the liquid is provided on the upstream side of the fine flow passage element. According to this configuration, the liquid that has flowed through the supply channel once enters the liquid storage space. The liquid that has entered the liquid storage space flows out from a plurality of fine flow passage holes that are widely distributed throughout the fine flow passage element. For this reason, the surface area of the liquid opened to the expanded space in the tank becomes large, and foaming is further promoted.

本発明は、被塗布部材を載せるステージと、前記被塗布部材に対して液体を吐出するスリットを有する塗布器と、前記ステージ上の前記被塗布部材と前記塗布器との内の一方を他方に対して移動させる駆動機構と、前記塗布器に前記液体を供給する送液機構と、を備え、前記送液機構は、前記脱泡装置を有する。この塗布装置によれば、脱泡装置によって脱泡された液体が塗布器に供給され、被塗布部材に対して塗布器から当該液体が吐出され、被塗布部材上に薄膜が形成される。前記脱泡装置により、薄膜の形成の際に気泡の発生が防止される。更に、液体中に含まれていた気体が短時間で除去されることから、生産効率が良い。   The present invention provides a stage on which a member to be coated is placed, an applicator having a slit for discharging a liquid to the member to be coated, and one of the member to be coated on the stage and the applicator to the other. A drive mechanism for moving the liquid relative to the applicator and a liquid feed mechanism for supplying the liquid to the applicator are provided, and the liquid feed mechanism has the defoaming device. According to this coating device, the liquid defoamed by the defoaming device is supplied to the coating device, the liquid is discharged from the coating device to the member to be coated, and a thin film is formed on the member to be coated. The defoaming device prevents the generation of bubbles during thin film formation. Furthermore, since the gas contained in the liquid is removed in a short time, the production efficiency is good.

本発明の脱泡装置によれば、液体中に含まれている気体を短時間で除去することが可能となる。
本発明の塗布装置によれば、液体中に含まれていた気体が短時間で除去されることから、生産効率が良い。
According to the defoaming device of the present invention, the gas contained in the liquid can be removed in a short time.
According to the coating apparatus of the present invention, the gas contained in the liquid is removed in a short time, so that the production efficiency is good.

塗布装置の概略構成図である。It is a schematic block diagram of a coating device. 脱泡装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a defoaming apparatus. オリフィス作用を説明する図である。It is a figure explaining an orifice action. 微細流路要素の変形例を示す正面図である。It is a front view showing a modification of a fine channel element. 他の形態を有する脱泡装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the defoaming apparatus which has another form. 微細流路要素の斜視図である。It is a perspective view of a fine channel element.

〔塗布装置について〕
図1は、塗布装置の概略構成図である。塗布装置10は、ガラス等の基板(被塗布部材)7を載せるステージ12と、塗布器14と、駆動機構16と、送液機構18とを備える。塗布器14は、スリット20を有する。スリット15からステージ12上の基板7に対して液体9が吐出される。駆動機構16は、ステージ12上の基板7と塗布器14との内の一方を他方に対して移動させる。本実施形態の駆動機構16は、固定状態にあるステージ12に対して塗布器14を移動させる。このために、駆動機構16は、塗布器14を水平方向に移動させるための(図示しない)アクチュエータを備える。送液機構18は、塗布器14に液体9を供給する。
[About coating device]
FIG. 1 is a schematic configuration diagram of a coating device. The coating apparatus 10 includes a stage 12 on which a substrate (member to be coated) 7 such as glass is placed, an applicator 14, a drive mechanism 16, and a liquid feeding mechanism 18. The applicator 14 has a slit 20. The liquid 9 is discharged from the slit 15 onto the substrate 7 on the stage 12. The drive mechanism 16 moves one of the substrate 7 and the applicator 14 on the stage 12 with respect to the other. The drive mechanism 16 of the present embodiment moves the applicator 14 with respect to the stage 12 in a fixed state. For this purpose, the drive mechanism 16 includes an actuator (not shown) for moving the applicator 14 in the horizontal direction. The liquid feeding mechanism 18 supplies the liquid 9 to the applicator 14.

塗布器14は、当該塗布器14の移動方向に直交する方向に長い。塗布器14内には、スリット20の他に、スリット20と繋がる拡大液溜め部(マニホールド)22が形成されている。スリット15及び拡大液溜め部22は、塗布器14の長手方向に沿って長く形成されている。送液機構18は、液体9を溜める主タンク24と、主タンク24の液体9を送り出すポンプ26と、ポンプ26と塗布器14(拡大液溜め部22)とを繋ぐ配管28とを有する。送液機構18は、更に、液体9中の溶存気体及びマイクロバブル等の気体を除去するための脱泡装置30を有する。図1に示す形態では、脱泡装置30によって脱泡された液体9が主タンク24に供給される。ポンプ26が駆動することで、主タンク24の液体9が塗布器14に供給される。塗布器14の拡大液溜め部22に供給された液体9がスリット15を通じて吐出される。この吐出に併せて駆動機構16により塗布器14が水平方向に移動する。これにより、基板7上に液体9による薄膜が形成される。   The applicator 14 is long in the direction orthogonal to the moving direction of the applicator 14. In the applicator 14, in addition to the slit 20, an enlarged liquid reservoir (manifold) 22 connected to the slit 20 is formed. The slit 15 and the enlarged liquid reservoir 22 are formed long along the longitudinal direction of the applicator 14. The liquid feeding mechanism 18 includes a main tank 24 that stores the liquid 9, a pump 26 that feeds the liquid 9 from the main tank 24, and a pipe 28 that connects the pump 26 and the applicator 14 (enlarged liquid reservoir 22). The liquid sending mechanism 18 further includes a defoaming device 30 for removing dissolved gas in the liquid 9 and gas such as microbubbles. In the form shown in FIG. 1, the liquid 9 defoamed by the defoaming device 30 is supplied to the main tank 24. By driving the pump 26, the liquid 9 in the main tank 24 is supplied to the applicator 14. The liquid 9 supplied to the enlarged liquid reservoir 22 of the applicator 14 is discharged through the slit 15. Along with this ejection, the drive mechanism 16 moves the applicator 14 in the horizontal direction. As a result, a thin film of the liquid 9 is formed on the substrate 7.

〔液体9について〕
本実施形態の液体9は、液状であるポリイミド材料(ポリイミドワニス)である。塗布装置10は、基板7上に液体9としてポリイミド材料を塗布する。塗布後、液体9を乾燥及び焼成することで、基板7上にポリイミドフィルムが形成される。ポリイミド材料は、比較的、高粘度の液体である。その粘度は高く、例えば1000cp以上である。本実施形態の塗布装置10及び脱泡装置30は、1000cp以上である(7000cp以下の)高粘度の液体9に対して好適であり、3000cp以上である液体9に対して特に好適である。なお、液体9は、ポリイミド材料以外であってもよく、例えば他の樹脂を含むワニスであってもよい。また、脱泡装置30によって脱泡を行う対象となる液体は、樹脂を含む液体以外であってもよく、その他として、様々な分野で用いられる液体であってもよい。また、脱泡装置30によって脱泡を行う対象となる液体は、高粘度の液体以外であってもよい(つまり、1000cp未満の液体であってもよい)。
[About Liquid 9]
The liquid 9 of this embodiment is a liquid polyimide material (polyimide varnish). The coating device 10 coats the substrate 7 with a polyimide material as the liquid 9. After coating, the liquid 9 is dried and baked to form a polyimide film on the substrate 7. Polyimide material is a relatively high viscosity liquid. Its viscosity is high, for example, 1000 cp or more. The coating device 10 and the defoaming device 30 of the present embodiment are suitable for the high viscosity liquid 9 of 1000 cp or more (7000 cp or less), and particularly suitable for the liquid 9 of 3000 cp or more. The liquid 9 may be other than the polyimide material, and may be, for example, a varnish containing another resin. Further, the liquid to be defoamed by the defoaming device 30 may be a liquid other than the liquid containing the resin, or may be a liquid used in various fields. Further, the liquid to be defoamed by the defoaming device 30 may be a liquid other than a highly viscous liquid (that is, a liquid of less than 1000 cp may be used).

〔脱泡装置30について〕
図2は、脱泡装置30の概略構成を示す断面図である。脱泡装置30は、高粘度の前記液体9が流れる供給流路32と、供給流路32の下流側に設けられている微細流路要素34と、内部に拡大空間40を有するタンク38と、拡大空間40を減圧する(真空圧とする)減圧機構42とを備える。脱泡装置30は、更に、液体9が収容されている容器44を備える。以下において、タンク38を「(脱泡用の)副タンク38」と称する。
[About defoaming device 30]
FIG. 2 is a cross-sectional view showing a schematic configuration of the defoaming device 30. The defoaming device 30 includes a supply channel 32 through which the highly viscous liquid 9 flows, a fine channel element 34 provided on the downstream side of the supply channel 32, and a tank 38 having an enlarged space 40 inside. A decompression mechanism 42 that decompresses the expanded space 40 (makes it a vacuum pressure). The defoaming device 30 further includes a container 44 containing the liquid 9. Hereinafter, the tank 38 is referred to as a "sub-tank (for defoaming) 38".

供給流路32は、配管により構成されている。供給流路32の一端33a側は、容器44内の液体9中にある。供給流路32の他端33b側が副タンク38の壁部39に接続されている。供給流路32の途中には開閉バルブ46が設けられている。開閉バルブ46が開状態で液体9は供給流路32を流れることができる。供給流路32の流路径(内径)は、例えば、10ミリメートル以上、19ミリメートル以下である。なお、この流路径は供給流路32における最小値である。   The supply channel 32 is composed of piping. One end 33 a side of the supply channel 32 is in the liquid 9 in the container 44. The other end 33 b side of the supply channel 32 is connected to the wall portion 39 of the sub tank 38. An opening / closing valve 46 is provided in the middle of the supply passage 32. The liquid 9 can flow through the supply channel 32 when the open / close valve 46 is open. The flow path diameter (inner diameter) of the supply flow path 32 is, for example, 10 mm or more and 19 mm or less. The flow channel diameter is the minimum value in the supply flow channel 32.

脱泡装置30の説明において「上流側」及び「下流側」は液体9の流れる方向が基準とされる。つまり、液体9が収容されている容器44中の供給流路32の一端33a側が上流側であり、液体9が排出される副タンク38の底部49側が下流側である。   In the description of the defoaming device 30, “upstream side” and “downstream side” are based on the flowing direction of the liquid 9. That is, the one end 33a side of the supply flow path 32 in the container 44 containing the liquid 9 is the upstream side, and the bottom 49 side of the sub tank 38 from which the liquid 9 is discharged is the downstream side.

本実施形態の微細流路要素34は、板状の部材により構成されている。この板状の部材に、複数(多数)の微細流路孔36が形成されている。微細流路孔36は、板状の部材を、その厚さ方向に貫通した孔により構成されている。各微細流路孔36は、供給流路32よりも流路面積が小さい。微細流路孔36の直径は、例えば0.1ミリメール以上、1.0ミリメートル以下である。微細流路孔36を液体9は通過可能である。このように、微細流路要素34は、供給流路32の下流側に設けられていて、この供給流路32よりも流路面積の小さい微細流路孔36を複数有する。微細流路要素34は、副タンク38の上部側における壁部39に取付けられている。   The fine flow path element 34 of the present embodiment is composed of a plate-shaped member. A plurality (a large number) of fine flow path holes 36 are formed in this plate-shaped member. The fine flow path hole 36 is a hole that penetrates a plate-shaped member in the thickness direction. Each fine channel hole 36 has a channel area smaller than that of the supply channel 32. The diameter of the fine flow path hole 36 is, for example, 0.1 mm or more and 1.0 mm or less. The liquid 9 can pass through the fine flow path holes 36. As described above, the fine flow path element 34 is provided on the downstream side of the supply flow path 32 and has a plurality of fine flow path holes 36 having a flow path area smaller than that of the supply flow path 32. The fine flow path element 34 is attached to the wall portion 39 on the upper side of the sub tank 38.

副タンク38は、微細流路要素34の下流側(供給流路32の反対側)に設けられている。副タンク38は、微細流路孔36を通過した液体9を溜める。副タンク38が有する拡大空間40は、微細流路孔36から拡大した空間である。副タンク38は、密閉容器となる。副タンク38が有する別の壁部48に、第一の配管50を通じて減圧機構42が接続されている。副タンク38の底部(底壁部)49に、第二の配管52が接続されている。第二の配管52に開閉バルブ54が設けられている。開閉バルブ54が開状態で、副タンク38の液体9を外部へ排出可能とする。排出された液体9は、外部装置(図1の形態では、主タンク24)へと流れる。   The sub tank 38 is provided on the downstream side of the fine flow path element 34 (on the opposite side of the supply flow path 32). The sub tank 38 stores the liquid 9 that has passed through the fine flow path holes 36. The expanded space 40 included in the sub tank 38 is a space expanded from the fine flow path hole 36. The sub tank 38 is a closed container. The pressure reducing mechanism 42 is connected to another wall portion 48 of the sub tank 38 through the first pipe 50. The second pipe 52 is connected to the bottom portion (bottom wall portion) 49 of the sub tank 38. An opening / closing valve 54 is provided in the second pipe 52. The liquid 9 in the sub tank 38 can be discharged to the outside when the open / close valve 54 is open. The discharged liquid 9 flows to an external device (the main tank 24 in the form of FIG. 1).

壁部39の構成について説明する。副タンク38の壁の一部に孔が設けられており、この孔を塞ぐように板状である微細流路要素34が設けられる。微細流路要素34を覆うように、蓋部材56が取付けられている。微細流路要素34の周囲(縁部)にはシール部材(Oリング)37が設けられている。蓋部材56に供給流路32が接続されている。蓋部材56は微細流路要素34と対面しかつ間隔をあけて設けられていて、これにより、蓋部材56と微細流路要素34との間に液溜め空間58が設けられる。つまり、微細流路要素34の上流側(直上流側)に、液溜め空間58が設けられる。液溜め空間58は、供給流路32よりも流路面積が拡大している空間であり、供給流路32を流れた液体9を溜めることができる。   The structure of the wall portion 39 will be described. A hole is provided in a part of the wall of the sub tank 38, and a plate-shaped fine flow path element 34 is provided so as to close the hole. A lid member 56 is attached so as to cover the fine flow path element 34. A seal member (O-ring) 37 is provided around the periphery (edge) of the fine channel element 34. The supply channel 32 is connected to the lid member 56. The lid member 56 faces the fine flow path element 34 and is provided with a space therebetween, whereby a liquid storage space 58 is provided between the lid member 56 and the fine flow path element 34. That is, the liquid storage space 58 is provided on the upstream side (immediately upstream side) of the fine flow path element 34. The liquid storage space 58 is a space having a flow passage area larger than that of the supply flow passage 32, and can store the liquid 9 flowing through the supply flow passage 32.

副タンク38は、内部に誘導路60を有する。誘導路60は、微細流路要素34から副タンク38の底部49側に向かって、液体9を遠回りして(迂回して)誘導する。なお、前記「遠回り」とは、微細流路要素34から副タンク38に溜められている液体9の液面までの最短距離よりも、長い道のりを有することである。微細流路孔36を通過した液体9は、下向きに流れ、誘導路60の上部62に到達する。上部62に到達した液体9は、誘導路60に沿って副タンク38の底部49側へ流れる。誘導路60は、例えば凹溝を有する部材であり、この凹溝に沿って液体9が流れる。なお、誘導路60は、凹溝を有する構造以外であってもよい。図2に示す誘導路60は、複数の誘導部材64a,64bを含む。一つの誘導部材64aと他の誘導部材64bとの間に、液体9の流れる方向が変化する折返し部65が設けられている。誘導路60は、上部62から、副タンク38に溜められている液体9(液面、又は、液面の近く)まで延びて設けられている。誘導路60は、図示した形態以外であってもよい。例えば、誘導路60は、図示しないが、螺旋状の誘導部材を有していてもよい。螺旋状とすることで「遠回り」をコンパクトに実現できる。   The sub tank 38 has a guide path 60 inside. The guide path 60 guides the liquid 9 in a detour (bypass) from the fine flow path element 34 toward the bottom portion 49 side of the sub tank 38. In addition, the above-mentioned "circumnavigation" means having a path longer than the shortest distance from the fine flow path element 34 to the liquid surface of the liquid 9 stored in the sub tank 38. The liquid 9 that has passed through the fine flow path holes 36 flows downward and reaches the upper portion 62 of the guide path 60. The liquid 9 that has reached the upper portion 62 flows to the bottom portion 49 side of the sub tank 38 along the guide path 60. The guide path 60 is, for example, a member having a groove, and the liquid 9 flows along the groove. The guide path 60 may have a structure other than the structure having the groove. The guide path 60 shown in FIG. 2 includes a plurality of guide members 64a and 64b. Between the one guide member 64a and the other guide member 64b, the turn-back portion 65 in which the flowing direction of the liquid 9 changes is provided. The guide path 60 is provided so as to extend from the upper portion 62 to the liquid 9 (the liquid surface or near the liquid surface) stored in the sub tank 38. The guide path 60 may have a shape other than that illustrated. For example, although not shown, the guide path 60 may have a spiral guide member. "Circular" can be realized compactly by making it spiral.

減圧機構42は、真空ポンプを含む。減圧機構42は、第一の配管50を通じて副タンク38内の気体を吸引し、拡大空間40を減圧する(拡大空間40を真空圧とする)。副タンク38の外部は、大気圧であり、容器44内も大気圧である。減圧機構42によって拡大空間40が大気圧に対して減圧されると、副タンク38の内外の差圧によって、容器44の液体9が副タンク38に向かって供給流路32を流れ、更に、その液体9は、微細流路孔36を通過し拡大空間40に到達する。   The decompression mechanism 42 includes a vacuum pump. The decompression mechanism 42 sucks the gas in the sub tank 38 through the first pipe 50 to decompress the expanded space 40 (the expanded space 40 is set to a vacuum pressure). The outside of the sub tank 38 is at atmospheric pressure, and the inside of the container 44 is also at atmospheric pressure. When the expansion space 40 is decompressed to the atmospheric pressure by the decompression mechanism 42, the liquid 9 in the container 44 flows through the supply passage 32 toward the sub tank 38 due to the pressure difference between the inside and the outside of the sub tank 38, and The liquid 9 passes through the fine flow path holes 36 and reaches the expansion space 40.

以上の構成を備える脱泡装置30によれば、副タンク38の拡大空間40が減圧されることで、供給流路32の液体9は微細流路孔36を通過し副タンク38内に流れる。拡大空間40は減圧されていることから、微細流路孔36を通過した液体9中に含まれる溶存気体及びマイクロバブル等の気体は発泡する。更に、その液体9は、微細流路孔36を通過するとオリフィス作用により急激に減圧され、発泡が促進される。図3は、オリフィス作用を説明する図である。液体9が微細流路孔36を通過すると、図3の上部の図に示すように、液体9の圧力はQ1(pa:パスカル)からQ2(pa:パスカル)に低下する。つまり、微細流路孔36がオリフィスとしての機能を有する。本実施形態では、液体9が、微細流路孔36を通じて、減圧された拡大空間40(真空圧となる拡大空間40)側へ吸い出される際に、拡大空間40が真空圧であることによる作用と、前記オリフィス作用との相乗効果によって、急激に液体9の圧力が低下する。このため、液体9中の溶存気体及びマイクロバブルは気泡8となって拡大空間40において析出する。これにより、液体9中の溶存気体及びマイクロバブルが液体9から除去される。発生した気泡8は副タンク38内で潰れる。   According to the defoaming device 30 having the above configuration, the expansion space 40 of the sub tank 38 is depressurized, so that the liquid 9 in the supply flow path 32 passes through the fine flow path holes 36 and flows into the sub tank 38. Since the expansion space 40 is decompressed, the dissolved gas and the gas such as micro bubbles contained in the liquid 9 that has passed through the fine flow path holes 36 foam. Furthermore, when the liquid 9 passes through the fine flow path holes 36, it is rapidly depressurized by the orifice action, and foaming is promoted. FIG. 3 is a diagram for explaining the orifice action. When the liquid 9 passes through the fine channel holes 36, the pressure of the liquid 9 drops from Q1 (pa: Pascal) to Q2 (pa: Pascal), as shown in the upper part of FIG. That is, the fine flow path hole 36 has a function as an orifice. In the present embodiment, when the liquid 9 is sucked through the fine flow path holes 36 toward the depressurized expansion space 40 (expansion space 40 that is a vacuum pressure), the expansion space 40 has a vacuum pressure. And the synergistic effect with the orifice action causes the pressure of the liquid 9 to drop sharply. Therefore, the dissolved gas and the micro bubbles in the liquid 9 become bubbles 8 and are deposited in the expanded space 40. As a result, the dissolved gas and microbubbles in the liquid 9 are removed from the liquid 9. The generated bubbles 8 are crushed in the sub tank 38.

図4は、微細流路要素34の変形例を示す正面図である。微細流路要素34は、円板状の部材であって、円形の範囲内に微細流路孔36が多く設けられていてもよいが、図4に示すように、微細流路要素34は、一方向に長い長尺状の板部材(正面視において、矩形の板部材)であってもよい。この一方向の直交方向(他方向)よりも、当該一方向に微細流路孔36が多く並んで設けられている。そして、前記一方向が水平方向となって、副タンク38に設けられる。下段において並ぶ微細流路孔36と、その一つ上の段において並ぶ微細流路孔36とは、前記一方向に沿う位置が異なっている。つまり、微細流路要素34において、微細流路孔36は千鳥配置にある。図2に示す形態(円板状)の場合、微細流路要素34の全体の微細流路孔36を液体9は通過するが、比較的下部の微細流路孔36を通過した液体9は、上部の微細流路孔36を通過した液体9に覆われやすい。このため、下部の微細流路孔36を通過した液体9から脱泡した泡が、上部の微細流路孔36を通過した多くの液体9に巻き込まれやすくなる。これに対して、図4に示す形態の場合、微細流路要素34の上部から下部へと流れる液体9が少なくなるため、脱泡した泡の巻き込みが低減される。すなわち、微細流路孔36は、上下方向よりも水平方向に多く並んで分布している構成が好ましい。   FIG. 4 is a front view showing a modified example of the fine flow path element 34. The fine flow path element 34 is a disc-shaped member, and many fine flow path holes 36 may be provided within a circular range. However, as shown in FIG. It may be a long plate member that is long in one direction (a rectangular plate member in a front view). A large number of fine flow path holes 36 are arranged in the one direction rather than the direction orthogonal to the one direction (the other direction). The one direction is a horizontal direction and is provided in the sub tank 38. The positions of the fine flow passage holes 36 arranged in the lower stage and the fine flow passage holes 36 arranged in the stage one level higher than that of the fine flow passage holes 36 are different along the one direction. That is, in the fine flow path element 34, the fine flow path holes 36 are in a staggered arrangement. In the case of the form (disk shape) shown in FIG. 2, the liquid 9 passes through the entire fine flow passage holes 36 of the fine flow passage elements 34, but the liquid 9 that has passed through the fine flow passage holes 36 at the relatively lower portion is It is easy to be covered with the liquid 9 that has passed through the fine flow path holes 36 on the upper side. For this reason, bubbles degassed from the liquid 9 that has passed through the lower fine flow passage hole 36 are likely to be caught in many liquids 9 that have passed through the upper fine flow passage hole 36. On the other hand, in the case of the form shown in FIG. 4, the amount of the liquid 9 flowing from the upper part to the lower part of the fine flow path element 34 decreases, so that the inclusion of defoamed bubbles is reduced. That is, it is preferable that the fine flow path holes 36 are arranged side by side in the horizontal direction more than in the vertical direction.

図2において、副タンク38に溜められている液体9は脱泡が完了している。液体9は、副タンク38の底部49から第二の配管52を通じて、外部装置(図1の形態では、主タンク24)に供給される。この供給の際、減圧機構42による副タンク38内を減圧する動作は停止されている。副タンク38の拡大空間40を大気開放し(大気圧とし)、副タンク38内の液体9を排出する。なお、図2に示す副タンク38を主タンク24(図1参照)と兼用させ、つまり、主タンク24を省略し、副タンク38の液体9を塗布器14に供給するように構成してもよい。   In FIG. 2, the liquid 9 stored in the sub tank 38 has been defoamed. The liquid 9 is supplied to the external device (the main tank 24 in the form of FIG. 1) from the bottom 49 of the sub tank 38 through the second pipe 52. At the time of this supply, the operation of reducing the pressure inside the sub tank 38 by the pressure reducing mechanism 42 is stopped. The expanded space 40 of the sub tank 38 is opened to the atmosphere (atmospheric pressure), and the liquid 9 in the sub tank 38 is discharged. The sub tank 38 shown in FIG. 2 may also be used as the main tank 24 (see FIG. 1), that is, the main tank 24 may be omitted and the liquid 9 in the sub tank 38 may be supplied to the applicator 14. Good.

〔脱泡装置の他の形態〕
図5は、他の形態を有する脱泡装置30の概略構成を示す断面図である。以下において、図5に示す脱泡装置30を「第二の形態」と称する。図2に示す脱泡装置30と、同一の構成要素に対しては可能な限り同一の符号(参照番号)を付し、重複する説明は省略する。第二の形態では、図6に示すように、微細流路要素34が円環状の部材により構成されていて、この円環状の部材に、微細流路孔36が設けられている。微細流路孔36は千鳥配置にある。また、微細流路孔36は、上下方向よりも水平方向に多く並んで分布している。
[Other forms of defoaming device]
FIG. 5: is sectional drawing which shows schematic structure of the defoaming apparatus 30 which has another form. Hereinafter, the defoaming device 30 shown in FIG. 5 will be referred to as a “second mode”. The same components as those of the defoaming device 30 shown in FIG. 2 are denoted by the same reference numerals (reference numbers) as much as possible, and redundant description will be omitted. In the second embodiment, as shown in FIG. 6, the fine flow path element 34 is composed of an annular member, and the fine flow path hole 36 is provided in this annular member. The fine flow path holes 36 are in a staggered arrangement. Further, the fine flow path holes 36 are arranged side by side more in the horizontal direction than in the vertical direction.

図5に示すように、微細流路要素34は、上側部材66と下側部材67とに挟まれた状態となって、副タンク38の上部に設けられている。上側部材66及び下側部材67は円板状の部材である。供給流路32が上側部材66の中央を貫通するようにして副タンク38に接続されている。上側部材66と下側部材67との間であって、環状である微細流路要素34の内周側の領域が、液溜め空間58となる。液溜め空間58に、一旦、溜められた液体9が、微細流路孔36を通過し、副タンク38の拡大空間40へと流れる。上側部材66及び下側部材67それぞれと微細流路要素34との間にはシール部材(Oリング)68が設けられている。第二の形態では、下側部材67に誘導路60の上部62が取付けられている。誘導路60は、筒状の部材により構成されている。微細流路要素34から副タンク38の底部49側に向かって、液体9を遠回りして誘導するために、誘導路60は、テーパー形状の筒部69を有する。   As shown in FIG. 5, the fine flow path element 34 is provided above the sub tank 38 in a state of being sandwiched between the upper member 66 and the lower member 67. The upper member 66 and the lower member 67 are disc-shaped members. The supply channel 32 is connected to the sub tank 38 so as to penetrate the center of the upper member 66. A region between the upper member 66 and the lower member 67 on the inner peripheral side of the annular fine flow path element 34 serves as a liquid storage space 58. The liquid 9 once stored in the liquid storage space 58 passes through the fine flow path holes 36 and flows into the expanded space 40 of the sub tank 38. A seal member (O ring) 68 is provided between each of the upper member 66 and the lower member 67 and the fine flow path element 34. In the second mode, the upper part 62 of the guide path 60 is attached to the lower member 67. The guide path 60 is composed of a tubular member. In order to guide the liquid 9 by detouring from the fine flow path element 34 toward the bottom portion 49 side of the sub tank 38, the guide passage 60 has a tapered tubular portion 69.

前記の各形態において、微細流路要素34を通過させて副タンク38内に流入させる液体9の量(流量)を増加させるためには、微細流路孔36の数を増やせばよい。第二の形態によれば、多くの微細流路孔36が省スペースで設けられる。更に、第二の形態によれば、図4に示す微細流路要素34と同様に、微細流路要素34の上部から下部へと流れる液体9が少なくなるため、脱泡した泡の巻き込みが低減される(つまり、脱泡の効率が良い)。   In each of the above-described embodiments, in order to increase the amount (flow rate) of the liquid 9 that passes through the fine flow path element 34 and flows into the sub tank 38, the number of fine flow path holes 36 may be increased. According to the second mode, many fine flow path holes 36 are provided in a space-saving manner. Further, according to the second embodiment, as in the case of the fine flow path element 34 shown in FIG. 4, since the liquid 9 flowing from the upper part to the lower part of the fine flow path element 34 is reduced, the inclusion of defoamed bubbles is reduced. (That is, the efficiency of defoaming is good).

第二の形態の場合、前記のとおり、微細流路孔36の数を増やすことが容易であり、多くの液体9の脱泡が可能となる。このため、短時間で多くの液体9の脱泡が可能となる。そこで、副タンク38の液体9の収容能力(容量)を高く(大きく)することで、副タンク38は、図1に示す主タンク24を兼ねることが可能となる。つまり、主タンク24を省略できる。この場合、副タンク38の拡大空間40を大気開放して(大気圧として)、副タンク38内の液体9が塗布器14(図1参照)に供給される。なお、第二の形態の脱泡装置30を図1に示す塗布装置10に適用してもよく、脱泡用の副タンク38に溜められている液体9を、主タンク24に一旦送り、主タンク24から塗布器14へ液体9が送られるように構成されていてもよい。   In the case of the second mode, as described above, it is easy to increase the number of the fine flow path holes 36, and it is possible to degas a large amount of the liquid 9. Therefore, it is possible to degas a large amount of the liquid 9 in a short time. Therefore, by increasing (increasing) the storage capacity (capacity) of the liquid 9 in the sub tank 38, the sub tank 38 can also serve as the main tank 24 shown in FIG. That is, the main tank 24 can be omitted. In this case, the expanded space 40 of the sub tank 38 is opened to the atmosphere (at atmospheric pressure), and the liquid 9 in the sub tank 38 is supplied to the applicator 14 (see FIG. 1). The defoaming device 30 of the second embodiment may be applied to the coating device 10 shown in FIG. 1, and the liquid 9 stored in the defoaming sub-tank 38 is once sent to the main tank 24 and The liquid 9 may be sent from the tank 24 to the applicator 14.

〔各形態の脱泡装置30について〕
以上のように、前記各形態の脱泡装置30は、供給流路32と、微細流路要素34と、副タンク38と、減圧機構42とを備える。この脱泡装置30によれば、副タンク38の拡大空間40が減圧機構42によって減圧されることで、供給流路32の液体9は微細流路孔36を通過し副タンク38内に流れる。拡大空間40は減圧されていることから、微細流路孔36を通過した液体9中に含まれる溶存気体及びマイクロバブル等の気体は発泡し、更に、その液体9は、微細流路孔36を通過するとオリフィス作用により急激に減圧され、発泡が促進される。よって、容器44内の液体9中に含まれていた気体が短時間で除去される。
[Regarding each form of defoaming device 30]
As described above, the defoaming device 30 of each of the above-described embodiments includes the supply flow path 32, the fine flow path element 34, the sub tank 38, and the depressurization mechanism 42. According to this defoaming device 30, the expansion space 40 of the sub tank 38 is decompressed by the decompression mechanism 42, so that the liquid 9 in the supply flow path 32 passes through the fine flow path holes 36 and flows into the sub tank 38. Since the expansion space 40 is depressurized, the dissolved gas and the gas such as microbubbles contained in the liquid 9 that has passed through the fine flow path hole 36 are foamed, and the liquid 9 further passes through the fine flow path hole 36. When it passes, the pressure is rapidly reduced by the action of the orifice, and foaming is promoted. Therefore, the gas contained in the liquid 9 in the container 44 is removed in a short time.

このため、前記各形態の脱泡装置30を備える塗布装置10によれば、脱泡された液体9が塗布器14に供給され、基板7に対して塗布器14から当該液体9が吐出され、基板7上に薄膜が形成される。脱泡装置30により、薄膜の形成の際に気泡の発生が防止される。更に、液体9中に含まれていた気体が短時間で除去されることから、生産効率が良い。塗布装置10は、脱泡装置30を複数備えていてもよく、複数の脱泡装置30は、交互に主タンク24(又は塗布器14)と繋がって液体9を排出するように構成していてもよい。この場合、一つの脱泡装置30において脱泡処理を行っている間、他の脱泡装置30から脱泡済みの液体9を主タンク24(又は塗布器14)へ供給する。そして、前記他の脱泡装置30において脱泡処理を行っている間、前記一つの脱泡装置30から脱泡済みの液体9を主タンク24(又は塗布器14)へ供給する。このように、塗布装置10は脱泡装置30を複数備えていて、複数の脱泡装置30を切り替えて使用してもよい。   Therefore, according to the coating device 10 including the defoaming device 30 of each of the above-described forms, the defoamed liquid 9 is supplied to the coating device 14, and the liquid 9 is discharged from the coating device 14 to the substrate 7, A thin film is formed on the substrate 7. The defoaming device 30 prevents the generation of bubbles during the formation of the thin film. Furthermore, since the gas contained in the liquid 9 is removed in a short time, the production efficiency is good. The coating device 10 may include a plurality of defoaming devices 30, and the plurality of defoaming devices 30 are alternately connected to the main tank 24 (or the applicator 14) to discharge the liquid 9. Good. In this case, while the defoaming process is being performed in one defoaming device 30, the defoamed liquid 9 is supplied to the main tank 24 (or the applicator 14) from the other defoaming device 30. Then, while performing the defoaming process in the other defoaming device 30, the defoamed liquid 9 is supplied from the one defoaming device 30 to the main tank 24 (or the applicator 14). As described above, the coating device 10 may include a plurality of defoaming devices 30, and the plurality of defoaming devices 30 may be switched and used.

前記各形態の脱泡装置30において(図2、図5)、副タンク38は、誘導路60を有していて、誘導路60は、微細流路要素34から副タンク38の底部49側に向かって、液体9を遠回りして(迂回して)誘導する。この誘導路60によれば、微細流路要素34を通過した液体9の表面に泡が付着していても、液体9を誘導路60に沿って流す間にその泡を消滅させることができる。なお、泡が残った状態であっても、その泡は、溜められている液体9の表層に残る。液体9は、副タンク38の底部49から外部へ排出されるので、泡が、外部装置である(図1に示す)主タンク24及び塗布器14へ供給されない。   In the defoaming device 30 of each of the above-described forms (FIGS. 2 and 5), the sub tank 38 has the guide passage 60, and the guide passage 60 extends from the fine flow path element 34 to the bottom 49 side of the sub tank 38. Toward, the liquid 9 is guided by detouring (bypassing). According to the guide path 60, even if bubbles are attached to the surface of the liquid 9 that has passed through the fine flow path element 34, the bubbles can be eliminated while the liquid 9 flows along the guide path 60. Even if the bubbles remain, the bubbles remain on the surface layer of the stored liquid 9. Since the liquid 9 is discharged to the outside from the bottom 49 of the sub tank 38, bubbles are not supplied to the main device 24 (shown in FIG. 1) and the applicator 14 which are external devices.

前記各形態の脱泡装置30において(図2、図5)、微細流路要素34の上流側に、液溜め空間58が設けられている。液溜め空間58は、供給流路32よりも流路面積が拡大していて、微細流路要素34の直前で液体9を溜める。このため、供給流路32を流れた液体9は、一旦、液溜め空間58に入る。そして、液溜め空間58に入った液体9は、微細流路要素34の全体に広く分布して設けられている多くの微細流路孔36から流出することができる。このため、副タンク38内の拡大空間40に開放される液体9の表面積が広くなり、発泡がより一層促進される。   In the defoaming device 30 of each of the above-described forms (FIGS. 2 and 5), the liquid storage space 58 is provided on the upstream side of the fine channel element 34. The liquid storage space 58 has a flow passage area larger than that of the supply flow passage 32, and stores the liquid 9 immediately before the fine flow passage element 34. Therefore, the liquid 9 that has flowed through the supply channel 32 once enters the liquid storage space 58. Then, the liquid 9 that has entered the liquid storage space 58 can flow out from many fine flow path holes 36 that are widely distributed and provided throughout the fine flow path element 34. For this reason, the surface area of the liquid 9 opened to the expanded space 40 in the sub tank 38 becomes large, and the foaming is further promoted.

〔その他〕
今回開示した実施形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。図4及び図6に示す微細流路要素34では、微細流路孔36が上下二列に設けられている場合について説明したが、列数(段数)は変更可能であり、三列以上であってもよい。また、微細流路要素34の形状は、図示した形状以外であってもよい。副タンク38における微細流路要素34の設置位置及び設置姿勢等についても、図示した形態以外であってもよい。
[Other]
The embodiments disclosed this time are illustrative in all points and not restrictive. The scope of rights of the present invention is not limited to the above-described embodiments, and includes all modifications within the scope equivalent to the configurations described in the scope of claims. In the fine flow path element 34 shown in FIGS. 4 and 6, the case where the fine flow path holes 36 are provided in the upper and lower two rows has been described, but the number of rows (the number of steps) can be changed, and the number of rows is three or more. May be. Further, the shape of the fine flow path element 34 may be other than the illustrated shape. The installation position, installation attitude, and the like of the fine flow path element 34 in the sub tank 38 may be other than the illustrated form.

7:基板(被塗布部材) 9:液体 10:塗布装置
12:ステージ 14:塗布器 15:スリット
16:駆動機構 18:送液機構 30:脱泡装置
32:供給流路 34:微細流路要素 36:微細流路孔
38:副タンク(タンク) 40:拡大空間 42:減圧機構
49:底部 58:液溜め空間 60:誘導路
7: Substrate (member to be coated) 9: Liquid 10: Coating device 12: Stage 14: Coating device 15: Slit 16: Driving mechanism 18: Liquid feeding mechanism 30: Defoaming device 32: Supply flow channel 34: Fine flow channel element 36: Micro flow path hole 38: Sub tank (tank) 40: Expansion space 42: Decompression mechanism 49: Bottom part 58: Liquid storage space 60: Taxiway

Claims (4)

液体が流れる供給流路と、
前記供給流路の下流側に設けられ当該供給流路よりも流路面積の小さい微細流路孔を複数有する微細流路要素と、
内部に拡大空間を有し前記微細流路孔を通過した前記液体を溜めるタンクと、
前記拡大空間を減圧する減圧機構と、
を備える、脱泡装置。
A supply channel through which the liquid flows,
A fine flow path element having a plurality of fine flow path holes provided on the downstream side of the supply flow path and having a flow path area smaller than that of the supply flow path,
A tank for accumulating the liquid that has passed through the fine channel hole having an enlarged space inside,
A decompression mechanism for decompressing the enlarged space,
A defoaming device.
前記タンクは、前記微細流路要素から当該タンクの底部側に向かって、前記液体を遠回りして誘導する誘導路を有する、請求項1に記載の脱泡装置。   The defoaming device according to claim 1, wherein the tank has a guide path that detours and guides the liquid from the fine flow path element toward the bottom side of the tank. 前記微細流路要素の上流側に、前記供給流路よりも流路面積が拡大し前記液体を溜める液溜め空間が設けられている、請求項1又は2に記載の脱泡装置。   The defoaming device according to claim 1 or 2, wherein a liquid storage space having a flow passage area larger than that of the supply flow passage and storing the liquid is provided on the upstream side of the fine flow passage element. 被塗布部材を載せるステージと、前記被塗布部材に対して液体を吐出するスリットを有する塗布器と、前記ステージ上の前記被塗布部材と前記塗布器との内の一方を他方に対して移動させる駆動機構と、前記塗布器に前記液体を供給する送液機構と、を備え、
前記送液機構は、請求項1〜3のいずれか一項に記載の脱泡装置を有する、塗布装置。
A stage on which the member to be coated is placed, an applicator having a slit for discharging a liquid to the member to be coated, and one of the member to be coated and the applicator on the stage is moved with respect to the other. A drive mechanism; and a liquid feeding mechanism that supplies the liquid to the applicator,
The said liquid sending mechanism is a coating device which has the defoaming device as described in any one of Claims 1-3.
JP2018193236A 2018-10-12 2018-10-12 Deaerator and coating device Active JP7202132B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018193236A JP7202132B2 (en) 2018-10-12 2018-10-12 Deaerator and coating device
PCT/JP2019/034641 WO2020075421A1 (en) 2018-10-12 2019-09-03 Degassing device and coating device
TW108133535A TWI839383B (en) 2018-10-12 2019-09-18 Defoaming device and coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193236A JP7202132B2 (en) 2018-10-12 2018-10-12 Deaerator and coating device

Publications (2)

Publication Number Publication Date
JP2020059005A true JP2020059005A (en) 2020-04-16
JP7202132B2 JP7202132B2 (en) 2023-01-11

Family

ID=70164303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193236A Active JP7202132B2 (en) 2018-10-12 2018-10-12 Deaerator and coating device

Country Status (2)

Country Link
JP (1) JP7202132B2 (en)
WO (1) WO2020075421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503614B2 (en) 2021-12-31 2024-06-20 サムス カンパニー リミテッド Liquid trap tank and liquid supply unit for liquid trap tank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167011A (en) * 1979-06-14 1980-12-26 Mitsubishi Heavy Ind Ltd Method and apparatus for deaeration
JP2001062203A (en) * 1999-08-27 2001-03-13 Matsushita Electric Works Ltd Defoamer
JP2007167724A (en) * 2005-12-20 2007-07-05 Takahama Industry Co Ltd Degassing apparatus for high viscosity material
JP2007275866A (en) * 2006-03-16 2007-10-25 Ngk Insulators Ltd Slurry defoaming method/device
JP2011074373A (en) * 2009-09-04 2011-04-14 Idemitsu Kosan Co Ltd Apparatus and method for removing volatile component in polymer solution and polymerization apparatus
JP2011194844A (en) * 2010-03-24 2011-10-06 Dainippon Screen Mfg Co Ltd Printer
WO2015137498A1 (en) * 2014-03-14 2015-09-17 コニカミノルタ株式会社 Ink-jet recording method
JP2016150310A (en) * 2015-02-18 2016-08-22 株式会社Screenホールディングス Deaeration device, coating applicator and deaeration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167011A (en) * 1979-06-14 1980-12-26 Mitsubishi Heavy Ind Ltd Method and apparatus for deaeration
JP2001062203A (en) * 1999-08-27 2001-03-13 Matsushita Electric Works Ltd Defoamer
JP2007167724A (en) * 2005-12-20 2007-07-05 Takahama Industry Co Ltd Degassing apparatus for high viscosity material
JP2007275866A (en) * 2006-03-16 2007-10-25 Ngk Insulators Ltd Slurry defoaming method/device
JP2011074373A (en) * 2009-09-04 2011-04-14 Idemitsu Kosan Co Ltd Apparatus and method for removing volatile component in polymer solution and polymerization apparatus
JP2011194844A (en) * 2010-03-24 2011-10-06 Dainippon Screen Mfg Co Ltd Printer
WO2015137498A1 (en) * 2014-03-14 2015-09-17 コニカミノルタ株式会社 Ink-jet recording method
JP2016150310A (en) * 2015-02-18 2016-08-22 株式会社Screenホールディングス Deaeration device, coating applicator and deaeration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503614B2 (en) 2021-12-31 2024-06-20 サムス カンパニー リミテッド Liquid trap tank and liquid supply unit for liquid trap tank

Also Published As

Publication number Publication date
TW202027836A (en) 2020-08-01
JP7202132B2 (en) 2023-01-11
WO2020075421A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
CN102387862B (en) Method and device for manufacturing exhaust emission control catalyst and nozzle used for the device
CN100595887C (en) Coating apparatus and coating method
US9649577B2 (en) Bubble removing method, bubble removing apparatus, degassing apparatus, and computer-readable recording medium
JP6512894B2 (en) Treatment liquid supply apparatus and control method of treatment liquid supply apparatus
JP4646234B2 (en) Chemical supply device and method for manufacturing semiconductor device
US20140283878A1 (en) Nozzle cleaning unit and nozzle cleaning method
JP2007196109A (en) Apparatus and method for supplying liquid material
JP6385864B2 (en) Nozzle and liquid supply device
US20150075423A1 (en) Spiral coating apparatus
TWI792129B (en) Substrate processing apparatus and substrate processing method
WO2020075421A1 (en) Degassing device and coating device
JP6309407B2 (en) Application device, application device, and application method
TWI839383B (en) Defoaming device and coating device
JP6915498B2 (en) Nozzle standby device, liquid treatment device, operation method of liquid treatment device, and storage medium
KR102323077B1 (en) Head cleaning unit and substrate treating apparatus including the same
JP5690542B2 (en) Coating device
JP5023565B2 (en) Coating apparatus and coating method, and display member manufacturing method and manufacturing apparatus
JP2009172556A (en) Slit coat type coating device and coating method
JP2019009215A (en) Processing liquid supply apparatus and processing liquid supply method
TW202010576A (en) Supply device, coating device, and supply method to efficiently remove the dissolved gas in the high-viscosity processing liquid, and to reduce the size of the device
JP2020181901A (en) Operation method of liquid treatment device and liquid treatment device
US6884293B2 (en) Self-adjusting return line and dip coating solution apparatus including the same
JP6400397B2 (en) Coating liquid supply apparatus, coating apparatus and coating liquid supply method
JP2022047040A (en) Nozzle standby device, liquid processing device, and operation method of liquid processing device
US20240017190A1 (en) Method of bubble removal from viscous fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7202132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150