JP2011074373A - Apparatus and method for removing volatile component in polymer solution and polymerization apparatus - Google Patents

Apparatus and method for removing volatile component in polymer solution and polymerization apparatus Download PDF

Info

Publication number
JP2011074373A
JP2011074373A JP2010196038A JP2010196038A JP2011074373A JP 2011074373 A JP2011074373 A JP 2011074373A JP 2010196038 A JP2010196038 A JP 2010196038A JP 2010196038 A JP2010196038 A JP 2010196038A JP 2011074373 A JP2011074373 A JP 2011074373A
Authority
JP
Japan
Prior art keywords
polymerization solution
polymerization
volatile component
pressure
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010196038A
Other languages
Japanese (ja)
Other versions
JP5486442B2 (en
Inventor
Yoshinori Sato
義則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2010196038A priority Critical patent/JP5486442B2/en
Publication of JP2011074373A publication Critical patent/JP2011074373A/en
Application granted granted Critical
Publication of JP5486442B2 publication Critical patent/JP5486442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for removing volatile components in a polymer solution by which the volatile components can be efficiently and satisfactorily removed. <P>SOLUTION: Unreacted olefin and volatile components are removed by an evaporation means from the polymer solution obtained by solution polymerization so that polymer concentration becomes 90 mass% or more. The polymer solution is pressurized by a pressure control valve 225 in a state where bubbles are not produced and is heated by a heat exchanging means 224. The polymer solution is made to flow in a solvent removing tank 221 decompressed by the evaporation means and then is circulated through a plurality of flow passages in a porous member 226. In the polymer solution flowed in the solvent removing tank 221, remaining volatile components foam, which are broken when circulated through a plurality of flow passages in the porous member 226. The foamed remaining volatile components are separated and recovered by foam breakage and the volatile components are prevented from being dissolved in the polymer solution again when returned to normal pressure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、ポリオレフィンの重合溶液中に混在する未反応の単量体や溶剤などの揮発成分を除去する重合溶液の揮発成分除去装置、その方法、および、重合装置に関する。   The present invention relates to an apparatus for removing volatile components from a polymerization solution that removes volatile components such as unreacted monomers and solvents mixed in a polyolefin polymerization solution, a method thereof, and a polymerization apparatus.

例えば、溶液重合や塊状重合によってオレフィン単量体を重合させる場合、未反応の単量体や、溶液重合の場合では溶剤など、揮発成分が重合溶液中に残留する。これら揮発成分は、臭気などとして製品の品質を悪化する原因となることから、品質に影響しない程度まで除去する必要がある。
そして、重合体の熱可塑性樹脂の製造設備の最終工程において、重合溶液から未反応の単量体や溶剤などの揮発成分を連続的に除去する方法が知られている(例えば、特許文献1参照)。
この特許文献1に記載のものは、重合溶液を加熱するための熱交換器の下方に、真空装置に接続された脱揮発槽を連結している。さらに、熱交換器と脱揮発槽との間には、直径3〜5mmの円形の開口を複数有する分割器を設けている。そして、この特許文献1では、熱交換器で加熱された重合溶液が分割器を介して脱揮発槽に流入する際に、重合溶液中の揮発成分が発泡し、脱揮発槽で重合溶液と発泡した気相分とを分離する構成が採られている。
For example, when the olefin monomer is polymerized by solution polymerization or bulk polymerization, volatile components such as unreacted monomer and solvent in the case of solution polymerization remain in the polymerization solution. These volatile components cause deterioration of product quality as odors and the like, so it is necessary to remove them to such an extent that they do not affect the quality.
And the method of removing continuously volatile components, such as an unreacted monomer and a solvent, from a polymerization solution in the last process of the manufacturing equipment of a thermoplastic resin of a polymer is known (for example, refer to patent documents 1). ).
The thing of this patent document 1 has connected the devolatilization tank connected to the vacuum apparatus under the heat exchanger for heating a polymerization solution. Furthermore, a divider having a plurality of circular openings with a diameter of 3 to 5 mm is provided between the heat exchanger and the devolatilization tank. And in this patent document 1, when the polymerization solution heated with the heat exchanger flows in into a devolatilization tank through a divider | distributor, the volatile component in a polymerization solution foams, and a polymerization solution and foam in a devolatilization tank. The structure which isolate | separates from the vapor phase component which was made is taken.

また、揮発性物質を除去する方法として、揮発性物質を含む重合溶液を加熱工程と、この加熱工程に続く減圧下の気液分離工程とで処理する方法が知られている(例えば、特許文献2参照)。
この特許文献2に記載のものは、加熱工程として複数の加熱帯に分割している。そして、重合溶液の入口側から出口側に向けた温度勾配を設定し、入口加熱帯で揮発性物が実質的に気化しない温度に加熱し、第二加熱帯以降で揮発生物質が気化する温度に加熱している。そして、この特許文献2では、加熱工程後の気液分離工程でフラッシュさせて気液分離する構成が採られている。
Further, as a method for removing volatile substances, a method is known in which a polymerization solution containing a volatile substance is treated in a heating step and a gas-liquid separation step under reduced pressure following the heating step (for example, Patent Documents). 2).
The thing of this patent document 2 is divided | segmented into the some heating zone as a heating process. Then, a temperature gradient from the inlet side to the outlet side of the polymerization solution is set, the volatile substances are heated to a temperature at which the volatile substances are not substantially vaporized in the inlet heating zone, and the volatile substances are vaporized after the second heating zone. Is heated. And in this patent document 2, the structure which is made to flush by the gas-liquid separation process after a heating process and carries out gas-liquid separation is taken.

特開平2−209902号公報JP-A-2-209902 特開平2−232205号公報JP-A-2-232205

しかしながら、特許文献1では、重合溶液における粘度や揮発成分の残留量などの溶液性状により、分割器の上流側における熱交換器で揮発成分の一部が発泡し、熱交換器における総括伝熱係数が低下して重合溶液が十分に加熱されなくなるおそれがある。このことにより、揮発成分を十分に発泡させて除去することができず、製造された重合体に揮発成分臭があるなどの不都合がある。
このため、重合溶液を十分に加熱するために伝熱面積を大きくするなどにより装置が大型化する不都合を生じるおそれがある。さらに、加熱に必要なエネルギー量が増大してエネルギー効率が低下する不都合を生じるおそれがある。
However, in Patent Document 1, due to the solution properties such as the viscosity in the polymerization solution and the residual amount of the volatile component, a part of the volatile component is foamed in the heat exchanger on the upstream side of the divider, and the overall heat transfer coefficient in the heat exchanger is May decrease, and the polymerization solution may not be sufficiently heated. As a result, the volatile component cannot be sufficiently foamed and removed, and the produced polymer has a volatile component odor.
For this reason, there exists a possibility of producing the problem that an apparatus enlarges by enlarging a heat-transfer area in order to fully heat a polymerization solution. Furthermore, the amount of energy required for heating increases, which may cause a disadvantage that energy efficiency is lowered.

一方、特許文献2では、加熱帯を複数に分割してそれぞれ異なる温度で制御するため、構成が複雑となるおそれがある。また、重合溶液の粘度や残留揮発分量などの性状が変動すると、各加熱帯の温度を調整する必要があり、制御も煩雑となるおそれがある。そして、各加熱帯における下流側では徐々に揮発性物質が気化し、次第に総括伝熱係数が低下することとなる。このため、重合溶液を十分に加熱するために伝熱面積を大きくする必要があり、装置が大型化する不都合を生じるおそれがある。さらに、加熱に必要なエネルギー量が増大してエネルギー効率が低下する不都合を生じるおそれがある。   On the other hand, in Patent Document 2, since the heating zone is divided into a plurality of parts and controlled at different temperatures, the configuration may be complicated. Further, when properties such as the viscosity of the polymerization solution and the residual volatile content fluctuate, it is necessary to adjust the temperature of each heating zone, and the control may be complicated. And a volatile substance will vaporize gradually in the downstream in each heating zone, and an overall heat transfer coefficient will fall gradually. For this reason, in order to fully heat a polymerization solution, it is necessary to enlarge a heat-transfer area, and there exists a possibility of producing the problem that an apparatus enlarges. Furthermore, the amount of energy required for heating increases, which may cause a disadvantage that energy efficiency is lowered.

本発明は、このような点に鑑み、効率よく良好に揮発成分を除去できる重合溶液の揮発成分除去装置、その方法、および、重合装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide an apparatus for removing a volatile component from a polymerization solution, a method thereof, and a polymerization apparatus that can efficiently and satisfactorily remove a volatile component.

本発明に記載の重合溶液の揮発成分除去装置は、溶媒を用いてオレフィンを重合した重合溶液を加圧する加圧手段と、この加圧手段にて加圧された前記重合溶液を加圧下で加熱する加熱手段と、前記加圧かつ加熱された前記重合溶液が流入される減圧された減圧空間を有した減圧手段と、前記重合溶液を流通可能な流路を複数有し、前記減圧手段の減圧空間内に流入された前記重合溶液を前記流路に流通させる状態に前記減圧空間内に配設された多孔部材と、を具備したことを特徴とする。   The apparatus for removing a volatile component of a polymerization solution according to the present invention includes a pressurizing unit that pressurizes a polymerization solution obtained by polymerizing an olefin using a solvent, and heats the polymerization solution pressurized by the pressurizing unit under pressure. Heating means, a pressure reducing means having a reduced pressure reducing space into which the pressurized and heated polymerization solution flows, a plurality of flow paths through which the polymerization solution can flow, and the pressure reducing means of the pressure reducing means And a porous member disposed in the reduced pressure space in a state in which the polymerization solution flowing into the space is circulated through the flow path.

そして、本発明では、前記加圧手段は、前記加熱手段にて前記重合溶液を加熱した際に発泡しない圧力に加圧する構成とすることが好ましい。
また、本発明では、前記多孔部材は、前記流路のピッチ寸法(L)に対する前記流路の孔径(D)の割合(D/L)が0.4以下である構成とすることが好ましい。
そして、本発明では、前記加熱手段で加熱する重合溶液は、ポリオレフィン濃度が90質量%以上のものである構成とすることが好ましい。
さらに、本発明では、前記加熱手段は、230℃以上250℃以下に加熱する構成とすることが好ましい。
また、本発明では、前記減圧手段は、0.5kPa以下に減圧する構成とすることが好ましい。
そして、本発明では、前記加圧手段は、前記加熱手段と前記減圧手段との間に配設された圧力調整バルブを備えた構成とすることが好ましい。
また、本発明では、前記加圧手段は、前記減圧手段に近接して配設された構成とすることが好ましい。
そして、本発明では、前記重合溶液は、極限粘度が0.5dL/g以上15.0dL/g以下のものである構成とすることが好ましい。
さらに、本発明では、前記ポリオレフィンは、アイソタクティックペンタッド分率が20モル%以上60モル%以下のものである構成とすることが好ましい。
特に、本発明では、前記ポリオレフィンは、低分子量低規則性のポリプロピレンである構成とすることが好ましい。
そして、本発明では、重合溶液を加圧する前段加圧手段と、この前段加圧手段で加圧された前記重合溶液を加圧下で加熱する前段加熱手段と、前記加圧かつ加熱された前記重合溶液が流入される減圧された減圧空間を有した前段減圧手段とを備え、前記前段減圧手段で減圧された前記重合溶液を前記加圧手段へ供給する前段処理手段を具備した構成とすることが好ましい。
In the present invention, it is preferable that the pressurizing unit pressurizes the pressure so as not to foam when the polymerization solution is heated by the heating unit.
Moreover, in this invention, it is preferable that the said porous member is set as the structure whose ratio (D / L) of the hole diameter (D) of the said flow path with respect to the pitch dimension (L) of the said flow path is 0.4 or less.
In the present invention, the polymerization solution heated by the heating means preferably has a polyolefin concentration of 90% by mass or more.
Further, in the present invention, the heating means is preferably configured to heat to 230 ° C. or higher and 250 ° C. or lower.
Moreover, in this invention, it is preferable that the said pressure reduction means is set as the structure which pressure-reduces to 0.5 kPa or less.
And in this invention, it is preferable that the said pressurization means is set as the structure provided with the pressure control valve arrange | positioned between the said heating means and the said pressure reduction means.
In the present invention, it is preferable that the pressurizing unit is disposed in the vicinity of the depressurizing unit.
In the present invention, it is preferable that the polymerization solution has a limiting viscosity of 0.5 dL / g or more and 15.0 dL / g or less.
In the present invention, the polyolefin preferably has a isotactic pentad fraction of 20 mol% to 60 mol%.
In particular, in the present invention, it is preferable that the polyolefin is a low molecular weight low regularity polypropylene.
In the present invention, a pre-stage pressurizing unit that pressurizes the polymerization solution, a pre-stage heating unit that heats the polymerization solution pressurized by the pre-stage pressurization unit under pressure, and the pressurized and heated polymerization. A pre-stage depressurization means having a depressurized vacuum space into which the solution is introduced, and a pre-stage treatment means for supplying the polymerization solution depressurized by the pre-stage depressurization means to the pressurization means. preferable.

本発明に記載の重合溶液の揮発成分除去方法は、溶媒を用いてオレフィンを重合した重合溶液から揮発成分を除去する重合溶液の揮発成分除去方法であって、前記重合溶液を加圧下で加熱する加圧・加熱工程と、この加圧・加熱工程で加圧かつ加熱された重合溶液を、減圧下で多孔部材に設けられた複数の流路を流通させる発泡・破泡工程と、を実施することを特徴とする。   The method for removing a volatile component from a polymerization solution according to the present invention is a method for removing a volatile component from a polymerization solution obtained by polymerizing an olefin using a solvent, and heating the polymerization solution under pressure. A pressurizing / heating step and a foaming / foaming step of circulating the polymer solution pressurized and heated in the pressurizing / heating step through a plurality of channels provided in the porous member under reduced pressure are performed. It is characterized by that.

本発明に記載の重合装置は、溶媒中でオレフィンを重合させる重合手段と、この重合手段で前記オレフィンを重合した重合溶液から揮発成分を除去する本発明に記載の重合溶液の揮発成分除去装置と、この重合溶液の揮発成分除去装置で揮発成分が除去された重合溶液を造粒する造粒手段と、を具備したことを特徴とする。   The polymerization apparatus according to the present invention includes a polymerization means for polymerizing olefins in a solvent, and a volatile component removal apparatus for the polymerization solution according to the present invention for removing volatile components from a polymerization solution obtained by polymerizing the olefins with the polymerization means. And a granulating means for granulating the polymerization solution from which the volatile component has been removed by the volatile component removal apparatus for the polymerization solution.

本発明によれば、溶媒を用いてオレフィンを重合した重合溶液を加圧下で加熱し、減圧手段の減圧空間に流入させて発泡させ多孔部材の複数の流路に流通させて破泡させるので、加熱時に発泡しない圧力に加圧することで効率よく加熱でき、適切に加熱された重合溶液を減圧下で多孔部材の複数の流路に流通させて破泡するので、減圧により発泡した揮発成分を効率よく重合容器から分離でき、容易で高度に揮発成分を除去できる。   According to the present invention, the polymerization solution obtained by polymerizing the olefin using a solvent is heated under pressure, and is caused to flow into the reduced pressure space of the decompression means and foam and circulate through the plurality of flow paths of the porous member to break the bubbles. It can be heated efficiently by pressurizing to a pressure that does not foam during heating, and the appropriately heated polymerization solution is circulated through multiple channels of the porous member under reduced pressure to break bubbles, so that the volatile components foamed by reduced pressure are efficiently It can be well separated from the polymerization vessel and can easily and highly remove volatile components.

本発明に係る一実施形態のオレフィンの重合装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of an olefin polymerization device of one embodiment concerning the present invention. 本実施形態における脱気手段の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the deaeration means in this embodiment. 本実施形態における多孔部材を示す斜視図である。It is a perspective view which shows the porous member in this embodiment. 本実施形態における重合溶液の蒸気圧と温度と濃度との関係を示すグラフである。It is a graph which shows the relationship between the vapor pressure of the polymerization solution in this embodiment, temperature, and a density | concentration. 本実施形態における重合溶液のポリマー濃度毎の蒸気圧と温度との関係を示すグラフである。It is a graph which shows the relationship between the vapor pressure for every polymer concentration of the polymerization solution in this embodiment, and temperature. 本実施形態における重合溶液の温度毎の蒸気圧とポリマー濃度との関係を示すグラフである。It is a graph which shows the relationship between the vapor pressure for every temperature of the polymerization solution in this embodiment, and a polymer concentration.

以下、本発明に係るオレフィンの重合装置について図面を参照して説明する。
図1は、オレフィンの重合装置の概略構成を示すブロック図である。図2は、重合装置の脱気手段の概略構成を示すブロック図である。図3は、脱気手段における多孔部材を示す斜視図である。
The olefin polymerization apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an olefin polymerization apparatus. FIG. 2 is a block diagram showing a schematic configuration of the deaeration means of the polymerization apparatus. FIG. 3 is a perspective view showing a porous member in the deaeration means.

[オレフィンの重合装置の構成]
図1において、100はオレフィンの重合装置で、この重合装置100は、各種オレフィンを単独重合もしくは異なるオレフィンを共重合させてポリオレフィンを製造する装置である。
ここで、オレフィンとしては、メチレン、エチレン、プロピレン、ブチレンなど、各種オレフィンを対象とすることができる。なお、特に、低分子量低規則性のポリプロピレンを製造する場合に本発明は好適である。
[Configuration of olefin polymerization equipment]
In FIG. 1, 100 is an olefin polymerization apparatus, and this polymerization apparatus 100 is an apparatus for producing a polyolefin by homopolymerizing various olefins or copolymerizing different olefins.
Here, as the olefin, various olefins such as methylene, ethylene, propylene and butylene can be targeted. In particular, the present invention is suitable when producing a low molecular weight low regularity polypropylene.

特に、重合装置100として、重量平均分子量(Mw)が2以上40万以下のもの、好ましくは4以上10万以下の重合体の重合に好適である。
すなわち、低分子量を製造する場合、重合温度を高くする必要があり、重合温度が高いと、触媒活性が低下してしまい、生産効率が低下するおそれがある。一方、高分子量を製造する場合、重合体の粘度が高くなるため、重合する重合反応を実施する重合槽からの抜き出し不良が懸念されるため、抜き出し不良を回避するために重合体の濃度を上げる必要があり、生産効率が低下するおそれがあるためである。
In particular, the polymerization apparatus 100 is suitable for polymerization of a polymer having a weight average molecular weight (Mw) of 2 or more and 400,000 or less, preferably 4 or more and 100,000 or less.
That is, when producing a low molecular weight, it is necessary to increase the polymerization temperature. If the polymerization temperature is high, the catalytic activity may decrease, and the production efficiency may decrease. On the other hand, in the case of producing a high molecular weight, since the viscosity of the polymer becomes high, there is a concern about poor extraction from the polymerization tank for carrying out the polymerization reaction to be polymerized, so the concentration of the polymer is increased in order to avoid the defective extraction. This is because it is necessary and production efficiency may be reduced.

さらに、数平均分子量をMnとした場合、Mw/Mnは好ましくは1.8以上4以下、より好ましくは3以下、さらに好ましくは2.4以下とするものが好適である。
すなわち、Mw/Mnが4より大きな値では、分子量分布が広くなって低分子量成分が増大し、製品表面にいわゆるブリードしてべたつきを生じるおそれがあるためである。
Furthermore, when the number average molecular weight is Mn, Mw / Mn is preferably 1.8 or more and 4 or less, more preferably 3 or less, and even more preferably 2.4 or less.
That is, when Mw / Mn is larger than 4, the molecular weight distribution is widened and the low molecular weight components are increased, so that the product surface may be so-called bleed and sticky.

そして、製造するポリオレフィンとしては、DSC測定において、融点(Tm(℃))を示さないか、あるいはTmを示す場合はTmと融解吸熱量ΔH(J/g)が下記の関係式(1)を満たすものが好ましい。
(関係式1)
ΔH≧6×(Tm−140) …(1)
すなわち、特に、後述する触媒を用いて低分子量低規則性のポリプロピレンを製造する場合には、融点が50℃以上110℃以下、好ましくは60℃以上80℃以下のものが好適である。
And as polyolefin to manufacture, in DSC measurement, melting | fusing point (Tm (degreeC)) is not shown, or when showing Tm, Tm and fusion | melting endothermic quantity (DELTA) H (J / g) show the following relational expression (1). What satisfies is preferable.
(Relational formula 1)
ΔH ≧ 6 × (Tm−140) (1)
That is, in particular, when a low molecular weight low regularity polypropylene is produced using a catalyst described later, those having a melting point of 50 ° C. or higher and 110 ° C. or lower, preferably 60 ° C. or higher and 80 ° C. or lower are suitable.

また、重合溶液の極限粘度が0.5dL/g以上15.0dL/g以下、好ましくは0.3dL/g以上1.2dL/g以下、より好ましくは0.4dL/g以上0.95dL/g以下となる分子量のものが好適である。
極限粘度が0.5dL/gより小さい値の重合体を製造する場合、重合温度を高くする必要がある。この重合温度を高くすることにより、触媒活性が低下し、生産効率が低下する不都合を生じるおそれがある。一方、極限粘度が15.0dL/gより大きい値の重合体を製造する場合、重合体の粘度が高くなるため、重合反応を実施する重合槽からの抜き出し不良を生じるおそれがある。このため、重合体の吹き出し不良を回避するために重合溶液における重合体の濃度を下げる必要があり、生産効率が低下するおそれがある。これらのことから、極限粘度を上述した所定の範囲に設定する。
Further, the intrinsic viscosity of the polymerization solution is 0.5 dL / g or more and 15.0 dL / g or less, preferably 0.3 dL / g or more and 1.2 dL / g or less, more preferably 0.4 dL / g or more and 0.95 dL / g. The following molecular weight is preferred.
When producing a polymer having an intrinsic viscosity of less than 0.5 dL / g, it is necessary to increase the polymerization temperature. By raising the polymerization temperature, there is a possibility that the catalyst activity is lowered and the production efficiency is lowered. On the other hand, in the case of producing a polymer having an intrinsic viscosity greater than 15.0 dL / g, the viscosity of the polymer becomes high, and thus there is a risk of poor extraction from the polymerization tank in which the polymerization reaction is carried out. For this reason, it is necessary to reduce the concentration of the polymer in the polymerization solution in order to avoid a defective blowing of the polymer, which may reduce the production efficiency. For these reasons, the limiting viscosity is set to the predetermined range described above.

さらに、製造するポリオレフィンとしては、アイソタクティックペンタッド分率が20モル%以上60モル%以下、好ましくは40モル%以上55モル%以下、より好ましくは44モル%以上51モル%以下となるものが好適で、特に低分子量低規則性のポリプロピレンの製造に最適である。
アイソタクティックペンタッド分率が20モル%より小さい値では得られたポリオレフィンにべたつきが生じ、後工程での造粒時に粒子同士が再付着して生産性が低下するおそれがある。一方、アイソタクティックペンタッド分率が60モル%より大きい値では触媒性能を上回ることはなく、製造できないおそれがあるためである。
Further, as the polyolefin to be produced, the isotactic pentad fraction is 20 mol% or more and 60 mol% or less, preferably 40 mol% or more and 55 mol% or less, more preferably 44 mol% or more and 51 mol% or less. Is particularly suitable for the production of low molecular weight, low order polypropylene.
When the isotactic pentad fraction is less than 20 mol%, the obtained polyolefin becomes sticky, and there is a possibility that particles are reattached during granulation in a subsequent process and productivity is lowered. On the other hand, if the isotactic pentad fraction is greater than 60 mol%, the catalyst performance will not be exceeded and production may not be possible.

ここで、立体規則性の指標として用いたアイソタクティックペンタッド分率の測定は、A.Zambelliにより開示された13C−NMR法(Macromolecules,6925,1973)に準拠して行った。具体的には、まず、i−PP試料220mgを10mm径NMR試料管に採取し、1,2,4−トリクロロベンゼン/重ベンゼン混合溶液(90/10vol%)を2.5ml加え140℃で均一に混合物を溶解させた後、JNM−EX400(商品名:日本電子株式会社製)を用いて13C−NMRスペクトルを測定した。13C−NMRスペクトル測定条件を以下に示す。
・パルス幅 :7.5μs/45度
・観測周波数の範囲 :25,000Hz
・パルス繰り返し時間:4秒
・測定温度 :130℃
・積算回数 :10,000回
Here, the measurement of the isotactic pentad fraction used as an index of stereoregularity is as follows. This was carried out in accordance with the 13 C-NMR method (Macromolecules, 6925, 1973) disclosed by Zambelli. Specifically, first, 220 mg of the i-PP sample was collected in a 10 mm diameter NMR sample tube, and 2.5 ml of a 1,2,4-trichlorobenzene / heavy benzene mixed solution (90/10 vol%) was added, and uniform at 140 ° C. After the mixture was dissolved, 13 C-NMR spectrum was measured using JNM-EX400 (trade name: manufactured by JEOL Ltd.). The 13 C-NMR spectrum measurement conditions are shown below.
・ Pulse width: 7.5μs / 45 degrees ・ Observation frequency range: 25,000Hz
-Pulse repetition time: 4 seconds-Measurement temperature: 130 ° C
・ Total number of times: 10,000

そして、アイソタクティックペンタッド分率とは、プロピレン5分子の結合パターントータル9種類(「mmmm」、「mmmr」、「rmmr」、「mmrr」、「rmrr+mrmm」、「rmrm」、「rrrr」、「mrrr」、「mrrm」)のそれぞれに対応して13C−NMRスペクトルとして観測される9本のピークすべての面積に対して、「mmmm」に対応するピーク面積の相対比率として定義され、具体的には以下の式(2)により算出した。ここで、2つのピークに重なりがある場合、2つのピークの谷からベースラインまで垂直に垂線を引き、両者のピークを分割した(垂直分割法)。
(式2)
アイソタクティックペンタッド分率(mol%)
={A(mmmm)/A(トータル)}×100 …(2)
ここで、A(mmmm)はmmmmピークの面積であり、A(トータル)は9本のピーク面積の合計を意味する。
なお、2つのピークに重なりがある場合、上記垂直分割法の他に各ピークをローレンツ型ピークの集合体として波形分離を行う方法も知られており、解析ソフト(日本電子(株)のALICE 2)を用いて求めた値を用いてもよい。
The isotactic pentad fraction is a total of nine types of bond patterns of five propylene molecules (“mmmm”, “mmmr”, “rmrr”, “mmrr”, “rmrr + mrmm”, “rmrm”, “rrrr”, “Mrrr” and “mrrm”) are defined as relative ratios of the peak area corresponding to “mmmm” with respect to the area of all nine peaks observed as 13 C-NMR spectra corresponding to each of Specifically, it was calculated by the following equation (2). Here, when there was an overlap between the two peaks, a perpendicular line was drawn vertically from the valley of the two peaks to the base line to divide both peaks (vertical division method).
(Formula 2)
Isotactic pentad fraction (mol%)
= {A (mmmm) / A (total)} × 100 (2)
Here, A (mmmm) is the area of the mmmm peak, and A (total) means the sum of the nine peak areas.
In addition, when there is an overlap between two peaks, in addition to the above vertical division method, there is also known a method of performing waveform separation using each peak as an aggregate of Lorentz-type peaks. Analysis software (ALICE 2 from JEOL Ltd.) is also known. ) May be used.

そして、重合装置100は、重合設備200と、この重合設備200の動作を制御する制御手段としての制御装置300と、を備えている。
重合設備200は、溶媒を用いてオレフィンを重合(溶液重合)してポリオレフィンを製造するプラント設備である。この重合設備200は、重合手段210と、重合溶液の揮発成分除去装置としての脱揮手段220と、造粒手段230と、を備えている。
The polymerization apparatus 100 includes a polymerization facility 200 and a control device 300 as a control unit that controls the operation of the polymerization facility 200.
The polymerization facility 200 is a plant facility that produces a polyolefin by polymerizing an olefin (solution polymerization) using a solvent. The polymerization facility 200 includes a polymerization means 210, a devolatilization means 220 as a volatile component removal device for the polymerization solution, and a granulation means 230.

重合手段210は、重合反応を実施する装置で、図示しない重合槽を備えている。この重合槽は、例えば、蒸発潜熱除熱方式が好ましく用いられる。この蒸発潜熱除熱方式は、例えばモノマーの蒸発潜熱を利用するもので、除熱系1系列当たりの除熱量を大きく確保でき、経済的に優れている。さらに、蒸発潜熱除熱方式は、重合により重合槽内の重合溶液の粘度が増大するなどしても効率よく良好に冷却できるので好ましい。
なお、全体的に冷却できる程度に製造量が比較的に少ない場合には重合槽の小型化が図れる重合槽の外部から冷却するジャケット除熱方式や、重合溶液の粘度が高くない場合には重合溶液を循環させて冷却する外部循環方式、重合温度に分子量が大きく依存しない触媒系を用いる場合には原料や溶剤を事前に冷却してから供給する原料顕熱除熱方式などとしてもよい。
そして、この重合手段210には、原料のオレフィンであるプロピレンを重合槽に供給する原料供給手段211が接続されている。また、重合手段210には、溶媒、例えばプロピレンを溶液重合する場合にはヘプタンを重合槽に供給する溶媒供給手段212が接続されている。さらに、重合手段210には、触媒を供給する触媒供給手段213が接続されている。また、重合手段210には、触媒を活性化させてプロピレンの重合を開始させる水素ガス(H2)を供給する水素ガス供給手段214が接続されている。さらに、重合手段210には、助触媒や第3成分を供給する第3成分供給手段215が接続されている。
The polymerization means 210 is an apparatus for performing a polymerization reaction, and includes a polymerization tank (not shown). For this polymerization tank, for example, the latent heat of vaporization heat removal method is preferably used. This latent heat removal method uses, for example, the latent heat of vaporization of the monomer and is economically superior because it can secure a large amount of heat removal per one heat removal system. Furthermore, the latent heat of vaporization heat removal method is preferable because it can be efficiently and satisfactorily cooled even if the viscosity of the polymerization solution in the polymerization tank increases due to polymerization.
If the production volume is relatively small enough to cool the whole, a jacket heat removal system that cools from the outside of the polymerization tank can be used to reduce the size of the polymerization tank, and polymerization is performed when the viscosity of the polymerization solution is not high. An external circulation method in which the solution is circulated and cooled, or a raw material sensible heat removal method in which the raw material and the solvent are supplied after cooling in advance when using a catalyst system whose molecular weight does not greatly depend on the polymerization temperature may be used.
The polymerization means 210 is connected to a raw material supply means 211 for supplying propylene, which is a raw material olefin, to the polymerization tank. The polymerization means 210 is connected to a solvent supply means 212 for supplying heptane to the polymerization tank in the case of solution polymerization of a solvent such as propylene. Further, a catalyst supply means 213 for supplying a catalyst is connected to the polymerization means 210. The polymerization means 210 is connected to a hydrogen gas supply means 214 that supplies hydrogen gas (H 2 ) that activates the catalyst and starts propylene polymerization. Further, the polymerization means 210 is connected to a third component supply means 215 for supplying a cocatalyst and a third component.

そして、重合槽では、例えば低分子量低規則性のポリプロピレンを重合する場合、溶液重合時の圧力は0.5MPa以上3MPa以下が好ましい。
すなわち、圧力を上げれば重合溶液中の重合体の濃度が増えて生産効率が向上する。ただし、3MPaより高い圧力では、重合溶液中の重合体の濃度はほとんど増えず生産効率の向上は望めず、圧力増大による設備の大型化や消費エネルギーの増大などの不都合を生じるおそれがある。一方、0.5MPaより低い圧力では、立体規則性が発現せず、目的とする重合体が得られなくなるためである。
In the polymerization tank, for example, when polymerizing low molecular weight and low-order polypropylene, the pressure during solution polymerization is preferably 0.5 MPa or more and 3 MPa or less.
That is, if the pressure is increased, the concentration of the polymer in the polymerization solution increases and the production efficiency is improved. However, at a pressure higher than 3 MPa, the concentration of the polymer in the polymerization solution hardly increases and improvement in production efficiency cannot be expected, and there is a possibility that inconveniences such as increase in equipment size and increase in energy consumption due to increased pressure may occur. On the other hand, when the pressure is lower than 0.5 MPa, stereoregularity does not appear and the intended polymer cannot be obtained.

ここで、触媒としては、オレフィンの重合に利用される各種触媒を利用可能である。特に、温度依存性が高いメタロセン系の触媒、具体的には(A)遷移金属化合物と、(B)遷移金属化合物とイオン対を形成する固体有機ホウ素化合物と、(C)有機アルミニウム化合物と、(D)α−オレフィン、内部オレフィン、ポリエンから選択される一種または二種以上の化合物を接触されてなる触媒(特願2007−514550号に記載の触媒)、あるいは、(A)遷移金属化合物と、(B)遷移金属化合物とイオン対を形成する固体有機ホウ素化合物と、(C)有機アルミニウム化合物を接触されてなる触媒が、高効率で安定してポリオレフィンが得られることから好ましい。例えば、(1,2’−ジメチルシリレン)(2,1’ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドが好適に利用できる。   Here, as the catalyst, various catalysts used for olefin polymerization can be used. In particular, a metallocene-based catalyst having high temperature dependency, specifically (A) a transition metal compound, (B) a solid organoboron compound that forms an ion pair with the transition metal compound, and (C) an organoaluminum compound, (D) a catalyst obtained by contacting one or more compounds selected from α-olefins, internal olefins, and polyenes (the catalyst described in Japanese Patent Application No. 2007-514550), or (A) a transition metal compound (B) A catalyst obtained by contacting a solid organoboron compound that forms an ion pair with a transition metal compound and (C) an organoaluminum compound is preferable because a polyolefin can be obtained with high efficiency and stability. For example, (1,2'-dimethylsilylene) (2,1'dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride can be suitably used.

脱揮手段220は、重合手段210に接続され、重合手段210の重合槽から流出する重合溶液から揮発性成分を除去する装置である。脱揮手段220は、図示しない脱モノマー槽と、図2に示す脱溶剤槽221とを備えている。
脱モノマー槽は、重合槽に接続され、重合溶液が流入される。この脱モノマー槽には、重合溶液から揮発する未反応の原料のプロピレンおよび溶媒である揮発成分を回収する揮発成分ガス回収手段222が接続されている。
揮発成分ガス回収手段222は、脱モノマー槽内を減圧する減圧装置と、この減圧装置にて吸気した気相から、揮発成分を分集する回収装置と、この回収装置にて回収した揮発成分を各成分に精製する例えば蒸留塔を備えた精製装置と、などを備えている。
この脱モノマー槽では、重合溶液中の重合体の濃度が90質量%以上、好ましくは95質量%以上となる程度まで、揮発成分を除去する構成とする。すなわち、製品中に残留する揮発成分の量は、その揮発成分を分離除去する槽内での温度と圧力条件により決定されるポリオレフィンと揮発成分との気液平衡の状態で決まる。そして、重合溶液中の重合体の濃度が低い場合、後段での脱溶剤槽221における揮発成分の蒸発潜熱により温度が低下する割合が大きくなる。このため、脱溶剤槽221で所望とする気液平衡が得られなくなり、蒸発潜熱による温度低下分の熱量を別途補う必要があり、十分に揮発成分を蒸発させて分離させることが困難となるので、重合体の濃度が90質量%以上となるようにあらかじめ揮発成分を分離除去する。
この重合体の濃度が90質量%以上に分離除去する条件として、上述したようにポリオレフィンと揮発成分との気液平衡の条件である温度と圧力とにより決まるが、例えば低分子量低規則性のポリプロピレンを製造する場合で、揮発成分ガス回収手段222での減圧する能力が脱モノマー槽内の圧力0.02MPaである場合、重合溶液の温度は188℃以上(脱モノマー槽における重合溶液の流入時の温度としては200〜220℃程度)に設定する。
なお、脱モノマー槽は、1槽のみならず、例えば前段で未反応のモノマーを分離除去し、後段で溶剤の大半を分離除去する多段構成とすることが好ましい。すなわち、より揮発成分ガス回収手段222や槽などの構成の小型化が図れ、回収後の揮発成分の精製処理も容易となるためである。
The devolatilization means 220 is an apparatus that is connected to the polymerization means 210 and removes volatile components from the polymerization solution flowing out from the polymerization tank of the polymerization means 210. The devolatilization means 220 includes a demonomer tank (not shown) and a solvent removal tank 221 shown in FIG.
The demonomer tank is connected to the polymerization tank and the polymerization solution is flowed into it. Connected to the demonomer tank is a volatile component gas recovery means 222 for recovering unreacted raw material propylene that is volatilized from the polymerization solution and a volatile component that is a solvent.
Volatile component gas recovery means 222 includes a decompression device for decompressing the inside of the demonomer tank, a recovery device for collecting volatile components from the gas phase sucked by the decompression device, and a volatile component recovered by the recovery device. For example, a refining apparatus equipped with a distillation column for purifying the components is provided.
In this demonomer tank, the volatile components are removed until the concentration of the polymer in the polymerization solution is 90% by mass or more, preferably 95% by mass or more. That is, the amount of the volatile component remaining in the product is determined by the vapor-liquid equilibrium state between the polyolefin and the volatile component determined by the temperature and pressure conditions in the tank in which the volatile component is separated and removed. When the concentration of the polymer in the polymerization solution is low, the rate at which the temperature decreases due to the latent heat of vaporization of the volatile components in the solvent removal tank 221 in the subsequent stage increases. For this reason, the desired vapor-liquid equilibrium cannot be obtained in the solvent removal tank 221, and it is necessary to separately supplement the amount of heat corresponding to the temperature decrease due to latent heat of vaporization, which makes it difficult to sufficiently evaporate and separate the volatile components. The volatile components are separated and removed in advance so that the polymer concentration becomes 90% by mass or more.
The condition for separating and removing the polymer at a concentration of 90% by mass or more depends on the temperature and pressure, which are conditions for vapor-liquid equilibrium between the polyolefin and the volatile component, as described above. When the ability to reduce the pressure in the volatile component gas recovery means 222 is 0.02 MPa in the demonomer tank, the temperature of the polymerization solution is 188 ° C. or higher (when the polymerization solution flows into the demonomer tank) The temperature is set to about 200 to 220 ° C.
The demonomer tank is not limited to a single tank, but preferably has a multistage structure in which, for example, unreacted monomers are separated and removed in the former stage, and most of the solvent is separated and removed in the latter stage. That is, the volatile component gas recovery means 222, the tank, and the like can be further downsized, and the volatile component after the recovery can be easily purified.

脱溶剤槽221は、図2に示すように、重合溶液流入路223を介して脱モノマー槽に接続され、脱モノマー槽である程度の揮発成分が除去された重合溶液が流入される。この脱溶剤槽221には、重合溶液が流入される内部の減圧空間221Aを減圧する図示しない減圧装置が設けられ、脱溶剤槽221は耐減圧構造に構築されている。この減圧装置と脱溶剤槽221とにより、本発明の減圧手段が構成される。この減圧装置は、揮発成分ガス回収手段222の減圧装置との共用としてプラント設備の簡略化を図ることが好ましい。
そして、減圧装置は、好ましくは0.5kPa以下(4torr以下)に脱溶剤槽221内をフルバキュームできる構成が好ましい。すなわち、揮発成分の臭気による製品の品質悪化を防止すべく残留する揮発成分の量を200質量ppm以下、好ましくは100質量ppm以下とする必要がある。このことにより、ポリオレフィンと揮発成分との気液平衡値に基づき、ポリオレフィンが変質しない温度条件である230℃に設定した場合、0.5kPa以下(4torr以下)に設定する。
As shown in FIG. 2, the solvent removal tank 221 is connected to the monomer removal tank via a polymerization solution inflow path 223, and a polymerization solution from which some volatile components have been removed in the monomer removal tank flows. The desolvation tank 221 is provided with a decompression device (not shown) that depressurizes the internal decompression space 221A into which the polymerization solution is introduced, and the desolvation tank 221 is constructed in a depressurization resistant structure. The decompression device and the solvent removal tank 221 constitute the decompression means of the present invention. This decompression device is preferably used in common with the decompression device of the volatile component gas recovery means 222 to simplify the plant equipment.
The decompression device is preferably configured to be able to fully vacuum the inside of the solvent removal tank 221 at 0.5 kPa or less (4 torr or less). That is, the amount of the remaining volatile component needs to be 200 ppm by mass or less, preferably 100 ppm by mass or less, in order to prevent the deterioration of the product quality due to the odor of the volatile component. Thus, based on the vapor-liquid equilibrium value between the polyolefin and the volatile component, when the temperature is set to 230 ° C., which is a temperature condition at which the polyolefin does not change, it is set to 0.5 kPa or less (4 torr or less).

また、重合溶液流入路223には、脱モノマー槽内の重合溶液を脱溶剤槽221へ送り出す図示しない送出ポンプと、加熱手段としての熱交換手段224と、この熱交換手段224の下流側となる脱溶剤槽221側に加圧手段としての圧力調整バルブ225が設けられている。
熱交換手段224は、例えば、蒸発潜熱除熱方式の重合手段210との熱交換、すなわち重合反応時に除去した熱を利用して重合溶液を加熱する。具体的には、プロピレンを単独重合した場合、230℃〜250℃程度に加熱するとよい。すなわち、重合体が変質せず、かつ後段での減圧時に揮発成分が十分に発泡できる蒸気圧が得られる高い温度に加熱すればよい。具体的には、残留する揮発成分量は、温度と圧力との条件によるポリオレフィンと揮発成分との気液平衡により決まるため、温度が低くなるほど処理する槽内での真空度を高くする必要がある。このことから、230℃より低くすると工業設備的に設定することが困難な高い真空度に設定する必要があり、250℃より高く加熱すると重合体が分解して分子量が低下したり色目が悪化したりするなどの重合体の変質を招くおそれがあるためである。
圧力調整バルブ225は、重合溶液流入路223内を流過する重合溶液が、熱交換手段224で加熱された際に発泡しない圧力で流通する状態に圧力調整する。すなわち、重合溶液の組成により蒸気圧が異なるので、重合溶液の発泡しない圧力も蒸気圧に応じて設定すればよく、蒸気圧より高い圧力に調整することで発泡を防止できる。
In addition, the polymerization solution inflow passage 223 is a delivery pump (not shown) for sending the polymerization solution in the monomer removal tank to the solvent removal tank 221, a heat exchange means 224 as a heating means, and a downstream side of the heat exchange means 224. A pressure adjusting valve 225 as a pressurizing means is provided on the solvent removal tank 221 side.
The heat exchange means 224 heats the polymerization solution by using heat exchange with the polymerization means 210 of the latent heat of vaporization heat removal method, that is, heat removed during the polymerization reaction, for example. Specifically, when propylene is homopolymerized, it may be heated to about 230 ° C to 250 ° C. That is, the polymer may be heated to a high temperature at which a vapor pressure that does not change the quality and can sufficiently foam the volatile component at the time of decompression at a later stage is obtained. Specifically, since the amount of remaining volatile components is determined by the vapor-liquid equilibrium between the polyolefin and the volatile components depending on the conditions of temperature and pressure, it is necessary to increase the degree of vacuum in the treatment tank as the temperature decreases. . For this reason, it is necessary to set a high degree of vacuum that is difficult to set industrially if the temperature is lower than 230 ° C., and if heated higher than 250 ° C., the polymer is decomposed to lower the molecular weight or the color. This is because the polymer may be deteriorated such as.
The pressure adjustment valve 225 adjusts the pressure so that the polymerization solution flowing through the polymerization solution inflow passage 223 flows at a pressure that does not foam when heated by the heat exchange means 224. That is, since the vapor pressure varies depending on the composition of the polymerization solution, the pressure at which the polymerization solution does not foam may be set according to the vapor pressure, and foaming can be prevented by adjusting the pressure higher than the vapor pressure.

また、脱溶剤槽221の重合溶液流入路223が接続する上部には、ドーム部221Bが設けられている。このドーム部221Bにおける減圧空間221Aに臨む底面には、多孔部材226が設けられている。この多孔部材226は、図3に示すように、円板状で厚さ方向に沿った軸方向を有する複数の流路226Aが貫通形成されている。
これら流路226Aは、例えば、重合溶液の粘度が重合体としてプロピレンを単独重合したポリプロピレンである場合の粘度程度である場合、直径が2mm以上15mm以下、好ましくは3mm以上7mm以下で形成するとよい。流路226Aの直径が2mmより小さくなると、重合溶液が流通しにくくなり、圧力損失が増大して製造効率の向上が得られにくくなるおそれがあるためである。一方、流路226Aの直径が15mmより大きくなると、流路226Aを流通する重合溶液中に揮発成分が発泡した際に、発泡が重合溶液の外面側まで到達しなくなり、破泡できずに重合溶液内に再び溶け込むおそれがあるためである。すなわち、効率よく破泡するためには重合溶液の表面積を増大させる必要があるが、流路226Aの直径が15mmより大きくなると、表面積の増大による破泡の効果が得られにくいためである。
さらに、流路226Aのピッチは、7mm以上16mm以下で形成するとよい。流路226Aのピッチが7mmより狭くなると、粘性が比較的に高い重合溶液の場合、流路226Aの下流側端部で気泡が風船のように膨らんで破泡する前に隣の気泡とくっついて良好に破泡できなくなるおそれがある。さらに、強度が低下しないように多孔部材226の厚さ寸法を厚くする必要があり、装置の大型化や多孔部材226のコストの増大などの不都合を生じるおそれがある。一方、流路226Aのピッチが16mmより広くなると、多孔部材226の通過時の重合溶液の表面積が減少し、十分に破泡できなくなるおそれがある。さらに、重合溶液の表面積が少なくならないように流路226Aを複数設ける必要があり、多孔部材226の径寸法が増大して装置の大型化や多孔部材226のコストの増大などの不都合を生じるおそれがある。これらのことから、流路226Aのピッチは、7mm以上16mm以下で設計する。
そして、流路226Aのピッチ寸法に対する流路226Aの孔径の割合、すなわち流路226Aの直径(D)とピッチ(L)との関係(D/L)は、0.4以下、特にプロピレン単独重合の場合では0.3とすることが好ましい。ここで、Dに対してLの値が小さすぎると隣接する流路226Aを流通した重合溶液とくっついて重合体を分散させる効果がほとんど得られなくなり、Dに対してLの値が大きすぎると多孔部材226が大きくなって設備が大型化し、設備コストが増大するおそれがあるためである。すなわち、多孔部材226は、単に破泡のみを目的とする場合に限らず、重合体の分散も目的としているためである。
そして、脱溶剤槽221の底部には、揮発成分が高度に除去された重合溶液を次工程の造粒手段230へ送る移送ポンプ227Aを備え流出路227が接続されている。
In addition, a dome portion 221B is provided at an upper portion of the solvent removal tank 221 to which the polymerization solution inflow passage 223 is connected. A porous member 226 is provided on the bottom surface of the dome portion 221B facing the decompression space 221A. As shown in FIG. 3, the porous member 226 has a disk shape and a plurality of flow paths 226A having an axial direction along the thickness direction.
These flow paths 226A may be formed with a diameter of 2 mm or more and 15 mm or less, preferably 3 mm or more and 7 mm or less, for example, when the viscosity of the polymerization solution is about the same as that of polypropylene obtained by homopolymerizing propylene as a polymer. This is because if the diameter of the flow path 226A is smaller than 2 mm, the polymerization solution hardly flows, pressure loss increases, and it may be difficult to improve the production efficiency. On the other hand, when the diameter of the flow path 226A is larger than 15 mm, when the volatile component is foamed in the polymerization solution flowing through the flow path 226A, the foaming does not reach the outer surface side of the polymerization solution, and the polymerization solution cannot be broken. It is because there exists a possibility of melt | dissolving in again. That is, in order to break the bubbles efficiently, the surface area of the polymerization solution needs to be increased. However, if the diameter of the channel 226A is larger than 15 mm, it is difficult to obtain the bubble breaking effect due to the increased surface area.
Furthermore, the pitch of the flow paths 226A is preferably 7 mm or more and 16 mm or less. When the pitch of the flow path 226A is narrower than 7 mm, in the case of a polymerization solution having a relatively high viscosity, the bubbles swell at the downstream end of the flow path 226A and stick to the adjacent bubbles before they break up like a balloon. There is a risk that foam cannot be broken well. Furthermore, it is necessary to increase the thickness of the porous member 226 so that the strength does not decrease, which may cause inconveniences such as an increase in the size of the apparatus and an increase in the cost of the porous member 226. On the other hand, if the pitch of the flow paths 226A is larger than 16 mm, the surface area of the polymerization solution when passing through the porous member 226 decreases, and there is a possibility that bubbles cannot be broken sufficiently. Furthermore, it is necessary to provide a plurality of flow paths 226A so that the surface area of the polymerization solution does not decrease, and the diameter of the porous member 226 increases, which may cause inconveniences such as an increase in the size of the apparatus and an increase in the cost of the porous member 226. is there. From these facts, the pitch of the flow path 226A is designed to be 7 mm or more and 16 mm or less.
The ratio of the hole diameter of the flow path 226A to the pitch dimension of the flow path 226A, that is, the relationship (D / L) between the diameter (D) of the flow path 226A and the pitch (L) is 0.4 or less, particularly propylene homopolymerization. In this case, 0.3 is preferable. Here, if the value of L is too small with respect to D, it is difficult to obtain an effect of dispersing the polymer by adhering to the polymerization solution flowing through the adjacent flow path 226A, and if the value of L is too large with respect to D. This is because the porous member 226 becomes large, the equipment becomes large, and the equipment cost may increase. That is, the porous member 226 is not limited to the purpose of merely breaking bubbles but is also intended to disperse the polymer.
The bottom of the solvent removal tank 221 is provided with a transfer pump 227A for sending the polymer solution from which volatile components are highly removed to the granulating means 230 in the next step, and an outflow passage 227 is connected.

造粒手段230は、図示しない冷却器と、造粒機と、冷却槽と、などを備えている。
冷却器は、脱溶剤槽221から移送された重合溶液を、造粒可能なある程度の粘性を有する温度以下まで冷却する。
造粒機は、冷却器で冷却された重合体を、金型ノズルから流出させるとともに水を噴霧し、金型ノズルの流出口から所定の間隙で離間する回転切断刃にてペレット状に切断する。
冷却槽は、造粒機で造粒されたペレット状の重合体を、造粒時に噴霧した水とともに撹拌しつつ十分に冷却する。すなわち、冷却槽は、造粒時では完全に固化していないため、造粒後にペレット同士が付着してしまう不都合を防止するため、撹拌しつつ互いに付着しない温度まで十分に冷却し、オレフィンの重合体が製造される。
この製造されたオレフィンの重合体は、貯蔵ホッパなどに適宜貯留される。
The granulating means 230 includes a cooler (not shown), a granulator, a cooling tank, and the like.
The cooler cools the polymerization solution transferred from the solvent removal tank 221 to a temperature having a certain degree of viscosity that enables granulation.
The granulator allows the polymer cooled by the cooler to flow out of the mold nozzle and spray water, and then cut into pellets with a rotary cutting blade spaced from the outlet of the mold nozzle by a predetermined gap. .
A cooling tank fully cools the pellet-shaped polymer granulated with the granulator, stirring with the water sprayed at the time of granulation. That is, since the cooling tank is not completely solidified at the time of granulation, in order to prevent inconvenience that the pellets adhere to each other after granulation, the cooling tank is sufficiently cooled to a temperature at which the pellets do not adhere to each other while stirring. A coalescence is produced.
The produced olefin polymer is appropriately stored in a storage hopper or the like.

制御装置300は、例えばコンピューターが用いられ、重合設備200の運転条件を制御する。具体的には、原料供給手段211からの原料の供給量、溶媒供給手段212からの溶媒の供給量、触媒供給手段213からの触媒の供給量、水素ガス供給手段214からの水素ガスの供給量、第3成分供給手段215からの第3成分の供給量、重合槽内の気相分を循環させて重合溶液の温度を制御したり、脱揮手段220における減圧する圧力、熱交換手段224での加熱する温度、圧力調整バルブ225で加圧する圧力、移送ポンプ227Aの駆動制御による流量制御、造粒手段230における冷却する温度や回転切断刃の回転速度などを制御したりする。
ここで、コンピューターとは、1台のパーソナルコンピューターに限らず、複数のコンピューターをネットワーク状に組み合わせた構成、CPU(Central Processing Unit)やマイクロコンピューターなどの素子、あるいは複数の電子部品が搭載された回路基板などをも含むものである。
また、制御装置300は、ポリオレフィンの濃度、重合溶液の温度、重合溶液の蒸気圧および減圧処理の時間長に基づいて、減圧処理後の重合溶液中の揮発成分含有量を200質量ppm以下とするあらかじめ設定された条件、すなわち圧力調整バルブ225により加圧する圧力、熱交換手段224により加熱する温度、減圧手段により減圧する圧力および重合溶液の流量などを制御する。
具体的には、図4に示すように、重合溶液の重合物の濃度における揮発成分の蒸気圧および温度には所定の関係があることから、重合溶液の組成に基づく蒸気圧の特性に基づいて、減圧する圧力、熱交換手段224で加熱する温度、減圧処理の時間長となる脱モノマー槽や脱溶剤槽221の大きさに対する流量などが設定され、設定された数値に従って重合設備200を制御する。なお、図4は、脱溶剤槽221における重合溶液流入路223が接続する位置での熱交換計算による重合物の濃度、揮発成分の蒸気圧および温度の関係を示すグラフである。
As the control device 300, for example, a computer is used to control the operating conditions of the polymerization equipment 200. Specifically, the supply amount of the raw material from the raw material supply means 211, the supply amount of the solvent from the solvent supply means 212, the supply amount of the catalyst from the catalyst supply means 213, the supply amount of hydrogen gas from the hydrogen gas supply means 214 The supply amount of the third component from the third component supply means 215, the temperature of the polymerization solution by circulating the gas phase in the polymerization tank, the pressure at which the devolatilization means 220 depressurizes, the heat exchange means 224 The heating temperature, the pressure applied by the pressure adjusting valve 225, the flow rate control by driving control of the transfer pump 227A, the cooling temperature in the granulating means 230, the rotational speed of the rotary cutting blade, and the like are controlled.
Here, the computer is not limited to a single personal computer, but a configuration in which a plurality of computers are combined in a network form, a circuit such as a CPU (Central Processing Unit) or a microcomputer, or a plurality of electronic components. It also includes a substrate.
Further, the control device 300 sets the volatile component content in the polymer solution after the decompression process to 200 mass ppm or less based on the concentration of the polyolefin, the temperature of the polymer solution, the vapor pressure of the polymer solution, and the time length of the decompression process. The preset conditions, that is, the pressure applied by the pressure adjusting valve 225, the temperature heated by the heat exchange means 224, the pressure reduced by the pressure reducing means, the flow rate of the polymerization solution, and the like are controlled.
Specifically, as shown in FIG. 4, since there is a predetermined relationship between the vapor pressure and temperature of the volatile component at the concentration of the polymer in the polymerization solution, based on the characteristics of the vapor pressure based on the composition of the polymerization solution. The pressure for depressurization, the temperature for heating in the heat exchange means 224, the flow rate for the size of the demonomer tank and the solvent removal tank 221 that will be the time length of the depressurization process are set, and the polymerization equipment 200 is controlled according to the set numerical values . FIG. 4 is a graph showing the relationship between the concentration of the polymer, the vapor pressure of the volatile component, and the temperature based on the heat exchange calculation at the position where the polymerization solution inflow passage 223 in the solvent removal tank 221 is connected.

ここで、重合溶液の気液平衡は、混合物の気相と液相との間の平衡状態であり、温度、圧力、気相組成、液相組成の因子である気液平衡データに依存する。重合溶液の液相は、蒸気圧をもたない重合物であるポリマーと、揮発性の溶質との混合物である。
溶質に不揮発性物質を溶かすと、溶液の蒸気圧Pは、純溶媒の蒸気圧P0に比べて低くなる。理想溶液の場合、蒸気圧降下は、ラウール(Laoult)則(P=P0×(1−x);xはモル分率)によりモル分率と蒸気圧とに比例する。ところが、不揮発性物質がポリマーの場合、ラウール則から外れて極めて大きい蒸気圧降下を起こす。
重合溶液の気液平衡は、重合物、揮発性物質の溶質性状により異なるため、後述するように、実験に基づいて気液平衡データを算出した。なお、重合物中の溶質の収量の相関、推算には一般的にフローリー・ハギンズ(Flory-Huggins)式が用いられるが、多成分系の拡張性の点、プロセス全体が1つの溶液モデルで表現できる点から、NRTL(Non Random Two-Liquid)式(H. Renon, and J. N. Prausnitz, AIChE J. 14. (1), 135-144 (1968)参照)を用いる。この場合、重合物をそのまま取り扱うことはできないので、n−C36でポリマーを代用する。なお、n−C36での代替は分子量のみで、比容積はポリマーの値を使用する。
Here, the vapor-liquid equilibrium of the polymerization solution is an equilibrium state between the gas phase and the liquid phase of the mixture, and depends on gas-liquid equilibrium data which are factors of temperature, pressure, gas phase composition, and liquid phase composition. The liquid phase of the polymerization solution is a mixture of a polymer that is a polymer having no vapor pressure and a volatile solute.
When a non-volatile substance is dissolved in the solute, the vapor pressure P of the solution becomes lower than the vapor pressure P 0 of the pure solvent. In the case of an ideal solution, the vapor pressure drop is proportional to the mole fraction and the vapor pressure according to the Laoult rule (P = P 0 × (1−x); x is the mole fraction). However, when the non-volatile substance is a polymer, it deviates from Raoul's law and causes a very large vapor pressure drop.
Since the vapor-liquid equilibrium of the polymerization solution varies depending on the solute properties of the polymer and the volatile substance, as described later, vapor-liquid equilibrium data was calculated based on experiments. The Flory-Huggins equation is generally used to correlate and estimate the yield of solutes in the polymer, but the multi-component expandability and the entire process are expressed in one solution model. From the point that can be achieved, an NRTL (Non Random Two-Liquid) equation (see H. Renon, and JN Prausnitz, AIChE J. 14. (1), 135-144 (1968)) is used. In this case, since the polymer cannot be handled as it is, the polymer is substituted with n-C36. The substitute for n-C36 is only the molecular weight, and the specific volume uses the value of the polymer.

具体的には、相関の手順として、まずパラメーターをフローリー・ハギンズ式(P.J.Flory,J.Chem.Phys.10,51(1942)、および、M.L.Huggins,J.Phys.Chem.46,151(1942);Ann.N.Y.Acad.Sci.41,1(1942);J.Am.Chem.Soc.64,1712(1942)参照)に適用し、有限濃度域での溶質分圧と溶解度との関係を求める。この後、NRTLのパラメーターを最適化する。この最適化に際して、広い温度領域で使用できるように、以下の式(3)に示す温度依存型で表現した。
(式3)
τij=aij+bij/T
T:温度
そして、相関したパラメーターの結果をフローリー・ハギンズ式による計算と比較し、NRTLでもポリマー−溶質系の気液平衡を表現できることが確認できる。
Specifically, as a correlation procedure, first, parameters are determined using the Flory-Huggins equation (PJFlory, J. Chem. Phys. 10, 51 (1942), and MLHuggins, J. Phys. Chem. 46, 151 (1942); Ann. NYAcad.Sci.41,1 (1942); J.Am.Chem.Soc.64, 1712 (1942)), and the relationship between solute partial pressure and solubility in a finite concentration range is obtained. After this, the NRTL parameters are optimized. In this optimization, it was expressed by a temperature-dependent type shown in the following formula (3) so that it can be used in a wide temperature range.
(Formula 3)
τ ij = a ij + b ij / T
T: Temperature Then, the results of the correlated parameters are compared with the calculation based on the Flory-Huggins equation, and it can be confirmed that even the NRTL can express the vapor-liquid equilibrium of the polymer-solute system.

このような推算方法により、運転時の重合溶液の組成における温度と蒸気圧との関係を推算した。
なお、本実施形態における各工程の熱交換で気液平衡を推算する場合、重合手段210の重合槽の出口の組成、脱揮手段220の脱モノマー槽の出口の組成について計算する必要がある。このため、重合条件、脱モノマー槽の運転条件により、各出口における重合物の濃度、組成が異なるので、それぞれ異なる条件毎に計算する必要がある。
By such an estimation method, the relationship between the temperature and the vapor pressure in the composition of the polymerization solution during operation was estimated.
In addition, when estimating gas-liquid equilibrium by heat exchange of each process in this embodiment, it is necessary to calculate about the composition of the exit of the polymerization tank of the superposition | polymerization means 210, and the composition of the exit of the devolatilization tank of the devolatilization means 220. For this reason, since the concentration and composition of the polymer at each outlet differ depending on the polymerization conditions and the operating conditions of the demonomer tank, it is necessary to calculate for each different condition.

そして、本実施形態において、重合溶液(ポリオレフィン、プロピレン、ヘプタン)での重合物の濃度(ポリオレフィン/(ポリオレフィン+プロピレン+ヘプタン))について、上述した推算方法で計算した気液平衡の結果を、図5,6に示す。これら図5,6は、重合槽で温度78℃、圧力1.6MPaで重合物の濃度30質量%まで重合した重合溶液を、脱モノマー槽で各濃度まで濃縮した重合溶液における気液平衡の結果を示したものである。   In this embodiment, the results of gas-liquid equilibrium calculated by the above-described estimation method for the concentration of the polymer (polyolefin / (polyolefin + propylene + heptane)) in the polymerization solution (polyolefin, propylene, heptane) are shown in FIG. 5 and 6. These FIGS. 5 and 6 show the results of gas-liquid equilibrium in a polymerization solution obtained by polymerizing a polymerization solution at a temperature of 78 ° C. and a pressure of 1.6 MPa in a polymerization tank to a concentration of 30% by mass in a polymerization monomer. Is shown.

[オレフィンの重合体の製造]
制御装置300は、あらかじめ取得した生産計画データに基づいて原料などの必要量を認識し、原料供給手段211、溶媒供給手段212、触媒供給手段213、水素ガス供給手段214、第3成分供給手段215をそれぞれ制御して、必要量の原料、溶媒、触媒、水素ガス、および第3成分を重合手段210の重合槽へ供給させる。
そして、制御装置300は、重合槽内の気相成分を図示しない冷却器で適宜冷却しつつ循環させて重合槽内の重合溶液の温度を制御して重合反応を進行させる。
[Production of olefin polymer]
The control device 300 recognizes the necessary amount of raw materials based on the production plan data acquired in advance, and supplies the raw material supply means 211, the solvent supply means 212, the catalyst supply means 213, the hydrogen gas supply means 214, and the third component supply means 215. Are controlled to supply necessary amounts of raw material, solvent, catalyst, hydrogen gas, and third component to the polymerization tank of the polymerization means 210.
Then, the control device 300 circulates the gas phase component in the polymerization tank while appropriately cooling it with a cooler (not shown), and controls the temperature of the polymerization solution in the polymerization tank to advance the polymerization reaction.

この後、制御装置300は、重合槽内の重合溶液を脱揮手段220の脱モノマー槽に移送し、別途駆動制御している揮発成分ガス回収手段222にて、重合溶液から揮発成分を除去する。この揮発成分ガス回収手段222の運転制御としては、重合溶液中の重合体の濃度が90質量%以上となる程度まで、所定の圧力に減圧した脱モノマー槽内に滞留させる。すなわち、重合溶液の重合物の濃度における揮発成分の蒸気圧および温度の関係に基づいて、減圧する圧力や流量などを制御する。
そして、制御装置300は、脱モノマー槽で重合溶液中の重合体の濃度が90質量%以上に揮発成分を除去した重合溶液を、重合溶液流入路223を介して脱溶剤槽221へ流入させる。この重合溶液が重合溶液流入路223を流通する際、制御装置300にて制御された重合溶液流入路223の圧力調整バルブ225により、所定の圧力すなわち加熱中に発泡しない圧力まで加圧された状態となる。さらに、重合溶液は、制御装置300にて制御された熱交換手段224により所定の温度まで熱交換により加熱される。そして、加圧状態で加熱された重合溶液は、圧力調整バルブ225を流通した後、直ちに、制御装置300にて所定の圧力に減圧された脱溶剤槽221のドーム部221Bに発泡しつつ流入する。
この発泡した重合溶液は、多数の気泡が破泡せずに混入する状態となっている。そして、この気泡が混入する重合溶液は、多孔部材226の複数の流路226Aを流通する。この流通の際、重合溶液はさらに発泡が進行して気泡径が大きくなるとともに、重合溶液内に混入する気泡が流路226Aの内面となる重合溶液の外面に現れる状態となり、気泡が破泡する。すなわち、重合溶液が複数の流路226Aを流通することにより、表面積が増大させられる状態となる。このことにより、内部に混入する気泡が重合溶液の外表面に現れる状態となり、破泡する。そして、破泡により分離された揮発成分は、重合溶液内に再溶解しないように脱溶剤槽221の上部より揮発成分ガス回収手段222にて回収される。
Thereafter, the control device 300 transfers the polymerization solution in the polymerization tank to the devolatilization tank of the devolatilization unit 220 and removes volatile components from the polymerization solution by the volatile component gas recovery unit 222 that is separately driven and controlled. . As operation control of the volatile component gas recovery means 222, the volatile component gas recovery means 222 is retained in a demonomer tank depressurized to a predetermined pressure until the concentration of the polymer in the polymerization solution becomes 90% by mass or more. That is, based on the relationship between the vapor pressure and temperature of the volatile component in the concentration of the polymer in the polymerization solution, the pressure, flow rate, etc., to be reduced are controlled.
Then, the control device 300 causes the polymerization solution in which the volatile component is removed so that the concentration of the polymer in the polymerization solution is 90% by mass or more in the demonomer tank to flow into the desolvation tank 221 through the polymerization solution inflow path 223. When this polymerization solution flows through the polymerization solution inflow passage 223, it is pressurized to a predetermined pressure, that is, a pressure at which it does not foam during heating, by the pressure adjustment valve 225 of the polymerization solution inflow passage 223 controlled by the control device 300. It becomes. Further, the polymerization solution is heated by heat exchange to a predetermined temperature by the heat exchange means 224 controlled by the control device 300. Then, the polymer solution heated in the pressurized state flows through the pressure adjusting valve 225, and immediately flows while foaming into the dome portion 221B of the solvent removal tank 221 that has been depressurized to a predetermined pressure by the control device 300. .
The foamed polymerization solution is in a state where a large number of bubbles are mixed without breaking. Then, the polymerization solution in which the bubbles are mixed flows through the plurality of flow paths 226A of the porous member 226. During this distribution, the polymerization solution further foams and the bubble diameter increases, and bubbles mixed in the polymerization solution appear on the outer surface of the polymerization solution which is the inner surface of the flow path 226A, and the bubbles break. . That is, when the polymerization solution flows through the plurality of flow paths 226A, the surface area is increased. As a result, bubbles mixed in the inside appear on the outer surface of the polymerization solution and break the bubbles. The volatile components separated by the bubble breaking are recovered by the volatile component gas recovery means 222 from the top of the solvent removal tank 221 so as not to be redissolved in the polymerization solution.

そして、脱揮手段220で揮発成分が十分に分離、例えば残留する揮発成分が200ppm以下まで分離された重合溶液である重合体は、造粒手段230へ移送ポンプ227Aを備え流出路227を介して移送される。
この造粒手段230では、制御装置300にて制御された冷却器にて移送された重合体を冷却し、造粒機にてペレット状に造粒する。造粒後のペレット状の重合体は、互いに付着しないように直ちに冷却槽にて十分に冷却固化され、ペレット状のオレフィンの重合体が製造される。
この冷却固化された重合体は、適宜水分を除去した後、貯蔵ホッパなどに移送されて適宜貯留される。
The polymer, which is a polymerization solution in which the volatile components are sufficiently separated by the devolatilization means 220, for example, the residual volatile components are separated to 200 ppm or less, is provided with a transfer pump 227A to the granulation means 230 via the outflow passage 227. Be transported.
In this granulating means 230, the polymer transferred by the cooler controlled by the control device 300 is cooled and granulated into pellets by the granulator. The pelletized polymer after granulation is immediately cooled and solidified sufficiently in a cooling bath so as not to adhere to each other, and a pellet-shaped olefin polymer is produced.
The cooled and solidified polymer is appropriately removed after moisture, and then transferred to a storage hopper or the like and appropriately stored.

[実施形態の作用効果]
上述した実施形態では、圧力調整バルブ225にて加圧された状態で熱交換手段224にて重合溶液を加熱した後、減圧された脱溶剤槽221へ流入させて残留する揮発成分を発泡させ、脱溶剤槽221内に配設した多孔部材226の複数の流路226Aを流通させて破泡させている。
このため、熱交換手段224にて加熱する際に残留する揮発成分が発泡しないように、重合溶液の性状に応じて適宜調整した圧力調整バルブ225にて十分に加圧すればよく、圧力調整バルブ225にて圧力を調整する簡単な処理で、損失無く効率よく重合溶液を加熱できる。したがって、残留する揮発成分を十分に発泡させるのに必要な蒸気圧となる温度に効率よく加熱された重合溶液は、十分に発泡して多孔部材226で破泡されるので、脱溶剤槽221を流出して大気圧の状態に戻っても、揮発成分が再び溶け込んで十分に分離できなくなるという不都合を防止でき、揮発成分を高度に分離除去できる。
[Effects of Embodiment]
In the embodiment described above, after heating the polymerization solution in the heat exchange means 224 in a state of being pressurized by the pressure adjustment valve 225, the remaining volatile components are caused to flow by flowing into the desolvation tank 221 having a reduced pressure, A plurality of flow paths 226A of the porous member 226 disposed in the solvent removal tank 221 are circulated to break the bubbles.
For this reason, it is sufficient to sufficiently pressurize the pressure adjusting valve 225 appropriately adjusted according to the properties of the polymerization solution so that the remaining volatile components do not foam when heated by the heat exchanging means 224. With a simple process of adjusting the pressure at 225, the polymerization solution can be efficiently heated without loss. Therefore, the polymerization solution that has been efficiently heated to a temperature at which the vapor pressure necessary for sufficiently foaming the remaining volatile components is sufficiently foamed and broken by the porous member 226. Even if it flows out and returns to the atmospheric pressure state, it is possible to prevent the inconvenience that the volatile components are dissolved again and cannot be sufficiently separated, and the volatile components can be separated and removed to a high degree.

そして、本実施形態では、熱交換手段224にて重合溶液を加熱する際に発泡しない圧力に圧力調整バルブ225にて調整している。
このため、加熱中の発泡により伝熱係数が低下して重合溶液を十分に加熱できずに残存する揮発成分を十分に発泡できなくなる不都合を防止できる。したがって、残留する揮発成分を十分に発泡させるのに必要な蒸気圧となる温度に重合溶液を効率よく加熱でき、揮発成分を高度に分離除去できる。
In the present embodiment, the pressure adjusting valve 225 adjusts the pressure so as not to foam when the polymerization solution is heated by the heat exchange means 224.
For this reason, it is possible to prevent the disadvantage that the heat transfer coefficient decreases due to foaming during heating, and the polymerization solution cannot be sufficiently heated and the remaining volatile components cannot be sufficiently foamed. Therefore, the polymerization solution can be efficiently heated to a temperature at which the vapor pressure is necessary to sufficiently foam the remaining volatile components, and the volatile components can be separated and removed to a high degree.

また、本実施形態では、多孔部材226の流路226Aのピッチ寸法(L)に対する流路226Aの孔径(D)の割合(D/L)を0.4以下としている。
このため、流通抵抗の増大を抑制しつつ、流通の際に重合溶液中の気泡が表面に位置して破泡する状態が得られやすくなる表面積が増大する状態にすることができ、効率よく破泡でき、脱溶剤槽221を流出して大気圧の状態に戻っても、気泡の揮発成分が再び溶け込んで十分に分離できなくなるという不都合を防止でき、揮発成分を高度に分離除去できる。
In this embodiment, the ratio (D / L) of the hole diameter (D) of the flow path 226A to the pitch dimension (L) of the flow path 226A of the porous member 226 is set to 0.4 or less.
For this reason, while suppressing an increase in flow resistance, it is possible to achieve a state in which the surface area where bubbles in the polymerization solution are located on the surface and easily breaks during flow increases, and the surface area is increased efficiently. Even if the bubbles can flow and flow out of the solvent removal tank 221 and return to the atmospheric pressure state, it is possible to prevent the disadvantage that the volatile components in the bubbles are dissolved again and cannot be sufficiently separated, and the volatile components can be highly separated and removed.

さらに、本実施形態では、加圧下で熱交換手段224により加熱して減圧した多孔部材226を備えた脱溶剤槽221で揮発成分を発泡させて破泡にて分離する前に、重合溶液中の重合体の濃度を90質量%以上となる状態まで、揮発成分を除去しておく。
すなわち、一動作で揮発成分を除去する場合に多量に揮発する揮発成分を分離して回収しつつ、高度に揮発成分を除去するために十分に減圧するための設備が大型となる。このため、設備の大型化に制約がある場合は、本実施形態のように、あらかじめ重合体の濃度が90質量%以上に揮発成分を除去した重合溶液を、加圧下で加熱して脱溶剤槽221で減圧する構成とすることで、設備が大型化することなく高度に揮発成分を分離除去できる。
Furthermore, in the present embodiment, before the volatile component is foamed and separated by bubble breakage in the solvent removal tank 221 provided with the porous member 226 heated and depressurized by the heat exchange means 224 under pressure, Volatile components are removed until the polymer concentration reaches 90% by mass or more.
That is, when removing the volatile component in one operation, the equipment for sufficiently reducing the pressure in order to remove the volatile component highly becomes large while separating and collecting the volatile component that is volatilized in a large amount. For this reason, when there is a restriction on the enlargement of the equipment, as in this embodiment, the polymerization solution from which the volatile components have been removed to a polymer concentration of 90% by mass or higher in advance is heated under pressure to remove the solvent. By adopting a configuration in which the pressure is reduced at 221, volatile components can be separated and removed at a high level without increasing the size of the equipment.

また、一動作で揮発成分を除去するためには、熱交換手段224で高温にする必要があり、さらに高温に加熱した重合溶液中の揮発成分が気化しない高い圧力に維持する必要があり、装置の大型化や複雑化するおそれがある。また、高温にすることで、重合体が分解したり、分子量が低下したり、色目が悪化するなどの不都合を生じるおそれがある。
このため、脱モノマー槽であらかじめ揮発成分の一部を除去する多段構成、さらには重合溶液を加圧・加熱した後に減圧し揮発成分の一部を除去する前段処理手段で処理した後に脱溶剤槽221で処理する多段構成とする。これらの構成により、装置の簡略化や重合体が変質するなどの不都合も防止できる。
特に、前処理として、脱モノマー槽の処理後に、加熱・加圧した後に減圧して揮発成分を除去する前段処理手段を設ける多段構成とすることが好ましい。具体的には、重合溶液を加圧する前段加圧手段と、加圧された重合溶液を加圧下で加熱する前段加熱手段と、加圧かつ加熱された重合溶液を減圧する前段減圧手段を備えた前段処理手段を脱モノマー槽と、脱溶剤槽の熱交換手段224との間に設ける。この構成により、熱交換手段224、圧力調整バルブ225および脱溶剤槽221の構成が多段に接続する状態となる。この構成により、一動作で揮発成分を除去する場合に比して、装置の大型化や複雑化を抑えつつ、重合物を変質させずに揮発成分を高度に除去できる。
Further, in order to remove volatile components in one operation, it is necessary to increase the temperature by the heat exchanging means 224, and it is necessary to maintain a high pressure at which the volatile components in the polymerization solution heated to a high temperature are not vaporized. There is a risk of increase in size and complexity. In addition, the high temperature may cause inconveniences such as decomposition of the polymer, decrease in molecular weight, and deterioration of color.
For this reason, a multi-stage configuration in which a part of the volatile components is removed in advance in a demonomer tank, and further, a desolvation tank after being processed by a pre-treatment unit that depressurizes and removes part of the volatile components after pressurizing and heating the polymerization solution A multi-stage configuration is used for processing at 221. With these structures, inconveniences such as simplification of the apparatus and alteration of the polymer can be prevented.
In particular, as the pretreatment, it is preferable to have a multistage configuration in which pretreatment means for removing volatile components by heating and pressurizing and then removing volatile components after the treatment of the monomer removal tank is provided. Specifically, a pre-stage pressurizing unit that pressurizes the polymerization solution, a pre-stage heating unit that heats the pressurized polymerization solution under pressure, and a pre-stage depressurization unit that depressurizes the pressurized and heated polymerization solution. The pretreatment means is provided between the demonomer tank and the heat exchange means 224 of the solvent removal tank. With this configuration, the configurations of the heat exchange means 224, the pressure adjustment valve 225, and the solvent removal tank 221 are connected in multiple stages. With this configuration, it is possible to highly remove volatile components without deteriorating the polymer while suppressing the increase in size and complexity of the apparatus as compared with the case of removing volatile components in one operation.

そして、本実施形態では、230℃以上250℃以下に加熱している。
このため、重合体が変性することなく、脱溶剤槽221における減圧時に重合溶液中の揮発成分が十分に発泡できる蒸気圧となる高い温度で加熱するので、揮発成分を高度に分離除去できる。
And in this embodiment, it heats at 230 degreeC or more and 250 degrees C or less.
Therefore, the polymer is not denatured and heated at a high temperature at which the volatile components in the polymerization solution are sufficiently vaporized so that the volatile components in the polymerization solution can be sufficiently foamed during decompression in the solvent removal tank 221, so that the volatile components can be separated and removed to a high degree.

また、本実施形態では、脱溶剤槽221で0.5kPa以下に減圧している。
このため、重合溶液中の揮発成分が十分に発泡できる蒸気圧となる温度を低くすることができ、効率よく高度に揮発成分を分離除去できる。
In the present embodiment, the pressure is reduced to 0.5 kPa or less in the solvent removal tank 221.
For this reason, it is possible to lower the temperature at which the vapor pressure of the volatile component in the polymerization solution is sufficiently foamed, and to efficiently separate and remove the volatile component efficiently.

そして、本実施形態では、重合溶液を加圧する構成として、熱交換手段224と脱溶剤槽221との間に圧力調整バルブ225を配設している。
このため、粘度や温度が変わるなどの重合溶液の性状が変わっても、熱交換手段224で発泡しない加圧状態に調節することが容易にでき、残留する揮発成分を十分に発泡させて高度に除去することが簡単な構成で容易にできる。
In this embodiment, as a configuration for pressurizing the polymerization solution, a pressure adjustment valve 225 is disposed between the heat exchange means 224 and the solvent removal tank 221.
For this reason, even if the properties of the polymerization solution change, such as changes in viscosity and temperature, it can be easily adjusted to a pressurized state where the heat exchange means 224 does not foam, and the remaining volatile components are sufficiently foamed to a high degree. It can be easily removed with a simple configuration.

また、本実施形態では、圧力調整バルブ225を脱溶剤槽221に近接して配設している。
このため、加圧状態の重合溶液を減圧された脱溶剤槽221へ流入させる経路が短い、もしくは、ほとんどない状態となるので、圧力が開放された時点で脱溶剤槽221に流入する前に発泡しても、脱溶剤槽221への移送に影響がなく、安定して処理できる。
In the present embodiment, the pressure adjustment valve 225 is disposed in the vicinity of the solvent removal tank 221.
For this reason, since the path for allowing the pressurized polymerization solution to flow into the desolvation tank 221 that has been depressurized is short or almost absent, the foaming is performed before flowing into the desolvation tank 221 when the pressure is released. However, the transfer to the solvent removal tank 221 is not affected and the treatment can be performed stably.

そして、低分子量低規則性のポリプロピレンの製造に好適である。
低分子量低規則性のポリプロピレンは、重合体中の溶剤が短時間で発泡し、破泡するので、重合体が脱溶剤槽で脱揮処理される間に重合体中の溶剤量平行に達しやすく、容易に脱揮処理できるとともに、装置の小型化が容易に図れ、好適である。
And it is suitable for manufacture of a low molecular weight low regularity polypropylene.
Low molecular weight low regularity polypropylene foams and breaks the solvent in the polymer in a short time, so it is easy to reach the amount of solvent in the polymer in parallel while the polymer is devolatilized in the solvent removal tank. It is suitable because it can be easily devolatilized and the size of the apparatus can be easily reduced.

[実施形態の変形例]
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、上述した実施形態に限定されるものではなく、本発明の目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても適用できる。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and is within a range in which the object and effect of the present invention can be achieved. Needless to say, modifications and improvements are included in the content of the present invention. In addition, the specific structure and shape when implementing the present invention can be applied to other structures and shapes as long as the objects and effects of the present invention can be achieved.

すなわち、制御装置300により重合設備200の運転条件を制御して重合装置100を自動運転する構成を例示したが、この構成に限らない。例えば、運転条件を適宜手動により設定して運転させる手動運転とする構成としてもよい。
さらには、製造に関しても連続式に限らず、バッチ式としてもよい。
また、制御装置300で制御する際の条件として上述した式1に基づいて制御したが、制御条件としても式1の条件に限られるものではない。
That is, the configuration in which the operation condition of the polymerization equipment 200 is controlled by the control device 300 to automatically operate the polymerization device 100 is illustrated, but the configuration is not limited thereto. For example, it is good also as a structure set as the manual driving | operation which sets and sets driving | running conditions manually manually.
Further, the production is not limited to the continuous type, and may be a batch type.
Moreover, although it controlled based on Formula 1 mentioned above as conditions at the time of controlling with the control apparatus 300, it is not restricted to the conditions of Formula 1 as control conditions.

そして、オレフィンとして、エチレン、プロピレン、ブチレンなど、各種オレフィンを対象とすることができる。
さらに、製造するポリオレフィンとしては、ポリエチレンやポリプロピレンなどの単独重合体に限らず、エチレンとプロピレンとの共重合体を製造させる場合にも適用できる。
And as an olefin, various olefins, such as ethylene, propylene, butylene, can be made into object.
Furthermore, the polyolefin to be produced is not limited to a homopolymer such as polyethylene or polypropylene, but can also be applied to the case of producing a copolymer of ethylene and propylene.

そして、脱揮手段220としては、脱モノマー槽と脱溶剤槽221との2段構成を例示したが、1段のみあるいは3段以上の多段構成とするなどしてもよい。
特に、加圧しつつ熱交換手段224で加熱する際に発泡しない構成が好ましいことから、この加圧・加熱する際にある程度、例えば重合体の濃度が90質量%以上のものとしておくことが好ましい。したがって、多段の構成とすることで効率よく容易に高度に揮発成分を分離除去できる。なお、脱モノマー槽で重合体の濃度が90質量%以上まで揮発成分を除去していなくてもよい。すなわち、加熱時に発泡しないように圧力を掛ければよい。
そして、加圧手段としては、圧力調整バルブ225に限らず、例えば、ポンプなどを用いて容器内に圧入して重合溶液を加圧するなど、各種加圧する構成を利用できる。
同様に、加熱する構成についても、熱交換手段224に限らず、重合溶液を貯留する容器の外部をヒーターなどにて加熱するなど、各種加熱方法を利用できる。なお、重合手段210で生じる熱を利用する熱交換により、エネルギーを有効利用でき、効率よく製造できるので好ましい。
As the devolatilizing means 220, a two-stage configuration of the demonomer tank and the desolvation tank 221 is illustrated, but it may be a single-stage configuration or a multi-stage configuration of three or more stages.
In particular, since a structure that does not foam when heated by the heat exchanging means 224 while applying pressure is preferable, it is preferable that the concentration of the polymer is, for example, 90% by mass or more when applying pressure and heating. Therefore, a volatile component can be separated and removed efficiently and easily by using a multi-stage configuration. In addition, the volatile component may not be removed until the polymer concentration is 90% by mass or more in the demonomer tank. That is, pressure may be applied so as not to foam during heating.
The pressurizing means is not limited to the pressure adjusting valve 225. For example, various pressurizing configurations such as press-fitting into the container using a pump or the like to pressurize the polymerization solution can be used.
Similarly, the heating configuration is not limited to the heat exchange means 224, and various heating methods such as heating the outside of the container for storing the polymerization solution with a heater or the like can be used. It is preferable that the heat exchange using the heat generated in the polymerization means 210 can effectively use energy and can be efficiently manufactured.

また、プロピレンを単独重合させる構成において、例えば、脱溶剤槽221における減圧する圧力が0.5kPa以下に高度に減圧できる場合などでは、熱交換手段224で230〜250℃に加熱しなくてもよい。
さらに、減圧する圧力も0.5kPa以下に限られない。
Further, in the configuration in which propylene is homopolymerized, for example, when the pressure to be reduced in the solvent removal tank 221 can be highly reduced to 0.5 kPa or less, the heat exchange means 224 may not be heated to 230 to 250 ° C. .
Furthermore, the pressure to be reduced is not limited to 0.5 kPa or less.

そして、多孔部材としては、D/L≦0.4に限られるものではなく、破泡および分散効果が得られるものであればいずれのものが適用できる。
また、多孔部材としては、例えば軽石などのように、流路が直線状ではなく屈曲したり枝分かれ状であったりする多孔質部材、あるいはメッシュ状部材などでもよい。
And as a porous member, it is not restricted to D / L <= 0.4, Any thing is applicable if a bubble-breaking and a dispersion effect are acquired.
Further, as the porous member, for example, a porous member such as a pumice or the like in which the flow path is not linear but bent or branched, or a mesh member may be used.

その他、本発明の実施の際の具体的な構造および手順は、本発明の目的を達成できる範囲で他の構成に変更するなどしてもよい。   In addition, the specific structure and procedure for carrying out the present invention may be changed to other configurations as long as the object of the present invention can be achieved.

次に、実施例および比較例を挙げて本発明をより具体的に説明する。なお、本発明は実施例などの内容に何ら限定されるものではない。   Next, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the content of an Example etc. at all.

(実施例1)
上述した重合装置を用い、ヘプタン17kg/h、トリイソブチルアルミニウム28mmol/h、水素37NL/h、プロピレン10kg/h、触媒((1,2’−ジメチルシリレン)(2,1’ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライド)9μmol/hで連続的に供給して、温度70℃、圧力0.9MPaで重合した。
重合溶液は、エタノールを添加して触媒を失活させ、脱モノマー槽で未反応プロピレンを除去した後、熱交換器で加熱し、脱溶剤槽で温度135℃、圧力20kPaAの状態で重合体の濃度96質量%まで事前脱揮させた。
この事前脱揮させた重合溶液を、管内径7mm、長さ1.2mのチューブ13本を備えた多管環式熱交換器を使用して、出口バルブで圧力を0.5MPaに調整して230℃に加熱した。厚さ寸法が3mm、孔径が3mm、ピッチが7mmの流路を複数有した多孔部材を備え、圧力0.5kPaAの脱溶剤槽に流入させた。脱揮後の重合体の温度は226℃で、脱溶剤槽の底に設置したギアポンプで抜き出し、残留揮発性物質を分析した。この残留揮発性物質の分析方法は、ガスクロマトグラムである。
残留揮発性物質は、100質量ppmであった。
(実施例2)
実施例1における事前脱揮における脱溶剤槽の圧力を140kPaAとして、得られた重合体の濃度が87質量%のものを用いた以外は、実施例1と同様に脱揮処理した。脱揮後の重合体の温度は、218℃であった。
残留揮発性物質は、150質量ppmであった。
(実施例3)
実施例1における脱揮処理時の多孔部材の孔径が15mmのものを用いた以外は、実施例1と同様に脱揮処理した。脱揮後の重合体の温度は、226℃であった。
残留揮発性物質は、120質量ppmであった。
(比較例1)
実施例1における脱溶剤槽に多孔部材を用いず、事前脱揮処理した重合溶液を11/2Bの配管を介して脱溶剤槽に流入させて処理した以外は、実施例1と同様に脱揮処理した。
残留揮発性物質は、200質量ppmであった。多管環式熱交換器の出口における温度は190℃までしか上昇しなかった。
Example 1
Using the above-described polymerization apparatus, heptane 17 kg / h, triisobutylaluminum 28 mmol / h, hydrogen 37 NL / h, propylene 10 kg / h, catalyst ((1,2′-dimethylsilylene) (2,1′dimethylsilylene) -bis (3-Trimethylsilylmethylindenyl) zirconium dichloride) was continuously fed at 9 μmol / h and polymerized at a temperature of 70 ° C. and a pressure of 0.9 MPa.
The polymerization solution was added with ethanol to deactivate the catalyst, and after removing unreacted propylene in the demonomer tank, it was heated with a heat exchanger, and the polymer solution was heated at a temperature of 135 ° C. and a pressure of 20 kPaA in the solvent removal tank. It was previously devolatilized to a concentration of 96% by mass.
This pre-devolatilized polymerization solution was adjusted to 0.5 MPa with an outlet valve using a multi-tube ring heat exchanger equipped with 13 tubes with a tube inner diameter of 7 mm and a length of 1.2 m. Heated to 230 ° C. A porous member having a plurality of flow paths having a thickness of 3 mm, a hole diameter of 3 mm, and a pitch of 7 mm was provided, and was allowed to flow into a solvent removal tank having a pressure of 0.5 kPaA. The temperature of the polymer after devolatilization was 226 ° C., and the polymer was extracted with a gear pump installed at the bottom of the solvent removal tank, and the residual volatile substances were analyzed. The analysis method of this residual volatile substance is a gas chromatogram.
The residual volatile substance was 100 mass ppm.
(Example 2)
The devolatilization treatment was performed in the same manner as in Example 1 except that the pressure in the solvent removal tank in the pre-devolatilization in Example 1 was 140 kPaA and the polymer concentration was 87% by mass. The temperature of the polymer after devolatilization was 218 ° C.
Residual volatile material was 150 ppm by mass.
(Example 3)
The devolatilization treatment was performed in the same manner as in Example 1 except that the porous member having a pore diameter of 15 mm during the devolatilization treatment in Example 1 was used. The temperature of the polymer after devolatilization was 226 ° C.
The residual volatile material was 120 mass ppm.
(Comparative Example 1)
The devolatilization was carried out in the same manner as in Example 1 except that the porous solvent was not used in the solvent removal tank in Example 1 and the pre-devolatilized polymerization solution was treated by flowing into the solvent removal tank through a 11 / 2B pipe. Processed.
Residual volatile material was 200 ppm by weight. The temperature at the outlet of the multi-tube ring heat exchanger increased only to 190 ° C.

上記実施例の結果から、特に脱揮処理の入口における重合溶液の重合体の濃度が90質量%以上で規定の孔径の多孔部材に重合溶液を流通させることで、残留揮発性物質を効率よく除去できた。   From the results of the above examples, the residual volatile substances are efficiently removed by circulating the polymer solution through a porous member having a specified pore diameter with a polymer concentration of 90% by mass or more particularly at the inlet of the devolatilization treatment. did it.

本発明は、溶媒を用いてオレフィンを単独もしくは共重合によりポリオレフィンを製造する際の重合溶液から揮発成分を除去するための重合溶液の揮発成分除去装置、さらにはこの揮発成分除去装置を備えた重合装置に利用できる。   The present invention relates to an apparatus for removing a volatile component from a polymerization solution for removing a volatile component from a polymerization solution when a polyolefin is produced by homopolymerization or copolymerization of an olefin using a solvent, and further a polymerization equipped with this volatile component removal apparatus Available for equipment.

100……重合装置
210……重合手段
220……揮発成分除去装置としての脱揮手段
221……減圧手段を構成する脱溶剤槽
221A…減圧空間
224……加熱手段としての熱交換手段
225……加圧手段としての圧力調整バルブ
300……制御手段としての制御装置
DESCRIPTION OF SYMBOLS 100 ... Polymerization apparatus 210 ... Polymerization means 220 ... Volatilization means as a volatile component removal apparatus 221 ... Desolvation tank 221A ... Pressure reduction space 224 ... Heat exchange means 225 as heating means 225 ... Pressure regulating valve 300 as a pressurizing means 300... Control device as a controlling means

Claims (14)

溶媒を用いてオレフィンを重合した重合溶液を加圧する加圧手段と、
この加圧手段にて加圧された前記重合溶液を加圧下で加熱する加熱手段と、
前記加圧かつ加熱された前記重合溶液が流入される減圧された減圧空間を有した減圧手段と、
前記重合溶液を流通可能な流路を複数有し、前記減圧手段の減圧空間内に流入された前記重合溶液を前記流路に流通させる状態に前記減圧空間内に配設された多孔部材と、
を具備したことを特徴とした重合溶液の揮発成分除去装置。
A pressurizing means for pressurizing the polymerization solution obtained by polymerizing the olefin using a solvent;
Heating means for heating the polymer solution pressurized by the pressurizing means under pressure;
Decompression means having a decompressed decompression space into which the pressurized and heated polymerization solution is introduced;
A plurality of flow paths through which the polymerization solution can be circulated, and a porous member disposed in the reduced pressure space in a state in which the polymerization solution that has flowed into the reduced pressure space of the pressure reducing means flows through the flow path;
An apparatus for removing a volatile component from a polymerization solution.
請求項1に記載の重合溶液の揮発成分除去装置であって、
前記加圧手段は、前記加熱手段にて前記重合溶液を加熱した際に発泡しない圧力に加圧する
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution of Claim 1,
The apparatus for removing a volatile component of a polymerization solution, wherein the pressurizing unit pressurizes to a pressure that does not foam when the polymerization solution is heated by the heating unit.
請求項1または請求項2に記載の重合溶液の揮発成分除去装置であって、
前記多孔部材は、前記流路のピッチ寸法(L)に対する前記流路の孔径(D)の割合(D/L)が0.4以下である
ことを特徴とした重合溶液の揮発成分除去装置。
A volatile component removal apparatus for a polymerization solution according to claim 1 or 2,
The porous member has a ratio (D / L) of a pore diameter (D) of the flow path to a pitch dimension (L) of the flow path of 0.4 or less.
請求項1から請求項3までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記加熱手段で加熱する重合溶液は、ポリオレフィン濃度が90質量%以上のものである
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1- Claim 3, Comprising:
The polymerization solution heated by the heating means has a polyolefin concentration of 90% by mass or more.
請求項1から請求項4までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記加熱手段は、230℃以上250℃以下に加熱する
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1- Claim 4, Comprising:
The said heating means heats to 230 degreeC or more and 250 degrees C or less. The volatile component removal apparatus of the polymerization solution characterized by the above-mentioned.
請求項1から請求項5までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記減圧手段は、0.5kPa以下に減圧する
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1- Claim 5,
The apparatus for removing a volatile component of a polymerization solution is characterized in that the pressure reducing means reduces the pressure to 0.5 kPa or less.
請求項1から請求項6までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記加圧手段は、前記加熱手段と前記減圧手段との間に配設された圧力調整バルブを備えた
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1- Claim 6,
The apparatus for removing a volatile component of a polymerization solution, wherein the pressurizing unit includes a pressure adjusting valve disposed between the heating unit and the depressurizing unit.
請求項7に記載の重合溶液の揮発成分除去装置であって、
前記加圧手段は、前記減圧手段に近接して配設された
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution of Claim 7,
The apparatus for removing a volatile component of a polymerization solution is characterized in that the pressurizing means is disposed close to the decompression means.
請求項1から請求項8までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記重合溶液は、極限粘度が0.5dL/g以上15.0dL/g以下のものである
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1- Claim 8,
The polymerization solution has an intrinsic viscosity of 0.5 dL / g or more and 15.0 dL / g or less.
請求項1から請求項9までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記ポリオレフィンは、アイソタクティックペンタッド分率が20モル%以上60モル%以下のものである
ことを特徴とした重合溶液の揮発成分除去装置。
A volatile component removal apparatus for a polymerization solution according to any one of claims 1 to 9,
The polyolefin has an isotactic pentad fraction of 20 mol% or more and 60 mol% or less.
請求項1から請求項10までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
前記ポリオレフィンは、低分子量低規則性のポリプロピレンである
ことを特徴とした重合溶液の揮発成分除去装置。
A volatile component removal apparatus for a polymerization solution according to any one of claims 1 to 10,
The polyolefin is a low molecular weight low regularity polypropylene, The volatile component removal apparatus of the polymerization solution,
請求項1から請求項11までのいずれか一項に記載の重合溶液の揮発成分除去装置であって、
重合溶液を加圧する前段加圧手段と、この前段加圧手段で加圧された前記重合溶液を加圧下で加熱する前段加熱手段と、前記加圧かつ加熱された前記重合溶液が流入される減圧された減圧空間を有した前段減圧手段とを備え、前記前段減圧手段で減圧された前記重合溶液を前記加圧手段へ供給する前段処理手段を具備した
ことを特徴とした重合溶液の揮発成分除去装置。
It is a volatile component removal apparatus of the polymerization solution as described in any one of Claim 1 to 11,
Pre-pressurizing means for pressurizing the polymerization solution, pre-heating means for heating the polymerization solution pressurized by the pre-pressurizing means under pressure, and reduced pressure at which the pressurized and heated polymerization solution flows A pre-stage depressurization means having a reduced pressure space, and comprising a pre-stage treatment means for supplying the polymerization solution decompressed by the pre-stage depressurization means to the pressurization means. apparatus.
溶媒を用いてオレフィンを重合した重合溶液から揮発成分を除去する重合溶液の揮発成分除去方法であって、
前記重合溶液を加圧下で加熱する加圧・加熱工程と、
この加圧・加熱工程で加圧かつ加熱された重合溶液を、減圧下で多孔部材に設けられた複数の流路を流通させる発泡・破泡工程と、を実施する
ことを特徴とする重合溶液の揮発成分除去方法。
A method for removing volatile components from a polymerization solution, wherein a volatile component is removed from a polymerization solution obtained by polymerizing olefin using a solvent,
A pressurizing / heating step of heating the polymerization solution under pressure;
A polymerization solution that is subjected to a foaming / bubble breaking process in which the polymer solution pressurized and heated in the pressurizing / heating process is circulated through a plurality of channels provided in the porous member under reduced pressure. Volatile component removal method.
溶媒中でオレフィンを重合させる重合手段と、
この重合手段で前記オレフィンを重合した重合溶液から揮発成分を除去する請求項1から請求項12までのいずれか一項に記載の重合溶液の揮発成分除去装置と、
この重合溶液の揮発成分除去装置で揮発成分が除去された重合溶液を造粒する造粒手段と、
を具備したことを特徴とした重合装置。
A polymerization means for polymerizing olefin in a solvent;
The apparatus for removing volatile components of a polymerization solution according to any one of claims 1 to 12, wherein a volatile component is removed from a polymerization solution obtained by polymerizing the olefin by the polymerization means,
A granulating means for granulating the polymerization solution from which the volatile components have been removed by the polymerization solution volatile component removal apparatus;
A polymerization apparatus characterized by comprising:
JP2010196038A 2009-09-04 2010-09-01 Apparatus for removing volatile components from polymerization solution, method thereof, and polymerization apparatus Active JP5486442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196038A JP5486442B2 (en) 2009-09-04 2010-09-01 Apparatus for removing volatile components from polymerization solution, method thereof, and polymerization apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009205246 2009-09-04
JP2009205246 2009-09-04
JP2010196038A JP5486442B2 (en) 2009-09-04 2010-09-01 Apparatus for removing volatile components from polymerization solution, method thereof, and polymerization apparatus

Publications (2)

Publication Number Publication Date
JP2011074373A true JP2011074373A (en) 2011-04-14
JP5486442B2 JP5486442B2 (en) 2014-05-07

Family

ID=44018680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196038A Active JP5486442B2 (en) 2009-09-04 2010-09-01 Apparatus for removing volatile components from polymerization solution, method thereof, and polymerization apparatus

Country Status (1)

Country Link
JP (1) JP5486442B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255907A (en) * 2012-06-14 2013-12-26 Arai Tekkosho:Kk Defoaming method and apparatus therefor
JP2014522884A (en) * 2011-06-17 2014-09-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for cooling and pelletizing semicrystalline polymers
WO2015098690A1 (en) * 2013-12-25 2015-07-02 出光興産株式会社 Polymerization solution volatile component removal device, and polymerization solution volatile component removal method
JP2015124246A (en) * 2013-12-25 2015-07-06 出光興産株式会社 Method for producing hydrogenated petroleum resin
JP2016531165A (en) * 2013-09-19 2016-10-06 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Solution polymerization process with improved energy utilization
EP3155020B1 (en) 2014-06-12 2019-03-27 Dow Global Technologies LLC An improved process for producing pelletized polymer compositions
JP2020059005A (en) * 2018-10-12 2020-04-16 東レエンジニアリング株式会社 Defoaming apparatus and coating applicator
JP2020147714A (en) * 2019-03-15 2020-09-17 株式会社カネカ Method for producing polymer
KR20220033985A (en) 2020-09-10 2022-03-17 주식회사 엘지화학 Method for preraring polyolefin
CN114681934A (en) * 2020-12-25 2022-07-01 西安万德科技有限公司 System for increasing concentration of mixed liquid or evaporating solvent

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323082A (en) * 1996-06-04 1997-12-16 Able Kk Device for removing floating matters and/or foam, defoaming device and reaction device and culture device provided with these
JP2002142947A (en) * 2000-08-28 2002-05-21 Idemitsu Petrochem Co Ltd Table cloth
JP2003530468A (en) * 2000-04-05 2003-10-14 バイエル アクチェンゲゼルシャフト Method and apparatus for removing volatile components from polymeric materials
WO2006051708A1 (en) * 2004-11-11 2006-05-18 Idemitsu Kosan Co., Ltd. Polypropylene resin, fiber, and nonwoven fabric
WO2006064664A1 (en) * 2004-12-16 2006-06-22 Asahi Kasei Chemicals Corporation Industrial evaporation apparatus
JP2007533766A (en) * 2003-07-24 2007-11-22 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for removing volatile materials from highly viscous media
JP2007320973A (en) * 2006-05-30 2007-12-13 Asahi Kasei Chemicals Corp Apparatus and method for producing styrene-based polymer
JP2009503171A (en) * 2005-07-27 2009-01-29 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Polymerization process for producing polyolefins
JP2011057721A (en) * 2009-09-04 2011-03-24 Idemitsu Kosan Co Ltd Method for producing polyolefin, apparatus for producing the same, and polymerization device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323082A (en) * 1996-06-04 1997-12-16 Able Kk Device for removing floating matters and/or foam, defoaming device and reaction device and culture device provided with these
JP2003530468A (en) * 2000-04-05 2003-10-14 バイエル アクチェンゲゼルシャフト Method and apparatus for removing volatile components from polymeric materials
JP2002142947A (en) * 2000-08-28 2002-05-21 Idemitsu Petrochem Co Ltd Table cloth
JP2007533766A (en) * 2003-07-24 2007-11-22 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for removing volatile materials from highly viscous media
WO2006051708A1 (en) * 2004-11-11 2006-05-18 Idemitsu Kosan Co., Ltd. Polypropylene resin, fiber, and nonwoven fabric
WO2006064664A1 (en) * 2004-12-16 2006-06-22 Asahi Kasei Chemicals Corporation Industrial evaporation apparatus
JP2009503171A (en) * 2005-07-27 2009-01-29 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Polymerization process for producing polyolefins
JP2007320973A (en) * 2006-05-30 2007-12-13 Asahi Kasei Chemicals Corp Apparatus and method for producing styrene-based polymer
JP2011057721A (en) * 2009-09-04 2011-03-24 Idemitsu Kosan Co Ltd Method for producing polyolefin, apparatus for producing the same, and polymerization device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522884A (en) * 2011-06-17 2014-09-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for cooling and pelletizing semicrystalline polymers
KR101564159B1 (en) * 2011-06-17 2015-10-28 엑손모빌 케미칼 패턴츠 인코포레이티드 Cooling and pelletizing process for semi-crystalline polymers
US9296837B2 (en) 2011-06-17 2016-03-29 Exxonmobil Chemical Patents Inc. Cooling and pelletizing process for semi-crystalline polymers
JP2013255907A (en) * 2012-06-14 2013-12-26 Arai Tekkosho:Kk Defoaming method and apparatus therefor
JP2016531165A (en) * 2013-09-19 2016-10-06 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Solution polymerization process with improved energy utilization
KR102221880B1 (en) 2013-12-25 2021-03-03 이데미쓰 고산 가부시키가이샤 Method for producing hydrogenated petroleum resin
WO2015098690A1 (en) * 2013-12-25 2015-07-02 出光興産株式会社 Polymerization solution volatile component removal device, and polymerization solution volatile component removal method
JP2015124246A (en) * 2013-12-25 2015-07-06 出光興産株式会社 Method for producing hydrogenated petroleum resin
CN105849136A (en) * 2013-12-25 2016-08-10 出光兴产株式会社 Method for producing hydrogenated petroleum resin
KR20160102995A (en) * 2013-12-25 2016-08-31 이데미쓰 고산 가부시키가이샤 Method for producing hydrogenated petroleum resin
TWI636067B (en) * 2013-12-25 2018-09-21 出光興產股份有限公司 Method for producing hydrogenated petroleum resin
EP3155020B1 (en) 2014-06-12 2019-03-27 Dow Global Technologies LLC An improved process for producing pelletized polymer compositions
US10858463B2 (en) 2014-06-12 2020-12-08 Dow Global Technologies Llc Process for producing pelletized polymer compositions
EP3514183A1 (en) 2014-06-12 2019-07-24 Dow Global Technologies Llc Pelletized polymer compositions
JP2020059005A (en) * 2018-10-12 2020-04-16 東レエンジニアリング株式会社 Defoaming apparatus and coating applicator
WO2020075421A1 (en) * 2018-10-12 2020-04-16 東レエンジニアリング株式会社 Degassing device and coating device
JP7202132B2 (en) 2018-10-12 2023-01-11 東レエンジニアリング株式会社 Deaerator and coating device
JP2020147714A (en) * 2019-03-15 2020-09-17 株式会社カネカ Method for producing polymer
JP7285664B2 (en) 2019-03-15 2023-06-02 株式会社カネカ Polymer production method
KR20220033985A (en) 2020-09-10 2022-03-17 주식회사 엘지화학 Method for preraring polyolefin
CN114681934A (en) * 2020-12-25 2022-07-01 西安万德科技有限公司 System for increasing concentration of mixed liquid or evaporating solvent

Also Published As

Publication number Publication date
JP5486442B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5486442B2 (en) Apparatus for removing volatile components from polymerization solution, method thereof, and polymerization apparatus
CN108602900B (en) Process for recovering hydrocarbons in a solution polymerization process
CN108473601B (en) In-line blending process
KR101144695B1 (en) Method for cooling in distillation and polymerisation process by absorption refrigeration
CN108473605B (en) Method and apparatus for in-line blending of polymers
CN107250176B (en) Process for separating hydrocarbons from polymers
JP6207636B2 (en) Volatile component removal apparatus and process for its use
JP5623043B2 (en) Polyolefin production method, production apparatus thereof, and polymerization apparatus
US7662900B2 (en) Method for producing polyisobutene
CN112292201A (en) Method and system for polymer production
JP2004277702A (en) Method for separating volatile component from polymer
CN111699202A (en) Method for recovering olefin in solution polymerization process
CN212610377U (en) Continuous solution polymerization device based on LCST
JP2011178056A (en) Granulation process of polyolefin, apparatus and polymerizer therefor
CN105451875A (en) Process and apparatus for continuous solution polymerization
CN111295397B (en) Method for recovering olefin in solution polymerization process
US11041030B2 (en) Devolatilization processes
JPS629604B2 (en)
JP3518965B2 (en) Method and apparatus for controlling hydrogen concentration in polymerization reactor
CA3184511A1 (en) Screening assembly and process for screening polymer from an effluent stream at reduced levels of polymer entrainment
EP3843964B1 (en) Method to form solid polymer particles from a polymer melt
EP3299397A1 (en) Method for separating hydrocarbons from polymer
WO1990010653A1 (en) Method or removing volatile substances and apparatus therefor
US20230272126A1 (en) Screening assembly and process for screening polymer from an effluent stream at reduced levels of polymer entrainment
EP1201284A2 (en) Solvent exchange column and a method of use therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

R150 Certificate of patent or registration of utility model

Ref document number: 5486442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150