JP2020051747A - 通信装置のノイズ耐性試験方法 - Google Patents

通信装置のノイズ耐性試験方法 Download PDF

Info

Publication number
JP2020051747A
JP2020051747A JP2018177826A JP2018177826A JP2020051747A JP 2020051747 A JP2020051747 A JP 2020051747A JP 2018177826 A JP2018177826 A JP 2018177826A JP 2018177826 A JP2018177826 A JP 2018177826A JP 2020051747 A JP2020051747 A JP 2020051747A
Authority
JP
Japan
Prior art keywords
signal line
protection element
current
communication device
esd protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018177826A
Other languages
English (en)
Inventor
俊介 勝村
Shunsuke Katsumura
俊介 勝村
野添 研治
Kenji Nozoe
研治 野添
徳永 英晃
Hideaki Tokunaga
英晃 徳永
恵治 小林
Keiji Kobayashi
恵治 小林
井上 竜也
Tatsuya Inoue
竜也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018177826A priority Critical patent/JP2020051747A/ja
Publication of JP2020051747A publication Critical patent/JP2020051747A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】イミュニティ試験における伝送路上の電圧・電流の挙動を高精度に検知する。【解決手段】通信装置(10)は、外部配線(20)が接続されるコネクタ(11)と、通信回路(14)と、コネクタ(11)と通信回路(14)間を接続する信号線(12)と、信号線(12)に挿入されるEMC(Electro Magnetic Compatibility)対策部品(13)と、信号線(12)と所定の固定電位間に接続されるESD(Electro-Static Discharge)保護素子(15)と、を備える。ノイズ耐性試験方法の注入ステップは、通信回路(14)が外部配線(20)を介して別の通信装置(10)の通信回路(14)と通信している状態で、外部配線(20)にノイズ電流を注入する。測定ステップは、ESD保護素子(15)に流れる電流を測定する。【選択図】図1

Description

本発明は、主に車両内の通信に使用される通信装置のノイズ耐性試験方法に関する。
近年、車両の電装化が加速しており、車両内の通信ネットワークで伝送される情報量が増加してきている。車載通信規格としてCAN(Controller Area Network)が広く普及しており、近年では、CANより高速伝送が可能な車載Ethernet(登録商標)も普及してきている。
車載通信では、伝送速度の向上とともに安全性の確保が強く要求される。従って、EMC(Electro Magnetic Compatibility)対策、及びESD(Electro-Static Discharge)対策が重要となる。EMC対策としてEMC対策部品(例えば、コモンモードフィルタ)を信号線に挿入し、ESD対策としてESD保護素子(例えば、バリスタ、ツェナーダイオード)を信号線とグランド間に接続することが一般的である(例えば、特許文献1参照)。
ESD対策が必要な通信規格を用いた通信装置に対するイミュニティ試験において、通信エラーの発生の有無と、擬似的に印加されるノイズによる伝送路上の電圧・電流の挙動との因果関係を検査する方法として、伝送路上に発生する電圧を測定することが多かった(例えば、特許文献1参照)。
特開2017−130917号公報
しかしながらESD保護素子として、バリスタやツェナーダイオードのようにクランプ型の電圧依存性素子を使用する場合、保護動作の開始電圧を超えた領域では、電流の変化に対する電圧の変化が微小になる。従って当該領域では、ESD保護素子の測定電圧から、ESD保護素子に流れる電流を高精度に推定することが困難となる。また、通信エラーが発生するノイズ電流の閾値を高精度に特定することも困難となる。
本発明はこうした状況に鑑みなされたものであり、その目的は、イミュニティ試験における伝送路上の電圧・電流の挙動を高精度に検知する技術を提供することにある。
上記課題を解決するために、本発明のある態様の通信装置のノイズ耐性試験方法は、外部配線が接続されるコネクタと、通信回路と、前記コネクタと前記通信回路間を接続する信号線と、前記信号線に挿入されるEMC対策部品と、前記信号線と所定の固定電位間に接続されるESD保護素子と、を備える通信装置のノイズ耐性試験方法であって、前記通信回路が前記外部配線を介して別の通信装置の通信回路と通信している状態で、前記外部配線にノイズ電流を注入する注入ステップと、前記ESD保護素子に流れる電流を測定する測定ステップと、を有する。
本発明によれば、イミュニティ試験における伝送路上の電圧・電流の挙動を高精度に検知することができる。
図1(a)−(b)は、本発明の実施例1、2に係る通信装置のノイズ耐性試験方法を説明するための図である。 図2(a)−(b)は、本発明の実施例3、4に係る通信装置のノイズ耐性試験方法を説明するための図である。 図3(a)−(b)は、変形例1、2に係る通信装置のノイズ耐性試験方法を説明するための図である。 ESD保護素子のIV特性の一例を示す図である。 ESD保護素子のIV特性の別の例を示す図である。 変形例3に係る通信装置のノイズ耐性試験方法を説明するための図である。 変形例4に係る通信装置のノイズ耐性試験方法を説明するための図である。
図1(a)−(b)は、本発明の実施例1、2に係る通信装置10のノイズ耐性試験方法を説明するための図である。図2(a)−(b)は、本発明の実施例3、4に係る通信装置10のノイズ耐性試験方法を説明するための図である。通信装置10は、例えば、車両内に設置され、当該車両内の他の通信装置10と車載ネットワークを介して通信する装置である。なお、通信装置10は、車両内に設置され、種々のネットワークを介して当該車両外の通信装置と通信するものであってもよい。
通信装置10は、車載通信に使用されるケーブルハーネス20を接続するためのコネクタ11を備える。実施例1−4では、差動伝送方式を使用した車載通信規格が使用される。例えば、車載Ethernet(登録商標)が使用される場合、通常、ケーブルハーネス20としてUTP(Unshielded Twisted Pair)ケーブルが使用される。なお規格によっては、STP(Shielded Twisted Pair)ケーブル又は光ケーブルが使用される場合もある。CANが使用される場合、ケーブルハーネス20としてCANバスケーブルが使用される。CANバスケーブルには通常、STPケーブルが使用される。
通信装置10は通信回路14を含み、コネクタ11と通信回路14間が差動信号線12で接続される。車載Ethernet(登録商標)の場合、通信回路14はPHY(PHYsical layer)トランシーバである。CANの場合、通信回路14はCANトランシーバである。図1(a)−(b)、図2(a)−(b)には示していないが、通信装置10内には通信回路14以外に、CPU、SoC(System-on-a-Chip)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の処理回路が搭載されてもよい。
処理回路は、通信装置10を備える車載機器に応じた各種のアプリケーション処理を実行する。例えば、車載機器がインフォテイメント機器(例えば、カーナビゲーション装置、ディスプレイオーディオ)の場合、処理回路は画像信号処理または音声信号処理を実行し、処理した信号を図示しないディスプレイまたはスピーカに出力する。
例えば、インフォテイメント機器の処理回路は、リアカメラで撮影された画像信号を車載ネットワークを介して受信し、受信した画像信号を伸張・復号してディスプレイに表示させる。近年、車載カメラの高解像度化が進み、高解像度の画像をリアルタイム表示する必要性から、車載ネットワークの高速化が求められている。
また車載機器がクラスタメータやHUD(Head-Up Display)の場合、処理回路は各種センサから受信した車両情報をもとに、メータまたはHUDの表示内容を制御する。近年、電子制御されるセンサが増えてきており、それに伴い車両内のECUの数が増加してきている。その観点からも車載ネットワークの高速化が求められている。
通信回路14は、車載ネットワークからケーブルハーネス20を介して受信した差動電圧を、処理回路で使用されるデジタル信号に変換する。また通信回路14は、処理回路から取得したデジタル信号を差動電圧に変換して、変換した差動電圧をケーブルハーネス20を介して車載ネットワークに送信する。また通信回路14は、ケーブルや通信に関する各種の故障診断を実行可能である。処理回路は、通信回路14により実行される通信処理より上位層の通信処理も実行する。当該処理回路による通信処理はソフトウェア処理であってもよいし、ハードウェア処理であってもよい。
コネクタ11と通信回路14間を接続する差動信号線12に、EMC対策部品としてコモンモードフィルタ13が挿入される。図1(a)−(b)、図2(a)−(b)では、コモンモードフィルタ13としてチョークコイルを使用する例を示している。コモンモードフィルタ13は、差動信号線12上のコモンモードノイズ電流を減衰させ、信号電流を通過させる。
差動信号線12上のコネクタ11とコモンモードフィルタ13間の接続点N1と、所定の固定電位間にESD保護素子としてバリスタ15bが接続される。所定の固定電位は、通信装置10が実装される基板のグランド電位である。なお当該基板のグランドは、最終的に車両のボディアースに接続される。
バリスタ15bには例えば、セラミック部品のチップバリスタを使用することができる。チップバリスタは、印加される電圧により抵抗値が変化する可変素子である。バリスタ電圧を超える電圧が印加されると、チップバリスタの抵抗値が急低下し、電流が流れ出す。チップバリスタは、小型・軽量・低コストであるメリットを有する。
バリスタ15b等のESD保護素子は、所定の電圧条件下で導通することにより、差動信号線12の接続点N1から電流をグランドに引き抜くことができる。従って、高電圧のESD電流/サージ電流が通信回路14に流入することを防止して、通信回路14を保護することができる。
図1(a)−(b)、図2(a)−(b)に示す例では、差動信号線12上のコネクタ11と接続点N1間にハイパスフィルタが設けられている。具体的には、差動信号線12上のコネクタ11と接続点N1間にカップリングコンデンサC1がそれぞれ挿入され、差動信号線12の各信号線とグランドとの間に抵抗R1が接続されている。ハイパスフィルタは、入出力される信号のカットオフ周波数以下の成分(直流成分を含む)を遮断し、カットオフ周波数より高い成分を通過させる。なおハイパスフィルタは省略可能であり、ハイパスフィルタが設けられない構成も可能である。
以上の回路構成の通信装置10に対して、BCI(Bulk Current Injection)試験を実施する。BCI試験は、ラジオ/TV放送、トランシーバ、アマチュア無線、及び携帯電話などの無線電波に対する耐性を試験するイミュニティ試験である。BCI試験は、通信装置10が接続されたケーブルハーネス20に強い電磁界ノイズを注入し、ケーブルハーネス20に強い電磁界ノイズが誘起した際におけるEUT(Equipment Under Test)の誤作動などの不具合を確認する試験である。不具合の原因として、例えば、EMC対策部品の対策効果不足、ESD保護素子の耐量不足などが挙げられる。BCI試験は、ISO11452−4規格や各自動車メーカの規格に準拠した条件下で行われる。
試験対象の通信装置10は、ケーブルハーネス20により他の通信装置10と接続され、両者の間で通信が行われる。通信中の2つの通信装置10内の通信回路14の挙動が外部から監視される。例えば、デバック用のPCに接続されて監視される。送信信号と受信信号が一致していれば、正常な通信が行われていることを意味し、送信信号と受信信号が不一致であれば、通信エラーが発生していることを意味する。
試験対象の通信装置10と他の通信装置10との間で通信が行われている状態において、両者間を接続するケーブルハーネス20に、注入プローブ1(BCIプローブ)を用いてノイズを注入する。例えば、注入プローブ1から、所定周波数のノイズ電流を注入する。注入プローブ1からケーブルハーネス20に注入するノイズの周波数と電流量は可変させることができる。例えば、1MHz〜2GHz、〜200mAのノイズを印加できる注入プローブ1が使用されてもよい。
ケーブルハーネス20にノイズ電流が注入された状態で、バリスタ15bに流れる電流を測定する。図1(a)に示す実施例1では、バリスタ15bが挿入された配線に電流プローブ2をクランプして、バリスタ15bに流れる電流を測定する。電流プローブ2は例えば、オシロスコープに接続され、オシロスコープで電流プローブ2により測定された電流波形が観察される。なお電流プローブ2は、オシロスコープ以外の測定機器に接続されてもよい。
電流プローブ2は、配線を貫通させるための環状コアを持つCT(Current Transformer)型電流センサである。CT型電流センサは、広帯域で平坦な周波数特性を有しており、広範囲の周波数の電流を高精度に測定することができる。従って、時間領域の波形も取得することができる。
図1(b)に示す実施例2では、バリスタ15bが挿入された配線に磁界プローブ3を近づけて、バリスタ15bに流れる電流を測定する。磁界プローブ3はコイルを内蔵しており、測定対象に流れる電流を電磁誘導により測定する。磁界プローブ3は、電流プローブ2のように配線を環状コアに貫通させる必要がなく、基板上のパターン配線に流れる電流もそのまま測定することができる。
なお、電流プローブ2で基板上のパターン配線に流れる電流を測定する場合、基板上のパターン配線を所定位置でカットしてハーネスに繋ぎ、当該ハーネスを環状コアに貫通させる必要がある。磁界プローブ3を使用した場合、実機の基板上のパターン配線に流れる電流も、パターン配線をカットせずに簡単に測定することができる。ただし、磁界プローブ3の周波数特性は、電流プローブ2の周波数特性と比較して広帯域に平坦ではないため、注入ノイズの周波数に応じて、複数種類の磁界プローブ3を使用する必要がある。
図2(a)に示す実施例3では、ケーブルハーネス20に電流プローブ2をクランプして、ケーブルハーネス20に流れる電流を測定する。ケーブルハーネス20にクランプするため、実施例1のように基板上のパターン配線をカットする必要がない。同じケーブルハーネス20には、注入プローブ1からノイズ電流が注入されているため、電流プローブ2により測定される電流値は基本的に、通信信号の電流と注入プローブ1が注入しているノイズ電流の和に一致する。
バリスタ15bのように変曲点を持つESD保護素子では、素子の変曲点電圧に到達すると、素子に流れている電流量が急激に増加する。注入プローブ1から注入しているノイズ電流をリニアに増加させていくと、バリスタ15bの電圧がバリスタ電圧に到達していない状態では、電流プローブ2により測定される電流も、ノイズ電流の増加に対してリニアに上昇していく。バリスタ15bの電圧がバリスタ電圧に到達すると、電流プローブ2により測定される電流波形がリニアに上昇しなくなる。この電流波形が変化した時点を捉えることにより、バリスタ15bが保護動作を開始したタイミングを推定することができる。
図2(b)に示す実施例4では、バリスタ15bが挿入された配線にシャント抵抗Rsが挿入される。シャント抵抗Rsの両端は、差動アンプ4の2入力端子にそれぞれ接続される。差動アンプ4はシャント抵抗Rsの両端電圧を検出する。検出されたシャント抵抗Rsの両端電圧を、シャント抵抗Rsの抵抗値で割ることにより、シャント抵抗Rsに流れる電流を測定することができる。即ち、バリスタ15bに流れる電流を測定することができる。
図2(b)では差動アンプ4が通信装置10内に設けられる例を示しているが、差動アンプ4は通信装置10の外部に設けられ、試験時にのみ使用される構成でもよい。なお差動アンプ4を通信装置10内に設ける場合、通信装置10の使用時にもバリスタ15bに流れる電流を監視することができる。例えば、差動アンプ4の出力電圧をA/D変換器(不図示)でデジタル値に変換し、CPU(不図示)に出力して、CPUでバリスタ15bに流れる電流を監視する。
なおシャント抵抗Rsの代わりにホール素子を使用してもよい。このように、シャント抵抗Rsやホール素子を使用して電流を測定する場合、プローブに繋がる配線がなくなるため、試験システムの構成を簡素化することができる。また、電流プローブや磁界プローブでは測定することが難しい高周波電流の測定にも対応できる。
図3(a)−(b)は、変形例1、2に係る通信装置10のノイズ耐性試験方法を説明するための図である。図3(a)に示す変形例1は、ESD保護素子としてバリスタ15bの代わりに、ツェナーダイオード15cを使用する例である。ツェナーダイオード15cには例えば、TVS(Transient Voltage Suppressor)ダイオードを使用することができる。TVSダイオードは、ツェナー電圧(ブレイクダウン電圧)を超える逆方向電圧が印加されると、トンネル効果によりカソードからアノードに逆方向の電流が流れる。
図3(b)に示す変形例2は、ESD保護素子としてバリスタ15bの代わりに、ESDサプレッサ15aを使用する例である。ESDサプレッサ15aには例えば、内部電極間に空洞を有する高耐量ESDサプレッサを使用することができる。高耐量ESDサプレッサは、トリガ電圧を超える電圧が印加されると、内部電極間にマイクロギャップ放電が発生し、電圧降下を伴いながら電流が流れる。高耐量ESDサプレッサは、静電容量が低いため(一般的に0.1pF以下)、信号の伝送特性に殆ど影響を与えない。高速差動信号であっても、その伝送特性に殆ど影響を与えない。
本明細書では、バリスタ15bのバリスタ電圧、ツェナーダイオード15cのツェナー電圧、及びESDサプレッサ15aのトリガ電圧を、通信回路14を保護する動作を開始する電圧である点に注目して、動作開始電圧と呼ぶ。これらのESD保護素子の動作開始電圧は、ツェナーダイオード15c<バリスタ15b<ESDサプレッサ15aの関係になる。
図4は、ESD保護素子のIV特性の一例を示す図である。横軸が電圧、縦軸が電流を示している。図4に示すIV特性は、ツェナーダイオード15cやバリスタ15bのようなクランプ型のESD保護素子のIV特性の一例である。動作開始電圧より低い電圧領域では電流が殆ど流れず、電圧の変化ΔVに対する電流の変化ΔIは微小になる。一方、動作開始電圧より高い電圧領域では大きな電流が流れる。動作開始電圧より高い電圧領域では、図4に示す特性を持つESD保護素子は、略一定電圧で動作する電圧依存性素子として振る舞う。即ち、動作開始電圧より高い電圧領域では電圧変化は飽和するが、電流変化は飽和せずに増加し続ける。
図4に示す例では、イミュニティ試験において通信回路14が誤動作した(通信エラーが発生した)時点のESD保護素子の電圧・電流のレベルは、ESD保護素子の電圧飽和領域に存在している。電圧飽和領域では、電流の変化ΔIに対する電圧の変化ΔVが微小になる。
従来、ESD保護素子の挙動は、ESD保護素子の両端電圧を測定することにより観察されることが一般的であった。この場合、通信エラーが発生した時点のESD保護素子の測定電圧から、通信エラーが発生した時点の電流レベルを高精度に推定することが難しかった。測定電圧から推定した電流レベルが、通信エラーが実際に発生する閾値と大きく乖離することもあった。
これに対して本実施例では、ESD保護素子の挙動を、ESD保護素子に流れる電流を測定することにより観察している。この場合、通信エラーが発生した時点のESD保護素子の測定電流から、通信エラーが発生した時点の電圧レベルを高精度に推定することができる。従って、通信エラーが実際に発生する閾値となる電流・電圧レベルを高精度に特定することができる。
図5は、ESD保護素子のIV特性の別の例を示す図である。図5に示すIV特性は、ESDサプレッサ15aのようなスイッチ型(クローバ型)のESD保護素子のIV特性の一例である。ESDサプレッサ15aにトリガ電圧を超える電圧が印加されると、ESDサプレッサ15aの内部電極間で放電が発生し、電流が流れ出す。その後、電流値の上昇とともに、ESDサプレッサ15aの両端電圧がクランプ電圧まで低下する。その後は、図4に示したクランプ型のESD保護素子と同様に、略一定電圧で動作する電圧依存性素子として振る舞う。
上述のようにESDサプレッサ15aの動作開始電圧は、ツェナーダイオード15c及びバリスタ15bの動作開始電圧より高くなる。ツェナーダイオード15cのツェナー電圧の一例として約9V、バリスタ15bのバリスタ電圧の一例として約100V、ESDサプレッサ15aのトリガ電圧の一例として約670Vが挙げられる。
動作開始電圧が約670VのESDサプレッサ15aが使用される場合、動作開始電圧までノイズ電圧が上昇しない可能性が高くなる。仮にノイズ電圧が動作開始電圧に到達した場合でも、即座に通信エラーが発生する可能性が高い。ESDサプレッサ15aの電圧がトリガ電圧に到達してからクランプ電圧に低下する間の領域は、電圧の変化ΔVに対する電流の変化ΔIが微小な領域であるため、電流測定を使用するメリットは小さい。従って、電流測定を使用する本実施例に係る方法は、ESD保護素子に、バリスタ15bやツェナーダイオード15cのようなクランプ型の素子を使用した場合に、特に有効なものとなる。
なお、電流測定を使用する本実施例に係る方法を、ESDサプレッサ15aのようなスイッチ型のESD保護素子を使用した通信装置10に使用することを排除するものではない。トリガ電圧が低く、トリガ電圧とクランプ電圧の差が小さい素子であれば、有効な場合もある。
図6は、変形例3に係る通信装置10のノイズ耐性試験方法を説明するための図である。図1(a)−(b)、図2(b)、図3(a)−(b)に示した例では、差動信号線12とグランド間の、ESD保護素子がそれぞれ挿入された2本の配線の内、片方の配線に流れる電流を測定することを想定した。変形例3では、ESD保護素子がそれぞれ挿入された2本の配線の両方の配線に流れる電流を測定し、両方の配線に流れる電流の差を確認する。
差動信号線12とグランド間の2本の配線間のインピーダンスに差がある場合、通信回路14に入力されるコモンモード電圧に差が発生し、差動信号線12間にノイズ電圧が発生する。受信信号のコモンモード成分の一部がディファレンシャルモード成分に変換され、当該ディファレンシャルモード成分が通信回路14に流入すると、通信エラーを引き起こす原因となる。
変形例3では、ESD保護素子がそれぞれ挿入された2本の配線の両方の配線に流れる電流の差を確認する。電流差が発生している場合、2本の配線のインピーダンスに差が発生している可能性がある。その場合、2本の配線の両方の配線の電圧を測定することにより、2本の配線のインピーダンスの差を算出することができる。なお図6では、ESD保護素子としてバリスタ15bを使用する例を示しているが、バリスタ15bの代わりに、ツェナーダイオード15cやESDサプレッサ15aを使用してもよい。
図7は、変形例4に係る通信装置10のノイズ耐性試験方法を説明するための図である。変形例4では、ツェナーダイオード15cが、差動信号線12上のコネクタ11とコモンモードフィルタ13間の接続点N1とグランド電位間ではなく、差動信号線12上のコモンモードフィルタ13と通信回路14間の接続点N2とグランド電位間に接続されている。
動作開始電圧が低いESD保護素子をコモンモードフィルタ13の前段に配置すると、比較的小さな電磁界ノイズが印加されただけでも、通信エラーが発生しやすくなる。そこで変形例4では、ESD保護素子をコモンモードフィルタ13の後段に配置している。
なおESD対策の観点からは、ESD保護素子をコモンモードフィルタ13の前段に配置した方が好ましい。この場合、コネクタ11に印加された静電気エネルギーをコモンモードフィルタ13を通過させずにグランドに逃がすことができる。これにより、静電気エネルギーがコモンモードフィルタ13で反射し、配線パターン間の放電により、周辺回路にエネルギーが漏れ、周辺回路に悪影響を及ぼすことを防止することができる。
以上説明したように本実施例によれば、イミュニティ試験においてESD保護素子に流れる電流を測定することにより、伝送路上の電圧・電流の挙動を高精度に検知することができる。バリスタ15bやツェナーダイオード15cの電圧飽和領域では、電圧変化に対する電流変化が大きくなるため、電圧を測定するより電流を測定する方が、電圧・電流の挙動を検知しやすくなる。またESDサプレッサ15aがブレークダウン(動作開始)したことも検知しやすくなる。
以上、本発明を実施例をもとに説明した。実施例は例示であり、それらの各構成要素または各処理プロセスの組み合わせに、いろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上述の実施例1、2、4では、バリスタ15bが挿入された配線に流れる電流を測定した。この点、差動信号線12上において接続点N1より後段のコモンモードフィルタ13に流れる電流も測定してもよい。バリスタ15bに流れる電流の測定値とコモンモードフィルタ13に流れる電流の測定値の和と、通信信号の電流と注入プローブ1が注入しているノイズ電流の和とを比較することにより、他に電流が漏れている経路が存在しないか確認することができる。
また実施例3では、ケーブルハーネス20にクランプされている電流プローブ2により測定された電流の測定値から、コモンモードフィルタ13に流れる電流の測定値を引くことにより、バリスタ15bに流れる電流の値を推定することができる。
上述の実施例では、ケーブルハーネス20及び通信装置10内の信号線として、差動伝送路を想定した。この点、本実施例に係るノイズ耐性試験方法は、シングル伝送路上の電圧・電流の挙動を測定する場合にも適用可能である。
上述の実施例に係る通信装置10は、車載用途以外にも適用可能である。例えば、FA(Factory Automation)等で使用される産業用Ethernet(登録商標)、データセンタやオフィス等で使用される一般的なEthernet(登録商標)にも適用可能である。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
外部配線(20)が接続されるコネクタ(11)と、
通信回路(14)と、
前記コネクタ(11)と前記通信回路(14)間を接続する信号線(12)と、
前記信号線(12)に挿入されるEMC(Electro Magnetic Compatibility)対策部品(13)と、
前記信号線(12)と所定の固定電位間に接続されるESD(Electro-Static Discharge)保護素子(15)と、を備える通信装置(10)のノイズ耐性試験方法であって、
前記通信回路(14)が前記外部配線(20)を介して別の通信装置(10)の通信回路(14)と通信している状態で、前記外部配線(20)にノイズ電流を注入する注入ステップと、
前記ESD保護素子(15)に流れる電流を測定する測定ステップと、
を有する通信装置(10)のノイズ耐性試験方法。
これによれば、ESD保護素子(15)に流れる電流を測定することにより、伝送路上の電圧・電流の挙動を高精度に検知することができる。
[項目2]
前記測定ステップは、前記信号線(12)と前記固定電位間の、前記ESD保護素子(15)が挿入された配線に電流プローブ(2)をクランプして、前記ESD保護素子(15)に流れる電流を測定する項目1に記載の通信装置(10)のノイズ耐性試験方法。
これによれば、ESD保護素子(15)に流れる電流を高精度に測定することができる。
[項目3]
前記測定ステップは、前記信号線(12)と前記固定電位間の、前記ESD保護素子(15)が挿入された配線に磁界プローブ(3)を近づけて、前記ESD保護素子(15)に流れる電流を測定する項目1に記載の通信装置(10)のノイズ耐性試験方法。
これによれば、ESD保護素子(15)に流れる電流を非接触で測定することができる。
[項目4]
前記信号線(12)と前記固定電位間の、前記ESD保護素子(15)が挿入された配線に抵抗(Rs)がさらに挿入されており、
前記測定ステップは、前記抵抗(Rs)の両端電圧を測定して、前記ESD保護素子(15)に流れる電流を測定する項目1に記載の通信装置(10)のノイズ耐性試験方法。
これによれば、ESD保護素子(15)に流れる電流を、プローブを使用せずに測定することができる。
[項目5]
前記コネクタ(11)と前記通信回路(14)間を接続する信号線(12)は、差動信号線(12)であり、
前記測定ステップは、前記ESD保護素子(15)がそれぞれ挿入された前記差動信号線(12)と前記固定電位間の2本の配線に流れる電流を両方測定する項目1から4のいずれか1項に記載の通信装置(10)のノイズ耐性試験方法。
これによれば、差動信号線(12)と固定電位間の2本の配線間のインピーダンスが揃っているか確認することができる。
[項目6]
外部配線(20)が接続されるコネクタ(11)と、
通信回路(14)と、
前記コネクタ(11)と前記通信回路(14)間を接続する信号線(12)と、
前記信号線(12)に挿入されるEMC(Electro Magnetic Compatibility)対策部品(13)と、
前記信号線(12)と所定の固定電位間に接続されるESD(Electro-Static Discharge)保護素子(15)と、を備える通信装置(10)のノイズ耐性試験方法であって、
前記通信回路(14)が前記外部配線(20)を介して別の通信装置(10)の通信回路(14)と通信している状態で、前記外部配線(20)にノイズ電流を注入する注入ステップと、
前記外部配線(20)に電流プローブ(2)をクランプして、前記外部配線(20)に流れる電流を測定し、前記ESD保護素子(15)が保護動作を開始するタイミングを特定する測定ステップと、
を有する通信装置(10)のノイズ耐性試験方法。
これによれば、ESD保護素子(15)が保護動作を開始するタイミングを特定することができる。
[項目7]
前記ESD保護素子(15)は、前記信号線(12)上の前記コネクタ(11)と前記EMC対策部品(13)間の接続点と、所定の固定電位間に接続される項目1から6のいずれか1項に記載の通信装置(10)のノイズ耐性試験方法。
これによれば、静電気エネルギーがEMC対策部品(13)に流入することを防止することができる。
1 注入プローブ、 2 電流プローブ、 3 磁界プローブ、 4 差動アンプ、 10 通信装置、 11 コネクタ、 12 差動信号線、 13 コモンモードフィルタ、 14 通信回路、 15a ESDサプレッサ、 15b バリスタ、 15c ツェナーダイオード、 20 ケーブルハーネス、 C1 カップリングコンデンサ、 R1 抵抗、 Rs シャント抵抗。

Claims (7)

  1. 外部配線が接続されるコネクタと、
    通信回路と、
    前記コネクタと前記通信回路間を接続する信号線と、
    前記信号線に挿入されるEMC(Electro Magnetic Compatibility)対策部品と、
    前記信号線と所定の固定電位間に接続されるESD(Electro-Static Discharge)保護素子と、を備える通信装置のノイズ耐性試験方法であって、
    前記通信回路が前記外部配線を介して別の通信装置の通信回路と通信している状態で、前記外部配線にノイズ電流を注入する注入ステップと、
    前記ESD保護素子に流れる電流を測定する測定ステップと、
    を有する通信装置のノイズ耐性試験方法。
  2. 前記測定ステップは、前記信号線と前記固定電位間の、前記ESD保護素子が挿入された配線に電流プローブをクランプして、前記ESD保護素子に流れる電流を測定する請求項1に記載の通信装置のノイズ耐性試験方法。
  3. 前記測定ステップは、前記信号線と前記固定電位間の、前記ESD保護素子が挿入された配線に磁界プローブを近づけて、前記ESD保護素子に流れる電流を測定する請求項1に記載の通信装置のノイズ耐性試験方法。
  4. 前記信号線と前記固定電位間の、前記ESD保護素子が挿入された配線に抵抗がさらに挿入されており、
    前記測定ステップは、前記抵抗の両端電圧を測定して、前記ESD保護素子に流れる電流を測定する請求項1に記載の通信装置のノイズ耐性試験方法。
  5. 前記コネクタと前記通信回路間を接続する信号線は、差動信号線であり、
    前記測定ステップは、前記ESD保護素子がそれぞれ挿入された前記差動信号線と前記固定電位間の2本の配線に流れる電流を両方測定する請求項1から4のいずれか1項に記載の通信装置のノイズ耐性試験方法。
  6. 外部配線が接続されるコネクタと、
    通信回路と、
    前記コネクタと前記通信回路間を接続する信号線と、
    前記信号線に挿入されるEMC(Electro Magnetic Compatibility)対策部品と、
    前記信号線と所定の固定電位間に接続されるESD(Electro-Static Discharge)保護素子と、を備える通信装置のノイズ耐性試験方法であって、
    前記通信回路が前記外部配線を介して別の通信装置の通信回路と通信している状態で、前記外部配線にノイズ電流を注入する注入ステップと、
    前記外部配線に電流プローブをクランプして、前記外部配線に流れる電流を測定し、前記ESD保護素子が保護動作を開始するタイミングを特定する測定ステップと、
    を有する通信装置のノイズ耐性試験方法。
  7. 前記ESD保護素子は、前記信号線上の前記コネクタと前記EMC対策部品間の接続点と、所定の固定電位間に接続される請求項1から6のいずれか1項に記載の通信装置のノイズ耐性試験方法。
JP2018177826A 2018-09-21 2018-09-21 通信装置のノイズ耐性試験方法 Pending JP2020051747A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018177826A JP2020051747A (ja) 2018-09-21 2018-09-21 通信装置のノイズ耐性試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018177826A JP2020051747A (ja) 2018-09-21 2018-09-21 通信装置のノイズ耐性試験方法

Publications (1)

Publication Number Publication Date
JP2020051747A true JP2020051747A (ja) 2020-04-02

Family

ID=69996633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018177826A Pending JP2020051747A (ja) 2018-09-21 2018-09-21 通信装置のノイズ耐性試験方法

Country Status (1)

Country Link
JP (1) JP2020051747A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487546A (zh) * 2020-04-23 2020-08-04 重庆长安汽车股份有限公司 一种电磁干扰模拟测试系统及方法
CN114184871A (zh) * 2021-12-18 2022-03-15 北京亿华通科技股份有限公司 一种燃料电池散热系统的emc性能测试系统及其测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178990A (ja) * 1994-12-27 1996-07-12 Toshiba Corp 避雷器診断装置
JP2004273362A (ja) * 2003-03-11 2004-09-30 Hitachi Kokusai Electric Inc 耐サージ素子の寿命判定方法及び寿命判定回路
JP2014083932A (ja) * 2012-10-23 2014-05-12 Sumitomo Wiring Syst Ltd Can通信装置
JP2017130917A (ja) * 2015-12-24 2017-07-27 株式会社Soken 差動通信装置、測定方法
JP2018128349A (ja) * 2017-02-08 2018-08-16 株式会社デンソー イミュニティ試験装置
JP7012254B2 (ja) * 2018-05-25 2022-01-28 パナソニックIpマネジメント株式会社 通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178990A (ja) * 1994-12-27 1996-07-12 Toshiba Corp 避雷器診断装置
JP2004273362A (ja) * 2003-03-11 2004-09-30 Hitachi Kokusai Electric Inc 耐サージ素子の寿命判定方法及び寿命判定回路
JP2014083932A (ja) * 2012-10-23 2014-05-12 Sumitomo Wiring Syst Ltd Can通信装置
JP2017130917A (ja) * 2015-12-24 2017-07-27 株式会社Soken 差動通信装置、測定方法
JP2018128349A (ja) * 2017-02-08 2018-08-16 株式会社デンソー イミュニティ試験装置
JP7012254B2 (ja) * 2018-05-25 2022-01-28 パナソニックIpマネジメント株式会社 通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ISO 11452-4 THIRD EDITION", JPN6022012891, 1 April 2005 (2005-04-01), ISSN: 0004742183 *
KOERBER, BERND, "IEEE 100BASE-T1 EMC TEST SPECIFICATION FOR ESD SUPPRESSION DEVICES VERSION 1.0", JPN6022012888, 29 October 2017 (2017-10-29), ISSN: 0004886677 *
野添研治;勝村俊介;徳永英晃;小林恵治;井上竜也: "「車載LANのESD対策」", 2017 第27回RCJ信頼性シンポジウム発表論文集, JPN6022012889, November 2017 (2017-11-01), pages 27 - 30, ISSN: 0004742182 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487546A (zh) * 2020-04-23 2020-08-04 重庆长安汽车股份有限公司 一种电磁干扰模拟测试系统及方法
CN114184871A (zh) * 2021-12-18 2022-03-15 北京亿华通科技股份有限公司 一种燃料电池散热系统的emc性能测试系统及其测试方法
CN114184871B (zh) * 2021-12-18 2024-04-12 北京亿华通科技股份有限公司 一种燃料电池散热系统的emc性能测试系统及其测试方法

Similar Documents

Publication Publication Date Title
KR20170086601A (ko) 이더넷 PoDL 시스템에서 접지 분리 오류 검출 기법
US9383405B2 (en) Transient voltage suppression protection circuit including built in testing
US20080212246A1 (en) Systems and Methods for Detecting Shorts in Electrical Distribution Systems
JP2020051747A (ja) 通信装置のノイズ耐性試験方法
JP2017130917A (ja) 差動通信装置、測定方法
CN102474476B (zh) 差动信号传输线路、ic封装件以及它们的试验方法
US20220191634A1 (en) Method for testing an audio signal system and aircraft comprising an audio signal system
WO2022244246A1 (ja) Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法
JP7012254B2 (ja) 通信装置
US11374402B2 (en) Protection circuit for oscilloscope measurement channel
EP3495829B1 (en) Voltage suppressor test circuit and method of testing a voltage suppressor
Besse et al. ESD system level characterization and modeling methods applied to a LIN transceiver
US10451655B2 (en) Communication system, harness, and detection apparatus
CN109698997B (zh) 用于附件和阻抗检测的系统和方法
Hilger et al. Modeling of automotive bus transceivers and ESD protection circuits for immunity simulations of extended networks
CN113391141B (zh) 噪声测试装置及测试方法
US10707673B2 (en) Protection circuit for oscilloscope measurement channel
Park et al. System-level ESD noise induced by secondary discharges at voltage suppressor devices in a mobile product
JP2014083932A (ja) Can通信装置
CN114270200A (zh) 用于获取通过机动车的车载网络引起的电磁干扰的方法和组件
Kreitlow et al. Robustness of Ethernet in complex aircraft environment
JP4853395B2 (ja) 半導体試験装置のインタフェース回路
US10884044B1 (en) Method of detecting unauthorized devices installed on electrical interfaces of vehicles
Lee et al. Analysis of the CAN communication error when applying ESD on the CAN communication harness
Ungru et al. Functional analysis of an integrated communication interface during ESD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004