JP2020049473A - Semipermeable membrane support body - Google Patents
Semipermeable membrane support body Download PDFInfo
- Publication number
- JP2020049473A JP2020049473A JP2018184233A JP2018184233A JP2020049473A JP 2020049473 A JP2020049473 A JP 2020049473A JP 2018184233 A JP2018184233 A JP 2018184233A JP 2018184233 A JP2018184233 A JP 2018184233A JP 2020049473 A JP2020049473 A JP 2020049473A
- Authority
- JP
- Japan
- Prior art keywords
- semipermeable membrane
- membrane support
- roll
- curl
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Paper (AREA)
Abstract
Description
本発明は、半透膜支持体に関する。 The present invention relates to a semipermeable membrane support.
海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面に半透膜が設けられた「濾過膜」の形態で使用されている。また、工業的には、ロール等の長尺状の半透膜支持体に連続的に半透膜が形成される。 BACKGROUND ART Semipermeable membranes are widely used in the fields of desalination of seawater, water purifiers, food concentration, wastewater treatment, production of ultrapure water for medical treatment represented by hemofiltration, semiconductor cleaning, and the like. The semipermeable membrane is made of a synthetic resin such as a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, and a polyamide resin. However, since the semipermeable membrane alone has poor mechanical strength, it is used in the form of a "filtration membrane" in which a semipermeable membrane is provided on one surface of a semipermeable membrane support made of a fiber base material such as a nonwoven fabric or a woven fabric. I have. Further, industrially, a semipermeable membrane is continuously formed on a long semipermeable membrane support such as a roll.
半透膜形成工程において、半透膜支持体に半透膜液を塗布した際に、幅方向に湾曲し、その後ロール搬送により凝固・洗浄槽で処理する際に不均一な半透膜が製造される問題があった。この解決手段として、抄紙流れ方向と幅方向の引張強度比を2:1〜1:1とすることが開示されている(例えば、特許文献1参照)。 In the semipermeable membrane forming process, when the semipermeable membrane liquid is applied to the semipermeable membrane support, it is curved in the width direction, and then, when processed in a coagulation / washing tank by roll transport, an uneven semipermeable membrane is produced. There was a problem. As a solution to this problem, it has been disclosed that the tensile strength ratio between the papermaking flow direction and the width direction is 2: 1 to 1: 1 (for example, see Patent Document 1).
また、半透膜支持体に半透膜液を塗布した後に、半透膜硬化時の収縮によって、濾過膜が幅方向に湾曲し、エレメントへの加工の際に、濾過膜がラインをうまく通過することができない等の不具合が生じる問題があった。この解決手段として、1層構造であり一種類のポリエステル主体繊維からなる不織布の中層部位の有機合成繊維の熱融解の程度を、塗工面部位及び非塗工面部位の有機合成繊維の熱融解の程度より低くすることが開示されている(例えば、特許文献2参照)。 Also, after coating the semipermeable membrane liquid on the semipermeable membrane support, the filter membrane is bent in the width direction due to shrinkage during curing of the semipermeable membrane, and when the element is processed, the filter membrane passes through the line well. There has been a problem that such troubles as not being possible occur. As a solution to this, the degree of thermal fusion of the organic synthetic fibers in the middle layer portion of the nonwoven fabric having a one-layer structure and made of one type of polyester-based fiber is determined by the degree of thermal fusion of the organic synthetic fibers in the coated surface portion and the non-coated surface portion. It is disclosed that the distance is made lower (for example, see Patent Document 2).
近年は、エレメントに組み込める濾過膜の面積を大きくし、エレメント当たりの透過水量を高めるべく、半透膜支持体の厚みを薄くすることが求められている。特許文献1及び特許文献2の技術は、半透膜支持体の厚みを薄くしていくと、半透膜形成工程で幅方向の湾曲が大きくなる場合があり、エレメント加工時に不具合が生じてしまう場合があった。 In recent years, it has been required to reduce the thickness of the semipermeable membrane support in order to increase the area of the filtration membrane that can be incorporated into the element and increase the amount of permeated water per element. In the techniques of Patent Literature 1 and Patent Literature 2, when the thickness of the semipermeable membrane support is reduced, the curvature in the width direction may increase in the semipermeable membrane forming step, and a problem occurs during element processing. There was a case.
特許文献3には、半透膜支持体の坪量を軽くして薄くした場合でも、半透膜の収縮による幅方向の湾曲を抑制して、エレメント加工時における不具合を低減する手段として、引張強度の縦横比が異なる複数の不織布シートが積層され、加熱加圧処理された状態において、半透膜との接着面を幅方向に、中央凸に湾曲させてなる半透膜支持体が記載されている。しかし、本発明の発明者が検討したところ、該半透膜支持体は幅方向にカールしているため、ロール搬送の際にロールに掛かるテンションを調整しても、該半透膜支持体の両端の湾曲を抑えることができず、半透膜液を均一に塗布することができない場合があった。 Patent Literature 3 discloses that, even when the basis weight of the semipermeable membrane support is lightened and reduced, bending in the width direction due to shrinkage of the semipermeable membrane is suppressed, and tension is reduced as a means for reducing defects during element processing. A plurality of nonwoven fabric sheets having different strength aspect ratios are laminated, and in a state of being subjected to heat and pressure treatment, a semipermeable membrane support in which a bonding surface with a semipermeable membrane is curved in a width direction and a convex center is described. ing. However, the inventors of the present invention have studied that, since the semipermeable membrane support is curled in the width direction, even if the tension applied to the roll during the roll conveyance is adjusted, In some cases, the curvature at both ends cannot be suppressed, and the semipermeable membrane liquid cannot be applied uniformly.
本発明の課題は、半透膜形成工程やエレメント加工工程において、ロール搬送時の濾過膜の幅方向の湾曲による不具合を解消した半透膜支持体を提供することにある。 It is an object of the present invention to provide a semipermeable membrane support in which a problem due to a widthwise curvature of a filtration membrane during roll conveyance in a semipermeable membrane forming step or an element processing step is eliminated.
上記課題を解決するため、鋭意検討した結果、下記発明を見出した。 As a result of intensive studies to solve the above problems, the following invention was found.
主体合成繊維とバインダー合成繊維とを少なくとも含有してなる不織布からなり、流れ方向(MD方向)カールが+0.5mm以上+50mm以下であることを特徴とする半透膜支持体。 A semipermeable membrane support comprising a nonwoven fabric containing at least a main synthetic fiber and a binder synthetic fiber, and having a curl in a flow direction (MD direction) of +0.5 mm or more and +50 mm or less.
本発明の半透膜支持体を用いることにより、半透膜形成工程やエレメント加工において、ロール搬送時の幅方向の湾曲による不具合を解消した濾過膜を提供することができる。 By using the semipermeable membrane support of the present invention, it is possible to provide a filtration membrane in which a problem due to a curvature in a width direction at the time of roll conveyance is eliminated in a semipermeable membrane forming step or element processing.
本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で使用することができる。半透膜としては、ポリアミド系樹脂、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の合成樹脂で構成された半透膜が挙げられる。半透膜支持体の片面(塗布面)に、半透膜の原料となる合成樹脂を溶かした半透膜液が塗布され、凝固浴中でゲル化された後に水洗されて、微多孔膜が形成され、半透膜支持体の塗布面に半透膜が設けられた複合体の形態(濾過膜)となる。なお、半透膜支持体の半透膜が設けられる面を「塗布面」と称し、逆面を「非塗布面」と称する。 The semipermeable membrane support of the present invention can be used in the fields of seawater desalination, water purifiers, food concentration, wastewater treatment, medical treatment represented by blood filtration, production of ultrapure water for cleaning semiconductors, and the like. it can. Examples of the semipermeable membrane include semipermeable membranes made of a synthetic resin such as a polyamide resin, a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, and a polyolefin resin. On one surface (coated surface) of the semipermeable membrane support, a semipermeable membrane liquid in which a synthetic resin as a raw material of the semipermeable membrane is dissolved is applied, gelled in a coagulation bath, and then washed with water to form a microporous membrane. It is formed into a composite (filtration membrane) in which a semipermeable membrane is provided on the application surface of the semipermeable membrane support. The surface of the semipermeable membrane support on which the semipermeable membrane is provided is referred to as “coated surface”, and the opposite surface is referred to as “non-coated surface”.
図1は、カールがなくフラットな半透膜支持体の塗布面に半透膜液が塗布され、凝固浴中で硬化、収縮したことにより、濾過膜が幅方向に湾曲し、半透膜を内側にして幅方向(CD方向)に筒状に丸まった写真である。 FIG. 1 shows that the semipermeable membrane liquid was applied to the flat semipermeable membrane support without curl and cured and shrunk in the coagulation bath, whereby the filtration membrane was curved in the width direction and the semipermeable membrane was removed. It is a photograph that is rolled into a tube shape in the width direction (CD direction) on the inside.
図1のように幅方向に筒状に丸まってしまうと、ロール搬送でロールに掛かるテンションを調整しても、両端の湾曲を抑えきれず、次工程で不具合が起こりやすい。 As shown in FIG. 1, if the sheet is rolled into a tubular shape in the width direction, even if the tension applied to the roll by the roll conveyance is adjusted, the curvature at both ends cannot be suppressed, and a problem is likely to occur in the next step.
図2は、塗布面を内側にして流れ方向に湾曲した半透膜支持体の塗布面に半透膜液が塗布され、凝固浴中で硬化、収縮したことにより、半透膜支持体の流れ方向のカール成分(MD方向カール成分)と半透膜の幅方向のカール成分(CD方向カール成分)のバランスから、濾過膜が半透膜を内側にしてネジレ方向に筒状に丸まった写真である。 FIG. 2 shows the flow of the semipermeable membrane support as a result of the semipermeable membrane liquid being applied to the application surface of the semipermeable membrane support curved in the flow direction with the application surface inside, and cured and contracted in a coagulation bath. From the balance between the curl component in the MD direction (curl component in the MD direction) and the curl component in the width direction of the semi-permeable membrane (curl component in the CD direction), the filter membrane is rolled into a cylindrical shape in the twisting direction with the semi-permeable membrane inside. is there.
図2のように、濾過膜のカールにMD方向カール成分が入り、濾過膜がネジレカール又はMD方向カールとなることによって、ロール搬送でのテンションコントロールにより、濾過膜の流れ方向の両端の湾曲を抑えることが容易になり、次工程での不具合が解消される。例えば、濾過膜の上に別の膜を塗布する工程で、両端まで均一な膜を塗布することができ、また、エレメント加工工程で濾過膜がラインをスムーズに通過できるため、歩留まりや作業効率が上がる。 As shown in FIG. 2, the curl of the filtration membrane contains a curl component in the MD direction, and the filtration membrane is twisted or curled in the MD direction. By controlling the tension in roll conveyance, the curving of both ends in the flow direction of the filtration membrane is suppressed. This facilitates the operation and eliminates problems in the next step. For example, in the process of applying another membrane on the filtration membrane, a uniform membrane can be applied to both ends, and in the element processing step, the filtration membrane can smoothly pass through the line, so that yield and work efficiency are reduced. Go up.
ロール搬送でテンションコントロールにより、濾過膜の両端の湾曲を抑えることが容易となるのは、濾過膜のカールにMD方向カール成分が入っているためである。半透膜支持体のMD方向カールが+0.5mm以上+50mm以下である該半透膜支持体の塗布面に半透膜を形成することによって、濾過膜のカールにMD方向カール成分を付与することができる。半透膜支持体のMD方向カールは、より好ましくは+5mm以上+50mm以下であり、更に好ましくは+10mm以上+50mm以下である。MD方向カールが+0.5mmより低い場合は、濾過膜のカールにMD方向カール成分が入らないため、ロール搬送でテンションコントロールを行っても、半透膜の両端の湾曲が残ってしまい、半透膜形成工程やエレメント加工工程において不具合が生じてしまう場合がある。逆に、MD方向カールが+50mmを超えた場合は、半透膜支持体の通紙の際に半透膜支持体にシワが入るなどの通紙性に問題が生じる場合や、膜が均一に塗れない場合がある。 The reason why it is easy to suppress the curvature of both ends of the filtration membrane by the tension control in the roll conveyance is that the curl of the filtration membrane contains a curl component in the MD direction. Providing a curling component in the MD direction to the curling of the filtration membrane by forming a semipermeable membrane on the coating surface of the semipermeable membrane support in which the MD curl of the semipermeable membrane support is +0.5 mm or more and +50 mm or less. Can be. The MD direction curl of the semipermeable membrane support is more preferably +5 mm or more and +50 mm or less, and still more preferably +10 mm or more and +50 mm or less. When the curl in the MD direction is lower than +0.5 mm, the curl of the filtration membrane does not include the curl component in the MD direction. Problems may occur in the film forming process and the element processing process. Conversely, if the MD direction curl exceeds +50 mm, there may be a problem in paper passing properties such as wrinkling of the semi-permeable membrane support when passing through the semi-permeable membrane support, or the film may not be uniform. May not be painted.
本発明でいう半透膜支持体の「MD方向カール」とは、幅方向20cm×流れ方向20cmのサンプルを4枚採取し、半透膜支持体の塗布面を上にして平らな台の上に置き、図3及び図4に示すように、半透膜支持体の流れ方向と垂直となる両辺の中央部(測定点1)の高さ(台との距離)を0.5mm単位で測定した平均値である。本測定における平均値の符号は、測定点1が塗布面側に持ち上がった場合をプラス(+)とし、サンプルの中心点が測定点1より高く持ち上がった場合をマイナス(−)とする。なお、サンプルの中心点とは幅方向20cm×流れ方向20cmのサンプルの2つの対角線の交点をいう。また、平均値は、小数点以下第2位を四捨五入し、少数点以下第1位までとする。 The “MD curl” of the semipermeable membrane support referred to in the present invention means that four samples of 20 cm in the width direction × 20 cm in the flow direction are sampled, and the coated surface of the semipermeable membrane support is placed on a flat table. And as shown in FIGS. 3 and 4, the height (distance to the table) of the central part (measurement point 1) of both sides perpendicular to the flow direction of the semipermeable membrane support is measured in 0.5 mm units. It is the average value. The sign of the average value in this measurement is plus (+) when the measurement point 1 rises to the coating surface side, and minus (-) when the center point of the sample rises higher than the measurement point 1. The center point of the sample refers to the intersection of two diagonal lines of the sample having a width of 20 cm and a flow direction of 20 cm. The average value is rounded to the first decimal place and rounded to the first decimal place.
半透膜支持体のMD方向カールを+0.5mm以上+50mm以下にする方法として、
(I)主体合成繊維とバインダー合成繊維の配合比率の調整
(II)熱ロールによる熱圧加工条件の調整
(III)後処理の実施
等が挙げられる。(II)として、より具体的には、
(II−1)熱ロール、樹脂ロール、コットンロールの組み合わせの最適化
(II−2)熱ロールによる熱圧加工時の熱ロール温度
(II−3)ニップ前の半透膜支持体原紙と熱ロールとの接触長さ
(II−4)熱圧加工時の加工速度
をコントロールすることによって達成できる。
As a method of making the MD direction curl of the semipermeable membrane support +0.5 mm or more and +50 mm or less,
(I) Adjustment of the blending ratio of the main synthetic fiber and the binder synthetic fiber (II) Adjustment of hot-press processing conditions by a hot roll (III) Implementation of post-treatment and the like. (II) More specifically,
(II-1) Optimization of combination of hot roll, resin roll, and cotton roll (II-2) Hot roll temperature during hot pressing with hot roll (II-3) Semi-permeable membrane support base paper and heat before nip Roll contact length (II-4) This can be achieved by controlling the processing speed during hot pressing.
本発明において、主体合成繊維は、半透膜支持体の骨格を形成する繊維である。主体合成繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール(polychlal)系、フェノール系等の繊維が挙げられるが、耐熱性の高いポリエステル系の繊維が好ましい。また、半合成繊維のアセテートやトリアセテート等のセルロース誘導体、又はプロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維、天然物由来のポリ乳酸、ポリ酪酸、ポリ琥珀酸繊維等は性能を阻害しない範囲で含有しても良い。 In the present invention, the main synthetic fiber is a fiber that forms the skeleton of the semipermeable membrane support. Examples of the main synthetic fibers include polyolefin-based, polyamide-based, polyacryl-based, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, benzoate-based, polychloral-based, and phenol-based fibers. Polyester fibers having high heat resistance are preferred. In addition, cellulose derivatives such as acetate and triacetate of semi-synthetic fibers, or promixes, and regenerated fibers such as rayon, cupra, lyocell fibers, and polylactic acid, polybutyric acid, and polysuccinic acid fibers derived from natural products do not impair the performance. May be contained.
主体合成繊維の繊維径は、特に限定しないが、好ましくは5〜20μmであり、より好ましくは5〜15μm、更に好ましくは5〜13μmである。5μm未満の場合には、半透膜液が半透膜支持体に浸透し難くなって、半透膜と半透膜支持体の接着性が悪くなる場合や、ピンホールが発生しやすくなる場合がある。主体合成繊維の繊維径が20μmを超えると、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。また、半透膜支持体の表面に、主体合成繊維が立ちやすくなり、半透膜を貫通して半透膜の性能が低下する場合がある。 Although the fiber diameter of the main synthetic fiber is not particularly limited, it is preferably 5 to 20 μm, more preferably 5 to 15 μm, and still more preferably 5 to 13 μm. When the thickness is less than 5 μm, the semipermeable membrane liquid becomes difficult to penetrate the semipermeable membrane support, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support is deteriorated, or a pinhole is easily generated. There is. When the fiber diameter of the main synthetic fiber exceeds 20 μm, the amount of the semipermeable membrane liquid that has slipped through the non-coated surface increases, and the membrane performance may decrease. In addition, the main synthetic fibers tend to stand on the surface of the semipermeable membrane support, and may penetrate the semipermeable membrane to deteriorate the performance of the semipermeable membrane.
主体合成繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、更に好ましくは4〜7mmである。主体合成繊維の断面形状は円形が好ましく、湿式抄造工程における水への分散前の繊維における断面アスペクト比(繊維断面長径/繊維断面短径)は、1.0〜1.2未満であることが好ましい。繊維断面アスペクト比が1.2以上になると、繊維分散性が低下する場合や、繊維の絡まりやもつれの発生によって、不織布の均一性や塗布面の平滑性に悪影響を及ぼす場合がある。ただし、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性のために、繊維分散性等の他の特性を阻害しない範囲内で含有できる。 The fiber length of the main synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and still more preferably 4 to 7 mm. The cross-sectional shape of the main synthetic fiber is preferably circular, and the cross-sectional aspect ratio (fiber cross-sectional major axis / fiber cross-sectional minor axis) of the fiber before dispersion in water in the wet papermaking process is preferably less than 1.0 to less than 1.2. preferable. When the fiber cross-sectional aspect ratio is 1.2 or more, the fiber dispersibility may decrease, or the entanglement or entanglement of the fibers may occur, which may adversely affect the uniformity of the nonwoven fabric and the smoothness of the coated surface. However, fibers having irregular cross-sections such as T-type, Y-type, and triangular can also be contained within a range that does not hinder other properties such as fiber dispersibility for preventing strike-through and surface smoothness.
主体合成繊維のアスペクト比(繊維長/繊維径)は、200〜2000であることが好ましく、より好ましくは200〜1500であり、更に好ましくは280〜1000である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する場合がある。一方、2000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生によって、半透膜支持体の均一性や塗布面の平滑性に悪影響を及ぼす場合がある。 The aspect ratio (fiber length / fiber diameter) of the main synthetic fiber is preferably from 200 to 2,000, more preferably from 200 to 1500, and still more preferably from 280 to 1,000. When the aspect ratio is less than 200, the dispersibility of the fiber is good, but when the fiber falls off from the papermaking wire during papermaking, or when the fiber is stabbed into the papermaking wire and the peelability from the wire deteriorates. is there. On the other hand, when it exceeds 2,000, although it contributes to the formation of a three-dimensional network of fibers, the entanglement and entanglement of the fibers may adversely affect the uniformity of the semipermeable membrane support and the smoothness of the coated surface. .
本発明の半透膜支持体は、バインダー合成繊維を含有している。バインダー合成繊維の軟化点又は溶融温度(融点)以上まで温度を上げる工程を、半透膜支持体の製造方法に組み入れることで、バインダー合成繊維が半透膜支持体の強度を向上させることができる。この温度を上げる工程において、主体合成繊維は軟化又は溶融しにくく、断面形状が変化することはあるものの、繊維としての形状が損なわれることがなく、主体繊維として、半透膜支持体の骨格を形成する。例えば、不織布を湿式抄造法で製造した後の乾燥工程や熱圧加工の際に、バインダー合成繊維を軟化又は溶融させることができる。 The semipermeable membrane support of the present invention contains a binder synthetic fiber. By incorporating the step of raising the temperature up to or above the softening point or melting temperature (melting point) of the binder synthetic fiber into the method for producing a semipermeable membrane support, the binder synthetic fiber can improve the strength of the semipermeable membrane support. . In the step of raising the temperature, the main synthetic fiber is not easily softened or melted, and the cross-sectional shape may be changed, but the shape of the fiber is not impaired, and the main fiber is formed of the skeleton of the semipermeable membrane support. Form. For example, the binder synthetic fiber can be softened or melted during the drying step or hot pressing after the nonwoven fabric is manufactured by the wet papermaking method.
バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維等の複合繊維、未延伸繊維等が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステルの未延伸繊維を好ましく用いることができる。 Examples of binder synthetic fibers include core-sheath fibers (core-shell type), side-by-side fibers (side-by-side type), composite fibers such as radial split fibers, and undrawn fibers. Since the composite fiber does not easily form a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), polyester, etc. Undrawn fiber. In addition, a single fiber (all-fused type) composed only of a low melting point resin such as polyethylene or polypropylene, or a hot water-soluble binder such as a polyvinyl alcohol type easily forms a film in a drying step of a semipermeable membrane support. However, it can be used as long as the properties are not impaired. In the present invention, a combination of a high-melting polyester (core) and a low-melting polyester (sheath) and unstretched polyester fibers can be preferably used.
バインダー合成繊維の繊維径は特に限定されないが、好ましくは5〜15μmであり、より好ましくは6〜14μmであり、更に好ましくは7〜13μmである。5μm未満の場合には、半透膜液が半透膜支持体に浸透し難くなって、半透膜と半透膜支持体の接着性が悪くなる場合や、ピンホールが発生しやすくなる場合がある。バインダー合成繊維の繊維径が15μmを超えると、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。バインダー合成繊維の軟化温度又は溶融温度以上まで温度を上げる工程では、半透膜支持体表面の平滑性を向上させることができ、該工程では加圧が伴っているとより効果的である。 The fiber diameter of the binder synthetic fiber is not particularly limited, but is preferably 5 to 15 μm, more preferably 6 to 14 μm, and still more preferably 7 to 13 μm. When the thickness is less than 5 μm, the semipermeable membrane liquid becomes difficult to penetrate the semipermeable membrane support, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support is deteriorated, or a pinhole is easily generated. There is. If the fiber diameter of the binder synthetic fiber exceeds 15 μm, the amount of the semipermeable membrane liquid that has slipped through the non-coated surface may increase, and the membrane performance may decrease. In the step of raising the temperature to a temperature equal to or higher than the softening temperature or the melting temperature of the binder synthetic fiber, the smoothness of the surface of the semipermeable membrane support can be improved. In this step, it is more effective if pressure is applied.
バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、更に好ましくは4〜7mmである。バインダー合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。 The fiber length of the binder synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and still more preferably 4 to 7 mm. The cross-sectional shape of the binder synthetic fiber is preferably circular. However, fibers having irregular cross-sections such as T-type, Y-type, and triangular are also used for preventing strike-through, smoothness of the coated surface, and adhesion between the non-coated surfaces. Can be contained within a range that does not impair the characteristics of
バインダー合成繊維のアスペクト比(繊維長/繊維径)は、200〜2000であることが好ましく、より好ましくは200〜1500であり、更に好ましくは300〜1000である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する恐れや、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する恐れがある。一方、2000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる恐れや、もつれの発生によって、不織布の均一性や塗布面の平滑性に悪影響を及ぼす恐れがある。 The aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably from 200 to 2,000, more preferably from 200 to 1500, and still more preferably from 300 to 1,000. When the aspect ratio is less than 200, the dispersibility of the fiber becomes good, but the fiber may fall off from the papermaking wire during papermaking, or the fiber may be stabbed into the papermaking wire and the peelability from the wire may deteriorate. is there. On the other hand, when it exceeds 2,000, although the binder synthetic fiber contributes to the formation of the three-dimensional network, the fiber may be entangled or entangled, which may adversely affect the uniformity of the nonwoven fabric and the smoothness of the coated surface. .
本発明の半透膜支持体に係わる不織布に対するバインダー合成繊維の含有量は、不織布を構成する全繊維に対して、20〜40質量%が好ましく、23〜37質量%がより好ましく、25〜35質量%が更に好ましい。バインダー合成繊維の含有量が20質量%未満の場合、強度不足により破れる恐れがある。また、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。40質量%を超えた場合、熱圧加工時にフィルム化が進み、気泡が半透膜支持体の非塗布面側にスムーズに抜けることができず、ピンホールが発生しやすくなる場合や、通液性が低下する恐れがある。半透膜支持体が2層以上の多層構造の不織布からなる場合は、非塗布面側の層に含有するバインダー合成繊維の比率を塗布面側の層に含有するバインダー合成繊維の比率より高くすることが好ましい。 The content of the binder synthetic fiber in the nonwoven fabric related to the semipermeable membrane support of the present invention is preferably 20 to 40% by mass, more preferably 23 to 37% by mass, and more preferably 25 to 35% by mass based on all the fibers constituting the nonwoven fabric. % Is more preferred. If the content of the binder synthetic fiber is less than 20% by mass, the fiber may be broken due to insufficient strength. In addition, the amount of the semipermeable membrane liquid that has slipped through the non-coated surface may increase, and the membrane performance may decrease. If the content exceeds 40% by mass, film formation proceeds during hot-pressing, and air bubbles cannot be smoothly released to the non-coated surface side of the semipermeable membrane support, and pinholes are likely to be generated. There is a possibility that the property is reduced. When the semipermeable membrane support is composed of a nonwoven fabric having a multilayer structure of two or more layers, the ratio of the binder synthetic fibers contained in the layer on the non-coated side is higher than the ratio of the binder synthetic fibers contained in the layer on the coated side. Is preferred.
本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体は、湿式抄造法によって半透膜支持体原紙が作製された後に、この半透膜支持体原紙が熱ロールによって熱圧加工される。 The method for producing the semipermeable membrane support of the present invention will be described. In the semipermeable membrane support of the present invention, after a semipermeable membrane support base paper is produced by a wet papermaking method, the semipermeable membrane support base paper is hot-pressed by a hot roll.
湿式抄造法では、まず、少なくとも主体合成繊維とバインダー合成繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調製されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。 In the wet papermaking method, first, at least the main synthetic fiber and the binder synthetic fiber are uniformly dispersed in water, and then, through a process such as a screen (removal of foreign matters, lumps, etc.), the final fiber concentration is 0.01 to 0.1. The slurry adjusted to 50% by mass is made up by a paper machine to obtain wet paper. Chemicals such as dispersants, defoamers, hydrophilic agents, antistatic agents, polymer thickeners, release agents, antibacterial agents, and bactericides may be added during the process to make the dispersibility of the fibers uniform. is there.
抄紙方式としては、例えば、長網、円網、傾斜ワイヤー式等の抄紙方式を用いることができる。これらの抄紙方式の群から選ばれる少なくとも一つの抄紙方式を有する抄紙機、これらの抄紙方式の群から選ばれる同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用することができる。また、2層以上の多層構造の不織布を製造する場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方のシートを形成した後に、該シートの上に繊維を分散したスラリーを流延する方法等を用いることができる。 As the papermaking method, for example, a papermaking method such as a long net, a circular net, or an inclined wire type can be used. Use a paper machine having at least one paper machine selected from the group of these paper machines, or a combination paper machine in which two or more paper machines of the same or different types selected from the group of paper machines are installed online. can do. In the case of producing a nonwoven fabric having a multilayer structure of two or more layers, a laminating method of laminating wet papers made by each paper machine, or forming one sheet, and then forming a sheet on the sheet A method of casting a slurry in which fibers are dispersed can be used.
抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、半透膜支持体原紙を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押し付けて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、105〜170℃がより好ましく、110〜160℃が更に好ましい。湿紙の熱ロールへの押し付け圧力は、300〜1000N/cmが好ましく、300〜800N/cmがより好ましい。 The wet paper produced by the paper machine is dried by a Yankee dryer, an air dryer, a cylinder dryer, a suction drum dryer, an infrared dryer, or the like to obtain a semipermeable membrane support base paper. When the wet paper is dried, the wet paper is brought into close contact with a hot roll such as a Yankee dryer and dried under hot pressure, whereby the smoothness of the adhered surface is improved. Hot-press drying refers to pressing wet paper against a hot roll with a touch roll or the like to dry. The surface temperature of the heat roll is preferably from 100 to 180 ° C, more preferably from 105 to 170 ° C, even more preferably from 110 to 160 ° C. The pressure at which the wet paper web is pressed against the hot roll is preferably from 300 to 1000 N / cm, more preferably from 300 to 800 N / cm.
次に、熱ロールによる熱圧加工について説明するが、本発明は下記のものに特定されない。熱圧加工装置(カレンダー装置)のロール間をニップしながら、半透膜支持体原紙を通過させて熱圧加工を行う。 Next, a description will be given of hot-press working by a hot roll, but the present invention is not limited to the following. While the nip between the rolls of the hot-press processing device (calender device) is nipped, the hot-press processing is performed by passing through the semi-permeable membrane support base paper.
ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。熱ロールによる熱圧加工は2回以上行うことも可能であり、その場合、直列に配置された2組以上の上記のロール組み合わせを使用しても良いし、1組のロール組み合わせを用いて、2回以上加工しても良い。必要に応じて、半透膜支持体原紙の表裏を逆にしても良い。ロールの組み合わせでは、2本の金属ロールの組み合わせと金属ロールとコットンロールの組み合わせが好ましい。 Examples of the combination of the rolls include two metal rolls, a metal roll and a resin roll, and a metal roll and a cotton roll. Hot-pressing with a hot roll can be performed two or more times, in which case, two or more sets of the above rolls arranged in series may be used, or one set of rolls may be used. It may be processed twice or more. If necessary, the front and back of the semipermeable membrane support base paper may be reversed. In the combination of rolls, a combination of two metal rolls and a combination of a metal roll and a cotton roll are preferable.
ニップ前の半透膜支持体原紙と熱ロールとの接触長さは、好ましくは0〜80cmであり、より好ましくは0〜70cmである。80cmを超える場合、気泡が半透膜支持体の非塗布面側にスムーズに抜けることができず、ピンホールが発生しやすくなる場合がある。半透膜支持体の製造時に、該半透膜支持体原紙に熱圧加工処理を2回以上行い、1回目に加熱ロールと接する面を塗布面とする場合には、2回目の加熱ロールとの接触長さを1回目の加熱ロールの接触長さより10cm〜20cm長くすることが好ましい。 The contact length between the semi-permeable membrane support base paper before the nip and the hot roll is preferably 0 to 80 cm, more preferably 0 to 70 cm. If it exceeds 80 cm, bubbles may not be able to smoothly escape to the non-coated surface side of the semipermeable membrane support, and pinholes may be easily generated. When manufacturing the semipermeable membrane support, the semipermeable membrane support base paper is subjected to hot-press processing at least twice, and when the first surface to be in contact with the heating roll is the coating surface, the second heating roll is used. Is preferably 10 to 20 cm longer than the contact length of the first heating roll.
熱ロールの表面温度は、好ましくは150〜250℃であり、半透膜支持体を構成する繊維の種類によって適宜調整する。水処理膜用途として主に使用されるポリエステル系繊維においては、熱ロールの表面温度は200〜250℃が好ましく、205〜245℃がより好ましい。150℃未満の場合、不織布の表面に、主体合成繊維が立ちやすくなり、半透膜を貫通して半透膜の性能が低下する場合や、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。250℃を超えた場合、気泡が半透膜支持体の非塗布面側にスムーズに抜けることができずピンホールが発生しやすくなる場合がある。半透膜支持体の製造時に、該半透膜支持体原紙に熱圧加工処理を2回目以上行い、1回目に加熱ロールと接する面を塗布面とする場合には、2回目の加熱ロールの表面温度を1回目の加熱ロールの表面温度より10〜20℃高くすることが好ましい。 The surface temperature of the heat roll is preferably 150 to 250 ° C., and is appropriately adjusted depending on the type of the fibers constituting the semipermeable membrane support. In polyester fibers mainly used for water treatment membrane applications, the surface temperature of the hot roll is preferably from 200 to 250C, more preferably from 205 to 245C. When the temperature is lower than 150 ° C., the main synthetic fibers tend to stand on the surface of the nonwoven fabric, and when the performance of the semipermeable membrane is reduced by penetrating the semipermeable membrane, or the amount of the semipermeable membrane liquid that has penetrated the uncoated surface. And the film performance may decrease. If the temperature exceeds 250 ° C., bubbles may not be able to smoothly escape to the non-coated surface side of the semipermeable membrane support, and pinholes may be easily generated. When manufacturing the semipermeable membrane support, the semi-permeable membrane support base paper is subjected to the heat-pressure processing for the second time or more, and when the surface in contact with the heating roll for the first time is used as the coating surface, the second heating roll is used. It is preferable that the surface temperature be higher by 10 to 20 ° C. than the surface temperature of the first heating roll.
ロールのニップ圧力は、好ましくは500〜1200N/cmであり、より好ましくは600〜1100N/cmである。500N/cm未満の場合、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。1200N/cmを超えた場合、ピンホールが発生しやすくなる場合がある。 The nip pressure of the roll is preferably 500 to 1200 N / cm, more preferably 600 to 1100 N / cm. If it is less than 500 N / cm, the amount of the semipermeable membrane liquid that has penetrated through the non-coated surface may increase, and the membrane performance may decrease. If it exceeds 1200 N / cm, pinholes may easily occur.
加工速度は、好ましくは10〜150m/minであり、より好ましくは20〜130m/minである。10m/min未満の場合、ピンホールが発生しやすくなる場合がある。150m/minを超えた場合、非塗布面に裏抜けした半透膜液の量が多くなり、膜性能が低下する場合がある。半透膜支持体の製造時に、該半透膜支持体原紙に熱圧加工処理を2回目以上行い、1回目に加熱ロールと接する面を塗布面とする場合には、2回目の加工速度を1回目の加工速度より5〜30m/min遅くすることが好ましい。 The processing speed is preferably 10 to 150 m / min, and more preferably 20 to 130 m / min. If it is less than 10 m / min, pinholes may easily occur. If it exceeds 150 m / min, the amount of the semipermeable membrane liquid that strikes through the non-coated surface increases, and the membrane performance may decrease. When manufacturing the semipermeable membrane support, the semi-permeable membrane support base paper is subjected to the hot-press processing for the second time or more, and when the surface in contact with the heating roll for the first time is used as the application surface, the second processing speed is set. It is preferable that the processing speed is lower by 5 to 30 m / min than the first processing speed.
半透膜支持体の坪量は、特に限定しないが、20〜150g/m2が好ましく、より好ましくは50〜100g/m2である。20g/m2未満の場合は、十分な引張強度が得られない場合がある。また、150g/m2を超えた場合、通液抵抗が高くなる場合や厚みが増してエレメント内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , and more preferably 50 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Further, when it exceeds 150 g / m 2 , the liquid permeation resistance may be increased, or the thickness may be increased, so that a predetermined amount of the semipermeable membrane may not be stored in the element.
また、半透膜支持体の密度は、0.5〜1.0g/cm3であることが好ましく、より好ましくは0.6〜0.95g/cm3である。半透膜支持体の密度が0.5g/cm3未満の場合は、厚みが厚くなるため、エレメントに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、1.0g/cm3を超える場合は、通液性が低くなることがあり、半透膜の寿命が短くなる場合がある。 Further, the density of the semipermeable membrane support is preferably 0.5 to 1.0 g / cm 3 , and more preferably 0.6 to 0.95 g / cm 3 . When the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness becomes large, so that the area of the semipermeable membrane that can be incorporated in the element becomes small, and as a result, the life of the semipermeable membrane becomes short. Sometimes. On the other hand, if it exceeds 1.0 g / cm 3 , the liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.
半透膜支持体の厚みは、50〜150μmであることが好ましく、60〜130μmであることがより好ましく、70〜120μmであることが更に好ましい。半透膜支持体の厚みが150μmを超えると、エレメントに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜の寿命が短くなる場合がある。 The thickness of the semipermeable membrane support is preferably from 50 to 150 μm, more preferably from 60 to 130 μm, even more preferably from 70 to 120 μm. When the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the element becomes small, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, if it is less than 50 μm, sufficient tensile strength may not be obtained, or liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.
後処理により半透膜支持体のMD方向カールを+0.5mm以上+50mm以下に調整しても良い。後処理として、デカーラー処理や塗布面を内側にしてMD方向に巻いて巻き癖を付ける方法等が挙げられる。 The post-treatment may adjust the curl in the MD direction of the semipermeable membrane support to at least +0.5 mm and at most +50 mm. Examples of the post-treatment include a decurler treatment and a method of winding in the MD direction with the application surface inside to form a curl.
デカーラー装置としては、ブレード方式、ロール方式、小径ロール方式等の機構によるものが知られており、本発明においていずれも使用することができるが、その機構により一長一短があり、状況により選択して用いることが好ましい。ブレード方式は2本のロール間を一定テンションで走行するウェブにブレード状(又は角状)のデカーラーを押し付けるものであり、カール矯正効果は高いが、固定体を押し付けるため、静電気が発生し、摩擦でウェブに損傷を与える恐れや、過剰に作動させるとウェブを破断するおそれがある。ロール方式はブレードの代わりに回転ロール(φ40〜80mm)を複数回にわたって押し付けるものであり、ロールが回転体であるため、ブレード方式と比べ傷の発生は激減するが、設置スペースが大きい割にはカール矯正効果が小さいのが現実である。また、小径ロール方式はブレード方式とロール方式の長所wお併せ持つべく開発されたデカーラーであり、極めて小径の回転ロール(φ12〜20mm)を押し付け、小径ロールの圧接力と回転支軸ロールのスピードの調整によりカールを矯正するものである。回転ロールは高硬度の回転体であるため、ウェブの損傷は殆ど発生せず、小径ロールは一定ピッチに配置されたバックアップベアリングにて支持され、なおかつ微小なクリアランスで配置された永久磁石にて小径ロールの撓みを防ぐよう工夫されている。本発明において用いられるデカーラー装置としては、前記機構によるものに限られることはないが、デカーラー処理の効果、半透膜支持体の損傷を考慮すると、小径ロール方式を使用することが好ましい。 As the decurler device, a device using a mechanism such as a blade system, a roll system, or a small-diameter roll system is known, and any of them can be used in the present invention. Is preferred. The blade method presses a blade-shaped (or square) decurler against a web running between two rolls at a constant tension, and has a high curl straightening effect. However, because the fixed body is pressed, static electricity is generated, causing friction. And the web may be broken if operated excessively. In the roll method, a rotating roll (φ40 to 80 mm) is pressed a plurality of times instead of a blade. Since the roll is a rotating body, the occurrence of scratches is greatly reduced compared to the blade method, but the installation space is large. The reality is that the curl correction effect is small. The small-diameter roll system is a decurler developed to have the advantages w of the blade system and the roll system. The small-diameter roll system presses an extremely small-diameter rotating roll (φ12 to 20 mm) to reduce the pressing force of the small-diameter roll and the speed of the rotating spindle roll. The curl is corrected by adjustment. Since the rotating roll is a high-hardness rotating body, there is almost no damage to the web, and the small-diameter roll is supported by backup bearings arranged at a constant pitch, and has a small diameter by permanent magnets arranged with minute clearance. It is devised to prevent the roll from bending. The decurler device used in the present invention is not limited to the above-described mechanism, but it is preferable to use a small-diameter roll system in consideration of the effect of the decurler treatment and damage to the semipermeable membrane support.
塗布面を内側にしてMD方向に巻いて巻き癖を付ける方法では、半透膜支持体を巻き付ける紙管の外径は、30mm以上200mm以下であることが好ましく、より好ましくは35mm以上105mm以下、更に好ましくは40mm以上70mm以下である。外径が30mm未満の場合には、半透膜支持体のMD方向カールが50mm超となりやすく、半透膜支持体の通紙の際に半透膜支持体にシワが入るなどの通紙性に問題が生じる場合や、膜が均一に塗れない場合がある。紙管の外径が200mmを超えると、MD方向カールを付与できない場合がある。 In the method of winding in the MD direction with the coating surface inside, the outer diameter of the paper tube around which the semipermeable membrane support is wound is preferably 30 mm or more and 200 mm or less, more preferably 35 mm or more and 105 mm or less, More preferably, it is 40 mm or more and 70 mm or less. When the outer diameter is less than 30 mm, the semi-permeable membrane support tends to have a curl in the MD direction of more than 50 mm, and the semi-permeable membrane support is wrinkled when paper is passed. In some cases, or the film may not be coated uniformly. If the outer diameter of the paper tube exceeds 200 mm, curling in the MD direction may not be provided.
紙管に巻いて保管する時間は、12時間以上が好ましく、より好ましくは48時間以上、更に好ましくは72時間以上である。保管時間の上限は特に設けないが、製造効率の点から、336時間以下が好ましい。保管時間短縮のため、巻取りを30℃以上の雰囲気下で加温しても良い。加温する温度は30℃以上であることが好ましく、より好ましくは45℃以上であり、更に好ましくは55℃以上である。温度が高すぎると半透膜支持体がブロッキングを起こしてしまう場合があることから、70℃以下が好ましい。また、紙管の外径が105mmを超える場合には、巻き癖を付けるために加温が必要な場合がある。 The time for winding and storing around a paper tube is preferably 12 hours or more, more preferably 48 hours or more, and further preferably 72 hours or more. Although there is no particular upper limit for the storage time, it is preferably 336 hours or less from the viewpoint of production efficiency. To shorten the storage time, the winding may be heated in an atmosphere of 30 ° C. or higher. The heating temperature is preferably 30 ° C. or higher, more preferably 45 ° C. or higher, and further preferably 55 ° C. or higher. If the temperature is too high, the semipermeable membrane support may cause blocking. Further, when the outer diameter of the paper tube exceeds 105 mm, heating may be necessary in order to form a curl.
本発明を実施例により更に詳細に説明する。以下、特にことわりのないかぎり、実施例に記載される部及び比率は質量を基準とする。 The present invention will be described in more detail by way of examples. Hereinafter, unless otherwise specified, parts and ratios described in Examples are based on mass.
<延伸PET繊維>
ポリエチレンテレフタレートからなる、繊維径7.4μm、繊維長5mmの延伸ポリエステル繊維を延伸PET繊維とした。
<Stretched PET fiber>
A drawn polyester fiber made of polyethylene terephthalate and having a fiber diameter of 7.4 μm and a fiber length of 5 mm was used as a drawn PET fiber.
<未延伸PET繊維>
ポリエチレンテレフタレートからなる、繊維径11.8μm、繊維長5mmの未延伸ポリエステル繊維(融点:260℃)を未延伸PET繊維とした。
<Unstretched PET fiber>
An unstretched PET fiber made of polyethylene terephthalate and having a fiber diameter of 11.8 μm and a fiber length of 5 mm (melting point: 260 ° C.) was used.
実施例1〜12及び比較例1〜6の半透膜支持体を、以下の条件で製造した。 The semipermeable membrane supports of Examples 1 to 12 and Comparative Examples 1 to 6 were produced under the following conditions.
(原紙の製造)
2m3の分散タンクに水を投入後、表1に示す原料配合比率(%)で配合し、分散濃度0.2質量%で5分間分散して、傾斜/円網複合式抄紙機を用い、傾斜ワイヤー上で第一表面層の湿紙を形成し、円網ワイヤー上で第二表面層の湿紙を形成して、両湿紙を乾燥させる前に積層させた後に、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、表1に示す坪量を目標にして、幅1000mmの実施例1〜12及び比較例1〜6の半透膜支持体原紙を得た。
(Manufacture of base paper)
After adding water to a 2 m 3 dispersion tank, the mixture was blended at the raw material blending ratio (%) shown in Table 1, dispersed at a dispersion concentration of 0.2% by mass for 5 minutes, and using a combined gradient / circular mesh paper machine, After forming the wet paper of the first surface layer on the inclined wire, forming the wet paper of the second surface layer on the wire mesh wire, and laminating both wet papers before drying, the surface temperature is 130 ° C. The resultant was dried with a Yankee dryer under a high pressure to obtain semipermeable membrane support base papers of Examples 1 to 12 and Comparative Examples 1 to 6 each having a width of 1000 mm with a target weight as shown in Table 1.
(熱圧加工処理1)
実施例1〜10及び比較例1〜6の半透膜支持体原紙を、第1ステージの加熱金属ロール(JR)と樹脂ロール(弾)の組み合わせのカレンダー装置を用いて、表2に示すニップ前の加熱金属ロールと半透膜支持体原紙の接触長さ(ニップ前JR接触長さ)、加熱金属ロール表面温度(JR温度)、加工速度の条件で熱圧加工し、連続して、半透膜支持体原紙の第1ステージの加熱金属ロールに接した面が第2ステージの樹脂ロールに接するように、第2ステージの樹脂ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、表2に示すニップ前の加熱金属ロールと半透膜支持体原紙の接触長さ(ニップ前JR接触長さ)、加熱金属ロール表面温度(JR温度)、加工速度の条件で熱圧加工を行い、半透膜支持体を得た。第1ステージの処理で加熱金属ロールに当たった面を塗布面とし、第2ステージの処理で金属ロールに当たった面を非塗布面とし、塗布面の層を表2に示す。熱圧加工処理後の半透膜支持体は、表2に示す外径の紙管に、表2に示す面を内側にして、流れ方向(MD方向)に巻き取った。
(Heat and pressure processing 1)
The semi-permeable membrane support base papers of Examples 1 to 10 and Comparative Examples 1 to 6 were nipped as shown in Table 2 using a calendar device of a combination of a first stage heated metal roll (JR) and a resin roll (bullet). Hot-press processing under the conditions of the contact length between the heated metal roll before and the base material of the semipermeable membrane support (the JR contact length before the nip), the surface temperature of the heated metal roll (JR temperature), and the processing speed; Using a calendar device of a combination of the second stage resin roll and the heated metal roll, the surface of the permeable membrane support base paper was brought into contact with the second stage resin roll so that the surface in contact with the first stage heated metal roll was in contact with the second stage resin roll. The hot-press processing is performed under the conditions of the contact length between the heated metal roll before the nip and the base material of the semi-permeable membrane support (the JR contact length before the nip), the surface temperature of the heated metal roll (JR temperature), and the processing speed. A permeable support was obtained. The surface that hit the heated metal roll in the first stage treatment was taken as the coating surface, the surface that hit the metal roll in the second stage treatment was taken as the non-coating surface, and the layers of the coating surface are shown in Table 2. The semi-permeable membrane support after the hot-press processing was wound in a flow direction (MD direction) on a paper tube having an outer diameter shown in Table 2 with the surface shown in Table 2 inside.
(熱圧加工処理2)
実施例11の半透膜支持体原紙を、第1ステージの加熱金属ロール(JR)とコットンロール(コットン)の組み合わせのカレンダー装置を用いて、表2に示すニップ前の加熱金属ロールと半透膜支持体原紙の接触長さ(ニップ前JR接触長さ)、加熱金属ロール表面温度(JR温度)、加工速度の条件で熱圧加工し、連続して、半透膜支持体原紙の第1ステージの加熱金属ロールに接した面が第2ステージのコットンロールに接するように、第2ステージのコットンロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、表2に示すニップ前の加熱金属ロールと半透膜支持体原紙の接触長さ(ニップ前JR接触長さ)、加熱金属ロール表面温度(JR温度)、加工速度の条件で熱圧加工を行い、半透膜支持体を得た。なお、第1ステージの処理で加熱金属ロールに当たった面を塗布面とし、第2ステージの処理で金属ロールに当たった面を非塗布面とし、その結果を表2に示す。熱圧加工処理後の半透膜支持体は、表2に示す外径の紙管に、表2に示す面を内側にして、流れ方向(MD方向)に巻き取った。
(Heat and pressure processing 2)
The semi-permeable membrane support base paper of Example 11 was mixed with the heated metal roll before the nip shown in Table 2 using a calendar device of a combination of a first-stage heated metal roll (JR) and a cotton roll (cotton). Heat-press processing is performed under the conditions of the contact length of the membrane support base paper (JR contact length before nip), the surface temperature of the heated metal roll (JR temperature), and the processing speed. Using a calendar device of a combination of the second stage cotton roll and the heated metal roll, the heated metal roll before the nip shown in Table 2 so that the surface of the stage in contact with the heated metal roll is in contact with the second stage cotton roll. The semi-permeable membrane support was subjected to hot-press working under the conditions of a contact length (JR contact length before nip), a heated metal roll surface temperature (JR temperature), and a processing speed to obtain a semi-permeable membrane support. The surface that hit the heated metal roll in the first stage treatment was set as the coated surface, and the surface that hit the metal roll in the second stage treatment was set as the non-coated surface. The results are shown in Table 2. The semi-permeable membrane support after the hot-press processing was wound in a flow direction (MD direction) on a paper tube having an outer diameter shown in Table 2 with the surface shown in Table 2 inside.
(熱圧加工処理3)
実施例12の半透膜支持体原紙を、第1ステージの加熱金属ロール(JR)と加熱金属ロール(JR)の組み合わせのカレンダー装置を用いて、表2に示すニップ前の加熱金属ロールと半透膜支持体原紙の接触長さ(ニップ前JR接触長さ)、両加熱金属ロール表面温度(JR温度)、加工速度の条件で熱圧加工し、半透膜支持体を得た。なお、第1ステージの処理でニップ前に加熱金属ロールと接触していた面を塗布面、反対面を非塗布面とし、その結果を表2に示した。熱圧加工処理後の半透膜支持体は、表2に示す外径の紙管に、表2に示す面を内側にして、流れ方向(MD方向)に巻き取った。
(Heat and pressure processing 3)
The semi-permeable membrane support base paper of Example 12 was mixed with the heated metal roll before nip shown in Table 2 by using a calendar device of a combination of a heated metal roll (JR) of the first stage and a heated metal roll (JR). The semi-permeable membrane support was obtained by hot-pressing under the conditions of the contact length of the permeable support base paper (JR contact length before nip), the surface temperature of both heated metal rolls (JR temperature), and the processing speed. The surface that had been in contact with the heated metal roll before the nip in the first stage treatment was the coated surface, and the opposite surface was the non-coated surface. The results are shown in Table 2. The semi-permeable membrane support after the hot-press processing was wound in a flow direction (MD direction) on a paper tube having an outer diameter shown in Table 2 with the surface shown in Table 2 inside.
(後処理1)
実施例6〜9の半透膜支持体を、熱圧加工処理後に得られた巻取りのまま、表3に示す温度雰囲気下で、表3に示す時間、保管した。
(Post-processing 1)
The semipermeable membrane supports of Examples 6 to 9 were stored in the temperature atmosphere shown in Table 3 for the time shown in Table 3 as they were obtained after the hot-press processing.
(後処理2)
実施例10及び比較例6の半透膜支持体を、熱圧加工処理後に得られた巻取りから表3に示す外径の紙管に、塗布面を内側にして流れ方向(MD方向)に巻いて、表3に示す温度雰囲気下で、表3に示す時間、保管した。なお、25℃雰囲気下での後処理は、加温せず室温(r.t.)保管した場合を想定したものである。
(Post-processing 2)
The semipermeable membrane supports of Example 10 and Comparative Example 6 were rolled into a paper tube having an outer diameter shown in Table 3 from the winding obtained after the hot-press processing in the flow direction (MD direction) with the application surface inside. It was wound and stored under the temperature atmosphere shown in Table 3 for the time shown in Table 3. Note that the post-treatment in an atmosphere of 25 ° C. is based on the assumption of storage at room temperature (rt) without heating.
(後処理3)
比較例5の半透膜支持体を、熱圧加工処理後に得られた巻取りから表3に示す外径の紙管に、非塗布面を内側にして流れ方向(MD方向)に巻いて、表3に示す温度雰囲気下で、表3に示す時間、保管した。なお、25℃雰囲気下での後処理は、加温せず室温保管した場合を想定したものである。
(Post-processing 3)
The semi-permeable membrane support of Comparative Example 5 was wound in a flow direction (MD direction) with the non-coated surface inward from the winding obtained after the hot-press processing, on a paper tube having an outer diameter shown in Table 3. It was stored under the temperature atmosphere shown in Table 3 for the time shown in Table 3. Note that the post-treatment in an atmosphere of 25 ° C. is based on the assumption that storage is performed at room temperature without heating.
実施例及び比較例で得られた半透膜支持体に対して、以下の測定及び評価を行い、結果を表4に示した。 The following measurements and evaluations were performed on the semipermeable membrane supports obtained in Examples and Comparative Examples, and the results are shown in Table 4.
測定1(半透膜支持体のMD方向カール)
幅方向20cm×流れ方向20cmのサイズにカットした半透膜支持体を、塗布面を上にして平らな台の上に置き、図3及び図4に示すように、半透膜支持体の流れ方向と垂直となる両辺の中央部(測定点1)の高さ(台との距離)を0.5mm単位で測定し、プラス(+)方向の高さとした。半透膜支持体シートは、半透膜支持体の両端5cmを除いて幅方向に均等に4枚採取し、4枚の平均値を「半透膜支持体のMD方向カール」とした。半透膜支持体シートの塗布面を上にして測定した際の半透膜支持体のMD方向カールが0.0mmであった場合は、半透膜支持体シートの非塗布面を上にして平らな台の上に置き、半透膜支持体シートの流れ方向と垂直となる両辺の中央部の高さを0.5mm単位で測定し、マイナス(−)方向の高さとし、4枚の平均値を「半透膜支持体のMD方向カール」とした。なお、平均値は小数点以下第2位を四捨五入し、少数点以下第1位まで記録した。結果を表4に示した。
Measurement 1 (MD direction curl of semipermeable membrane support)
The semi-permeable membrane support cut into a size of 20 cm in the width direction × 20 cm in the flow direction is placed on a flat table with the application side up, and the flow of the semi-permeable membrane support as shown in FIGS. The height (distance to the table) of the central part (measurement point 1) of both sides perpendicular to the direction was measured in units of 0.5 mm, and defined as the height in the plus (+) direction. Four semipermeable membrane support sheets were equally sampled in the width direction except for both ends 5 cm of the semipermeable membrane support, and the average value of the four sheets was defined as “MD direction curl of the semipermeable membrane support”. When the curl in the MD direction of the semipermeable membrane support is 0.0 mm when measured with the coated surface of the semipermeable membrane support sheet facing upward, the non-coated surface of the semipermeable membrane support sheet is oriented upward. Place on a flat table, measure the height at the center of both sides perpendicular to the flow direction of the semipermeable membrane support sheet in units of 0.5 mm, and set the height in the minus (-) direction as the average of the four sheets. The value was defined as "MD direction curl of the semipermeable membrane support". The average value was rounded off to one decimal place and recorded to one decimal place. The results are shown in Table 4.
測定2(半透膜支持体のCD方向カール)
測定1で測定した半透膜支持体シートの測定点1を、半透膜支持体の流れ方向と平行な両辺の中央部(測定点2)に変更し、4枚の測定点2の高さの平均値を「半透膜支持体のCD方向カール」とした以外は測定1と同様に測定した。結果を表4に示した。
Measurement 2 (CD direction curl of semipermeable membrane support)
The measurement point 1 of the semipermeable membrane support sheet measured in the measurement 1 was changed to the center (measurement point 2) of both sides parallel to the flow direction of the semipermeable membrane support, and the height of the four measurement points 2 was changed. Was measured in the same manner as in Measurement 1 except that the average value of was set as “curl in the CD direction of the semipermeable membrane support”. The results are shown in Table 4.
評価1(濾過膜のMD方向カール) Evaluation 1 (MD direction curl of filtration membrane)
(1)半透膜液の調製
ポリスルホン(商品名:コーデル(登録商標) P−3500LCD MB−7、ソルベイ社製)をN,N−ジメチルホルムアミド(純正化学社製、特級)に、140℃で加温しながら濃度16質量%になるように溶解後、温度設定25℃にて半日撹拌して、半透膜液を調製した。
(1) Preparation of semipermeable membrane solution Polysulfone (trade name: Cordell (registered trademark) P-3500LCD MB-7, manufactured by Solvay) was added to N, N-dimethylformamide (manufactured by Junsei Chemical Co., special grade) at 140 ° C. After dissolving to a concentration of 16% by mass while heating, the mixture was stirred at a temperature of 25 ° C. for half a day to prepare a semipermeable membrane liquid.
(2)濾過膜の作製
定速塗工装置(商品名:Automatic Film Applicator、安田精機社製)上に、台紙をセットし、セットした台紙の上に、塗布幅100mm×塗布長さ180mmとなるようにカットした半透膜支持体を、塗布面を上にしてOPPテープ(3M社製、商品名:BK−24N)で留めた。半透膜液5〜6gを、一定のクリアランスに調整できるベーカー式アプリケーター(安田精機社製、塗布幅100mm)を使用して、塗布量(乾燥質量)24±3g/m2となるように、塗布速度250mm/secにて塗布し、塗布開始後15秒後に20℃の水道水に浸漬して凝固した。3時間水洗した後、乾燥して濾過膜を作製した。
(2) Preparation of Filtration Membrane A mount is set on a constant-speed coating device (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.), and a coating width of 100 mm x a coating length of 180 mm is set on the set mount. The semi-permeable membrane support thus cut was fastened with an OPP tape (trade name: BK-24N, manufactured by 3M) with the coated side up. Using a baker-type applicator (manufactured by Yasuda Seiki Co., Ltd., coating width 100 mm) that can adjust 5 to 6 g of the semipermeable membrane liquid to a constant clearance, so that the coating amount (dry mass) is 24 ± 3 g / m 2 . Coating was performed at a coating speed of 250 mm / sec, and after 15 seconds from the start of coating, it was immersed in tap water at 20 ° C. to solidify. After washing with water for 3 hours, it was dried to produce a filtration membrane.
(3)「濾過膜のMD方向カール」測定用サンプルの作製
作製した濾過膜の中央部を幅方向25mm×流れ方向25mmにカットし、半透膜面を上にして平らな台の上に置き、半透膜支持体の流れ方向と垂直となる両辺の中央部の高さ(台との距離)を0.5mm単位で測定し、プラス(+)方向の高さとした。測定1にて半透膜支持体のMD方向カールを測定した4枚の半透膜支持体シートについて実施し、4枚の平均値を「濾過膜のMD方向カール」とした。なお、平均値は小数点以下第2位を四捨五入し、少数点以下第1位まで記録した。結果を表4に示した。
(3) Preparation of sample for measurement of “curl in the MD direction of filtration membrane” The center part of the produced filtration membrane was cut into a width direction of 25 mm × a flow direction of 25 mm, and placed on a flat table with the semipermeable membrane surface facing upward. The height (distance to the table) of the center of both sides perpendicular to the flow direction of the semipermeable membrane support was measured in units of 0.5 mm, and defined as the height in the plus (+) direction. The measurement was carried out on the four semipermeable membrane support sheets for which the MD curl of the semipermeable membrane support was measured in Measurement 1, and the average value of the four sheets was defined as "MD curl of the filtration membrane". The average value was rounded off to one decimal place and recorded to one decimal place. The results are shown in Table 4.
濾過膜のMD方向カール
+0.5mm以上:濾過膜がMD方向カール又はネジレカールとなり、次工程で不具合が生じ難く、実用上使用可能である。
0.0mm以上+0.5mm未満:濾過膜がCD方向カールになりやすく、次工程で不具合が発生して、実用上使用できない場合が多い。
Curling of the filtration membrane in the MD direction + 0.5 mm or more: The filtration membrane is curled in the MD direction or torsionally curled, and does not easily cause a problem in the next step, and is practically usable.
0.0 mm or more and less than +0.5 mm: In many cases, the filtration membrane tends to curl in the CD direction, causing problems in the next step, and cannot be used practically.
表4に示すとおり、実施例1〜12の半透膜支持体は、半透膜支持体のMD方向カールが+0.5mm以上+50mm以下であるため、該半透膜支持体を使用した濾過膜はMD方向カール又はネジレカールとなり、良好な結果が得られた。 As shown in Table 4, in the semipermeable membrane supports of Examples 1 to 12, since the curl in the MD direction of the semipermeable membrane support was +0.5 mm or more and +50 mm or less, the filtration membrane using the semipermeable membrane support was used. Was curled or twisted in the MD direction, and good results were obtained.
第1ステージと第2ステージで同じJR温度で熱圧加工した比較例1の半透膜支持体は、半透膜支持体のMD方向カールは+0.5mm未満であり、第1ステージより第2ステージのJR温度を高くして熱圧加工した実施例1の半透膜支持体と比較して、濾過膜のMD方向カールが小さく、+0.5mm未満であった。 In the semi-permeable membrane support of Comparative Example 1 in which the first stage and the second stage were hot-pressed at the same JR temperature, the curl in the MD direction of the semi-permeable membrane support was less than +0.5 mm, and the semi-permeable membrane support was second to the first stage. Compared with the semi-permeable membrane support of Example 1 in which the JR temperature of the stage was increased and hot-pressed, the MD of the filtration membrane was smaller in the MD direction and less than +0.5 mm.
塗布面側の層に含有するバインダー合成繊維の比率を非塗布面側の層に比べて高くした比較例2及び比較例3の半透膜支持体は、半透膜支持体のMD方向カールは+0.5mm未満であり、非塗布面側の層に含有するバインダー合成繊維の比率を塗布面側の層に比べて高くした実施例2及び実施例3の半透膜支持体と比較して、濾過膜のMD方向カールが小さく、+0.5mm未満であった。 The semipermeable membrane supports of Comparative Example 2 and Comparative Example 3 in which the ratio of the binder synthetic fiber contained in the layer on the coated side was higher than that of the layer on the uncoated side, the MD direction curl of the semipermeable membrane support was +0.5 mm, compared with the semipermeable membrane supports of Examples 2 and 3 in which the ratio of the binder synthetic fiber contained in the layer on the non-applied surface side was higher than that of the layer on the coated surface side. The curl in the MD direction of the filtration membrane was small and less than +0.5 mm.
熱圧加工処理後に非塗布面を内側にして半透膜支持体を紙管に巻きつけた比較例4の半透膜支持体は、半透膜支持体のMD方向カールが非塗布面側に持ち上がるようにマイナス方向にカールし、熱圧加工処理後に塗布面を内側にして半透膜支持体を紙管に巻きつけた実施例1〜実施例9の半透膜支持体と比較して、濾過膜のMD方向カールが小さく、+0.5mm未満であった。 The semi-permeable membrane support of Comparative Example 4 in which the semi-permeable membrane support was wound around a paper tube with the non-coated side facing inward after the hot-press processing, the MD-direction curl of the semi-permeable membrane support was shifted toward the non-coated side. In comparison with the semi-permeable membrane supports of Examples 1 to 9 in which the semi-permeable membrane support was wound around a paper tube with the coated surface inside after the hot-press processing, The curl in the MD direction of the filtration membrane was small and less than +0.5 mm.
熱圧加工処理後に非塗布面を内側にして半透膜支持体を外径が40mmの小径紙管に巻きつけて72時間室温で保管した比較例5の半透膜支持体は、半透膜支持体のMD方向カールが非塗布面側に持ち上がるようにマイナス方向にカールし、熱圧加工処理後に塗布面を内側にして半透膜支持体を小径紙管に巻きつけて72時間室温で保管した実施例10の半透膜支持体と比較して、濾過膜のMD方向カールが小さく+0.5mm未満であった。 The semi-permeable membrane support of Comparative Example 5 in which the semi-permeable membrane support was wound around a small-diameter paper tube having an outer diameter of 40 mm with the non-coated surface facing inward after the hot-press processing and stored at room temperature for 72 hours was a semi-permeable membrane. The support is curled in the negative direction so that the curl in the MD direction is lifted to the non-coated side, and after the hot-press processing, the semipermeable membrane support is wound around a small-diameter paper tube with the coated side inside and stored at room temperature for 72 hours. Compared with the semipermeable membrane support of Example 10, the MD of the filtration membrane was small and less than +0.5 mm.
熱圧加工処理後に塗布面を内側にして半透膜支持体を外径が20mmの小径紙管に巻きつけて72時間室温で保管した比較例6の半透膜支持体は、半透膜支持体のMD方向カールが+50.0mmを超えてしまったため、評価1の半透膜の作製の際に、半透膜支持体の中央が持ち上がってしまい、その中央部の膜が薄くなってしまったためか、半透膜が不均一になってしまい、濾過膜のMD方向カールを測定することができなかった。 The semipermeable membrane support of Comparative Example 6, in which the semipermeable membrane support was wound around a small-diameter paper tube having an outer diameter of 20 mm with the coated surface facing inward after the heat-pressure processing and stored at room temperature for 72 hours, was used. Since the MD curl of the body exceeded +50.0 mm, the center of the semipermeable membrane support was lifted during the production of the semipermeable membrane in Evaluation 1, and the film at the center was thinned. Alternatively, the semipermeable membrane became non-uniform, and it was not possible to measure the MD direction curl of the filtration membrane.
比較例2〜4の半透膜支持体のCD方向カールは、−1.1〜−0.5mmであり、比較例4及び比較例5の半透膜支持体のMD方向カールは、−39.8〜−5.3mmであり、半透膜支持体が非塗布面側にカールしていても、濾過膜のMD方向カールが小さく(+0.5mm未満)なる場合があり、本発明のように、半透膜支持体のMD方向カールが+0.5mm〜+50mmであることによって、該半透膜支持体を使用した濾過膜はMD方向カールが+0.5mm以上で、カール形状がMD方向カール又はネジレカールとなり、半透膜形成後の次工程での不具合が解消されることが分かる。 The curl in the CD direction of the semipermeable membrane supports of Comparative Examples 2 to 4 was -1.1 to -0.5 mm, and the curl in the MD direction of the semipermeable membrane supports of Comparative Examples 4 and 5 was -39. 0.8 to -5.3 mm, and even if the semipermeable membrane support is curled toward the non-coated side, the MD direction curl of the filtration membrane may be small (less than +0.5 mm), as in the present invention. In addition, since the semi-permeable membrane support has a curl in the MD direction of +0.5 mm to +50 mm, the filtration membrane using the semi-permeable membrane support has a curl in the MD direction of +0.5 mm or more and a curl shape in the MD direction. Or, it turns out that it becomes a twist curl, and the problem in the next step after the formation of the semipermeable membrane is solved.
本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。 The semipermeable membrane support of the present invention can be used in the fields of seawater desalination, water purifier, food concentration, wastewater treatment, medical treatment represented by blood filtration, production of ultrapure water for semiconductor cleaning, and the like. it can.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018184233A JP7190855B2 (en) | 2018-09-28 | 2018-09-28 | Semipermeable membrane support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018184233A JP7190855B2 (en) | 2018-09-28 | 2018-09-28 | Semipermeable membrane support |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020049473A true JP2020049473A (en) | 2020-04-02 |
JP7190855B2 JP7190855B2 (en) | 2022-12-16 |
Family
ID=69996089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018184233A Active JP7190855B2 (en) | 2018-09-28 | 2018-09-28 | Semipermeable membrane support |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7190855B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021187360A1 (en) | 2020-03-19 | 2021-09-23 | 三菱マテリアル株式会社 | Cu-Ni-Si-BASED COPPER ALLOY PLATE, FILM-PLATED Cu-Ni-Si-BASED COPPER ALLOY PLATE, AND PRODUCTION METHOD FOR Cu-Ni-Si-BASED COPPER ALLOY PLATE AND FILM-PLATED Cu-Ni-Si-BASED COPPER ALLOY PLATE |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012101213A (en) * | 2010-10-13 | 2012-05-31 | Mitsubishi Paper Mills Ltd | Semi-permeable membrane support |
WO2013129141A1 (en) * | 2012-03-01 | 2013-09-06 | 北越紀州製紙株式会社 | Nonwoven fabric for semipermeable membrane supporting body and method for manufacturing same |
JP2013180294A (en) * | 2012-11-30 | 2013-09-12 | Hokuetsu Kishu Paper Co Ltd | Nonwoven fabric for semipermeable membrane support and method of manufacturing the same |
JP2016029221A (en) * | 2014-07-25 | 2016-03-03 | 東レ株式会社 | Non-woven fabric and separation membrane support |
JP2016112792A (en) * | 2014-12-16 | 2016-06-23 | 日東電工株式会社 | Porous supporting body, composite semipermeable membrane, and spiral type separation membrane element |
-
2018
- 2018-09-28 JP JP2018184233A patent/JP7190855B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012101213A (en) * | 2010-10-13 | 2012-05-31 | Mitsubishi Paper Mills Ltd | Semi-permeable membrane support |
WO2013129141A1 (en) * | 2012-03-01 | 2013-09-06 | 北越紀州製紙株式会社 | Nonwoven fabric for semipermeable membrane supporting body and method for manufacturing same |
JP2013180236A (en) * | 2012-03-01 | 2013-09-12 | Hokuetsu Kishu Paper Co Ltd | Nonwoven fabric for semipermeable membrane support and method of manufacturing the same |
JP2013180294A (en) * | 2012-11-30 | 2013-09-12 | Hokuetsu Kishu Paper Co Ltd | Nonwoven fabric for semipermeable membrane support and method of manufacturing the same |
JP2016029221A (en) * | 2014-07-25 | 2016-03-03 | 東レ株式会社 | Non-woven fabric and separation membrane support |
JP2016112792A (en) * | 2014-12-16 | 2016-06-23 | 日東電工株式会社 | Porous supporting body, composite semipermeable membrane, and spiral type separation membrane element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021187360A1 (en) | 2020-03-19 | 2021-09-23 | 三菱マテリアル株式会社 | Cu-Ni-Si-BASED COPPER ALLOY PLATE, FILM-PLATED Cu-Ni-Si-BASED COPPER ALLOY PLATE, AND PRODUCTION METHOD FOR Cu-Ni-Si-BASED COPPER ALLOY PLATE AND FILM-PLATED Cu-Ni-Si-BASED COPPER ALLOY PLATE |
Also Published As
Publication number | Publication date |
---|---|
JP7190855B2 (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5789193B2 (en) | Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support | |
JP3153487B2 (en) | Semipermeable membrane support | |
JP5216229B2 (en) | Semipermeable membrane support | |
JP2013220382A (en) | Semipermeable membrane support | |
JP2016140785A (en) | Semipermeable membrane support | |
JP6625916B2 (en) | Semipermeable membrane support | |
JP2022107809A (en) | Translucent membrane support | |
CN110743381A (en) | Membrane substrate, separation membrane and preparation method thereof | |
JP2012106177A (en) | Semipermeable membrane support | |
JP5809583B2 (en) | Semipermeable membrane support | |
JP7296759B2 (en) | Semipermeable membrane support and filtration membrane for membrane separation activated sludge treatment | |
JP2015058411A (en) | Semipermeable membrane support | |
JP2020049473A (en) | Semipermeable membrane support body | |
JP2014180638A (en) | Method for manufacturing semipermeable membrane | |
JP2014100625A (en) | Semipermeable membrane support and method of producing the same | |
JP2019118907A (en) | Substrate for semipermeable membrane | |
JP2012250223A (en) | Semipermeable membrane support | |
JP2020146606A (en) | Semipermeable membrane support body | |
JP2013139030A (en) | Semipermeable membrane support and method of manufacturing the same | |
JP7500436B2 (en) | Semipermeable membrane support and method for producing semipermeable membrane support | |
JP2020157213A (en) | Production method for semipermeable membrane support | |
JP2014180639A (en) | Method for manufacturing semipermeable membrane | |
JP2015058409A (en) | Semipermeable membrane support | |
JP2021146248A (en) | Semipermeable membrane support body | |
JP5809588B2 (en) | Semipermeable membrane support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220426 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7190855 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |