JP2021146248A - Semipermeable membrane support body - Google Patents

Semipermeable membrane support body Download PDF

Info

Publication number
JP2021146248A
JP2021146248A JP2020046879A JP2020046879A JP2021146248A JP 2021146248 A JP2021146248 A JP 2021146248A JP 2020046879 A JP2020046879 A JP 2020046879A JP 2020046879 A JP2020046879 A JP 2020046879A JP 2021146248 A JP2021146248 A JP 2021146248A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
fiber
forming surface
layer
membrane support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020046879A
Other languages
Japanese (ja)
Inventor
祐介 志水
Yusuke Shimizu
祐介 志水
貴仁 落合
Takahito Ochiai
貴仁 落合
敬生 増田
Takao Masuda
敬生 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2020046879A priority Critical patent/JP2021146248A/en
Publication of JP2021146248A publication Critical patent/JP2021146248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)

Abstract

To provide a semipermeable membrane support body that can suppress contraction after the membrane is coated to form a uniform semipermeable membrane that is not curled.SOLUTION: A semipermeable membrane support body includes a main body fiber and a binder fiber made of a synthetic fiber, and has a two-layer structure constituted of a layer on a semipermeable membrane forming face side and a layer on a semipermeable membrane non-forming face side. An average thermal shrinkage ratio of the main body fiber in the layer on the semipermeable membrane non-forming face side is 1.3-3.0 times an average thermal shrinkage ratio of the main body fiber in the layer on the semipermeable membrane forming face side. It is preferable that an average of floating heights of four corners of the semipermeable membrane support body, which is cut out into a size of 10 cm times 10 cm, is still placed horizontally on a flat base, and is subjected to humidity conditioning for 24 hours under the condition of 23°C and 50% R.H. is in a range of 5-20 nm.SELECTED DRAWING: None

Description

本発明は、半透膜支持体に関する。 The present invention relates to a semipermeable membrane support.

海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面に半透膜が設けられた形態である「濾過膜」として使用されている。「半透膜支持体の半透膜が設けられる面」を「半透膜形成面」と記載する場合がある。また、「半透膜形成面の反対面」を「非半透膜形成面」と記載する場合がある。 Semipermeable membranes are widely used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. The semitransparent film is composed of a synthetic resin such as a cellulose-based resin, a polysulfone-based resin, a polyacrylonitrile-based resin, a fluorine-based resin, a polyester-based resin, a polyamide-based resin, or a polyimide-based resin. However, since the semipermeable membrane alone is inferior in mechanical strength, it is used as a "filter membrane" in which a semipermeable membrane is provided on one side of a semipermeable membrane support made of a fiber base material such as a non-woven fabric or a woven fabric. ing. The "surface on which the semipermeable membrane of the semipermeable membrane support is provided" may be referred to as a "semipermeable membrane forming surface". Further, the "opposite surface of the semipermeable membrane forming surface" may be described as a "non-semipermeable membrane forming surface".

濾過膜の製造方法としては、上述したポリスルホン系樹脂等の合成樹脂を有機溶媒に溶解し、半透膜液を調製した後、この半透膜液を半透膜支持体上に塗布する方法が広く用いられている。そして、効率的に濾過を行うために、スパイラル型の半透膜エレメントが形成され、さらに、半透膜モジュールが組み立てられる(例えば、特許文献1参照)。 As a method for producing a filter membrane, a method is obtained in which a synthetic resin such as the above-mentioned polysulfone resin is dissolved in an organic solvent to prepare a semipermeable membrane liquid, and then the semipermeable membrane liquid is applied onto a semipermeable membrane support. Widely used. Then, in order to efficiently perform filtration, a spiral type semipermeable membrane element is formed, and a semipermeable membrane module is further assembled (see, for example, Patent Document 1).

高い濾過流束と濾過性能を得るためには、半透膜表面に凹凸が少なく、半透膜形成時の横方向湾曲やシワの発生がなく、半透膜支持体上に半透膜が均一な厚みで設けられる必要がある。半透膜が均一な厚みで設けられるには、半透膜支持体の半透膜形成面に優れた平滑性が必要とされる。そして、良好な濾過性能を得るためには、半透膜と半透膜支持体との接着性にも優れている必要がある。また、半透膜モジュールを組み立てる際に、接着剤を使って、非半透膜形成面同士を貼り合わせる工程があるため、この非半透膜形成面同士の接着性に優れていることも要求されている。さらに、半透膜液が非半透膜形成面にまで裏抜けしないことが要求されている。裏抜けが発生すると、半透膜の厚みが不均一になる、非半透膜形成面同士の接着性が低下するという問題が発生するからである。 In order to obtain high filtration flux and filtration performance, the surface of the semipermeable membrane has few irregularities, there is no lateral curvature or wrinkles during formation of the semipermeable membrane, and the semipermeable membrane is uniform on the semipermeable membrane support. It is necessary to be provided with a sufficient thickness. In order for the semipermeable membrane to be provided with a uniform thickness, excellent smoothness is required on the semipermeable membrane-forming surface of the semipermeable membrane support. Further, in order to obtain good filtration performance, it is necessary to have excellent adhesiveness between the semipermeable membrane and the semipermeable membrane support. In addition, when assembling the semipermeable membrane module, there is a step of adhering the non-semipermeable membrane forming surfaces to each other using an adhesive, so that the non-semipermeable membrane forming surfaces are also required to have excellent adhesiveness. Has been done. Further, it is required that the semipermeable membrane liquid does not strike through to the non-semipermeable membrane forming surface. This is because when strike-through occurs, the thickness of the semipermeable membrane becomes non-uniform, and the adhesiveness between the non-semipermeable membrane forming surfaces decreases.

半透膜支持体として、引張強度の縦横比の異なる不織布を積層し、支持体を凸状に湾曲させ、半透膜液の収縮カールを抑制する支持体が提案されている(特許文献2)。しかしながら、この方法では熱圧接着した際、引張強度の縦横比が異なる層を積層しているため、層同士の繊維結着点が少なくなり、層間強度が低下し、層間剥離を発生させる恐れがあった。また、引張強度の縦横比は繊維配向性に相関しており、繊維配向性は抄紙における水温や繊維を分散したスラリーの粘性に大きく左右され、繊維配向性のコントロールが困難であり、抄造方式によっては安定生産性に難があった。 As a semipermeable membrane support, a support has been proposed in which non-woven fabrics having different tensile strength aspect ratios are laminated, the support is curved in a convex shape, and the shrinkage curl of the semipermeable membrane liquid is suppressed (Patent Document 2). .. However, in this method, when thermal pressure bonding is performed, layers having different tensile strength aspect ratios are laminated, so that the number of fiber binding points between the layers is reduced, the interlayer strength is lowered, and delamination may occur. there were. In addition, the aspect ratio of tensile strength correlates with the fiber orientation, and the fiber orientation is greatly affected by the water temperature in the papermaking and the viscosity of the slurry in which the fibers are dispersed, and it is difficult to control the fiber orientation. Had difficulty in stable productivity.

特開2008−238147号公報Japanese Unexamined Patent Publication No. 2008-238147 特許第5739154号公報Japanese Patent No. 5739154

本発明の課題は、半透膜液塗布後の収縮を抑制し、カールの無い均一な半透膜を形成できる半透膜支持体を提供することにある。 An object of the present invention is to provide a semipermeable membrane support capable of suppressing shrinkage after application of a semipermeable membrane liquid and forming a uniform semipermeable membrane without curl.

上記課題は、下記手段によって解決された。 The above problem was solved by the following means.

(1)合成繊維からなる主体繊維とバインダー繊維とを含み、半透膜形成面側の層と非半透膜形成面側の層とからなる2層構造の半透膜支持体において、非半透膜形成面側の層における主体繊維の平均熱収縮率が、半透膜形成面側の層における主体繊維の平均熱収縮率に対して1.3〜3.0倍であることを特徴とする半透膜支持体。
(2)10cm×10cmに切り出した半透膜支持体を、非半透膜形成面側を上にして、平滑な台上に水平に静置し、23℃、50%R.H.の条件にて24時間調湿後、四隅の浮き上がっている高さの平均が5〜20mmの範囲である(1)に記載の半透膜支持体。
(1) A non-semipermeable membrane support having a two-layer structure including a main fiber made of synthetic fibers and a binder fiber and a layer on the semipermeable membrane forming surface side and a layer on the non-semipermeable membrane forming surface side. The feature is that the average heat shrinkage rate of the main fiber in the layer on the permeable membrane forming surface side is 1.3 to 3.0 times the average heat shrinkage rate of the main fiber in the layer on the semipermeable membrane forming surface side. Semipermeable membrane support.
(2) A semipermeable membrane support cut out to a size of 10 cm × 10 cm was placed horizontally on a smooth table with the non-semipermeable membrane forming surface side facing up, and the temperature was 23 ° C., 50% R. H. The semipermeable membrane support according to (1), wherein the average height of the raised heights at the four corners is in the range of 5 to 20 mm after humidity control for 24 hours under the above conditions.

本発明の半透膜支持体は、合成繊維からなる主体繊維とバインダー繊維とを含み、半透膜形成面側の層と非半透膜形成面側の層とからなる2層構造であり、非半透膜形成面側の層における主体繊維の平均熱収縮率が、半透膜形成面側の層における主体繊維の平均熱収縮率に対して1.3〜3.0倍であることにより、半透膜支持体を非半透膜形成面側へカールさせ、膜収縮によるカールを抑制する効果がある。 The semipermeable membrane support of the present invention has a two-layer structure including a main fiber made of synthetic fibers and a binder fiber, and a layer on the semipermeable membrane forming surface side and a layer on the non-semipermeable membrane forming surface side. The average heat shrinkage rate of the main fiber in the layer on the non-semipermeable membrane forming surface side is 1.3 to 3.0 times the average heat shrinkage rate of the main fiber in the layer on the semipermeable membrane forming surface side. , The semipermeable membrane support is curled toward the non-semipermeable membrane forming surface side, and has the effect of suppressing curling due to membrane contraction.

本発明の半透膜支持体は、合成繊維からなる主体繊維とバインダー繊維とを含み、半透膜形成面側の層において、非半透膜形成面側の層における主体繊維の平均熱収縮率が、半透膜形成面側の層における主体繊維の平均熱収縮率に対して1.3〜3.0倍であることを特徴とする。「半透膜形成面側の層における主体繊維の平均熱収縮率に対する、非半透膜形成面側の層における主体繊維の平均熱収縮率」を「主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)」と記載する場合がある。 The semipermeable membrane support of the present invention contains a main fiber made of synthetic fibers and a binder fiber, and in the layer on the semipermeable membrane forming surface side, the average heat shrinkage rate of the main fiber in the layer on the non-semipermeable membrane forming surface side. However, it is characterized in that it is 1.3 to 3.0 times the average heat shrinkage rate of the main fibers in the layer on the semipermeable membrane forming surface side. "The average heat shrinkage rate of the main fiber in the layer on the non-semipermeable membrane forming surface side with respect to the average heat shrinkage rate of the main fiber in the layer on the semipermeable membrane forming surface side" is "the average heat shrinkage rate of the main fiber (non-semipermeable membrane). Membrane-forming surface / semipermeable membrane-forming surface) ”may be described.

半透膜支持体において、主体繊維とバインダー繊維の総量に対するバインダー繊維の含有比率は、20〜50質量%であることが好ましく、25〜45質量%であることがより好ましく、30〜40質量%であることがさらに好ましい。バインダー繊維の含有比率が20質量%を下回る場合、繊維同士の結着が不十分となり、繊維脱落の発生による膜性能の低下や機械的強度の低下による破断等の問題が発生する場合がある。バインダー繊維の含有比率が50質量%を超えると、半透膜支持体が高密度となり、半透膜液の浸透が少なくなり、十分なアンカー効果が得られず、半透膜支持体上に形成された半透膜が剥がれ易くなる問題が発生する場合がある。 In the semipermeable membrane support, the content ratio of the binder fiber to the total amount of the main fiber and the binder fiber is preferably 20 to 50% by mass, more preferably 25 to 45% by mass, and 30 to 40% by mass. Is more preferable. When the content ratio of the binder fiber is less than 20% by mass, the binding between the fibers becomes insufficient, and problems such as deterioration of the film performance due to the occurrence of fiber dropout and breakage due to the decrease in mechanical strength may occur. When the content ratio of the binder fiber exceeds 50% by mass, the semipermeable membrane support becomes dense, the penetration of the semipermeable membrane liquid is reduced, a sufficient anchor effect cannot be obtained, and the semipermeable membrane support is formed on the semipermeable membrane support. There may be a problem that the semipermeable membrane is easily peeled off.

本発明において、主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)は、1.3〜3.0倍であり、1.6〜2.7倍であることがより好ましい。主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)が1.3〜3.0倍であることにより、半透膜支持体を非半透膜形成面側へカールさせ、膜収縮によるカールを抑制する効果が得られる。主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)が1.3倍を下回ると、非半透膜形成面側へのカールが少なくなり、膜収縮によるカールを十分に抑制することができなくなる。主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)が3.0倍を上回ると、非半透膜形成面側へのカールが大きくなり過ぎ、搬送工程や塗布工程において搬送トラブルが発生し、膜製造の生産性が悪化する。 In the present invention, the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber is 1.3 to 3.0 times, and 1.6 to 2.7 times. More preferred. Since the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber is 1.3 to 3.0 times, the semipermeable membrane support is curled toward the non-semipermeable membrane forming surface side. The effect of suppressing curl due to membrane contraction can be obtained. When the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber is less than 1.3 times, the curl toward the non-semipermeable membrane forming surface side is reduced, and the curl due to the membrane shrinkage is sufficient. Can no longer be suppressed. When the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber exceeds 3.0 times, the curl toward the non-semipermeable membrane forming surface side becomes too large, and the transport process and the coating process In the above, a transport trouble occurs, and the productivity of film production deteriorates.

本発明において、10cm×10cmに切り出した半透膜支持体を、非半透膜形成面側を上にし、平滑な台上に水平に静置し、23℃、50%R.H.の条件にて24時間調湿後、四隅の浮き上がっている高さの平均(以下、「平均カール高さ」と記載する場合がある)が5〜20mmであることが好ましく、7〜17mmであることがより好ましく、9〜15mmであることがさらに好ましい。平均カール高さが5mmを下回ると、半透膜形成面側へ半透膜を形成した際、半透膜形成面側への膜収縮が十分に抑制できない可能性がある。平均カール高さが20mmより高くなると、非半透膜形成面側へのカールが大きくなり過ぎ、搬送工程や塗布工程において搬送トラブルが発生し、膜製造の生産性が悪化する可能性が高くなる。 In the present invention, the semipermeable membrane support cut out to a size of 10 cm × 10 cm is placed horizontally on a smooth table with the non-semipermeable membrane forming surface side facing up, and the temperature is 23 ° C., 50% R. H. After controlling the humidity for 24 hours under the above conditions, the average height of the raised corners (hereinafter, may be referred to as "average curl height") is preferably 5 to 20 mm, preferably 7 to 17 mm. More preferably, it is more preferably 9 to 15 mm. If the average curl height is less than 5 mm, when the semipermeable membrane is formed on the semipermeable membrane forming surface side, the film contraction toward the semipermeable membrane forming surface side may not be sufficiently suppressed. If the average curl height is higher than 20 mm, the curl toward the non-semipermeable membrane forming surface side becomes too large, and there is a high possibility that transfer troubles will occur in the transfer process and the coating process, and the productivity of film production will deteriorate. ..

平均カール高さを5〜20mmにするためには、主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)が1.3〜3.0倍である必要がある。また、熱圧処理工程において、ニップへの通過回数を2回として、第2ニップ時の熱ロールの表面温度を第1ニップ時の熱ロールの表面温度よりも高くすることが好ましい。その温度差は10℃以内が好ましく、より好ましくは5℃以内である。 In order to make the average curl height 5 to 20 mm, the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber needs to be 1.3 to 3.0 times. Further, in the thermal pressure treatment step, it is preferable that the number of passes through the nip is twice and the surface temperature of the thermal roll at the time of the second nip is higher than the surface temperature of the thermal roll at the time of the first nip. The temperature difference is preferably within 10 ° C, more preferably within 5 ° C.

本発明の半透膜支持体としては、スパンボンド不織布、メルトブロー不織布、乾式短繊維不織布及び湿式抄造不織布等の不織布、これらの不織布から選ばれる複数の不織布を積層した複合不織布を用いることができる。また、不織布は熱ロールによって熱圧加工処理されることが好ましい。 As the semitransparent film support of the present invention, non-woven fabrics such as spunbonded non-woven fabrics, melt-blown non-woven fabrics, dry short-fiber non-woven fabrics and wet-made non-woven fabrics, and composite non-woven fabrics obtained by laminating a plurality of non-woven fabrics selected from these non-woven fabrics can be used. Further, the non-woven fabric is preferably heat-pressed by a heat roll.

本発明において、主体繊維とバインダー繊維は合成繊維からなる。主体繊維は半透膜支持体の骨格を形成する繊維であり、バインダー繊維が軟化又は溶融する温度でも、主体繊維は軟化又は溶融しにくく、断面形状が変化することはあるものの、繊維としての形状が損なわれない繊維である。主体繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系等の繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましく使用される。 In the present invention, the main fiber and the binder fiber are composed of synthetic fibers. The main fiber is a fiber that forms the skeleton of the semipermeable membrane support, and even at the temperature at which the binder fiber softens or melts, the main fiber is difficult to soften or melt, and the cross-sectional shape may change, but the shape as a fiber. Is a fiber that is not impaired. Examples of the main fiber include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclaral-based, and phenol-based fibers, which are heat-resistant. Higher polyester fibers are more preferably used.

本発明の半透膜支持体において、主体繊維として、繊維径の異なる2種以上の繊維を含有することが好ましい。繊維径の異なる2種以上の主体繊維が絡み合って形成された繊維ネットワークによって、半透膜形成面に複雑で微細な凹凸が生じるため、半透膜と半透膜支持体との接着性を向上させることができる。また、この繊維ネットワークによって、半透膜形成面の平滑性も向上させることができ、均一な半透膜を得ることができる。 In the semipermeable membrane support of the present invention, it is preferable that two or more kinds of fibers having different fiber diameters are contained as the main fibers. The fiber network formed by entwining two or more types of main fibers with different fiber diameters causes complex and fine irregularities on the semipermeable membrane forming surface, thus improving the adhesiveness between the semipermeable membrane and the semipermeable membrane support. Can be made to. Further, by this fiber network, the smoothness of the semipermeable membrane forming surface can be improved, and a uniform semipermeable membrane can be obtained.

主体繊維の平均繊維径は、特に限定しないが、7〜20μmであることが好ましく、8〜16μmであることがより好ましい。また、少なくとも1種の主体繊維の繊維径が13μm以下の場合、半透膜形成面の平滑性をより高めることができ、膜の厚みが均一な半透膜が得られやすくなる。主体繊維の平均繊維径が7μm未満の場合、半透膜形成面と半透膜との接着性が低下する場合がある。また、半透膜モジュールを組み立てる際に、接着剤を使って、非半透膜形成面同士を貼り合わせる工程があるが、この非半透膜形成面同士の接着性が悪化する場合がある。主体繊維の平均繊維径が20μmを超える場合、半透膜支持体の表面の平滑性が失われて、均一な厚みの半透膜が得難くなるだけでなく、フラジール(FG)通気度が高くなり過ぎて、半透膜液塗工時に裏抜けが発生する場合がある。 The average fiber diameter of the main fiber is not particularly limited, but is preferably 7 to 20 μm, and more preferably 8 to 16 μm. Further, when the fiber diameter of at least one of the main fibers is 13 μm or less, the smoothness of the semipermeable membrane forming surface can be further enhanced, and a semipermeable membrane having a uniform membrane thickness can be easily obtained. When the average fiber diameter of the main fiber is less than 7 μm, the adhesiveness between the semipermeable membrane forming surface and the semipermeable membrane may decrease. Further, when assembling the semipermeable membrane module, there is a step of bonding the non-semipermeable membrane forming surfaces to each other by using an adhesive, but the adhesiveness between the non-semipermeable membrane forming surfaces may be deteriorated. When the average fiber diameter of the main fiber exceeds 20 μm, the smoothness of the surface of the semipermeable membrane support is lost, which makes it difficult to obtain a semipermeable membrane having a uniform thickness, and also has high Frazier (FG) air permeability. It may become too large and strike-through may occur during semipermeable membrane coating.

主体繊維の熱収縮率はJIS L1015:2010の乾熱寸法変化率に準拠し、測定された値である。主体繊維の熱収縮率は、2.0〜8.0%であることが好ましく、より好ましくは3.0〜7.0%である。主体繊維の熱収縮率が2.0%未満である場合、繊維分散性が悪化し、未離解繊維束が半透膜支持体の半透膜形成面側に残留し、塗工欠陥が生じ、膜性能が悪化する場合がある。また、8.0%超の場合、半透膜支持体製造における乾燥工程や熱圧加工時において、皺が発生する場合がある。 The heat shrinkage rate of the main fiber is a value measured in accordance with the dry heat dimensional change rate of JIS L1015: 2010. The heat shrinkage rate of the main fiber is preferably 2.0 to 8.0%, more preferably 3.0 to 7.0%. When the heat shrinkage rate of the main fiber is less than 2.0%, the fiber dispersibility deteriorates, the undissolved fiber bundle remains on the semipermeable membrane forming surface side of the semipermeable membrane support, and coating defects occur. Membrane performance may deteriorate. If it exceeds 8.0%, wrinkles may occur during the drying process or thermal pressure processing in the manufacture of the semipermeable membrane support.

本発明において、主体繊維の平均熱収縮率は以下の式で求められる。Nは、正の整数である。 In the present invention, the average heat shrinkage rate of the main fiber is calculated by the following formula. N is a positive integer.

平均熱収縮率=(主体繊維1の熱収縮率(%)×主体繊維1の質量%+主体繊維2の熱収縮率(%)×主体繊維2の質量%+主体繊維3の熱収縮率(%)×主体繊維3の質量%+・・・+主体繊維Nの熱収縮率(%)×主体繊維Nの質量%)/(主体繊維1の質量%+主体繊維2の質量%+主体繊維3の質量%+・・・+主体繊維Nの質量%) Average heat shrinkage rate = (heat shrinkage rate of main fiber 1 (%) x mass% of main fiber 1 + heat shrinkage rate of main fiber 2 (%) x mass% of main fiber 2 + heat shrinkage rate of main fiber 3 ( %) × Mass% of main fiber 3 + ・ ・ ・ + Heat shrinkage of main fiber N (%) × Mass% of main fiber N) / (Mass% of main fiber 1 + Mass% of main fiber 2 + Main fiber Mass% of 3 + ... + Mass% of main fiber N)

主体繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、さらに好ましくは4〜6mmである。繊維長が1mm未満の場合、抄紙工程にて繊維の三次元ネットワークが形成されにくく、抄紙ワイヤーからの剥離性が悪化するおそれがある。一方、繊維長が12mmを超える場合、繊維同士の絡まりや縺れの発生により、半透膜支持体の均一性や半透膜の平滑性に悪影響を及ぼすおそれがある。主体繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、半透膜形成面の平滑性のために、他の特性を阻害しない範囲内で含有できる。 The fiber length of the main fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. If the fiber length is less than 1 mm, it is difficult to form a three-dimensional network of fibers in the papermaking process, and the peelability from the papermaking wire may deteriorate. On the other hand, when the fiber length exceeds 12 mm, the uniformity of the semipermeable membrane support and the smoothness of the semipermeable membrane may be adversely affected due to the occurrence of entanglement and entanglement between the fibers. The cross-sectional shape of the main fiber is preferably circular, but fibers having irregular cross-sections such as T-shaped, Y-shaped, and triangular are also within a range that does not impair other characteristics in order to prevent strike-through and smoothness of the semipermeable membrane forming surface. Can be contained within.

本発明の半透膜支持体は、バインダー繊維を含有しているが、バインダー繊維が軟化又は溶融する温度付近まで温度を上げる工程を、半透膜支持体の製造工程に組み入れることで、バインダー繊維が半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程や熱圧加工処理で、バインダー繊維を軟化又は溶融させることができる。 The semipermeable membrane support of the present invention contains the binder fiber, but by incorporating the step of raising the temperature to near the temperature at which the binder fiber softens or melts into the manufacturing process of the semipermeable membrane support, the binder fiber Improves the mechanical strength of the semipermeable membrane support. For example, the semipermeable membrane support can be manufactured by a wet fabrication method, and the binder fibers can be softened or melted in a subsequent drying step or thermal pressure processing.

バインダー繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維等の複合繊維、未延伸繊維等が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組合せ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組合せ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組合せ、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組合せ、ポリエステルの未延伸繊維を好ましく用いることができる。 Examples of the binder fiber include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, and undrawn fibers. Since the composite fiber is difficult to form a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), polyester, etc. Undrawn fibers can be mentioned. In addition, single fibers (zen'yu type) composed only of low melting point resins such as polyethylene and polypropylene, and hot water-soluble binders such as polyvinyl alcohols tend to form a film in the drying process of the semipermeable membrane support. However, it can be used as long as the characteristics are not impaired. In the present invention, a combination of a high melting point polyester (core) and a low melting point polyester (sheath) and undrawn fibers of polyester can be preferably used.

バインダー繊維の繊維径は、主体繊維と異なっていることが好ましいが、特に限定されない。主体繊維とバインダー繊維との繊維径が異なることで、バインダー繊維は半透膜支持体の機械的強度を向上させる役割の他に、主体繊維と共に均一な三次元ネットワークを形成する役割も果たし、さらに、乾燥工程や熱圧加工処理等の、バインダー繊維が軟化又は溶融する温度付近まで温度を上げる工程においては、半透膜形成面の平滑性をも向上させることができる。 The fiber diameter of the binder fiber is preferably different from that of the main fiber, but is not particularly limited. Since the fiber diameters of the main fiber and the binder fiber are different, the binder fiber not only plays a role of improving the mechanical strength of the semipermeable membrane support, but also plays a role of forming a uniform three-dimensional network together with the main fiber, and further. In a step of raising the temperature to near the temperature at which the binder fiber is softened or melted, such as a drying step or a thermal pressure processing, the smoothness of the semipermeable membrane forming surface can also be improved.

バインダー繊維の繊維長は、特に限定されないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、さらに好ましくは4〜7mmである。繊維長が1mm未満の場合、繊維結着点が少なくなり、半透膜支持体としての強度が得られなくなる可能性がある。繊維長が12mmを超えた場合、地合が悪化する傾向がある。バインダー繊維の断面形状は円形及びT型、Y型、三角等の異形断面を有する繊維も含有することが可能である。 The fiber length of the binder fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 7 mm. If the fiber length is less than 1 mm, the fiber binding points may be reduced, and the strength as a semipermeable membrane support may not be obtained. When the fiber length exceeds 12 mm, the texture tends to deteriorate. The cross-sectional shape of the binder fiber can include fibers having a circular shape and a deformed cross section such as T-shaped, Y-shaped, and triangular.

本発明の半透膜支持体は、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等を、性能を阻害しない範囲で、含むことができる。 The semipermeable membrane support of the present invention can contain semi-synthetic fibers such as acetate, triacetate and promix, and regenerated fibers such as rayon, cupra and lyocell fibers as long as the performance is not impaired.

本発明の半透膜支持体としては、湿式抄造法で製造された不織布(湿式抄造不織布)が熱ロールによって熱圧加工処理されることによって製造される半透膜支持体であることが好ましい。 The semipermeable membrane support of the present invention is preferably a semipermeable membrane support produced by hot-pressing a non-woven fabric (wet-made non-woven fabric) produced by a wet-making method with a thermal roll.

湿式抄造法では、まず、主体繊維、バインダー繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調整されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。 In the wet papermaking method, first, the main fiber and the binder fiber are uniformly dispersed in water, and then the final fiber concentration is 0.01 to 0.50% by mass through steps such as a screen (removal of foreign matter, lumps, etc.). The slurry adjusted to the above is made by a paper machine to obtain wet paper. In the process, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, and bactericidal agents may be added.

抄紙方式としては、例えば、長網、円網、傾斜ワイヤー式等を用いることができる。これらの抄紙方式から選ばれる1種の抄紙方式を有する抄紙機を使用しても良いし、同種又は異種の2種以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用しても良い。また、本発明の半透膜支持体は2層構造であるため、各々の抄紙方式で抄き上げた湿紙を積層する「抄き合わせ法」、一方の層を形成した後に、該層の上に繊維を分散したスラリーを流延する「流延法」等で製造することができる。流延法において、先に形成した一層は湿紙状態であっても良いし、乾燥状態であっても良い。また、2枚以上の乾燥状態の層を熱融着させて、2層構造とすることもできる。 As the papermaking method, for example, a long net, a circular net, an inclined wire type or the like can be used. A paper machine having one type of papermaking method selected from these papermaking methods may be used, or a combination paper machine in which two or more types of papermaking methods of the same type or different types are installed online may be used. .. Further, since the semipermeable membrane support of the present invention has a two-layer structure, a "papermaking method" in which wet papers made by each papermaking method are laminated, after forming one layer, the layer is used. It can be produced by a "casting method" or the like in which a slurry in which fibers are dispersed is cast. In the casting method, the previously formed layer may be in a wet paper state or in a dry state. Further, two or more dried layers may be heat-sealed to form a two-layer structure.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、湿式抄造不織布を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、100〜170℃がより好ましく、100〜160℃がさらに好ましい。熱ロールの表面温度が100℃を下回る場合、抄紙機で製造された湿紙の水分が十分に蒸発せず、半透膜支持体の厚み均一性が悪くなる場合があり、熱ロールの表面温度が180℃を超える場合、抄紙機で製造された湿紙が熱ロールに貼り付いて、半透膜支持体の地合が悪くなる場合がある。圧力は、好ましくは5〜100kN/mであり、より好ましくは10〜80kN/mである。圧力が5kN/mを下回る場合、抄紙機で製造された湿紙の水分が十分に抜けず、半透膜支持体の厚み均一性が悪くなる場合があり、100kN/mを超える場合、抄紙機で製造された湿紙が熱ロールに貼り付いて、半透膜支持体の地合が悪くなる場合がある。 A wet paper made by a paper machine is dried with a Yankee dryer, an air dryer, a cylinder dryer, a suction drum dryer, an infrared dryer, or the like to obtain a wet paper making non-woven fabric. When the wet paper is dried, it is brought into close contact with a heat roll such as a Yankee dryer and heat-pressure dried, so that the smoothness of the adhered surface is improved. Hot pressure drying means drying by pressing wet paper against the hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180 ° C, more preferably 100 to 170 ° C, and even more preferably 100 to 160 ° C. If the surface temperature of the heat roll is lower than 100 ° C., the moisture content of the wet paper produced by the paper machine may not be sufficiently evaporated, and the thickness uniformity of the semitransparent film support may be deteriorated. If the temperature exceeds 180 ° C., the wet paper produced by the paper machine may stick to the heat roll and the texture of the semitransparent film support may be deteriorated. The pressure is preferably 5 to 100 kN / m, more preferably 10 to 80 kN / m. If the pressure is less than 5 kN / m, the moisture of the wet paper produced by the paper machine may not be sufficiently removed, and the thickness uniformity of the semipermeable membrane support may be deteriorated. If the pressure exceeds 100 kN / m, the paper machine may not be sufficiently drained. The wet paper produced in (1) may stick to the heat roll and the semipermeable membrane support may become poorly formed.

熱圧加工処理では、熱圧加工処理装置の熱ロール間をニップしながら、湿式抄造不織布を熱ロール間に通過させる。熱ロールの組合せとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられ、一方あるいは両方の熱ロールを加熱する。さらに、必要に応じて、不織布の表裏を逆にして、ニップへの通過回数を2回以上にしても良い。 In the thermal pressure processing, the wet papermaking nonwoven fabric is passed between the thermal rolls while nipating between the thermal rolls of the thermal pressure processing apparatus. Examples of the combination of the heat rolls include two metal rolls, a metal roll and a resin roll, a metal roll and a cotton roll, and the like, and one or both of the heat rolls are heated. Further, if necessary, the front and back sides of the non-woven fabric may be reversed so that the number of passes through the nip may be two or more.

熱圧加工処理に用いる熱ロールの表面温度は、示差熱分析によって測定した主体繊維の融点より低く、バインダー繊維の融点に対して−70〜−20℃であることが好ましく、−60〜−30℃であることがより好ましい。熱ロール温度の表面温度を、バインダー繊維の融点より70℃を超えて低くすると、毛羽立ちが発生しやすくなる場合があり、均一な厚みの半透膜が得難くなる。一方、熱ロールの表面温度を、融点より20℃低い温度を超えて高くすると、熱ロールに繊維の溶融分が付着して、半透膜支持体が不均一になる場合があり、均一な厚みの半透膜が得難くなる。 The surface temperature of the thermal roll used for the thermal pressure processing is lower than the melting point of the main fiber measured by differential thermal analysis, preferably −70 to −20 ° C. with respect to the melting point of the binder fiber, and preferably −60 to −30. More preferably, it is ° C. If the surface temperature of the thermal roll temperature is lower than the melting point of the binder fiber by more than 70 ° C., fluffing may easily occur, and it becomes difficult to obtain a semipermeable membrane having a uniform thickness. On the other hand, if the surface temperature of the thermal roll is raised beyond a temperature 20 ° C. lower than the melting point, the melted content of the fibers may adhere to the thermal roll, and the semipermeable membrane support may become non-uniform, resulting in a uniform thickness. It becomes difficult to obtain a semipermeable membrane.

本発明の半透膜支持体は、各層の繊維配合が異なる2層構造である。この場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、半透膜支持体の地合が良くなり、その結果、半透膜形成面の平滑性や均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上する。 The semipermeable membrane support of the present invention has a two-layer structure in which the fiber composition of each layer is different. In this case, by lowering the basis weight of each layer, the fiber concentration of the slurry can be lowered, so that the formation of the semipermeable membrane support is improved, and as a result, the smoothness and uniformity of the semipermeable membrane forming surface are improved. improves. Further, even if the formation of each layer is uneven, it can be compensated by laminating. Furthermore, the papermaking speed can be increased, and the operability is improved.

半透膜支持体の坪量は、特に限定しないが、20〜150g/mが好ましく、より好ましくは50〜100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2, and more preferably 50 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Further, if it exceeds 150 g / m 2 , the liquid passage resistance may increase or the thickness may increase and a specified amount of semipermeable membrane may not be stored in the unit or module.

また、半透膜支持体の密度は、0.5〜1.2g/cmであることが好ましく、より好ましくは0.6〜1.0g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、1.2g/cmを超える場合は、通液性が低くなることがあり、半透膜のライフが短くなる場合がある。 The density of the semipermeable membrane support is preferably 0.5 to 1.2 g / cm 3 , and more preferably 0.6 to 1.0 g / cm 3 . When the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness becomes thicker, so that the area of the semipermeable membrane that can be incorporated into the unit becomes smaller, and as a result, the life of the semipermeable membrane becomes shorter. It may end up. On the other hand, if it exceeds 1.2 g / cm 3 , the liquid permeability may be lowered and the life of the semipermeable membrane may be shortened.

半透膜支持体の厚みは、60〜150μmであることが好ましく、70〜130μmであることがより好ましく、80〜120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、60μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜のライフが短くなる場合がある。 The thickness of the semipermeable membrane support is preferably 60 to 150 μm, more preferably 70 to 130 μm, and even more preferably 80 to 120 μm. If the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the unit becomes small, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, if it is less than 60 μm, a sufficient tensile strength may not be obtained or the liquid permeability may be lowered, so that the life of the semipermeable membrane may be shortened.

半透膜支持体の通気度は0.5〜5.0cm/cm・secであることが好ましく、1.0〜4.5cm/cm・secであることがより好ましく、1.5〜4.0cm/cm・secであることがさらに好ましい。0.5cm/cm・secより小さいと、半透膜と半透膜支持体との接着性に劣る場合がある。5.0cm/cm・secより大きいと、半透膜液を塗布した際に裏抜けが発生しやすくなる場合がある。また、半透膜形成面の平滑性が低下する場合がある。 Air permeability of the semipermeable membrane support is preferably from 0.5~5.0cm 3 / cm 2 · sec, more preferably from 1.0~4.5cm 3 / cm 2 · sec, 1. It is more preferably 5 to 4.0 cm 3 / cm 2 · sec. If it is smaller than 0.5 cm 3 / cm 2 · sec, the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be poor. If it is larger than 5.0 cm 3 / cm 2 · sec, strike-through may easily occur when the semipermeable membrane liquid is applied. In addition, the smoothness of the semipermeable membrane forming surface may decrease.

本発明を実施例によりさらに詳細に説明する。 The present invention will be described in more detail by way of examples.

(実施例1)
半透膜形成面側の層の配合を、主体繊維(繊維径8.1μm、繊維長6mm、熱収縮率4.5%、延伸ポリエステル繊維、以下「主体繊維A」と記載する)を70質量%、バインダー繊維(繊維径11.8μm、繊維長5mm、融点260℃の未延伸ポリエステル系バインダー繊維、以下「バインダー繊維」と記載する)を30質量%とし、非半透膜形成面側の層の配合を、主体繊維(繊維径7.5μm、繊維長6mm、熱収縮率6.0%、延伸ポリエステル繊維、以下「主体繊維B」と記載する)を70質量%、バインダー繊維を30質量%とし、これらの繊維を水に混合分散したスラリーを、撹拌装置を有する2つのストックタンクに分けて貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用い、半透膜形成面側の層を傾斜ワイヤー抄紙機で、非半透膜形成面側の層を円網抄紙機で、各層35g/mの抄き合わせ湿紙を形成した後、表面温度130℃のヤンキードライヤーにて、半透膜形成面側がヤンキードライヤーに接するように熱圧乾燥し、湿式抄造不織布を得た。
(Example 1)
The composition of the layer on the semitransparent film forming surface side is 70 mass of the main fiber (fiber diameter 8.1 μm, fiber length 6 mm, heat shrinkage rate 4.5%, drawn polyester fiber, hereinafter referred to as “main fiber A”). %, Binder fiber (fiber diameter 11.8 μm, fiber length 5 mm, unstretched polyester-based binder fiber having a melting point of 260 ° C., hereinafter referred to as “binder fiber”) is 30% by mass, and the layer on the non-semi-transparent film forming surface side. The main fiber (fiber diameter 7.5 μm, fiber length 6 mm, heat shrinkage rate 6.0%, drawn polyester fiber, hereinafter referred to as “main fiber B”) is 70% by mass, and the binder fiber is 30% by mass. Then, the slurry in which these fibers were mixed and dispersed in water was separately stored in two stock tanks having a stirrer. Using a combination machine of an inclined wire paper machine and a circular net paper machine, the layer on the semipermeable membrane forming surface side is an inclined wire paper machine, and the layer on the non-semipermeable membrane forming surface side is a circular net paper machine, and each layer is 35 g / after forming the paper making combined wet paper m 2, by a Yankee dryer having a surface temperature 130 ° C., the semipermeable membrane forming surface is hot pressure drying so as to be in contact with the Yankee dryer to obtain a wet papermaking nonwoven.

得られた湿式抄造不織布を、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。第一ロールニップでは、半透膜形成面が金属ロールに接触し、第二ロールニップでは、非半透膜形成面が金属ロールに接触するように、熱圧加工処理した。 The obtained wet-made non-woven film is used at the time of the first roll nip by using a thermal pressure processing apparatus in which the first and second roll nip composed of a metal roll (heated) and a resin roll (non-heated) are continuously installed. The surface temperature of the metal roll was 220 ° C., the surface temperature of the metal roll at the time of the second roll nip was 225 ° C., and processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min to obtain a semipermeable membrane support. In the first roll nip, the semipermeable membrane-forming surface is in contact with the metal roll, and in the second roll nip, the non-semipermeable membrane-forming surface is in contact with the metal roll.

(実施例2)
半透膜形成面側の層の配合を、主体繊維(繊維径7.5μm、繊維長5mm、熱収縮率5.4%、延伸ポリエステル繊維、以下「主体繊維C」と記載する)を70質量%、バインダー繊維を30質量%とし、非半透膜形成面側の層の配合を、主体繊維(繊維径8.1μm、繊維長6mm、熱収縮率8.0%、延伸ポリエステル繊維、以下「主体繊維D」と記載する)を70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Example 2)
The composition of the layer on the semitransparent film forming surface side is 70 mass of the main fiber (fiber diameter 7.5 μm, fiber length 5 mm, heat shrinkage 5.4%, drawn polyester fiber, hereinafter referred to as “main fiber C”). %, The binder fiber is 30% by mass, and the layer on the non-semi-transparent film forming surface side is blended with the main fiber (fiber diameter 8.1 μm, fiber length 6 mm, heat shrinkage rate 8.0%, drawn polyester fiber, hereinafter “ A semi-transparent film support was obtained in the same manner as in Example 1 except that the main fiber D) was 70% by mass and the binder fiber was 30% by mass.

(実施例3)
半透膜形成面側の層の配合を、主体繊維Aを70質量%、バインダー繊維を30質量%とし、非半透膜形成面側の層の配合を、主体繊維Dを70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Example 3)
The composition of the layer on the semipermeable membrane-forming surface side is 70% by mass of the main fiber A and 30% by mass of the binder fiber, and the composition of the layer on the non-semipermeable membrane-forming surface side is 70% by mass of the main fiber D and the binder. A semipermeable membrane support was obtained in the same manner as in Example 1 except that the fibers were made 30% by mass.

(実施例4)
半透膜形成面側の層の配合を、主体繊維(繊維径8.1μm、繊維長5mm、熱収縮率2.0%、延伸ポリエステル繊維、以下「主体繊維E」と記載する)を70質量%、バインダー繊維を30質量%とし、非半透膜形成面側の層の配合を、主体繊維Aを70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Example 4)
The composition of the layer on the semipermeable membrane forming surface side is 70 mass of the main fiber (fiber diameter 8.1 μm, fiber length 5 mm, heat shrinkage rate 2.0%, drawn polyester fiber, hereinafter referred to as “main fiber E”). %, The binder fiber was 30% by mass, and the layer on the non-semipermeable membrane forming surface side was blended in the same manner as in Example 1 except that the main fiber A was 70% by mass and the binder fiber was 30% by mass. A semipermeable membrane support was obtained.

(実施例5)
半透膜形成面側の層の配合を、主体繊維Eを70質量%、バインダー繊維を30質量%とし、非半透膜形成面側の層の配合を、主体繊維Bを70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Example 5)
The composition of the layer on the semipermeable membrane-forming surface side is 70% by mass of the main fiber E and 30% by mass of the binder fiber, and the composition of the layer on the non-semipermeable membrane-forming surface side is 70% by mass of the main fiber B and the binder. A semipermeable membrane support was obtained in the same manner as in Example 1 except that the fibers were made 30% by mass.

(実施例6)
実施例1と同配合にて、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を220℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(Example 6)
At the time of the first roll nip, using the thermal pressure processing apparatus in which the first and second roll nip consisting of the metal roll (heated) and the resin roll (non-heated) are continuously installed in the same composition as in Example 1. The surface temperature of the metal roll was 220 ° C. and the surface temperature of the metal roll at the time of the second roll nip was 220 ° C., and processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min to obtain a semipermeable membrane support. ..

(実施例7)
実施例1と同配合にて、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を230℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(Example 7)
At the time of the first roll nip, using the thermal pressure processing apparatus in which the first and second roll nip consisting of the metal roll (heated) and the resin roll (non-heated) are continuously installed in the same composition as in Example 1. The surface temperature of the metal roll was 220 ° C. and the surface temperature of the metal roll at the time of the second roll nip was 230 ° C., and processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min to obtain a semipermeable membrane support. ..

(比較例1)
半透膜形成面側の層の配合及び非半透膜形成面側の層の配合を、主体繊維Aを70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Comparative Example 1)
The composition of the layer on the semipermeable membrane-forming surface side and the composition of the layer on the non-semipermeable membrane-forming surface side were the same as in Example 1 except that the main fiber A was 70% by mass and the binder fiber was 30% by mass. , A semipermeable membrane support was obtained.

(比較例2)
半透膜形成面側の層の配合を、主体繊維Eを70質量%、バインダー繊維を30質量%とし、非半透膜形成面側の層の配合を、主体繊維Dを70質量%、バインダー繊維を30質量%にした以外は、実施例1と同様にして、半透膜支持体を得た。
(Comparative Example 2)
The composition of the layer on the semipermeable membrane-forming surface side is 70% by mass of the main fiber E and 30% by mass of the binder fiber, and the composition of the layer on the non-semipermeable membrane-forming surface side is 70% by mass of the main fiber D and the binder. A semipermeable membrane support was obtained in the same manner as in Example 1 except that the fibers were made 30% by mass.

<半透膜の作製>
一定のクリアランスを有する定速塗工装置(商品名:Automatic FilmApplicator、安田精機社製)を用いて、実施例1〜7及び比較例1〜2の半透膜支持体の半透膜形成面にポリスルホン(SIGMA−ALDRICH Corporation製、質量平均分子量Mw<35,000、数平均分子量Mn<16,000、商品番号428302)のジメチルホルムアミド(DMF)溶液(濃度:18質量%)である半透膜液を塗工し、水洗、乾燥を行い、半透膜支持体の半透膜形成面に厚み50μmのポリスルホンからなる半透膜を形成させて、濾過膜を得た。
<Preparation of semipermeable membrane>
Using a constant-speed coating device (trade name: Automatic FilmApplicator, manufactured by Yasuda Seiki Co., Ltd.) having a constant clearance on the semipermeable membrane-forming surfaces of the semipermeable membrane supports of Examples 1 to 7 and Comparative Examples 1 and 2. A semipermeable membrane solution which is a dimethylformamide (DMF) solution (concentration: 18% by mass) of polysulfone (manufactured by SIGMA-ALDRICH Corporation, mass average molecular weight Mw <35,000, number average molecular weight Mn <16,000, product number 428302). Was applied, washed with water, and dried to form a semipermeable membrane made of polysulfone having a thickness of 50 μm on the semipermeable membrane-forming surface of the semipermeable membrane support to obtain a filtered membrane.

測定1(坪量)
JIS P8124:2011に準拠して、坪量を測定した。
Measurement 1 (basis weight)
Basis weight was measured according to JIS P8124: 2011.

測定2(厚さ)
JIS P8118:2014に準拠して、厚さを測定した。
Measurement 2 (thickness)
The thickness was measured according to JIS P8118: 2014.

測定3(通気度)
JIS L1096:2010のフラジール形法に準拠して、通気度を測定した。
Measurement 3 (air permeability)
The air permeability was measured according to the Frazier method of JIS L1096: 2010.

測定4(平均カール高さ)
実施例及び比較例で得られた半透膜支持体から、幅方向10cm×長手方向10cmのサンプルを採取し、非半透膜形成面を上にして、平滑な台上に水平に静置し、23℃、50%R.H.の条件にて24時間調湿後、四隅の浮き上がっている高さを測定し、その値の平均値を「平均カール高さ」とした。
Measurement 4 (average curl height)
From the semipermeable membrane supports obtained in Examples and Comparative Examples, a sample of 10 cm in the width direction × 10 cm in the longitudinal direction was taken, and placed horizontally on a smooth table with the non-semipermeable membrane forming surface facing up. , 23 ° C., 50% R. H. After controlling the humidity for 24 hours under the above conditions, the raised heights of the four corners were measured, and the average value of the values was defined as the "average curl height".

評価(塗工後カール評価)
実施例及び比較例で得られた半透膜支持体を用いて半透膜を形成させた濾過膜から、幅方向200mm×長手方向300mmのシートサンプルを採取し、半透膜形成面を上にして、平滑な台上に水平に静置し、シートサンプルのカール状態を下記基準で評価した。
Evaluation (curl evaluation after coating)
From the filtration membrane in which the semipermeable membrane was formed using the semipermeable membrane supports obtained in Examples and Comparative Examples, a sheet sample of 200 mm in the width direction × 300 mm in the longitudinal direction was collected, and the semipermeable membrane forming surface was turned up. Then, the sheet sample was placed horizontally on a smooth table, and the curl state of the sheet sample was evaluated according to the following criteria.

○:カールは見られず、良好。
△:わずかにカールは見られるが、実用上問題無いレベル。
×:シートサンプルが丸まり、実用上不可レベル。
◯: No curl was seen and it was good.
Δ: Slight curl is seen, but there is no problem in practical use.
×: The sheet sample is curled and is at a level that is practically impossible.

Figure 2021146248
Figure 2021146248

実施例1〜7の半透膜支持体は、合成繊維からなる主体繊維とバインダー繊維とを含み、半透膜形成面側の層と非半透膜形成面側の層とからなる2層構造の半透膜支持体であり、主体繊維の平均熱収縮率(非半透膜形成面/半透膜形成面)が1.3〜3.0倍であることから、半透膜塗工後のカールも操業上、問題無いレベルとなった。 The semipermeable membrane supports of Examples 1 to 7 include a main fiber made of synthetic fibers and a binder fiber, and have a two-layer structure including a layer on the semipermeable membrane forming surface side and a layer on the non-semipermeable membrane forming surface side. Since it is a semipermeable membrane support of the above and the average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) of the main fiber is 1.3 to 3.0 times, after semipermeable membrane coating The curl of was also at a level where there was no problem in operation.

また、繊維配合が等しい実施例1、6及び7を比較すると、平均カール高さが5〜20mmの範囲である実施例1の半透膜支持体は、平均カール高さが5mmを下回る実施例6の半透膜支持体と比較して、半透膜塗工後のカールが無く、よりフラットな膜であり、また、平均カール高さが20mmを上回る半透膜支持体と比較しても、半透膜塗工後のカールが無く、塗工性に優れる結果であった。 Further, comparing Examples 1, 6 and 7 having the same fiber composition, the semipermeable membrane support of Example 1 having an average curl height in the range of 5 to 20 mm has an average curl height of less than 5 mm. Compared with the semipermeable membrane support of No. 6, there is no curl after semipermeable membrane coating, the film is flatter, and even when compared with the semipermeable membrane support having an average curl height of more than 20 mm. There was no curl after semipermeable membrane coating, and the result was excellent in coatability.

比較例1の半透膜支持体は、各層における主体繊維の平均熱収縮率が同じであり、平均カール高さが0mmのフラットな半透膜支持体であるが、半透膜液塗工後、半透膜液由来の収縮によりカールし、実用上不可レベルとなった。比較例2の半透膜支持体は平均熱収縮率(非半透膜形成面/半透膜形成面)が3.0倍を上回り、非半透膜形成面側へカールするものの、カールが強過ぎて、均一な塗布ができなかった。 The semipermeable membrane support of Comparative Example 1 is a flat semipermeable membrane support having the same average heat shrinkage rate of the main fibers in each layer and an average curl height of 0 mm, but after coating with the semipermeable membrane liquid. , Curled due to shrinkage derived from the semipermeable membrane liquid, and became a practically impossible level. The semipermeable membrane support of Comparative Example 2 has an average heat shrinkage rate (non-semipermeable membrane forming surface / semipermeable membrane forming surface) exceeding 3.0 times, and curls toward the non-semipermeable membrane forming surface side, but the curl does not occur. It was too strong to apply evenly.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。 The semipermeable membrane support of the present invention can be used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. can.

Claims (2)

合成繊維からなる主体繊維とバインダー繊維とを含み、半透膜形成面側の層と非半透膜形成面側の層とからなる2層構造の半透膜支持体において、非半透膜形成面側の層における主体繊維の平均熱収縮率が、半透膜形成面側の層における主体繊維の平均熱収縮率に対して1.3〜3.0倍であることを特徴とする半透膜支持体。 Non-semipermeable membrane formation in a semipermeable membrane support having a two-layer structure including a main fiber made of synthetic fibers and a binder fiber, and a layer on the semipermeable membrane forming surface side and a layer on the non-semipermeable membrane forming surface side. The semipermeable membrane is characterized in that the average heat shrinkage rate of the main fiber in the surface side layer is 1.3 to 3.0 times the average heat shrinkage rate of the main fiber in the semipermeable membrane forming surface side layer. Membrane support. 10cm×10cmに切り出した半透膜支持体を、非半透膜形成面側を上にして、平滑な台上に水平に静置し、23℃、50%R.H.の条件にて24時間調湿後、四隅の浮き上がっている高さの平均が5〜20mmの範囲である請求項1に記載の半透膜支持体。 A semipermeable membrane support cut out to a size of 10 cm × 10 cm was placed horizontally on a smooth table with the non-semipermeable membrane forming surface side facing up, and the temperature was 23 ° C., 50% R. H. The semipermeable membrane support according to claim 1, wherein the average height of the raised heights of the four corners is in the range of 5 to 20 mm after humidity control for 24 hours under the above conditions.
JP2020046879A 2020-03-17 2020-03-17 Semipermeable membrane support body Pending JP2021146248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020046879A JP2021146248A (en) 2020-03-17 2020-03-17 Semipermeable membrane support body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046879A JP2021146248A (en) 2020-03-17 2020-03-17 Semipermeable membrane support body

Publications (1)

Publication Number Publication Date
JP2021146248A true JP2021146248A (en) 2021-09-27

Family

ID=77850274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046879A Pending JP2021146248A (en) 2020-03-17 2020-03-17 Semipermeable membrane support body

Country Status (1)

Country Link
JP (1) JP2021146248A (en)

Similar Documents

Publication Publication Date Title
KR101757491B1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
JP2013220382A (en) Semipermeable membrane support
JP6625916B2 (en) Semipermeable membrane support
JP2017104840A (en) Semipermeable membrane support body and method for manufacturing the same
JP2016140785A (en) Semipermeable membrane support
JP2022107809A (en) Translucent membrane support
JP2012106177A (en) Semipermeable membrane support
JP5809583B2 (en) Semipermeable membrane support
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP2015058411A (en) Semipermeable membrane support
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP2020163321A (en) Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film
JP2019118907A (en) Substrate for semipermeable membrane
JP2020146606A (en) Semipermeable membrane support body
JP2012250223A (en) Semipermeable membrane support
JP7190855B2 (en) Semipermeable membrane support
JP2021146248A (en) Semipermeable membrane support body
JP2015058409A (en) Semipermeable membrane support
JP5374407B2 (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
JP7328102B2 (en) Semipermeable membrane support for membrane separation activated sludge treatment
WO2020145240A1 (en) Semi-permeable membrane support and method for producing semi-permeable membrane support
JP2020157213A (en) Production method for semipermeable membrane support
JP2014180639A (en) Method for manufacturing semipermeable membrane
JP5809588B2 (en) Semipermeable membrane support