JP2020048361A - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- JP2020048361A JP2020048361A JP2018176362A JP2018176362A JP2020048361A JP 2020048361 A JP2020048361 A JP 2020048361A JP 2018176362 A JP2018176362 A JP 2018176362A JP 2018176362 A JP2018176362 A JP 2018176362A JP 2020048361 A JP2020048361 A JP 2020048361A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power semiconductor
- source
- voltage
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 30
- 239000004065 semiconductor Substances 0.000 claims abstract description 167
- 238000001514 detection method Methods 0.000 claims abstract description 115
- 239000000284 extract Substances 0.000 claims abstract description 6
- 230000010355 oscillation Effects 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 23
- 230000001965 increasing effect Effects 0.000 claims description 15
- 230000003071 parasitic effect Effects 0.000 claims description 8
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 230000000452 restraining effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- 230000001052 transient effect Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Landscapes
- Power Conversion In General (AREA)
Abstract
Description
近年では、電力変換器の性能向上に向けて、電力変換用パワー半導体素子に、低損失性の特長を有するシリコンカーバイド(SiC:Silicon Carbide)素子が用いられている。SiC素子はバンドギャップが広く、絶縁破壊耐圧がシリコン(Si:Silicon)素子の10倍程度高い特長があり、電流経路となるチャネル半導体層の膜厚をSi素子より薄層化ができるため、絶縁破壊電圧を等しく設計した場合に薄いチャネル半導体層となることから非常に小さい導通時のオン抵抗値が得られる。
上記の特許文献1および特許文献2から、複数のパワー半導体素子をスイッチングさせる場合に、共振回路によってパワー半導体素子のいずれかに過電流が発生した場合に、過電流を抑制するために、(1)過電流の検知手段を備え、各パワー半導体素子のゲートに接続した個別抵抗の値を可変して過電流を低減すること、(2)パワー半導体素子の素子温度を検知する手段を備え、素子温度に応じて前記個別抵抗の値の制御を変化させることが従来から公知であると言える。
図1から図5Bを参照して、本発明の第1の実施形態に係る電力変換装置について説明する。図1は本実施例の電力変換装置の1相分の回路構成を示している。
図1に示した本実施例の回路構成の動作を、図2Aから図2Dに示すタイミングチャートで説明する。先ず、ゲートプラトー電圧の温度依存性について予め説明する。
ここで、Vthはパワー半導体モジュールに搭載したスイッチングを行うチップのゲート閾値電圧を、Isはスイッチングの際にソースを流れる電流値であり負荷電流Iloadに等しい。gmはスイッチングを行うチップの相互コンダクタンスを示しており、Vthとgmはそれぞれが温度依存性を有している。現在、パワー半導体モジュールに搭載されるSiC−MOSFETの特性では、式1のうち、温度変化に対してVthの依存性が最も大きく、チップ温度が低温であればVthに対応してVGPの値が高くなり、低温であればVthの値は低下するためVGPの値は低くなる。
ここで、図3を用いて上記のゲート抵抗の増減の効果を説明する。図3は、並列接続される2つのパワー半導体モジュール8a,9aについて、ゲート駆動経路の等価回路を簡略化したものである。ゲート駆動回路の等価回路は、例としてターンオン時の回路を記載している。ゲート駆動経路に生ずる不要振動は、2つのパワー半導体モジュール8a,9aのゲート端子とソースセンス端子で構成する共振ループ間で生じる発振現象である。
上記の(2)の実現手段は、パワー半導体モジュールの共通ゲート抵抗を減少させることである。不要振動の発生リスクが高い条件において、スイッチ(共通ゲート可変スイッチ)54を閉鎖することにより、共通ゲート抵抗をターンオン時のR51やターンオフ時のR52の値からR51’やR52’へ変化させる。ここで、R51’<R51、R52’<R52、R51’=R51//R53、R52’=R52//R56、の関係である。この実現手段によってゲート駆動経路に引き込む振動電流Igdを増加できるため、パワー半導体モジュールを流れる振動電流Iringの振幅を低減できる。その結果、Iringとパワー半導体モジュールのゲート・ソース間インピーダンスの積で決まる波形VGSの不要振動電圧振幅を小さく抑制することができる。
図4Aから図4Cを参照して、ゲート抵抗値の制御を整理する。検知判定回路10(10a)に入力される電圧波形VDS、電圧波形VGS、ソース電流Isに比例した電圧波形を検知し、パワー半導体モジュール内部のSiC−MOSFETの素子温度と相互コンタクダンスの値を判定し、ゲート駆動経路に発生する不要振動が発生する素子温度が低温で相互コンタクダンスが大という条件(図2Aで例示)では、共通ゲート抵抗の値を低減させ、パワー半導体モジュールの個別ゲート抵抗の値を増加させる制御を行う。
図5Aおよび図5Bは、本発明の効果を模式的に示したものである。横軸に時間をとり、不要振動が発生する条件において、図5Aは振動抑制対策を実施しない場合(従来の電力変換装置)を示し、図5Bは本発明の振動実施対策を実施する場合を示す。
図6を参照して、本発明の第2の実施形態に係る電力変換装置について説明する。図6は本実施形態の部分回路構成を示している。本実施例は実施例1の検知判定回路10(10a,10b)の内部回路構成を具体化した一例であり、実施例1の変形例に相当する。検知判定回路10(10a,10b)の内部回路構成が具体化されている点で実施例1と相違するが、その他の点は実施例1の構成と共通である。
本実施例により、スイッチング動作に伴う判定回路の電源雑音が発生した場合でも、ノイズマージンが大きな論理回路によってその機能を実現できるため、電源雑音耐性を向上することができる。
図7を参照して、本発明の第3の実施形態に係る電力変換装置について説明する。図7は本実施形態の部分回路構成を示している。本実施例は実施例1の検知判定回路10(10a,10b)の内部回路構成を具体化した一例であり、実施例1または実施例2の変形例に相当する。検知判定回路10(10a,10b)の内部回路構成が具体化されている点で実施例1または実施例2と相違するが、その他の点は実施例1の構成と共通である。
本実施例により検知回路の簡易な具体構成を示した。アナログ信号となる検知信号に対し、差動入力増幅回路101による増幅を行った後に、閾値に基づく判定を行う構成を採ることで検知信号に重畳するノイズの影響を軽減できる。
図8を参照して、本発明の第4の実施形態に係る電力変換装置について説明する。図8は分流トランジスタとシャント抵抗によるソース電流値Is抽出の例を示しており、実施例1(図1)の変形例に相当する。
4,4a,4b…判定回路
5,5a,5b…ゲート駆動回路
6…誘導性負荷
7…主電圧源
8,8a,8b,9,9a,9b…パワー半導体モジュール
10,10a,10b…検知判定回路
51,52,53,55…共通ゲート(駆動)抵抗
54,56…スイッチ(共通ゲート可変スイッチ)
57,58…ゲート駆動ON/OFF切り替えスイッチ
60…コンデンサ
81,91…パワー半導体素子
82,83,92,93…個別ゲート抵抗
84,94…個別ゲート抵抗可変スイッチ
85,95…ソース電流検知抵抗(シャント抵抗)
86,96…パワー半導体素子(電流センス端子付き)
87,97…ソース電流検知抵抗(電流センス端子接続用)
101…差動入力増幅回路
102…シュミットトリガ型コンパレータ
103…検知閾値発生回路
104…電圧安定化回路
401…Dフリップフロップ
402,403…論理積(AND)回路
404…バッファ回路
405…反転バッファ
Claims (14)
- 並列に接続された複数のパワー半導体モジュールと、
前記複数のパワー半導体モジュールの各々のドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs、ソースまたはドレイン電流Isのそれぞれに基づく第1の物理量、第2の物理量、第3の物理量を前記複数のパワー半導体モジュールから取得する検知回路と、
前記第1の物理量、前記第2の物理量、前記第3の物理量に基づいて検知判定信号を生成する判定回路と、
前記検知回路および前記判定回路で構成され、前記検知判定信号を出力する検知判定回路と、
前記検知判定信号に基づいて前記複数のパワー半導体モジュールの制御信号を生成するゲート駆動回路と、を備え、
前記ゲート駆動回路は、抵抗値が可変に制御されるように構成された共通ゲート抵抗を有し、
前記複数のパワー半導体モジュールの各々は、抵抗値が可変に制御されるように構成された個別ゲート抵抗を有し、
前記検知判定回路は、前記ドレイン・ソース間電圧Vdsと前記ソースまたはドレイン電流Isが共に所定の閾値よりも大きい準短絡期間を抽出すると共に、前記ゲート・ソース間電圧Vdsと前記ソースまたはドレイン電流Isの組み合わせに対応するモジュール素子温度を抽出し、
前記準短絡期間内に、前記モジュール素子温度が所定の範囲内である場合、前記共通ゲート抵抗および前記個別ゲート抵抗の少なくともいずれか一方の抵抗値を変化させることを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記複数のパワー半導体モジュールがそれぞれ並列に接続された上アームと下アームで構成されるハーフブリッジ回路を有し、
前記上アームと前記下アームの各々は、それぞれ前記検知判定回路、前記ゲート駆動回路を有し、
前記上アームおよび前記下アームの各々のゲート駆動回路は、
第1の共通ゲート抵抗と、
前記第1の共通ゲート抵抗の抵抗値を可変な第1の共通ゲート抵抗値切替回路と、
第2の共通ゲート抵抗と、
前記第2の共通ゲート抵抗の抵抗値を可変な第2の共通ゲート抵抗値切替回路と、を有し、
前記複数のパワー半導体モジュールの各々は、
個別ゲート抵抗と、
前記個別ゲート抵抗の抵抗値を可変な個別ゲート抵抗値切替回路と、を有することを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記複数のパワー半導体モジュールのうち、少なくとも1つはSiC−MOSFET型パワー半導体素子であることを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記検知回路は、前記複数のパワー半導体モジュールのドレイン・ソース間電圧Vdsを検知して第1の物理量を生成する第1の検知回路と、
前記複数のパワー半導体モジュールのゲート・ソース間電圧Vgsを検知して第2の物理量を生成する第2の検知回路と、
前記複数のパワー半導体モジュールのソースまたはドレイン電流Isを検知して第3の物理量を生成する第3の検知回路と、を有し、
前記判定回路は、前記第1の物理量、前記第2の物理量、前記第3の物理量に基づいて前記共通ゲート抵抗および前記個別ゲート抵抗の抵抗値を制御する制御信号を生成することを特徴とする電力変換装置。 - 請求項4に記載の電力変換装置であって、
前記第1の検知回路の一方の入力端子は、前記パワー半導体モジュールの各々のドレインセンス端子に接続され、他方の入力端子はソースセンス端子に接続され、
前記第2の検知回路の一方の入力端子は、前記パワー半導体モジュールの各々のゲート端子に接続され、他方の入力端子は前記ソースセンス端子に接続され、
前記第3の検知回路の一方の入力端子は、前記パワー半導体モジュールの各々のソース端子に接続され、他方の入力端子は前記ソースセンス端子に接続されることを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記検知回路は、前記複数のパワー半導体モジュールの直流電圧の差分電圧を電源電圧として動作する差動入力増幅回路と、
所定の検知閾値電圧を出力する検知閾値発生回路と、
前記差動入力増幅回路の出力を所定の利得で信号増幅し、前記検知閾値電圧に基づいて前記差動入力増幅回路の出力電圧の大小を判定するシュミットトリガ型コンパレータと、
前記複数のパワー半導体モジュールの直流電圧の差分電圧に重畳する高周波雑音信号を除去する電圧安定化回路と、
を有することを特徴とする電力変換装置。 - 請求項4に記載の電力変換装置であって、
前記第1の検知回路、前記第2の検知回路、前記第3の検知回路の各々は、それぞれの入力端子間の電位差に対する閾値電圧発生回路を備え、
各検知回路における閾値電圧を互いに独立して設定可能であることを特徴とする電力変換装置。 - 請求項7に記載の電力変換装置であって、
前記第1の検知回路で生成される閾値電圧は、前記電力変換装置の主電圧源の50%の電圧値であり、
前記第3の検知回路で生成される閾値電流は、前記電力変換装置のソース電流の定格電流値の50%の電流に相当する電流値であることを特徴とする電力変換装置。 - 請求項4に記載の電力変換装置であって、
前記判定回路は、前記第1の検知回路の出力をクロックトリガとして動作し、前記第2の検知回路の出力を入力信号として取り込み、第1の内部波形信号を出力するフリップフロップと、
前記第1の検知回路の出力と前記第3の検知回路の出力を入力信号として取り込み、第2の内部波形信号を出力する第1の論理積回路と、
前記第1の内部波形信号および前記第2の内部波形信号を入力信号として取り込み、第3の内部波形信号を出力する第2の論理積回路と、
前記第3の内部波形信号を入力信号として取り込み、前記複数のパワー半導体モジュールの各々の個別ゲート抵抗へ出力するバッファ回路と、
前記第3の内部波形信号を入力信号として取り込み、論理反転させて前記共通ゲート抵抗へ出力する反転バッファと、
を有することを特徴とする電力変換装置。 - 請求項9に記載の電力変換装置であって、
前記判定回路は、前記第1の物理量が変化したタイミングで前記第2の物理量を保持して前記第1の内部波形信号を出力し、
前記第1の物理量と前記第3の物理量の論理積の電圧を発生させて前記第2の内部波形信号を出力し、
前記第1の内部波形信号および前記第2の内部波形信号の論理積の電圧を発生させて第3の内部波形信号を出力し、
前記第2の内部波形信号の電位が高電位論理出力電圧(High電圧)である期間を抽出し、前記複数のパワー半導体モジュールのドレイン・ソース間電圧Vdsとソースまたはドレイン電流Isが各々の閾値を超えた準短絡期間t1を判定し、
前記第1の内部波形信号の電位が高電位論理出力電圧(High電圧)である期間を抽出し、前記複数のパワー半導体モジュールの素子温度が所定の閾値よりも低く、なおかつ、ソースまたはドレイン電流Isの値が所定の閾値より大きい期間t2を判定し、
前記第3の内部波形信号の電位が高電位論理出力電圧(High電圧)である期間を抽出し、前記準短絡期間t1と前記期間t2が重畳した不要振動が発生する期間t3を判定し、
前記期間t3が発生した場合、前記共通ゲート抵抗および前記個別ゲート抵抗の少なくともいずれか一方の抵抗値を変化させることを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記検知判定回路は、前記複数のパワー半導体モジュールの各々のゲート端子と、
前記複数のパワー半導体モジュールの各々のソースセンス端子と、
前記ゲート駆動回路と、
接続配線によって生じる寄生インダクタンスと、
前記複数のパワー半導体モジュールの各々に生じる寄生容量と、
によって構成されるゲート駆動経路の共振ループ回路を成し、
前記共通ゲート抵抗の値を低減することで前記共振ループ回路に生じる振動電流の迂回路を発生させて前記振動電流を低減し、
前記個別ゲート抵抗の値を増加することで前記共振ループ回路に損失を与えて前記振動電流を低減することを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記複数のパワー半導体モジュールの各々は、それぞれのソースセンス端子とソース端子の間にシャント抵抗を有し、
前記ソースセンス端子と前記ソース端子の端子間にソースまたはドレイン電流Isに比例した電位差が発生することを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記複数のパワー半導体モジュールの各々は、それぞれのソースセンス端子とソース端子の間にシャント抵抗を有し、
前記複数のパワー半導体モジュールの各々のソース電流を前記検知回路と負荷へ分流させ、
分流したソース電流の一部を前記シャント抵抗に流通させて発生した電位差が前記ソースセンス端子と前記ソース端子の端子間に発生することを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置であって、
前記複数のパワー半導体モジュールは、前記個別ゲート抵抗を複数備え、
前記複数の個別ゲート抵抗の接続を切り替える切替回路を内蔵することを特徴とする電力変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018176362A JP7038633B2 (ja) | 2018-09-20 | 2018-09-20 | 電力変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018176362A JP7038633B2 (ja) | 2018-09-20 | 2018-09-20 | 電力変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020048361A true JP2020048361A (ja) | 2020-03-26 |
JP7038633B2 JP7038633B2 (ja) | 2022-03-18 |
Family
ID=69899996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018176362A Active JP7038633B2 (ja) | 2018-09-20 | 2018-09-20 | 電力変換装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7038633B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115001303A (zh) * | 2022-08-03 | 2022-09-02 | 广东汇芯半导体有限公司 | 半导体电路 |
US12132394B2 (en) | 2020-10-23 | 2024-10-29 | Tmeic Corporation | Controller of power conversion device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079379A (ja) * | 2006-09-19 | 2008-04-03 | Toyota Motor Corp | 電圧駆動型半導体素子の駆動方法、及び、ゲート駆動回路 |
JP2013258857A (ja) * | 2012-06-13 | 2013-12-26 | Honda Motor Co Ltd | 半導体モジュール及びその制御方法 |
JP2016052197A (ja) * | 2014-09-01 | 2016-04-11 | 三菱電機株式会社 | 電力用スイッチングデバイス駆動回路 |
-
2018
- 2018-09-20 JP JP2018176362A patent/JP7038633B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008079379A (ja) * | 2006-09-19 | 2008-04-03 | Toyota Motor Corp | 電圧駆動型半導体素子の駆動方法、及び、ゲート駆動回路 |
JP2013258857A (ja) * | 2012-06-13 | 2013-12-26 | Honda Motor Co Ltd | 半導体モジュール及びその制御方法 |
JP2016052197A (ja) * | 2014-09-01 | 2016-04-11 | 三菱電機株式会社 | 電力用スイッチングデバイス駆動回路 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12132394B2 (en) | 2020-10-23 | 2024-10-29 | Tmeic Corporation | Controller of power conversion device |
CN115001303A (zh) * | 2022-08-03 | 2022-09-02 | 广东汇芯半导体有限公司 | 半导体电路 |
Also Published As
Publication number | Publication date |
---|---|
JP7038633B2 (ja) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6903597B2 (en) | Gate driving circuit | |
JP5138287B2 (ja) | ゲート駆動装置 | |
JP6237038B2 (ja) | カスコードトランジスタ及びカスコードトランジスタの制御方法 | |
KR101313498B1 (ko) | 전력용 반도체 소자의 구동 회로 | |
JP2009071956A (ja) | ゲート駆動回路 | |
KR20080045927A (ko) | 절연 게이트 바이폴라 트랜지스터 폴트 보호 시스템 | |
US10033370B2 (en) | Circuit and method for driving a power semiconductor switch | |
JP2016059036A (ja) | 短絡保護用の回路、システム、及び方法 | |
WO2018225083A1 (en) | Digitally controlled switched current source active gate driver for silicon carbide mosfet with line current sensing | |
JP2015080335A (ja) | ゲート駆動回路 | |
JP5425292B2 (ja) | ゲート駆動装置 | |
JP5527353B2 (ja) | ゲート駆動回路 | |
WO2019142585A1 (ja) | 電力変換装置 | |
JP7038633B2 (ja) | 電力変換装置 | |
JP2017059920A (ja) | スイッチング回路装置 | |
JP2018078533A (ja) | パワーモジュール | |
JP2018007373A (ja) | 電力変換装置 | |
JP5352708B2 (ja) | ゲート駆動装置 | |
JP2001274665A (ja) | 電圧駆動型素子の駆動方法および駆動回路 | |
US11108388B1 (en) | Silicon carbide power device, driving circuit and control method | |
JP7459398B1 (ja) | ゲート駆動装置 | |
CN213547477U (zh) | 一种igbt驱动电路 | |
CN114640328B (zh) | 可抑制开通电流振荡的耐温SiC MOSFET驱动电路及其控制方法 | |
US20230053929A1 (en) | Driving apparatus | |
TWI705664B (zh) | 一種碳化矽功率元件、驅動電路及控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7038633 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |