JP2020046557A - Method of manufacturing image display device - Google Patents

Method of manufacturing image display device Download PDF

Info

Publication number
JP2020046557A
JP2020046557A JP2018175362A JP2018175362A JP2020046557A JP 2020046557 A JP2020046557 A JP 2020046557A JP 2018175362 A JP2018175362 A JP 2018175362A JP 2018175362 A JP2018175362 A JP 2018175362A JP 2020046557 A JP2020046557 A JP 2020046557A
Authority
JP
Japan
Prior art keywords
light
resin layer
image display
curable resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018175362A
Other languages
Japanese (ja)
Other versions
JP6538252B1 (en
Inventor
高橋 宏
Hiroshi Takahashi
高橋  宏
明彦 渡邉
Akihiko Watanabe
明彦 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2018175362A priority Critical patent/JP6538252B1/en
Application granted granted Critical
Publication of JP6538252B1 publication Critical patent/JP6538252B1/en
Priority to KR1020190108235A priority patent/KR20200033173A/en
Priority to CN201910848015.6A priority patent/CN110930864B/en
Priority to TW108133809A priority patent/TWI831835B/en
Publication of JP2020046557A publication Critical patent/JP2020046557A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Abstract

To provide a method of manufacturing an image display device realizing excellent adhesion performance when pre-cured.SOLUTION: A method of manufacturing an image display device comprises: a step A of forming a curable resin layer 2 comprising a photocurable resin composition on a surface of an image display member 1 or a front plate 4; a step B of forming a pre-cured layer 5 by irradiating the curable resin layer 2 with light from a UV-LED; a step C of bonding the image display member 1 and the front plate 4 together across the pre-cured layer 5; and a step D of forming a cured resin layer 6 by irradiating the pre-cured layer 5 with light across the front plate 4. The irradiation light in the step B includes first light with a peak in a wavelength range of 360-430 nm, and second light with a peak in a wavelength range of 200-345 nm. In the step B, a portion of the curable resin layer 2 where the irradiation of the curable resin layer 2 with the first light causes oxygen inhibition is irradiated with the second light.SELECTED DRAWING: Figure 2

Description

本技術は、画像表示装置の製造方法に関する。   The present technology relates to a method for manufacturing an image display device.

特許文献1には、表示パネル及び基板の少なくとも一方に塗布された接着剤に光を照射する第一照射工程(仮硬化工程)と、第一照射工程の後に、表示パネル及び基板を貼り合わせる貼り合わせ工程と、貼り合わせ工程の後に、更に接着剤に光を照射する第二照射工程(本硬化工程)とを含む表示装置の製造方法が記載されている。   Patent Document 1 discloses a first irradiation step (temporary curing step) of irradiating an adhesive applied to at least one of a display panel and a substrate with light, and a bonding step of bonding the display panel and the substrate after the first irradiation step. A method of manufacturing a display device including a bonding step and a second irradiation step (main curing step) of irradiating the adhesive with light after the bonding step is described.

仮硬化工程における樹脂最表面の硬化状態は、貼り合わせ時のアライメントを保持する上で非常に重要である。樹脂最表面の硬化状態は、仮硬化時における酸素阻害の影響が大きい程、硬化率が低くなり、それに応じて接着機能も低下する傾向にある。そのため、紫外線照射装置としては、メタルハライドランプや高圧水銀ランプのように、広範囲の波長且つ高出力なものが好ましい。   The cured state of the outermost surface of the resin in the temporary curing step is very important for maintaining alignment during bonding. As for the cured state of the outermost surface of the resin, the greater the influence of oxygen inhibition during temporary curing, the lower the curing rate, and accordingly the adhesive function tends to be reduced. Therefore, as the ultraviolet irradiation device, a device having a wide range of wavelengths and high output, such as a metal halide lamp and a high-pressure mercury lamp, is preferable.

しかし、近年では、紫外線照射装置の高寿命性能の要請から、例えば波長360〜430nmの範囲にピークを有するUV−LEDが光源として多く採用される傾向にある。このようなUV−LEDは、単一波長で使用されるため、酸素阻害の影響により仮硬化時の接着性能の低下が懸念されている。   However, in recent years, UV-LEDs having a peak in a wavelength range of 360 to 430 nm, for example, tend to be often used as a light source due to a demand for high life performance of an ultraviolet irradiation device. Since such a UV-LED is used at a single wavelength, there is a concern that the adhesive performance during temporary curing may be reduced due to the influence of oxygen inhibition.

国際公開WO2009/054168号International Publication WO2009 / 054168

本技術は、このような従来の実情に鑑みて提案されたものであり、仮硬化時の接着性能が良好な画像表示装置の製造方法を提供する。   The present technology has been proposed in view of such a conventional situation, and provides a method of manufacturing an image display device having good adhesion performance during temporary curing.

本技術に係る画像表示装置の製造方法は、前面板又は画像表示部材の表面に、光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程Aと、硬化性樹脂層に、UV−LEDから光を照射して仮硬化層を形成する工程Bと、仮硬化層を介して前面板と画像表示部材とを貼り合わせる工程Cと、仮硬化層に対して前面板を介して光照射し、硬化樹脂層を形成する工程Dとを有し、工程Bで照射する光は、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光とを含み、工程Bでは、第1の光を硬化性樹脂層に照射して酸素阻害が生じる硬化性樹脂層の部位に第2の光を照射する。   The method for manufacturing an image display device according to the present technology includes: a step A of forming a curable resin layer made of a photocurable resin composition on the surface of a front plate or an image display member; and a UV-LED on the curable resin layer. Step B of forming a temporary cured layer by irradiating light from the above, Step C of bonding the front panel and the image display member through the temporary cured layer, and irradiating the temporary cured layer with light through the front panel And a step D of forming a cured resin layer, wherein the light irradiated in the step B includes a first light having a peak in a wavelength range of 360 to 430 nm and a second light having a peak in a wavelength range of 200 to 345 nm. In the step B, the first light is applied to the curable resin layer to irradiate the curable resin layer with the second light at the portion of the curable resin layer where oxygen inhibition occurs.

本技術によれば、仮硬化時の接着性能を良好にすることができる。   According to the present technology, it is possible to improve the adhesive performance during temporary curing.

図1は、画像表示部材の表面に光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程の一例を説明するための断面図である。FIG. 1 is a cross-sectional view illustrating an example of a step of forming a curable resin layer made of a photocurable resin composition on the surface of an image display member. 図2は、硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程の一例を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining an example of a step of irradiating a curable resin layer with light from a UV-LED to form a temporary cured layer. 図3は、硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程の一例を説明するための断面図である。FIG. 3 is a cross-sectional view illustrating an example of a step of forming a temporary cured layer by irradiating a curable resin layer with light from a UV-LED. 図4は、仮硬化層を介して前面板と画像表示部材とを貼り合わせる工程の一例を説明するための断面図である。FIG. 4 is a cross-sectional view illustrating an example of a step of bonding the front plate and the image display member via the temporary curing layer. 図5は、仮硬化層に対して前面板を介して光照射し、硬化樹脂層を形成する工程の一例を説明するための断面図である。FIG. 5 is a cross-sectional view illustrating an example of a process of forming a cured resin layer by irradiating the temporarily cured layer with light through a front plate. 図6は、画像表示装置の一例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of the image display device. 図7(A)〜(H)は、試験用サンプルの作製手順を説明するための図である。FIGS. 7A to 7H are diagrams for explaining a procedure for preparing a test sample. 図8は、仮硬化層のせん断強度の測定方法を説明するための斜視図である。FIG. 8 is a perspective view for explaining a method for measuring the shear strength of the temporary hardened layer. 図9は、実施例1〜6、比較例1,2で得られた試験用サンプルにおける仮硬化層のせん断強度の測定結果を示すグラフである。FIG. 9 is a graph showing the measurement results of the shear strength of the temporarily cured layers in the test samples obtained in Examples 1 to 6 and Comparative Examples 1 and 2. 図10は、実施例7、比較例3〜5で得られた試験用サンプルにおける仮硬化層のせん断強度の測定結果を示すグラフである。FIG. 10 is a graph showing the measurement results of the shear strength of the temporarily cured layer in the test samples obtained in Example 7 and Comparative Examples 3 to 5. 図11は、実施例8、比較例6〜8で得られた試験用サンプルにおける仮硬化層のせん断強度の測定結果を示すグラフである。FIG. 11 is a graph showing the measurement results of the shear strength of the temporarily cured layer in the test samples obtained in Example 8 and Comparative Examples 6 to 8. 図12は、実施例9、比較例9〜11で得られた試験用サンプルにおける仮硬化層のせん断強度の測定結果を示すグラフである。FIG. 12 is a graph showing the measurement results of the shear strength of the temporarily cured layer in the test samples obtained in Example 9 and Comparative Examples 9 to 11. 図13は、実施例10、比較例12で得られた試験用サンプルにおける仮硬化層のせん断強度の測定結果を示すグラフである。FIG. 13 is a graph showing the measurement results of the shear strength of the temporarily cured layer in the test samples obtained in Example 10 and Comparative Example 12. 図14は、実施例9で得られた試験用サンプルにおける仮硬化層を本硬化させた硬化樹脂層のせん断強度の測定結果を示すグラフである。FIG. 14 is a graph showing the measurement results of the shear strength of the cured resin layer obtained by fully curing the temporary cured layer in the test sample obtained in Example 9.

以下、本技術に係る画像表示装置の製造方法(以下、本製造方法ともいう)の詳細について説明する。以下の説明において、(メタ)アクリレートとは、アクリレートとメタクリレートの両方を包含する。また、(メタ)アクリロイル基とは、アクリロイル基とメタクリロイル基の両方を包含する。   Hereinafter, a method of manufacturing the image display device according to the present technology (hereinafter, also referred to as the present manufacturing method) will be described in detail. In the following description, (meth) acrylate includes both acrylate and methacrylate. Further, the (meth) acryloyl group includes both an acryloyl group and a methacryloyl group.

本製造方法は、前面板又は画像表示部材の表面に、光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程Aと、硬化性樹脂層に、UV−LEDから光を照射して仮硬化層を形成する工程Bと、仮硬化層を介して前面板と画像表示部材とを貼り合わせる工程Cと、仮硬化層に対して前面板を介して光照射し、硬化樹脂層を形成する工程Dとを有する。工程Bで照射する光は、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光とを含む。工程Bでは、第1の光を硬化性樹脂層に照射して酸素阻害が生じる硬化性樹脂層の部位に第2の光を照射する。波長360〜430nmの範囲にピークを有する第1の光は、波長200〜345nmの範囲にピークを有する第2の光と比べてエネルギーが小さく、硬化性樹脂層の深部まで届く。一方、波長200〜345nmの範囲にピークを有する第2の光は、波長360〜430nmの範囲にピークを有する第1の光と比べてエネルギーが大きく、硬化性樹脂層の深部まで届かず、硬化性樹脂層の表層部のみに届く。工程Bで照射する光として、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光を併用することにより、波長360〜430nmの範囲にピークを有する第1の光のみを照射する場合と比べて、酸素阻害の影響を減らすことができ、仮硬化時の接着性能を良好にすることができる。   This production method includes a step A of forming a curable resin layer made of a photocurable resin composition on the surface of a front plate or an image display member, and temporarily irradiating the curable resin layer with light from a UV-LED. A step B of forming a cured layer, a step C of bonding the front panel and the image display member through the temporary cured layer, and a step of irradiating the temporary cured layer with light through the front panel to form a cured resin layer. Step D. The light irradiated in the step B includes a first light having a peak in a wavelength range of 360 to 430 nm and a second light having a peak in a wavelength range of 200 to 345 nm. In the step B, the first light is irradiated on the curable resin layer to irradiate the second light on the portion of the curable resin layer where oxygen inhibition occurs. The first light having a peak in the wavelength range of 360 to 430 nm has lower energy than the second light having a peak in the wavelength range of 200 to 345 nm, and reaches the deep portion of the curable resin layer. On the other hand, the second light having a peak in the wavelength range of 200 to 345 nm has higher energy than the first light having a peak in the wavelength range of 360 to 430 nm, does not reach the deep part of the curable resin layer, and is hardened. Reaches only the surface layer of the conductive resin layer. By using the first light having a peak in a wavelength range of 360 to 430 nm and the second light having a peak in a wavelength range of 200 to 345 nm together as the light to be irradiated in the step B, the wavelength range of 360 to 430 nm is obtained. As compared with the case where only the first light having a peak is applied, the influence of oxygen inhibition can be reduced, and the adhesive performance at the time of temporary curing can be improved.

<工程A>
本製造方法の工程Aでは、図1に示すように、画像表示部材1の表面に、光硬化性樹脂組成物からなる硬化性樹脂層2を形成する。例えば、工程Aでは、画像表示部材1の表面全面に、光硬化性樹脂組成物が平坦になるように塗布することで硬化性樹脂層2を形成することが好ましい。硬化性樹脂層2の厚みは、例えば、後述する遮光層3と前面板4の遮光層形成側表面とで形成される段差がキャンセルされるような厚さにすることが好ましく、遮光層4の厚みの2.5〜40倍とすることができ、2.5〜12.5倍であってもよく、2.5〜4倍であってもよい。一例として、硬化性樹脂層2の厚みは、25〜350μmとすることができ、50〜150μmであってもよい。光硬化性樹脂組成物の塗布回数は、必要な樹脂厚みが得られるように行えば特に制限されず、1回でもよいし、複数回でもよい。
<Step A>
In step A of the present manufacturing method, a curable resin layer 2 made of a photocurable resin composition is formed on the surface of the image display member 1, as shown in FIG. For example, in step A, it is preferable to form the curable resin layer 2 by applying the photocurable resin composition to the entire surface of the image display member 1 so as to be flat. The thickness of the curable resin layer 2 is preferably, for example, such that a step formed between a light-shielding layer 3 described later and a light-shielding layer forming side surface of the front plate 4 is canceled. The thickness may be 2.5 to 40 times, may be 2.5 to 12.5 times, or may be 2.5 to 4 times. As an example, the thickness of the curable resin layer 2 may be 25 to 350 μm, or may be 50 to 150 μm. The number of application times of the photocurable resin composition is not particularly limited as long as the required resin thickness is obtained, and may be one time or plural times.

画像表示部材1は、例えば、画像表示セルの視認側表面に偏光板が形成された画像表示パネルである。画像表示セルとしては、例えば液晶セルや有機ELセルが挙げられる。液晶セルとしては、例えば反射型液晶セル、透過型液晶セル等が挙げられる。画像表示部材1は、例えば液晶表示パネル、有機EL表示パネル、タッチパネル等である。タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。   The image display member 1 is, for example, an image display panel in which a polarizing plate is formed on a viewing side surface of an image display cell. Examples of the image display cell include a liquid crystal cell and an organic EL cell. Examples of the liquid crystal cell include a reflection type liquid crystal cell and a transmission type liquid crystal cell. The image display member 1 is, for example, a liquid crystal display panel, an organic EL display panel, a touch panel, or the like. The touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.

硬化性樹脂層2を形成するための光硬化性樹脂組成物は、例えば、光ラジカル反応性成分と、可塑剤及び粘着付与成分の少なくとも1種と、光重合開始剤とを含有する。光硬化性樹脂組成物は、本技術の効果を損なわない範囲で、その他の成分をさらに含有してもよい。   The photocurable resin composition for forming the curable resin layer 2 contains, for example, a photoradical reactive component, at least one of a plasticizer and a tackifier, and a photopolymerization initiator. The photocurable resin composition may further contain other components as long as the effects of the present technology are not impaired.

<光ラジカル反応性成分>
光ラジカル反応性成分は、(メタ)アクリレートオリゴマーと(メタ)アクリレートモノマーの少なくとも1種を含有する。(メタ)アクリレートオリゴマーは、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に有し、ポリウレタンを骨格に有するもの(ウレタン(メタ)アクリレートオリゴマー)が好ましい。(メタ)アクリレートオリゴマーは、(メタ)アクリル基を1〜4個有することが好ましく、より好ましくは(メタ)アクリル基を2〜3個有する。ウレタン(メタ)アクリレートオリゴマーの市販品としては、例えば、CN9014(サートマー社製)、EBECRYL 230、EBECRYL 270(以上、ダイセル・オルネクス社製)等を用いることができる。
<Photo-radical reactive component>
The photo-radical reactive component contains at least one of a (meth) acrylate oligomer and a (meth) acrylate monomer. The (meth) acrylate oligomer preferably has a skeleton of polyisoprene, polyurethane, polybutadiene, or the like, and has a skeleton of polyurethane (urethane (meth) acrylate oligomer). The (meth) acrylate oligomer preferably has 1 to 4 (meth) acryl groups, and more preferably has 2 to 3 (meth) acryl groups. Commercially available urethane (meth) acrylate oligomers include, for example, CN9014 (manufactured by Sartomer), EBECRYL 230, and EBECRYL 270 (all manufactured by Daicel Ornex).

(メタ)アクリレートモノマーは、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するための反応性希釈剤として用いられる。(メタ)アクリレートモノマーは、単官能(メタ)アクリレートであってもよく、2官能(メタ)アクリレートであってもよく、多官能(メタ)アクリレートであってもよい。(メタ)アクリレートモノマーは、例えば他の成分との相溶性の観点から、水酸基を有する(メタ)アクリレートモノマー(例えば、4−ヒドロキシブチルアクリレート)、環状構造を有する(メタ)アクリレートモノマー(例えば、イソボルニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート)、炭素数5〜20のアルキル(メタ)アクリレートモノマー(例えば、n−オクチルアクリレート、イソデシルアクリレート、ラウリルアクリレート、イソステアリルアクリレート)、多官能(メタ)アクリレートモノマー(例えば、ペンタエリスリトール(トリ/テトラ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート)等を含むことが好ましい。   The (meth) acrylate monomer is used as a reactive diluent for imparting sufficient reactivity, applicability, and the like to the photocurable resin composition. The (meth) acrylate monomer may be a monofunctional (meth) acrylate, a bifunctional (meth) acrylate, or a polyfunctional (meth) acrylate. The (meth) acrylate monomer is, for example, a (meth) acrylate monomer having a hydroxyl group (for example, 4-hydroxybutyl acrylate) or a (meth) acrylate monomer having a cyclic structure (for example, from the viewpoint of compatibility with other components). Bornyl acrylate, dicyclopentenyloxyethyl methacrylate), an alkyl (meth) acrylate monomer having 5 to 20 carbon atoms (eg, n-octyl acrylate, isodecyl acrylate, lauryl acrylate, isostearyl acrylate), polyfunctional (meth) acrylate It is preferable to include a monomer (for example, pentaerythritol (tri / tetra) acrylate, neopentyl glycol diacrylate hydroxypivalate) and the like.

光硬化性樹脂組成物中の(メタ)アクリレートオリゴマーと(メタ)アクリレートモノマーの含有量の合計は、95質量%以下とすることができ、90質量%以下であってもよい。また、光硬化性樹脂組成物中の(メタ)アクリレートオリゴマーと(メタ)アクリレートモノマーの含有量の合計は、20質量%以上とすることができ、30質量%以上であってもよく、35質量%以上であってもよい。(メタ)アクリレートオリゴマー及び/又は(メタ)アクリレートモノマーは、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上の(メタ)アクリレートオリゴマー及び/又は(メタ)アクリレートモノマーを併用する場合、その含有量の合計が上述した範囲内であることが好ましい。   The total content of the (meth) acrylate oligomer and the (meth) acrylate monomer in the photocurable resin composition can be 95% by mass or less, and may be 90% by mass or less. Further, the total content of the (meth) acrylate oligomer and the (meth) acrylate monomer in the photocurable resin composition can be 20% by mass or more, may be 30% by mass or more, and may be 35% by mass. % Or more. The (meth) acrylate oligomer and / or the (meth) acrylate monomer may be used alone or in combination of two or more. When two or more (meth) acrylate oligomers and / or (meth) acrylate monomers are used in combination, the total content thereof is preferably within the above range.

<光重合開始剤>
光重合開始剤は、公知の光ラジカル重合開始剤を使用することができる。光重合開始剤としては、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、ベンゾフェノン系光重合開始剤、分子内水素引き抜き型光重合開始剤等を用いることができる。具体例としては、2,4,6−トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1−ヒドロキシ-シクロヘキシル-フェニル-ケトン、フェニルグリオキシル酸メチル等が挙げられる。市販品の例としては、LUCIRIN TPO、Irgacure184、IRGACURE MBF(以上、BASF社製)、Esacure TZT(Lamberti社製)等が挙げられる。
<Photopolymerization initiator>
As the photopolymerization initiator, a known photoradical polymerization initiator can be used. As the photopolymerization initiator, an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, an intramolecular hydrogen abstraction type photopolymerization initiator, or the like can be used. Specific examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl-ketone, methyl phenylglyoxylate, and the like. Examples of commercially available products include LUCIRIN TPO, Irgacure 184, IRGACURE MBF (above, manufactured by BASF), Esacure TZT (manufactured by Lamberti), and the like.

光硬化性樹脂組成物中の光重合開始剤の含有量の合計は、10質量%以下とすることができ、8質量%以下であってもよく、6質量%以下であってもよい。また、光硬化性樹脂組成物中の光重合開始剤の含有量の合計は、0.1質量%以上とすることができ、1質量%以上であってもよく、2質量%以上であってもよい。光重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上の光重合開始剤を併用する場合、その含有量の合計が上述した範囲内であることが好ましい。   The total content of the photopolymerization initiator in the photocurable resin composition can be 10% by mass or less, may be 8% by mass or less, or may be 6% by mass or less. Further, the total content of the photopolymerization initiator in the photocurable resin composition may be 0.1% by mass or more, may be 1% by mass or more, or may be 2% by mass or more. Is also good. One photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination. When two or more photopolymerization initiators are used in combination, the total content thereof is preferably within the range described above.

<可塑剤及び粘着付与剤>
可塑剤及び粘着付与剤は、光照射により(メタ)アクリレートオリゴマーと(メタ)アクリレートモノマーとは実質的に反応しないものである。粘着付与成分としては、固体の粘着付与剤、液状オイル成分が挙げられる。固体の粘着付与剤としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂が挙げられる。液状オイル成分としては、ポリブタジエン系オイル、ポリイソプレン系オイル等が挙げられる。可塑剤及び粘着付与剤の市販品としては、例えば、クリアロンM105(ヤスハラケミカル社製)、GI−1000、GI−3000(日本曹達社製)等が挙げられる。
<Plasticizer and tackifier>
The plasticizer and the tackifier do not substantially react with the (meth) acrylate oligomer and the (meth) acrylate monomer by light irradiation. Examples of the tackifier include a solid tackifier and a liquid oil component. Examples of the solid tackifier include terpene resins, terpene phenol resins, terpene resins such as hydrogenated terpene resins, natural rosins, polymerized rosins, rosin esters, rosin resins such as hydrogenated rosins, and terpene hydrogenated resins. . Examples of the liquid oil component include polybutadiene-based oil and polyisoprene-based oil. Examples of commercially available plasticizers and tackifiers include Clearon M105 (manufactured by Yasuhara Chemical Co., Ltd.), GI-1000, and GI-3000 (manufactured by Nippon Soda Co., Ltd.).

光硬化性樹脂組成物が可塑剤及び粘着付与剤の少なくとも1種を含有する場合、光硬化性樹脂組成物中の可塑剤及び粘着付与剤の含有量の合計は、70質量%以下とすることができ、65質量%以下であってもよく、60質量%以下であってもよく、58質量%以下であってもよい。また、光硬化性樹脂組成物中の可塑剤及び粘着付与剤の含有量の合計は、0.5質量%以上とすることができ、2質量%以上であってもよく、4質量%以上であってもよく、5質量%以上であってもよく、7質量%以上であってもよい。可塑剤及び/又は粘着付与剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上の可塑剤及び/又は粘着付与剤を併用する場合、可塑剤及び/又は粘着付与剤の含有量の合計が上述した範囲内であることが好ましい。   When the photocurable resin composition contains at least one of a plasticizer and a tackifier, the total content of the plasticizer and the tackifier in the photocurable resin composition should be 70% by mass or less. May be 65% by mass or less, 60% by mass or less, or 58% by mass or less. Further, the total content of the plasticizer and the tackifier in the photocurable resin composition may be 0.5% by mass or more, may be 2% by mass or more, and may be 4% by mass or more. May be present, may be 5% by mass or more, and may be 7% by mass or more. The plasticizer and / or the tackifier may be used alone or in combination of two or more. When two or more plasticizers and / or tackifiers are used in combination, the total content of the plasticizers and / or tackifiers is preferably within the above range.

<その他の成分>
光硬化性樹脂組成物は、本技術の効果を損なわない範囲で、上述した成分以外に、例えば、ポリマー成分(上述した光ラジカル反応性成分、可塑剤及び粘着付与剤以外のポリマー成分)、酸化防止剤、光安定剤、シランカップリング剤などをさらに含有してもよい。ポリマー成分としては、例えばヒタロイド7927(日立化成社製)を用いることができる。このヒタロイド7927は、主成分であるポリマーと、反応性希釈剤としてのアクリルモノマーとを含む紫外線硬化型樹脂であるが、主成分であるポリマーが粘着付与剤として機能する。本願発明では、光硬化性樹脂組成物がヒタロイド7927を含む場合、光硬化性樹脂組成物中のヒタロイド7927の含有量は、上述した粘着付与剤の含有量として計算するものとする。酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤を用いることができる。酸化防止剤の市販品としては、例えばIRGANOX1520L、IRGANOX1010(以上、BASF社製)を用いることができる。光安定剤としては、例えばヒンダードアミン系光安定剤を用いることができる。光安定剤の市販品としては、例えば、アデカスタブ LA−52(ADEKA社製)を用いることができる。シランカップリングとしては、例えば3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシランを用いることができる。シランカップリングの市販品としては、例えばKBM5103、KBM503、KBM803(以上、信越シリコーン社製)を用いることができる。
<Other ingredients>
As long as the effects of the present technology are not impaired, the photocurable resin composition may further include, for example, a polymer component (the above-described photoradical reactive component, a polymer component other than the plasticizer and the tackifier), and an oxidized component. It may further contain an inhibitor, a light stabilizer, a silane coupling agent and the like. As the polymer component, for example, Hitaloid 7927 (manufactured by Hitachi Chemical Co., Ltd.) can be used. Hitaloid 7927 is an ultraviolet-curable resin containing a polymer as a main component and an acrylic monomer as a reactive diluent, but the polymer as a main component functions as a tackifier. In the present invention, in the case where the photocurable resin composition contains etaloid 7927, the content of etaloid 7927 in the photocurable resin composition is calculated as the content of the tackifier described above. As the antioxidant, for example, a hindered phenol-based antioxidant can be used. As commercially available antioxidants, for example, IRGANOX1520L and IRGANOX1010 (all manufactured by BASF) can be used. As the light stabilizer, for example, a hindered amine light stabilizer can be used. As a commercially available light stabilizer, for example, ADK STAB LA-52 (manufactured by ADEKA) can be used. As the silane coupling, for example, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane can be used. As commercial products of the silane coupling, for example, KBM5103, KBM503, and KBM803 (all manufactured by Shin-Etsu Silicone Co., Ltd.) can be used.

<工程B>
本製造方法の工程Bでは、図2に示すように硬化性樹脂層2にUV−LEDから光を照射して、図3に示すような仮硬化層5を形成する。工程Bでは、工程Aで形成された硬化性樹脂層2に対し、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光とを照射する。
<Step B>
In step B of the present manufacturing method, the curable resin layer 2 is irradiated with light from a UV-LED as shown in FIG. 2 to form a temporary cured layer 5 as shown in FIG. In the step B, the first light having a peak in a wavelength range of 360 to 430 nm and the second light having a peak in a wavelength range of 200 to 345 nm with respect to the curable resin layer 2 formed in the step A. Irradiate.

工程Bにおける光照射は、仮硬化層5の反応率が、10〜90%となるように行うことが好ましく、40〜90%となるように行うことがより好ましく、70〜90%となるように行うことがさらに好ましい。反応率とは、光照射前の硬化性樹脂層中の(メタ)アクリロイル基の存在量に対する光照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値である。この反応率の数値が大きい程、硬化が進行していることを示す。具体的には、反応率は、光照射前の硬化性樹脂層のFT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さ(X)と、光照射後の硬化性樹脂層(硬化樹脂層6)のFT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さ(Y)とを、下記式に代入することにより算出することができる。
反応率(%)=[(X−Y)/X]×100
The light irradiation in the step B is preferably performed so that the reaction rate of the temporarily cured layer 5 becomes 10 to 90%, more preferably 40 to 90%, and more preferably 70 to 90%. More preferably, The reaction rate is a numerical value defined as a ratio (consumption rate) of the (meth) acryloyl group present after light irradiation to the (meth) acryloyl group present in the curable resin layer before light irradiation. . The larger the numerical value of the reaction rate, the more the curing is progressing. Specifically, the reaction rate is determined based on the absorption peak height (X) of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the curable resin layer before light irradiation, and the curable resin after light irradiation. The absorption peak height (Y) at 1640 to 1620 cm -1 from the base line in the FT-IR measurement chart of the layer (cured resin layer 6) can be calculated by substituting into the following equation.
Reaction rate (%) = [(XY) / X] × 100

工程Bでは、波長360〜430nmの範囲にピークを有する第1の光を硬化性樹脂層2に照射して酸素阻害が生じる硬化性樹脂層2の部位、具体的には硬化性樹脂層2の表面に対して、波長360〜430nmの範囲にピークを有する第1の光及び波長200〜345nmの範囲にピークを有する第2の光を照射することが好ましい。   In the step B, the first light having a peak in the wavelength range of 360 to 430 nm is irradiated on the curable resin layer 2 to cause a site of the curable resin layer 2 where oxygen inhibition occurs, specifically, the curable resin layer 2 It is preferable to irradiate the surface with the first light having a peak in a wavelength range of 360 to 430 nm and the second light having a peak in a wavelength range of 200 to 345 nm.

工程Bでは、波長360〜430nmの範囲にピークを有する第1の光の積算光量が、波長200〜345nmの範囲にピークを有する第2の光の積算光量よりも大きくなるように光を照射することが好ましい。これにより、仮硬化時の接着性能をより良好にすることができる。一例として、波長360〜430nmの範囲にピークを有する第1の光の積算光量が2000〜5000mJ/cmの範囲であり、波長200〜345nmの範囲にピークを有する第2の光の積算光量が20mJ/cm以上1000mJ/cm未満の範囲であることが好ましい。工程Bでは、波長360〜430nmの範囲にピークを有する第1の光として、例えば、発光波長が365±5nmである光を、照度100〜500mW/cmの条件で照射することが好ましい。また、工程Bでは、波長200〜345nmの範囲にピークを有する第2の光として、例えば、発光波長が280±5nmの光を、照度10〜100mW/cmの条件で照射することが好ましい。工程Bで用いるUV−LEDとしては、例えば、発光ピーク波長が360〜430nmの範囲(一例として発光波長が365±5nm)であるLEDと、発光波長ピーク波長が200〜345nm(一例として発光波長が280±5nm)であるLEDとを有する装置を用いることができる。 In step B, light is irradiated such that the integrated light amount of the first light having a peak in the wavelength range of 360 to 430 nm is larger than the integrated light amount of the second light having a peak in the wavelength range of 200 to 345 nm. Is preferred. Thereby, the adhesive performance at the time of temporary curing can be further improved. As an example, the integrated light amount of the first light having a peak in the wavelength range of 360 to 430 nm is in the range of 2000 to 5000 mJ / cm 2 , and the integrated light amount of the second light having the peak in the wavelength range of 200 to 345 nm is It is preferably in the range of 20 mJ / cm 2 or more and less than 1000 mJ / cm 2 . In the step B, it is preferable to irradiate, for example, light having an emission wavelength of 365 ± 5 nm as illuminance of 100 to 500 mW / cm 2 as the first light having a peak in the wavelength range of 360 to 430 nm. In the step B, it is preferable to irradiate, for example, light having an emission wavelength of 280 ± 5 nm as the second light having a peak in the wavelength range of 200 to 345 nm under an illuminance of 10 to 100 mW / cm 2 . As the UV-LED used in the process B, for example, an LED having an emission peak wavelength in the range of 360 to 430 nm (for example, an emission wavelength of 365 ± 5 nm) and an emission wavelength peak wavelength of 200 to 345 nm (for example, an emission wavelength of 280 ± 5 nm).

工程Bでは、波長360〜430nmの範囲にピークを有する第1の光は、波長200〜345nmの範囲にピークを有する第2の光と同時に照射してもよい。また、工程Bでは、波長360〜430nmの範囲にピークを有する第1の光を照射した後に、波長200〜345nmの範囲にピークを有する第2の光を照射してもよい。また、工程Bでは、波長200〜345nmの範囲にピークを有する第2の光を照射した後に、波長360〜430nmの範囲にピークを有する第1の光を照射してもよい。   In the step B, the first light having a peak in the wavelength range of 360 to 430 nm may be irradiated simultaneously with the second light having a peak in the wavelength range of 200 to 345 nm. In the step B, after irradiating the first light having a peak in the wavelength range of 360 to 430 nm, the second light having the peak in the wavelength range of 200 to 345 nm may be irradiated. In the step B, after irradiating the second light having a peak in the wavelength range of 200 to 345 nm, the first light having the peak in the wavelength range of 360 to 430 nm may be irradiated.

本製造方法では、後述する工程Cの貼合わせ操作の際、仮硬化層5の液だれや変形が生じないようにしておくことが好ましい。例えば、工程Bでは、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光を硬化性樹脂層2に照射する前に、硬化性樹脂層2の粘度が20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)となるように光照射することが好ましい。   In the present manufacturing method, it is preferable to prevent dripping or deformation of the temporarily cured layer 5 during the laminating operation in Step C described below. For example, in the step B, before the curable resin layer 2 is irradiated with the first light having a peak in a wavelength range of 360 to 430 nm and the second light having a peak in a wavelength range of 200 to 345 nm, the curable resin layer 2 is cured. Light irradiation is preferably performed so that the viscosity of the resin layer 2 is 20 Pa · S or more (cone plate rheometer, 25 ° C., cone and plate C35 / 2, rotation speed 10 rpm).

<工程C>
工程Cでは、例えば図4に示すように、仮硬化層5を介して前面板4と画像表示部材1とを貼り合わせる。例えば、工程Cでは、画像表示部材1に、前面板4を仮硬化層5側から貼合わせる。貼合わせは、例えば、公知の圧着装置を用いて、10〜80℃で加圧することにより行うことができる。
<Step C>
In step C, for example, as shown in FIG. 4, the front plate 4 and the image display member 1 are bonded together with the temporary curing layer 5 interposed therebetween. For example, in step C, the front plate 4 is attached to the image display member 1 from the temporary cured layer 5 side. Lamination can be performed, for example, by applying pressure at 10 to 80 ° C. using a known pressure bonding apparatus.

前面板4は、画像表示部材2に形成された画像が視認可能となるような光透過性を有するものであればよく、例えば、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、片面又は両面にハードコート処理、反射防止処理などが施されていてもよい。前面板4の厚さや弾性率などの物性は、使用目的に応じて適宜決定することができる。また、前面板4は、タッチパネルモジュールのような各種シート又はフィルム材が積層されたものであってもよい。   The front plate 4 only needs to have a light transmission property so that an image formed on the image display member 2 can be visually recognized. For example, a plate made of glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, or the like is used. And sheet-like materials. These materials may be subjected to a hard coat treatment, an antireflection treatment, or the like on one or both surfaces. Physical properties such as the thickness and elastic modulus of the front plate 4 can be appropriately determined according to the purpose of use. Further, the front plate 4 may be a laminate of various sheets or film materials such as a touch panel module.

前面板4の周縁部には、画像のコントラスト向上のために遮光層3が設けられていてもよい。遮光層3は、例えば、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させて形成することができる。遮光層3の厚さは、通常5〜100μmである。   A light-shielding layer 3 may be provided on a peripheral portion of the front plate 4 to improve image contrast. The light-shielding layer 3 can be formed by, for example, applying a paint colored black or the like by a screen printing method, and drying and curing. The thickness of the light shielding layer 3 is usually 5 to 100 μm.

<工程D>
工程Dでは、例えば図5に示す仮硬化層5に対して前面板4を介して光照射し、図6に示すような硬化樹脂層6を形成する。工程Dにおいて仮硬化層5を本硬化させるのは、仮硬化層5を十分に硬化させて、画像表示部材1と前面板4とを接着し積層するためである。工程Dを行うことにより、図6に示すように、画像表示部材1と、硬化樹脂層6と、前面板4とをこの順に備える画像表示装置7が得られる。
<Step D>
In step D, for example, light is applied to the temporary cured layer 5 shown in FIG. 5 through the front plate 4 to form a cured resin layer 6 as shown in FIG. The reason why the temporary curing layer 5 is fully cured in the step D is to sufficiently cure the temporary curing layer 5 and bond and laminate the image display member 1 and the front plate 4. By performing step D, as shown in FIG. 6, an image display device 7 including the image display member 1, the cured resin layer 6, and the front plate 4 in this order is obtained.

工程Dにおける本硬化(光照射)は、硬化樹脂層6の反応率が90%以上となるように行うことが好ましく、97%以上となるように行うことがより好ましい。本硬化を行う際の光源の種類、出力、照度、積算光量などは特に制限なく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。例えば、紫外線照射は、紫外線照射機(メタルハライドランプ、高圧水銀ランプ、UV−LED等)を用いて、照度50〜300mW/cm、積算光量1000〜6000mJ/cmの条件で行うことが好ましい。特に、工程Dでは、上述したように紫外線照射装置の高寿命性能の要請から、UV−LEDを用いて波長360〜430nmの範囲にピークを有する第1の光を照射することが好ましい。 The main curing (light irradiation) in the step D is preferably performed so that the reaction rate of the cured resin layer 6 becomes 90% or more, and more preferably 97% or more. There are no particular restrictions on the type of light source, output, illuminance, integrated light amount, and the like when performing the main curing, and known photoradical polymerization process conditions for (meth) acrylate by ultraviolet irradiation can be employed. For example, ultraviolet irradiation, ultraviolet ray irradiation device (a metal halide lamp, high pressure mercury lamp, UV-LED, etc.) using, it is preferable to carry out at an intensity 50~300mW / cm 2, the integrated quantity of light 1000~6000mJ / cm 2 conditions. In particular, in the process D, it is preferable to irradiate the first light having a peak in the wavelength range of 360 to 430 nm using a UV-LED from the demand for the long life performance of the ultraviolet irradiation device as described above.

なお、工程Dでは、必要に応じて、前面板4の遮光層3と画像表示部材1との間の仮硬化層5に光を照射することにより、仮硬化層5を本硬化させてもよい。   In the step D, if necessary, the temporary curing layer 5 may be fully cured by irradiating the temporary curing layer 5 between the light shielding layer 3 of the front plate 4 and the image display member 1 with light. .

本製造方法で得られる画像表示装置7における硬化樹脂層6は、可視光領域の透過率が90%以上であることが好ましい。このような範囲を満たすことにより、画像表示部材1に形成された画像の視認性をより良好にすることができる。硬化樹脂層6の屈折率は、画像表示部材1や前面板4の屈折率とほぼ同等であることが好ましい。硬化樹脂層6の屈折率は、例えば1.45以上1.55以下であることが好ましい。これにより、画像表示部材1からの映像光の輝度やコントラストを高め、視認性を向上させることができる。硬化樹脂層6の厚みは、例えば25〜200μm程度とすることができる。   The cured resin layer 6 in the image display device 7 obtained by the present manufacturing method preferably has a transmittance in the visible light region of 90% or more. By satisfying such a range, the visibility of the image formed on the image display member 1 can be further improved. The refractive index of the cured resin layer 6 is preferably substantially equal to the refractive index of the image display member 1 or the front plate 4. The refractive index of the cured resin layer 6 is preferably, for example, not less than 1.45 and not more than 1.55. Thereby, the brightness and contrast of the image light from the image display member 1 can be increased, and the visibility can be improved. The thickness of the cured resin layer 6 can be, for example, about 25 to 200 μm.

以上のような本製造方法によれば、仮硬化時の接着性能を良好にすることができる。   According to the present production method as described above, the adhesive performance at the time of temporary curing can be improved.

なお、工程Aにおいて、画像表示部材1の表面に光硬化性樹脂組成物を塗布することに代えて、前面板4の遮光層3が形成された側の表面に光硬化性樹脂組成物を塗布してもよい。また、前面板として、遮光層3を有しない前面板を用いてもよい。   In step A, instead of applying the photocurable resin composition to the surface of the image display member 1, the photocurable resin composition is applied to the surface of the front plate 4 on which the light shielding layer 3 is formed. May be. Further, a front plate having no light-shielding layer 3 may be used as the front plate.

以下、本技術の実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。   Hereinafter, embodiments of the present technology will be described. Note that the present technology is not limited to these embodiments.

<光硬化性樹脂組成物の調製>
表1に示す配合量(質量部)で各成分を均一に混合して光硬化性樹脂組成物を調製した。
<Preparation of photocurable resin composition>
The components were uniformly mixed at the blending amounts (parts by mass) shown in Table 1 to prepare a photocurable resin composition.

表1中の略号は以下の化合物である。
ウレタンアクリレートオリゴマー:数平均分子量20000
CN9014:ウレタンアクリレートオリゴマー、サートマー社製
ヒタロイド7927:日立化成社製
4HBA:4‐ヒドロキシブチルアクリレート、BASF社製
ISTA:イソステアリルアクリレート、大阪有機化学社製
Miramer M210:ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、MIWON社製
PETIA:ペンタエリスリトール(トリ/テトラ)アクリレート
NOA:n−オクチルアクリレート
IDA:イソデシルアクリレート
IBXA:イソボルニルアクリレート
FA−512M:ジシクロペンテニルオキシエチルメタクリレート
LA:ラウリルアクリレート
M105:テルペン樹脂、製品名;クリアロンM105、ヤスハラケミカル社製
GI−1000:両末端水酸基水素化ポリブタジエン、日本曹達社製
GI−3000:両末端水酸基水素化ポリブタジエン、日本曹達社製
テルペン樹脂:数平均分子量800
TPO:2,4,6−トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、製品名:LUCIRIN TPO、BASF社製
Irg184D:1−ヒドロキシ-シクロヘキシル-フェニル-ケトン、製品名;Irgacure184、BASF社製
MBF:フェニルグリオキシル酸メチル、製品名;IRGACURE MBF、BASF社製
TZT:製品名;Esacure TZT、Lamberti社製
The abbreviations in Table 1 are the following compounds.
Urethane acrylate oligomer: number average molecular weight 20,000
CN9014: urethane acrylate oligomer, Hartoid 7927 manufactured by Sartomer Co., Ltd .: 4HBA: 4-hydroxybutyl acrylate manufactured by Hitachi Chemical Co., Ltd., ISTA: isostearyl acrylate manufactured by BASF, Miramer M210 manufactured by Osaka Organic Chemical Co., Ltd .: neopentyl glycol diacrylate hydroxypivalate, MIWON PETIA: pentaerythritol (tri / tetra) acrylate NOA: n-octyl acrylate IDA: isodecyl acrylate IBXA: isobornyl acrylate FA-512M: dicyclopentenyloxyethyl methacrylate LA: lauryl acrylate M105: terpene resin, product Name: Clearon M105, GI-1000 manufactured by Yashara Chemical Co., Ltd .: Hydrogenated polybutadiene at both ends hydroxyl, Japan Soda GI-3000: Hydrogenated polybutadiene at both ends, terpene resin manufactured by Nippon Soda: Number average molecular weight 800
TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, product name: LUCIRIN TPO, Irg184D from BASF: 1-hydroxy-cyclohexyl-phenyl-ketone, product name: Irgacure 184, MBF from BASF: phenylglyoxyl Methyl acid, product name: IRGACURE MBF, TZT manufactured by BASF: Product name: Esacure TZT, manufactured by Lamberti

[実施例1]
<樹脂Aを用いた試験用サンプルの作製>
図7(A)に示すように、PETフィルム10(厚み130mm)の表面の一端側から他端側に亘って、スリットノズル11から光硬化性樹脂組成物12を厚み33μmとなるように塗布した後、塗布した光硬化性樹脂組成物12に、UV−LED13から積算光量が500mJ/cmとなるように波長365nmにピークを有する光を照射した。この光照射は、塗布した光硬化性樹脂組成物の液ダレを抑制するために行ったものである。これにより1層目の硬化性樹脂層14Aを形成した。次に、図7(B)に示すように、硬化性樹脂層14A上に、スリットノズル11から光硬化性樹脂組成物12を厚み33μmとなるように塗布した後、塗布した光硬化性樹脂組成物12にUV−LED13から積算光量が500mJ/cmとなるように波長365nmにピークを有する光を照射することにより、2層目の硬化性樹脂層14Bを形成した。この光照射も、塗布した光硬化性樹脂組成物の液ダレを抑制するために行ったものである。次に、図7(C)に示すように、硬化性樹脂層14B上に、スリットノズル11から光硬化性樹脂組成物12を厚み33μmとなるように塗布した後、塗布した光硬化性樹脂組成物12に、UV−LED13から積算光量が500mJ/cmとなるように波長365nmにピークを有する光を照射することにより、3層目の硬化性樹脂層14Cを形成した。この光照射も、塗布した光硬化性樹脂組成物の液ダレを抑制するために行ったものである。これにより、PETフィルム10上に、厚み約100μmの硬化性樹脂層14が形成された積層体を得た。
[Example 1]
<Preparation of test sample using resin A>
As shown in FIG. 7A, a photo-curable resin composition 12 was applied from a slit nozzle 11 to a thickness of 33 μm from one end to the other end of the surface of the PET film 10 (thickness: 130 mm). Thereafter, the applied photocurable resin composition 12 was irradiated with light having a peak at a wavelength of 365 nm from the UV-LED 13 so that the integrated light amount became 500 mJ / cm 2 . This light irradiation is performed in order to suppress liquid dripping of the applied photocurable resin composition. Thus, a first curable resin layer 14A was formed. Next, as shown in FIG. 7 (B), after applying the photocurable resin composition 12 from the slit nozzle 11 to a thickness of 33 μm on the curable resin layer 14A, the applied photocurable resin composition The second curable resin layer 14B was formed by irradiating the object 12 with light having a peak at a wavelength of 365 nm from the UV-LED 13 so that the integrated light amount became 500 mJ / cm 2 . This light irradiation is also performed in order to suppress liquid dripping of the applied photocurable resin composition. Next, as shown in FIG. 7C, a photo-curable resin composition 12 is applied on the curable resin layer 14B from the slit nozzle 11 so as to have a thickness of 33 μm, and then the applied photo-curable resin composition By irradiating the object 12 with light having a peak at a wavelength of 365 nm from the UV-LED 13 so that the integrated light amount becomes 500 mJ / cm 2 , a third curable resin layer 14C was formed. This light irradiation is also performed in order to suppress liquid dripping of the applied photocurable resin composition. Thus, a laminate in which the curable resin layer 14 having a thickness of about 100 μm was formed on the PET film 10 was obtained.

図7(D)に示すように、積層体の硬化性樹脂層14に対して、UV−LED(CCS社製、発光波長が365nmである複数のLEDと、発光波長が280nmである複数のLEDとを有する装置、照射範囲80mm×80mm)から、積算光量が5000mJ/cmとなるように200mW/cm強度の波長365nmにピークを有する光と、積算光量が20mJ/cmとなるように20mW/cm強度の波長280nmにピークを有する光を照射した。これにより、PETフィルム10上に仮硬化層15が形成された積層体を得た。仮硬化層15の硬化率は、FT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さを指標として求めたところ、約80〜90%であった。 As shown in FIG. 7 (D), a UV-LED (manufactured by CCS, a plurality of LEDs having an emission wavelength of 365 nm, and a plurality of LEDs having an emission wavelength of 280 nm are provided on the curable resin layer 14 of the laminate. device with bets from irradiation range 80 mm × 80 mm), and a light having a peak wavelength 365nm of 200 mW / cm 2 intensity as integrated light quantity is 5000 mJ / cm 2, so that the integrated light quantity is 20 mJ / cm 2 Light having a peak at a wavelength of 280 nm with an intensity of 20 mW / cm 2 was irradiated. Thus, a laminate in which the temporary cured layer 15 was formed on the PET film 10 was obtained. The curing rate of the temporary cured layer 15 was about 80 to 90% when the height of the absorption peak at 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart was used as an index.

図7(E)に示すように、積層体の幅が25mmとなるようにカットした。図7(F)に示すように、カットした積層体をスライドガラス16(幅25mm、厚み1mm)に貼り付けた。図7(G)に示すように、積層体側から2kg荷重ローラ17を用いて加圧した。これにより、図7(H)に示す試験用サンプル18、すなわち、仮硬化層15(10mm×25mm、厚み0.1mm)を介して、PETフィルム10とスライドガラス16とが貼り合わされた試験用サンプル18を得た。   As shown in FIG. 7E, the laminate was cut so as to have a width of 25 mm. As shown in FIG. 7F, the cut laminate was attached to a slide glass 16 (width 25 mm, thickness 1 mm). As shown in FIG. 7G, pressure was applied from the side of the laminate using a 2 kg load roller 17. As a result, the test sample 18 shown in FIG. 7H, that is, the test sample in which the PET film 10 and the slide glass 16 are bonded via the temporary hardened layer 15 (10 mm × 25 mm, thickness 0.1 mm). 18 was obtained.

<仮硬化層のせん断強度測定>
図8に示す方法で試験用サンプル18における仮硬化層15のせん断強度を測定した。具体的には、卓上形精密万能試験機(島津製作所社製、オートグラフ)を用いて、試験用サンプル18の下側に位置するPETフィルム10を冶具19で固定し、上側に位置するスライドガラス16を治具20を介して垂直方向に5mm/minの速度で引き剥がしたときの、仮硬化層15のせん断強度を測定した。結果を図9及び表2に示す。
<Measurement of shear strength of temporary hardened layer>
The shear strength of the temporary cured layer 15 in the test sample 18 was measured by the method shown in FIG. Specifically, the PET film 10 located on the lower side of the test sample 18 is fixed with a jig 19 using a table-top precision universal testing machine (manufactured by Shimadzu Corporation, Autograph), and the slide glass located on the upper side is fixed. The shear strength of the temporary hardened layer 15 when 16 was peeled off through the jig 20 in the vertical direction at a speed of 5 mm / min was measured. The results are shown in FIG.

[実施例2〜6、比較例1,2]
積層体の硬化性樹脂層14に対して照射する光の積算光量を下記表の通りにしたこと以外は、実施例1と同様の方法で試験用サンプルを作製し、試験用サンプルにおける仮硬化層のせん断強度を測定した。結果を図9及び表2に示す。
[Examples 2 to 6, Comparative Examples 1 and 2]
A test sample was prepared in the same manner as in Example 1 except that the integrated light amount of light applied to the curable resin layer 14 of the laminate was as shown in the following table, and a temporary cured layer in the test sample was prepared. Was measured for shear strength. The results are shown in FIG.

[実施例7、比較例3〜5]
樹脂Bを用いて、積層体の硬化性樹脂層14に対して照射する光の積算光量を下記表の通りにしたこと以外は、実施例1と同様の方法で試験用サンプルを作製し、試験用サンプルにおける仮硬化層のせん断強度を測定した。結果を図10及び表3に示す。
[Example 7, Comparative Examples 3 to 5]
Using a resin B, a test sample was prepared in the same manner as in Example 1 except that the integrated light amount of light applied to the curable resin layer 14 of the laminate was as shown in the following table. The shear strength of the temporary hardened layer in the sample for use was measured. The results are shown in FIG.

[実施例8、比較例6〜8]
樹脂Cを用いて、積層体の硬化性樹脂層14に対して照射する光の積算光量を下記表の通りにしたこと以外は、実施例1と同様の方法で試験用サンプルを作製し、試験用サンプルにおける仮硬化層のせん断強度を測定した。結果を図11及び表4に示す。
[Example 8, Comparative Examples 6 to 8]
A test sample was prepared in the same manner as in Example 1 except that the integrated light amount of light applied to the curable resin layer 14 of the laminate was as shown in the following table using the resin C, and a test sample was prepared. The shear strength of the temporary hardened layer in the sample for use was measured. The results are shown in FIG.

[実施例9、比較例9〜11]
樹脂Dを用いて、積層体の硬化性樹脂層14に対して照射する光の積算光量を下記表の通りにしたこと以外は、実施例1と同様の方法で試験用サンプルを作製し、試験用サンプルにおける仮硬化層のせん断強度を測定した。なお、比較例10では、UV−LEDから、積算光量が6000mJ/cmとなるように600mW/cm強度の波長365nmにピークを有する光のみを照射した。結果を図12及び表5に示す。
[Example 9, Comparative Examples 9 to 11]
Using a resin D, a test sample was prepared in the same manner as in Example 1 except that the integrated light amount of light applied to the curable resin layer 14 of the laminate was set as shown in the following table. The shear strength of the temporary hardened layer in the sample for use was measured. In Comparative Example 10, only light having a peak at a wavelength of 365 nm with an intensity of 600 mW / cm 2 was irradiated from the UV-LED so that the integrated light amount became 6000 mJ / cm 2 . The results are shown in FIG.

[実施例10、比較例12]
樹脂Eを用いて、積層体の硬化性樹脂層14に対して照射する光の積算光量を下記表の通りにしたこと以外は、実施例1と同様の方法で試験用サンプルを作製し、試験用サンプルにおける仮硬化層のせん断強度を測定した。結果を図13及び表6に示す。
[Example 10, Comparative Example 12]
Using a resin E, a test sample was prepared in the same manner as in Example 1 except that the integrated light amount of light applied to the curable resin layer 14 of the laminate was as shown in the following table. The shear strength of the temporary hardened layer in the sample for use was measured. The results are shown in FIG.

実施例1〜10、比較例1〜12の結果から、硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程で照射する光が、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光とを含むことにより、仮硬化層のせん断強度が良好である、すなわち、仮硬化時の接着性能が良好であることが分かった。また、実施例9及び比較例11の結果から、実施例9では、メタルハライドランプ照射時と同等以上の仮硬化時の接着性能を実現できることが分かった。さらに、実施例1〜10の結果から、仮硬化時の接着性能の向上の傾向は、光硬化性樹脂組成物の組成比率に依存しないことが分かった。   From the results of Examples 1 to 10 and Comparative Examples 1 to 12, the light irradiated in the step of irradiating the curable resin layer with light from the UV-LED to form the temporary cured layer peaks in the wavelength range of 360 to 430 nm. And the second light having a peak in the wavelength range of 200 to 345 nm, the shear strength of the temporary cured layer is good, that is, the adhesive performance at the time of temporary curing is good. I found it. Further, from the results of Example 9 and Comparative Example 11, it was found that in Example 9, the adhesive performance at the time of temporary curing equal to or more than that at the time of irradiation with a metal halide lamp could be realized. Furthermore, from the results of Examples 1 to 10, it was found that the tendency of the improvement of the adhesive performance at the time of temporary curing did not depend on the composition ratio of the photocurable resin composition.

実施例1〜6の結果から、樹脂Aを用いた場合には、硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程において、波長360〜430nmの範囲にピークを有する第1の光の積算光量が2000〜5000mJ/cmの範囲であり、波長200〜345nmの範囲にピークを有する第2の光の積算光量が20mJ/cm以上1000mJ/cm未満の範囲であることが好ましく、波長200〜345nmの範囲にピークを有する第2の光の積算光量が500mJ/cm以上1000mJ/cm未満の範囲であることがより好ましいことが分かった。 From the results of Examples 1 to 6, when the resin A was used, in the step of irradiating the curable resin layer with light from a UV-LED to form a temporary cured layer, a peak was in the wavelength range of 360 to 430 nm. first integrated quantity of light of the light is in a range of 2000~5000mJ / cm 2, the second range integrated light quantity is less than 20 mJ / cm 2 or more 1000 mJ / cm 2 of light having a peak in a wavelength range of 200~345nm having It was found that the integrated light amount of the second light having a peak in the wavelength range of 200 to 345 nm was more preferably 500 mJ / cm 2 or more and less than 1000 mJ / cm 2 .

実施例8及び比較例6〜8では、比較的穏やかな反応性を示す光重合開始剤を含み、且つ、可塑剤の割合が多い樹脂Cを用いたため、他の樹脂を用いた場合と比べて仮硬化時のせん断強度が発現しにくい傾向にあったが、実施例8では、比較例6〜8に比べて2倍以上のせん断強度を示すことが分かった。   In Example 8 and Comparative Examples 6 to 8, the resin C containing a photopolymerization initiator showing relatively mild reactivity was used, and the ratio of the plasticizer was large, so that the resin C was used in comparison with the case where another resin was used. Although there was a tendency that the shear strength at the time of temporary hardening was hardly developed, it was found that the shear strength of Example 8 was twice or more that of Comparative Examples 6 to 8.

比較例1〜12では、硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程で照射する光が、波長360〜430nmの範囲にピークを有する光のみ、又は、波長200〜345nmの範囲にピークを有する光のみを含むため、仮硬化時の接着性能が良好ではないことが分かった。   In Comparative Examples 1 to 12, the light irradiated in the step of forming a temporary cured layer by irradiating the curable resin layer with light from a UV-LED is only light having a peak in the wavelength range of 360 to 430 nm, or Since only light having a peak in the range of 200 to 345 nm was included, it was found that the adhesive performance at the time of temporary curing was not good.

比較例4では、UV−LEDからの波長360〜430nmの範囲にピークを有する光の積算光量を8000mJ/cmと高くしたが、波長200〜345nmの範囲にピークを有する光を照射しなかったため、実施例7に比べてせん断強度が極めて低いことが分かった。また、波長200〜345nmの範囲にピークを有する光のみを照射した比較例5では、実施例7に比べてせん断強度が極めて低いことが分かった。これらの結果から、硬化性樹脂層の深部の硬化性を考慮すると、仮硬化層を形成する工程では、波長360〜430nmの範囲にピークを有する光と、波長200〜345nmの範囲にピークを有する光を併用することが必須であることが分かった。 In Comparative Example 4, although the integrated light amount of light having a peak in the wavelength range of 360 to 430 nm from the UV-LED was increased to 8000 mJ / cm 2 , light having a peak in the wavelength range of 200 to 345 nm was not irradiated. It was found that the shear strength was extremely lower than that of Example 7. Further, it was found that Comparative Example 5 in which only light having a peak in the wavelength range of 200 to 345 nm was irradiated, had a significantly lower shear strength than Example 7. From these results, in consideration of the curability of the deep part of the curable resin layer, in the step of forming the temporary cured layer, light having a peak in the wavelength range of 360 to 430 nm and having a peak in the wavelength range of 200 to 345 nm It turns out that it is essential to use light together.

比較例10では、UV−LEDからの波長360〜430nmの範囲にピークを有する光の照度を600mW/cmと高くし、且つ、積算光量を6000mJ/cmと高くしたが、波長200〜345nmの範囲にピークを有する光を照射しなかったため、せん断強度の測定結果が実施例9よりも劣ることが分かった。 In Comparative Example 10, the illuminance of light having a peak in the wavelength range of 360 to 430 nm from the UV-LED was increased to 600 mW / cm 2 and the integrated light amount was increased to 6000 mJ / cm 2 , but the wavelength was 200 to 345 nm. It was found that the measurement result of the shear strength was inferior to that of Example 9 because no light having a peak in the range was irradiated.

<硬化樹脂層のせん断強度測定>
[実施例9−1]
実施例9における試験用サンプルの仮硬化層に対して、コンベア付きメタルハライドランプ(USIO社製)を用いて、積算光量が5000mJ/cmとなるように200mW/cm強度の光を照射した。これにより、仮硬化層を完全に硬化させ、硬化樹脂層を形成した。硬化樹脂層の硬化率は97%であった。この硬化樹脂層のせん断強度を、上述した仮硬化層と同様の方法で測定した。結果を図14に示す。なお、図14中のN1〜N4は、各試験用サンプルを4つ用意し、4つの試験用サンプルについてのせん断強度の測定結果を表す。図14中の平均(*)とは、N1〜N4のせん断強度の測定結果の平均値を表す。
<Measurement of shear strength of cured resin layer>
[Example 9-1]
Against temporary curing layer of a test sample in Example 9, using a conveyor with a metal halide lamp (USIO Co.), integrated light quantity was irradiated with light of 200 mW / cm 2 intensity so that the 5000 mJ / cm 2. As a result, the temporarily cured layer was completely cured to form a cured resin layer. The cure rate of the cured resin layer was 97%. The shear strength of this cured resin layer was measured by the same method as the above-described temporary cured layer. FIG. 14 shows the results. N1 to N4 in FIG. 14 represent four test samples, and represent the results of measuring the shear strength of the four test samples. The average (*) in FIG. 14 indicates the average value of the measurement results of the shear strength of N1 to N4.

[実施例9−2]
実施例9における試験用サンプルの仮硬化層に対して、UV−LEDを用いて、積算光量が5000mJ/cmとなるように200mW/cm強度の波長365nmにピークを有する光を面照射した。これにより、仮硬化層を完全に硬化させ、硬化樹脂層を形成した。硬化樹脂層の硬化率は97%であった。この硬化樹脂層のせん断強度を、上述した仮硬化層と同様の方法で測定した。結果を図14に示す。
[Example 9-2]
Light having a peak at a wavelength of 365 m with a wavelength of 200 mW / cm 2 was irradiated to the temporary cured layer of the test sample in Example 9 using a UV-LED so that the integrated light amount became 5000 mJ / cm 2 . . As a result, the temporarily cured layer was completely cured to form a cured resin layer. The cure rate of the cured resin layer was 97%. The shear strength of this cured resin layer was measured by the same method as the above-described temporary cured layer. FIG. 14 shows the results.

[比較例9−1]
比較例9における試験用サンプルを用いたこと以外は、実施例9−1と同様の方法で硬化樹脂層のせん断強度を測定した。結果を図14に示す。
[Comparative Example 9-1]
Except for using the test sample in Comparative Example 9, the shear strength of the cured resin layer was measured in the same manner as in Example 9-1. FIG. 14 shows the results.

[比較例9−2]
比較例9における試験用サンプルを用いたこと以外は、実施例9−2と同様の方法で硬化樹脂層のせん断強度を測定した。結果を図14に示す。
[Comparative Example 9-2]
Except for using the test sample in Comparative Example 9, the shear strength of the cured resin layer was measured in the same manner as in Example 9-2. FIG. 14 shows the results.

実施例9−1,9−2、比較例9−1,9−2の結果から、硬化樹脂層の強度はほぼ同様であることが分かった。これは、仮硬化時には物理的な接着力の差(酸素阻害の影響)が顕著に出るのに対して、本硬化後時にはさらに化学的な接着力の差も加わるためと考えられる。   From the results of Examples 9-1 and 9-2 and Comparative examples 9-1 and 9-2, it was found that the strengths of the cured resin layers were almost the same. This is presumably because the difference in physical adhesion (effect of oxygen inhibition) is noticeable during the temporary curing, while the difference in the chemical adhesion is further increased after the main curing.

1 画像表示部材、2 硬化性樹脂層、3 遮光層、4 前面板、5 仮硬化層、6 硬化樹脂層、7 画像表示装置、10 PETフィルム、11 スリットノズル、12 光硬化性樹脂組成物、13 UV−LED、14 硬化性樹脂層、15 仮硬化層、16 スライドガラス、17 荷重ローラ、18 試験用サンプル、19 治具、20 治具 Reference Signs List 1 image display member, 2 curable resin layer, 3 light shielding layer, 4 front plate, 5 temporary cured layer, 6 cured resin layer, 7 image display device, 10 PET film, 11 slit nozzle, 12 light curable resin composition, 13 UV-LED, 14 curable resin layer, 15 temporary cured layer, 16 slide glass, 17 load roller, 18 test sample, 19 jig, 20 jig

Claims (9)

前面板又は画像表示部材の表面に、光硬化性樹脂組成物からなる硬化性樹脂層を形成する工程Aと、
上記硬化性樹脂層にUV−LEDから光を照射して仮硬化層を形成する工程Bと、
上記仮硬化層を介して上記前面板と上記画像表示部材とを貼り合わせる工程Cと、
上記仮硬化層に対して上記前面板を介して光照射し、硬化樹脂層を形成する工程Dとを有し、
上記工程Bで照射する光は、波長360〜430nmの範囲にピークを有する第1の光と、波長200〜345nmの範囲にピークを有する第2の光とを含み、
上記工程Bでは、上記第1の光を上記硬化性樹脂層に照射して酸素阻害が生じる上記硬化性樹脂層の部位に上記第2の光を照射する、画像表示装置の製造方法。
Step A of forming a curable resin layer made of a photocurable resin composition on the surface of the front plate or the image display member,
A step B of irradiating the curable resin layer with light from a UV-LED to form a temporary cured layer;
A step C of bonding the front plate and the image display member through the temporary curing layer;
Irradiating the temporary cured layer with light through the front plate to form a cured resin layer;
The light irradiated in the step B includes first light having a peak in a wavelength range of 360 to 430 nm, and second light having a peak in a wavelength range of 200 to 345 nm.
In the step B, a method for manufacturing an image display device, wherein the first light is irradiated on the curable resin layer to irradiate the second light on a portion of the curable resin layer where oxygen inhibition occurs.
上記工程Bでは、上記第1の光の積算光量が上記第2の光の積算光量よりも大きくなるように、上記硬化性樹脂層に上記第1の光及び上記第2の光を照射する、請求項1記載の画像表示装置の製造方法。   In the step B, the curable resin layer is irradiated with the first light and the second light so that the integrated light amount of the first light is larger than the integrated light amount of the second light. A method for manufacturing the image display device according to claim 1. 上記工程Bでは、上記硬化性樹脂層の表面に対して、上記第1の光及び上記第2の光を照射する、請求項1又は2記載の画像表示装置の製造方法。   3. The method according to claim 1, wherein in the step B, the surface of the curable resin layer is irradiated with the first light and the second light. 4. 上記硬化性樹脂層の厚みが25〜350μmである、請求項1〜3のいずれか1項に記載の画像表示装置の製造方法。   4. The method according to claim 1, wherein the thickness of the curable resin layer is 25 to 350 μm. 5. 上記工程Bでは、上記第1の光の積算光量が2000〜5000mJ/cmの範囲であり、上記第2の光の積算光量が20mJ/cm以上1000mJ/cm未満の範囲である、請求項1〜4のいずれか1項に記載の画像表示装置の製造方法。 In the step B, in the range integrated light quantity of the first light is 2000~5000mJ / cm 2, in the range integrated light quantity is less than 20 mJ / cm 2 or more 1000 mJ / cm 2 of the second light, wherein Item 5. The method for manufacturing an image display device according to any one of Items 1 to 4. 上記光硬化性樹脂組成物は、光ラジカル反応性成分と、光重合開始剤と、可塑剤及び粘着付与成分の少なくとも1種とを含有する、請求項1〜5のいずれか1項に記載の画像表示装置の製造方法。   The photocurable resin composition according to any one of claims 1 to 5, wherein the photocurable resin composition contains a photoradical reactive component, a photopolymerization initiator, and at least one of a plasticizer and a tackifier. A method for manufacturing an image display device. 上記光ラジカル反応性成分は、(メタ)アクリレートオリゴマー及び(メタ)アクリレートモノマーの少なくとも1種を含有する、請求項6に記載の画像表示装置の製造方法。   The method according to claim 6, wherein the photo-radical reactive component contains at least one of a (meth) acrylate oligomer and a (meth) acrylate monomer. 上記光重合開始剤は、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、ベンゾフェノン系光重合開始剤、分子内水素引き抜き型光重合開始剤の少なくとも1種を含有する、請求項6又は7記載の画像表示装置の製造方法。   The photopolymerization initiator contains at least one of an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and an intramolecular hydrogen abstraction-type photopolymerization initiator. Item 8. The method for manufacturing an image display device according to item 6 or 7. 上記光硬化性樹脂組成物は、上記光ラジカル反応性成分を合計で30〜90質量%と、上記光重合開始剤を2〜6質量%と、上記可塑剤及び上記粘着付与成分の少なくとも1種を5〜58質量%とを含有する、請求項6〜8のいずれか1項に記載の画像表示装置の製造方法。   The photocurable resin composition contains 30 to 90% by mass of the photoradical reactive component in total, 2 to 6% by mass of the photopolymerization initiator, and at least one of the plasticizer and the tackifier. The method for producing an image display device according to any one of claims 6 to 8, comprising 5 to 58% by mass.
JP2018175362A 2018-09-19 2018-09-19 Method of manufacturing image display device Active JP6538252B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018175362A JP6538252B1 (en) 2018-09-19 2018-09-19 Method of manufacturing image display device
KR1020190108235A KR20200033173A (en) 2018-09-19 2019-09-02 Method for manufacturing image display device
CN201910848015.6A CN110930864B (en) 2018-09-19 2019-09-09 Method for manufacturing image display device
TW108133809A TWI831835B (en) 2018-09-19 2019-09-19 Method for manufacturing image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175362A JP6538252B1 (en) 2018-09-19 2018-09-19 Method of manufacturing image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019077072A Division JP7160745B2 (en) 2019-04-15 2019-04-15 Method for manufacturing image display device

Publications (2)

Publication Number Publication Date
JP6538252B1 JP6538252B1 (en) 2019-07-03
JP2020046557A true JP2020046557A (en) 2020-03-26

Family

ID=67144701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175362A Active JP6538252B1 (en) 2018-09-19 2018-09-19 Method of manufacturing image display device

Country Status (3)

Country Link
JP (1) JP6538252B1 (en)
KR (1) KR20200033173A (en)
CN (1) CN110930864B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319546B2 (en) 2018-12-26 2023-08-02 デクセリアルズ株式会社 PHOTOCURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE
WO2021065923A1 (en) * 2019-10-01 2021-04-08 三菱ケミカル株式会社 Polarizing film with adhesive layer, adhesive sheet, multilayer member and image display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034778A (en) * 2001-07-25 2003-02-07 Nitto Denko Corp Method for manufacturing pressure sensitive adhesive sheet and its apparatus
WO2009054168A1 (en) * 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha Display device and method for production thereof
WO2013105656A1 (en) * 2012-01-11 2013-07-18 大日本印刷株式会社 Optical laminate, method for manufacturing optical laminate, polarizer, and image display device
JP2014229496A (en) * 2013-05-23 2014-12-08 日本化薬株式会社 Energy ray-curable resin composition and cured product thereof
JP2015200698A (en) * 2014-04-04 2015-11-12 日東電工株式会社 Transparent resin layer, polarizing film with adhesive layer, and image display device
JP2017042956A (en) * 2015-08-25 2017-03-02 協立化学産業株式会社 Method for manufacturing laminate
JP2017066347A (en) * 2015-10-02 2017-04-06 東亞合成株式会社 Curable composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061774B2 (en) * 2013-04-30 2017-01-18 凸版印刷株式会社 Anti-scattering film and image display panel
JP6489309B2 (en) * 2015-05-14 2019-03-27 パナソニックIpマネジメント株式会社 Imprint method and imprint apparatus
JP6479589B2 (en) * 2015-06-22 2019-03-06 デクセリアルズ株式会社 Manufacturing method of image display device
JP6700004B2 (en) * 2015-08-04 2020-05-27 デクセリアルズ株式会社 Method for manufacturing optical member
CN108538763B (en) * 2018-04-24 2020-05-15 京东方科技集团股份有限公司 Heating assembly, packaging device and packaging method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034778A (en) * 2001-07-25 2003-02-07 Nitto Denko Corp Method for manufacturing pressure sensitive adhesive sheet and its apparatus
WO2009054168A1 (en) * 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha Display device and method for production thereof
WO2013105656A1 (en) * 2012-01-11 2013-07-18 大日本印刷株式会社 Optical laminate, method for manufacturing optical laminate, polarizer, and image display device
JP2014229496A (en) * 2013-05-23 2014-12-08 日本化薬株式会社 Energy ray-curable resin composition and cured product thereof
JP2015200698A (en) * 2014-04-04 2015-11-12 日東電工株式会社 Transparent resin layer, polarizing film with adhesive layer, and image display device
JP2017042956A (en) * 2015-08-25 2017-03-02 協立化学産業株式会社 Method for manufacturing laminate
JP2017066347A (en) * 2015-10-02 2017-04-06 東亞合成株式会社 Curable composition

Also Published As

Publication number Publication date
KR20200033173A (en) 2020-03-27
CN110930864B (en) 2023-05-05
TW202025110A (en) 2020-07-01
JP6538252B1 (en) 2019-07-03
CN110930864A (en) 2020-03-27

Similar Documents

Publication Publication Date Title
KR102379033B1 (en) Photocurable resin composition and image display device production method
KR102277736B1 (en) Method of manufacturing image display device
JP5811143B2 (en) Display device
US9890305B2 (en) Method of producing a laminate comprising a cured adhesive sheet
US20170240782A1 (en) Optically clear adhesive and optical laminate
TWI738661B (en) Photocurable resin composition and manufacturing method of image display device
JP2013228748A (en) Display device
JP2014507307A (en) Article having optical adhesive and method for producing the same
US20200263058A1 (en) Method for manufacturing optical member
JP2016069529A (en) Adhesive sheet for image display unit, manufacturing method of image display unit and image display unit
JP6538252B1 (en) Method of manufacturing image display device
JP2016071161A (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP7160745B2 (en) Method for manufacturing image display device
WO2017038845A1 (en) Photocurable resin composition and method for manufacturing image display device
JP2017002260A (en) Adhesive sheet for picture display unit, manufacturing method of picture display unit and picture display unit
KR101907237B1 (en) Adhesive composition for optical use and adhesive film
TWI831835B (en) Method for manufacturing image display device
JP2023164830A (en) Photocurable resin composition, and method for manufacturing image display device
WO2015132876A1 (en) Adhesive sheet for image display device, and method for producing image display device and image display device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180926

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190423

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190605

R150 Certificate of patent or registration of utility model

Ref document number: 6538252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250