JP2020022000A - 復号回路 - Google Patents

復号回路 Download PDF

Info

Publication number
JP2020022000A
JP2020022000A JP2018142608A JP2018142608A JP2020022000A JP 2020022000 A JP2020022000 A JP 2020022000A JP 2018142608 A JP2018142608 A JP 2018142608A JP 2018142608 A JP2018142608 A JP 2018142608A JP 2020022000 A JP2020022000 A JP 2020022000A
Authority
JP
Japan
Prior art keywords
signal
decoding
core layer
unit
decoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018142608A
Other languages
English (en)
Inventor
豊 中田
Yutaka Nakada
豊 中田
諭志 岡田
Satoshi Okada
諭志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2018142608A priority Critical patent/JP2020022000A/ja
Priority to PCT/JP2019/028914 priority patent/WO2020026899A1/ja
Priority to US17/250,427 priority patent/US11637567B2/en
Publication of JP2020022000A publication Critical patent/JP2020022000A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/152Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2792Interleaver wherein interleaving is performed jointly with another technique such as puncturing, multiplexing or routing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • H03M13/2927Decoding strategies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)

Abstract

【課題】LDM方式において、より効率的に多重信号を復号することが可能とする。【解決手段】LDM(Layered Division Multiplexing)方式で第1の信号と第2の信号とが多重化された多重信号から、第1の信号を復号する第1復号部と、多重信号から、復号された第1の信号の復号結果を用いて、第2の信号を復号する第2復号部と、を備え、第2の信号は、多重信号の受信状態に係るノイズ情報に基づいて選択的に復号される、復号回路が提供される。【選択図】図4

Description

本開示は、復号回路に関する。
近年、放送信号を多重化する方法として、LDM(Layered Division Multiplexing)方式と呼ばれる電力方向に信号を多重化する技術が開発されている。例えば、特許文献1、2のような技術が開示されている。
特表2017−527167号公報 特表2018−504005号公報
LDM方式において、2種類の信号が多重化される場合、当該2種類の信号は、例えばコアレイヤ信号、エンハンスドレイヤ信号と呼ばれる。LDM方式で多重化された多重信号が復号される場合、まずコアレイヤ信号が復号され、次にコアレイヤ信号の復号結果を用いてエンハンスドレイヤ信号が復号される。
ここで、エンハンスドレイヤ信号の復号が成功するためには、コアレイヤ信号の復号が成功している必要がある。しかし、コアレイヤ信号の復号の途中で処理が失敗した場合でも、エンハンスドレイヤ信号の復号が成功する場合がある。
本開示では、LDM方式において、より効率的に多重信号を復号することが可能な復号回路を提案する。
本開示によれば、LDM方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、前記多重信号から、前記第2の信号を復号する第2復号部と、を備え、前記第2の信号は、前記多重信号の受信状況に係るノイズ情報から選択的に復号される、復号回路が提供される。
また、本開示によれば、LDM方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、前記多重信号から、前記第2の信号を復号する第2復号部と、を備え、前記第2の信号は、前記第1の信号の復号結果に基づいて、選択的に復号される、復号回路が提供される。
本開示によれば、LDM方式において、より効率的に多重信号を復号することが可能となる。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
LDM方式による多重化の概要について説明するための図である。 復号処理に係る信号処理システム1000の一例を説明するための図である。 第1の実施形態に係る復調回路200の構成例を示すブロック図である。 第1の実施形態に係る復号部240の構成例を示すブロック図である。 第1の実施形態に係るSN推定について説明するための図である。 第1の実施形態に係る復号部240の多重信号を復号する動作の流れの一例を示す図である。 復号部240の変形例を説明するための図である。 第2の実施形態に係る復号部240の機能構成例を示すブロック図である。 第2の実施形態に係る復号部240の多重信号を復号する動作の流れの一例を示す図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.概要
2.第1の実施形態
2−1.第1の実施形態に係る信号処理システム1000の構成
2−2.第1の実施形態に係る復調回路200の構成例
2−3.第1の実施形態に係る復号部240の構成例
2−4.第1の実施形態に係る復号部240の動作の流れの一例
3.第2の実施形態
3−1.第2の実施形態に係る復号部240の構成例
3−2.第2の実施形態に係る復号部240の動作の流れの一例
4.第3の実施形態
5.まとめ
<1.概要>
まず、本開示の一実施形態の概要について説明する。近年、デジタルテレビ放送の規格としてATSC(Advanced Television Systems Committee)3.0が開発されている。ATSC3.0規格では、信号を多重化する方法として、LDM方式が採用されている。ここで、LDM方式とは、電力の異なる複数の信号が、ひとつの信号にまとめられて送信される多重化方式をいう。
ATSC3.0規格では、LDM方式で第1の信号と第2の信号が多重化される。第1の信号と第2の信号は、コアレイヤ信号、エンハンスドレイヤ信号とも呼ばれる。コアレイヤ信号は、例えばモバイル通信などの用途に用いられる。また、エンハンスドレイヤ信号は、例えばステーショナリ、テレビなどの用途に用いられる。ここで、受信機は、LDM方式で2種類の信号が多重化された放送信号(以下、多重信号と称する)を復号する場合、まずコアレイヤ信号を復号し、次にエンハンスドレイヤ信号を復号する必要がある。
図1は、LDM方式による多重化の概要について説明するための図である。図1には、LDM方式に係る種々のコンスタレーションが示されている。ここで、コアレイヤ信号の信号点がコンスタレーションL1として示されている。また、エンハンスドレイヤ信号の信号点がコンスタレーションL2として示されている。送信時では、コアレイヤ信号とエンハンスドレイヤ信号が多重化され、多重信号が生成される。生成された多重信号の信号点は、コンスタレーションL3として示されている。ここで、コンスタレーションとは、信号に対するデジタル変調によるデータの信号点をIQ平面上に示した図をいう。また、IQ平面とは、横軸を同相軸(I軸)、縦軸を直角位相軸(Q軸)とした2次元の複素平面をいう。
受信機は、多重信号を受信する。次に、受信機は、まずコアレイヤ信号を復号する。受信機は、当該復号により、コアレイヤ信号のデータを取り出す。図1において、当該復号結果の信号の信号点は、コンスタレーションL4として示されている。なお、コアレイヤ信号の復号の際、エンハンスドレイヤ信号はノイズとして扱われる。
次に、受信機は、コアレイヤ信号の復号後の信号からコアレイヤ信号の復号結果を差し引くことで、エンハンスドレイヤ信号を得る。図1において、得られたエンハンスドレイヤ信号の信号点は、コンスタレーションL5として示されている。なお、受信機は、得られたエンハンスドレイヤ信号を復号することで、エンハンスドレイヤ信号のデータを取り出す。
以上、説明したように、LDM方式で多重化された多重信号では、コアレイヤ信号の復号結果が、エンハンスドレイヤ信号の復号に用いられる。ここで、エンハンスドレイヤ信号の復号が成功するためには、コアレイヤ信号の復号が成功している必要がある。そのため、コアレイヤ信号の復号が失敗した際に、エンハンスドレイヤ信号の復号を行うと電力を無駄に消費することになる。従って、対策として、コアレイヤ信号の復号が失敗した場合、消費電力を削減するために、エンハンスドレイヤ信号の復号処理を行わない方法が挙げられる。
なお、コアレイヤ信号およびエンハンスドレイヤ信号の復号には、例えばATSC3.0規格の場合、LDPC(Low Density Parity Check)復号が行われ、次にBCH復号が行われる。
上記では、エンハンスドレイヤ信号の復号が成功するためには、コアレイヤ信号の復号が成功している必要があると説明した。しかし、コアレイヤ信号のLDPC復号の結果を用いてエンハンスドレイヤ信号の復号が行われる場合、バーストノイズなどのような所定の条件下において、当該LDPC復号が失敗している場合でも、エンハンスドレイヤ信号の復号が成功することがある。その場合、コアレイヤ信号のLDPC復号が失敗した場合に、例えば使用電力削減のために、エンハンスドレイヤ信号の復号を止めると、処理効率が低下してしまう。
本開示の一実施形態に係る技術思想は、上記の点に着目して発想されたものであり、LDM方式で第1の信号と第2の信号とが多重化された多重信号から、第1の信号を復号し、また多重信号から第2の信号をノイズ情報に基づいて選択的に復号することができる。係る機能により、LDM方式において、より効率的に多重信号を復号することが可能となる。
<2.第1の実施形態>
<<2−1.本実施形態に係る信号処理システム1000の構成>>
図2は、復号処理に係る信号処理システム1000の一例を説明するための図である。図2に示されているように、信号処理システム1000は、例えば受信回路100、復調回路200、および処理回路300を備える。
“受信回路100および復調回路200”と、“復調回路200および処理回路300”とは、それぞれ1本または複数本の配線で電気的に接続され、各種信号(アナログ信号またはデジタル信号)が回路間で伝送される。
(受信回路100)
受信回路100は、放送信号を受信する機能を有する回路(または回路群)である。
一例を挙げると、受信回路100は、例えば、アンテナ(図示せず)と、第1フィルタ(図示せず)と、増幅器(図示せず)と、ミキサ(図示せず)と、第2フィルタ(図示せず)とを備える。
アンテナ(図示せず)は、例えば、ダイポールアンテナ、モノポールアンテナ、チップアンテナ、あるいはパターンアンテナなどの、任意の構成のアンテナで構成され、放送信号が搬送される電波を受信する。第1フィルタ(図示せず)は、例えば、ローパスフィルタ、バンドパスフィルタなどの任意のフィルタで構成され、アンテナ(図示せず)で受信された信号から不要な周波数成分を除去する。増幅器(図示せず)は、LNA(Low Noise Amplifier)などの任意の増幅器で構成され、第1フィルタ(図示せず)から伝達される信号を増幅する。ミキサ(図示せず)には、増幅器(図示せず)から伝達される信号と、発振器(図示せず)などにより生成された所定周波数の信号とが入力され、ミキサ(図示せず)は、増幅器(図示せず)から伝達される信号を、IF(Intermediate Frequency)信号に変換する。第2フィルタ(図示せず)は、バンドパスフィルタ、ローパスフィルタなどの任意のフィルタで構成され、IF信号から不要な周波数成分を除去する。第2フィルタ(図示せず)から出力される信号が、受信回路100により受信された放送信号(所定の方式で変調された変調信号)に該当する。
なお、受信回路100の構成は、上記に示す例に限られない。受信回路100は、例えば、電波で送信される放送信号を受信することが可能な、任意の構成を有することが可能である。
(復調回路200)
復調回路200は、受信回路100により受信された多重信号を復調する機能を有する回路(または回路群)である。復調回路200は、LDM方式で多重化された多重信号を復調する。また、復調回路200は、多重信号の受信状況に係るノイズ情報を求めることが可能である。なお、ノイズ情報は、多重信号の復号処理に用いられる。ノイズ情報については、後述する。
復調回路200は、後述する復調部220および復号部240を有する。
復調回路200としては、例えば“1または2以上のプロセッサを含み、復調回路200が有する機能を実現するための各種回路が集積されたIC(Integrated Circuit)チップ”が、挙げられる。なお、復調回路200が、ICチップの形態で実現されていなくてもよいことは、言うまでもない。
復調回路200は、受信回路100の構成の一部または全部を備えていてもよい。つまり、図2に示す復調回路200が、図2に示す受信回路100の一部または全部の機能をさらに有することも可能である。復調回路200が受信回路100の一部または全部の機能をさらに有する場合、復調回路200が備える受信回路100の構成の一部または全部は、復調回路200において受信部の役目を果たす。
(処理回路300)
処理回路300は、復調回路200において復調された放送信号、すなわち、復調回路200により取り出されたコアレイヤデータ、およびエンハンスドレイヤデータ(以下、「Eレイヤデータ」と示す場合がある。)を処理する回路(または回路群)である。
信号処理システム1000は、例えば図2に示す構成を有することにより、受信された放送信号を復調し、復調された放送信号を処理する。
なお、本実施形態に係る信号処理システムの構成は、図2に示す例に限られない。
例えば、受信回路100と同様の機能、構成を有する外部の受信回路と電気的に接続される場合、本実施形態に係る信号処理システム1000は、図2に示す受信回路100を備えていなくてもよい。
また、例えば、図2に示す復調回路200は、受信回路100の構成の一部または全部を備えていてもよい。受信回路100の構成の一部を備える復調回路200の構成の一例としては、“復調回路200が、外部のアンテナ(受信回路100の構成の一部の一例)と接続される構成”が、挙げられる。外部のアンテナと接続される上記復調回路200は、当該アンテナが受信した放送信号を処理する。
また、本実施形態に係る信号処理システムは、例えば、プロセッサ(図示せず)、ROM(Read Only Memory。図示せず)、RAM(Random Access Memory。図示せず)、記録媒体(図示せず)、表示デバイス(図示せず)、音声出力デバイス(図示せず)、操作デバイス(図示せず)、通信デバイス(図示せず)のうちの一部または全部を備えていてもよい。また、本実施形態に係る信号処理システムは、後述する本実施形態に係る信号処理システムの適用例に応じた構成をとることが可能である。
プロセッサ(図示せず)は、例えば、MPU(Micro Processing Unit)などの演算回路で構成され、例えば本実施形態に係る信号処理全体を制御する機能を有する。なお、図2に示す信号処理システム1000では、例えば、処理回路300がプロセッサ(図示せず)の役目を果たしてもよい。
ROM(図示せず)は、プロセッサ(図示せず)が使用するプログラムや演算パラメータなどの制御用データを記憶する。RAM(図示せず)は、プロセッサ(図示せず)により実行されるプログラムなどを一時的に記憶する。
記録媒体(図示せず)は、本実施形態に係る信号処理システムが備える記憶手段であり、例えば、復調回路200における処理方法に係るデータなどの、様々なデータを記憶する。ここで、記録媒体(図示せず))としては、例えば、フラッシュメモリなどの不揮発性メモリなどが挙げられる。なお、本実施形態に係る信号処理システムは、記録媒体(図示せず)を備えず、本実施形態に係る処理方法に係るデータなどの各種データは、本実施形態に係る信号処理システムの外部の記録媒体に記憶されていてもよい。
表示デバイス(図示せず)は、例えばUI(User Interface)に係る画像などの様々な画像を、表示画面に表示する。表示デバイス(図示せず)としては、例えば、液晶ディスプレイや有機ELディスプレイなどが挙げられる。また、表示デバイスは、例えばタッチパネルなど、表示と操作とが可能なデバイスであってもよい。
音声出力デバイス(図示せず)は、例えば放送信号が示す音声(音楽も含む。)などの様々な音声を出力する。音声出力デバイス(図示せず)としては、例えばスピーカが挙げられる。
操作デバイス(図示せず)は、本実施形態に係る信号処理システムの使用者が操作可能なデバイスである。操作デバイス(図示せず)としては、例えば、ボタンや、方向キー、ジョグダイヤルなどの回転型セレクタ、あるいは、これらの組み合わせなどが挙げられる。
通信デバイス(図示せず)は、本実施形態に係る信号処理システムが備える通信手段であり、外部装置と無線または有線で通信を行う役目を果たす。通信デバイス(図示せず)としては、例えば、通信アンテナおよびRF(Radio Frequency)回路(無線通信)や、IEEE802.15.1ポートおよび送受信回路(無線通信)、IEEE802.11ポートおよび送受信回路(無線通信)、あるいはLAN(Local Area Network)端子および送受信回路(有線通信)などが挙げられる。
また、以下では、多重信号が、第1の信号と第2の信号が多重化された信号である場合を例に挙げる。ここで、第1の信号はコアレイヤ信号であり、第2の信号はエンハンスドレイヤ信号である。なお、第1の信号および第2の信号が多重化される場合として、ATSC3.0規格が挙げられる。上述したように、本実施形態に係る信号処理システムが処理することが可能な信号が、ATSC3.0規格に対応する信号に限られないことは、言うまでもない。
<<2−2.本実施形態に係る復調回路200の構成例>>
次に、本開示の一実施形態に係る復調回路200の構成例について説明する。図3は、本実施形態に係る復調回路200の構成例を示すブロック図である。復調回路200は、復調部220、および復号部240を備える。
(復調部220)
本実施形態に係る復調部220は、受信回路100から受信した多重信号を復調する機能を有する回路である。具体的には、復調部220は、例えばQPSK変調された信号に対する処理を実行する。なお、復調部220が有する機能は、例えばプロセッサにより実現される。
また、復調回路200は、SN(Signal Noise)推定またはCN(Carrier Noise)推定を行う機能を有する。ここで、SN推定およびCN推定とは、規格で定められた信号と実際に受け取った信号とを比較して、信号または搬送波に対するノイズの比率を算出することをいう。当該ノイズの比率の算出に関しては、後述する。
(復号部240)
本実施形態に係る復号部240は、復調部220が復調した多重信号を復号し、コアレイヤデータおよびエンハンスドレイヤデータを取り出す機能を有する復号回路である。ここで、コアレイヤデータ、エンハンスドレイヤデータとは、それぞれコアレイヤ信号、エンハンスドレイヤ信号を復号して取り出されるデータをいう。なお、復号部240が有する機能は、例えばプロセッサにより実現される。
<<2−3.本実施形態に係る復号部240の構成例>>
次に、本開示の一実施形態に係る復号部240の構成例について説明する。図4は、本実施形態に係る復号部240の構成例を示すブロック図である。復号部240は、バッファ部10、コアレイヤ復号部20、およびエンハンスドレイヤ復号部30を備える。
以下本明細書では、受信機は、多重信号を送信する送信機が、2種類の信号を各々BCH符号化およびLDPC符号化の処理を実行し、またインタリーブを行いLDM方式で多重化された多重信号を、受信した場合について、説明する。
(バッファ部10)
本実施形態に係るバッファ部10は、受信回路100から送信された多重信号を保存する機能を有する。また、バッファ部10は、後述するコアレイヤデマップ部21または後述するエンハンスドレイヤ復号部30へ多重信号を送信する。
(コアレイヤ復号部20)
本実施形態に係るコアレイヤ復号部20は、多重信号からコアレイヤ信号を復号する機能を有する第1復号部である。その際、コアレイヤ復号部20は、エンハンスドレイヤ信号をノイズとして扱う。また、コアレイヤ復号部20は、コアレイヤデマップ部21、コアレイヤデインタリーブ部22、コアレイヤLDPC復号部23、およびコアレイヤBCH復号部24を備える。
また、本実施形態に係るコアレイヤ復号部20は、復調部220からエンハンスドレイヤ信号の復号処理を行うか否かを判断するノイズ情報を受信する。ここで、ノイズ情報とは、SN推定の結果であるSN推定結果、またはCN推定の結果であるCN推定結果をいう。ノイズ情報を用いたコアレイヤ復号部20の動作については、後述する。
(コアレイヤデマップ部21)
本実施形態に係るコアレイヤデマップ部21は、バッファ部10から受信した多重信号のうち、コアレイヤ信号を、デマッピングしコアレイヤ信号のデータ列へ変換する処理を実行する。
(コアレイヤデインタリーブ部22)
本実施形態に係るコアレイヤデインタリーブ部22は、コアレイヤデマップ部21がデマッピングされたコアレイヤ信号のデータ列をインタリーブが行われる前に戻す処理を実行する。
(コアレイヤLDPC復号部23)
本実施形態に係るコアレイヤLDPC復号部23は、コアレイヤデインタリーブ部22から送信された、LDPC符号化が行われたコアレイヤ信号のデータ列に対してLDPC復号する処理を実行する。なお、送信されるLDPC復号の結果は、パリティチェック用データを含んでよい。
また、本実施形態に係るコアレイヤLDPC復号部23は、コアレイヤ復号部20が復調部220から受信した多重信号の受信状態に係るノイズ情報に基づいてエンハンスドレイヤ信号の復号処理を行うと判断した場合、LDPC復号の結果を、後述するコアレイヤインタリーブ部31へ送信する。
なお、コアレイヤLDPC復号部23は、多重信号の受信状態が悪いと判定された場合、LDPC復号の結果を、後述するコアレイヤインタリーブ部31へ送信しない。ここで、「受信状態が悪い」とは、例えば多重信号中のノイズが多いことをいう。また、より具体的に「受信状態が悪い」とは、例えば多重信号中のノイズが所定の閾値以上存在することをいう。
(コアレイヤBCH復号部24)
本実施形態に係るコアレイヤBCH復号部24は、コアレイヤデインタリーブ部22から送信された、BCH符号化が行われたデータ列をBCH復号する処理を実行する。また、コアレイヤBCH復号部24は、BCH復号されたデータ列であるコアレイヤデータを処理回路300へ送信する。
なお、コアレイヤBCH復号部24は、ATSC3.0規格の場合、BCH復号の代わりに、CRC(Cyclic Redundancy Check)復号する処理を実行してもよく、またはいずれの復号処理を実行しなくてよい。
また、本実施形態に係るコアレイヤBCH復号部24は、コアレイヤ復号部20が復調部220から受信した多重信号の受信状態に係るノイズ情報に基づいてエンハンスドレイヤ信号の復号処理を行うと判断した場合、コアレイヤLDPC復号部23の代わりに、BCH復号の結果を、後述するコアレイヤインタリーブ部31へ送信してもよい。
(エンハンスドレイヤ復号部30)
本実施形態に係るエンハンスドレイヤ復号部30は、バッファ部10から受信した多重信号およびコアレイヤLDPC復号部23から受信した機能を有する第2復号部である。また、エンハンスドレイヤ復号部30は、コアレイヤインタリーブ部31、コアレイヤマップ部32、Eレイヤデマップ部33、Eレイヤデインタリーブ部34、EレイヤLDPC復号部35、およびEレイヤBCH復号部36を備える。
また、本実施形態に係るエンハンスドレイヤ復号部30は、バッファ部10が送信したコンスタレーションから後述するコアレイヤマップ部32が送信したコンスタレーションを差し引き、エンハンスドレイヤ信号のコンスタレーションを得る処理を実行する。
(コアレイヤインタリーブ部31)
本実施形態に係るコアレイヤインタリーブ部31は、コアレイヤLDPC復号部23から送信されたLDPC復号した処理の結果を受信する。また、コアレイヤインタリーブ部31は、当該結果にインタリーブを行う処理を実行する。
(コアレイヤマップ部32)
本実施形態に係るコアレイヤマップ部32は、コアレイヤインタリーブ部31がインタリーブを行ったデータ列をIQ平面上にマッピングし、コアレイヤ信号のコンスタレーションを得る処理を実行する。
(Eレイヤデマップ部33)
本実施形態に係るEレイヤデマップ部33は、エンハンスドレイヤ復号部30が再生したエンハンスドレイヤ信号を、デマッピングしデータ列へ変換する処理を実行する。
(Eレイヤデインタリーブ部34)
本実施形態に係るEレイヤデインタリーブ部34は、Eレイヤデマップ部33がデマッピングされたコアレイヤ信号のデータ列をインタリーブが行われる前に戻す処理を実行する。
(EレイヤLDPC復号部35)
本実施形態に係るEレイヤLDPC復号部35は、Eレイヤデインタリーブ部34から送信された、LDPC符号化が行われたデータ列をLDPC復号する処理を実行する。
(EレイヤBCH復号部36)
本実施形態に係るEレイヤBCH復号部36は、Eレイヤデインタリーブ部34から送信された、BCH符号化が行われたデータ列をBCH復号する処理を実行する。また、EレイヤBCH復号部36は、BCH復号したデータ列であるエンハンスドレイヤデータ(Eレイヤデータ)を処理回路300へ送信する。
以下、ノイズ情報を用いたコアレイヤ復号部20の動作について説明する。図5は、本実施形態に係るSN推定について説明するための図である。図5には、送信点LTおよび受信点LRがIQ平面に示されている。上述したように、SN推定およびCN推定とは、規格で定められた信号と実際に受け取った信号とを比較して、信号または搬送波に対するノイズの比率を算出することをいう。
以下、本実施形態に係るSN推定について説明する。SN推定を行うためには、規格で定められた送信時の信号の電力、およびノイズの電力が算出される必要がある。まず、当該信号の電力の算出には、パイロット信号が用いられる。ここで、パイロット信号とは、予め送信側と受信側との間で定められたパターンの信号をいう。なお、ATSC3.0規格の場合、3種類のパイロット信号が存在する。なお、当該3種類のパイロット信号は、既知の値をとる。
図5において、規格で定められた送信時の信号の送信点LTと原点との距離が、送信時の信号の電力SPである。また、実際に受け取った信号の受信点LRと規格で定められた送信時の信号の送信点LTとの距離が、ノイズの電力NPとなる。従って、SN比は、送信時の電力SPをノイズの電力NPで除算したものとなる。
復調部220は、上述した方法で、受信されたパイロット信号に基づいて、SN比を算出する。また、復調部220は、一定数算出されたSN比のデータを平均化し、SN推定結果を算出し、SN推定結果をバッファ部10へ送信する。なお、SN比のデータを平均化する方法としては、信号のシンボル数または単位時間での平均値を求める方法などが存在する。
次に、コアレイヤ復号部20は、復調部220から送信されたSN推定結果に基づいて、エンハンスドレイヤ信号の復号処理を行うか否かを判断する。具体的には、コアレイヤ復号部20は、例えば、平均化されたSN比であるSN推定結果と所要SNとの大小関係に応じて、エンハンスドレイヤ信号の復号処理を行うか否かを判断する。
ここで、所要SNとは、エンハンスドレイヤ信号の復号処理を行うか否かを判断するための閾値である。所要SNは、加算性白色ガウス雑音チャネルの理論に基づいて、算出されてよい。当該理論に基づいて、当該理論に基づく通信路容量、帯域幅、SN比の関係式から、所要SNが算出され得る。
<<2−4.本実施形態に係る復号部240の動作の流れの一例>>
次に本実施形態に係る復号部240の多重信号を復号する動作の流れについて説明する。図6は、本実施形態に係る復号部240の多重信号を復号する動作の流れの一例を示す図である。
図6を参照すると、まず、バッファ部10は、復調部220から送信された多重信号を受信する(S1101)。次に、コアレイヤ復号部20は、バッファ部10から送信された多重信号を、コアレイヤデマップ部21、コアレイヤデインタリーブ部22、コアレイヤLDPC復号部23、コアレイヤBCH復号部24により復号する(S1102)。次に、コアレイヤ復号部20は、復調部220からノイズ情報を受信する(S1103)。次に、コアレイヤ復号部20は、受信されたノイズ情報に基づいて、エンハンスドレイヤ信号を復号するか否かを判断する(S1104)。コアレイヤ復号部20が受信されたエンハンスドレイヤ信号を復号すると判断した場合(S1104:YES)、コアレイヤLDPC復号部23は、LDPC復号の結果を、コアレイヤインタリーブ部31へ送信する(S1105)。
つぎに、エンハンスドレイヤ復号部30は、コアレイヤインタリーブ部31、コアレイヤマップ部32により、コアレイヤLDPC復号部23から送信されたLDPC復号の結果から、エンハンスドレイヤ信号のコンスタレーションを再生する(S1106)。次に、エンハンスドレイヤ復号部30は、エンハンスドレイヤ信号を、Eレイヤデマップ部33、Eレイヤデインタリーブ部34、EレイヤLDPC復号部35、EレイヤBCH復号部36により復号する(S1107)。
上記では、復号部240の動作の流れの一例を説明した。
なお、コアレイヤ復号部20とエンハンスドレイヤ復号部30は、共有でもよい。図7は、復号部240の変形例を説明するための図である。図7には、デマップ部1、デインタリーブ部2、LDPC復号部3、BCH復号部4、コアレイヤインタリーブ部31、およびコアレイヤマップ部32を備える。
図7において、デマップ部1、デインタリーブ部2、LDPC復号部3、BCH復号部4は、コアレイヤ信号およびエンハンスドレイヤ信号の復号の際に用いられる。
以上説明したように、コアレイヤ復号部20とエンハンスドレイヤ複数30は、一部の機能ブロックにおいてハードウェアを共有とすることが可能である。
<3.第2の実施形態>
上記では、本開示に係る第1の実施形態について説明した。続いて、本開示に係る第2の実施形態について説明する。基本的に、第1の実施形態の説明と重複する内容は省略し、第1の実施形態との差分について説明する。
<<3−1.第2の実施形態に係る復号部240の構成例>>
図8は、本実施形態に係る復号部240の機能構成例を示すブロック図である。図8において、コアレイヤBCH復号部24は、BCH復号の結果を、EレイヤLDPC復号部35へ送信し、EレイヤLDPC復号部35は、当該結果に基づいて、エンハンスドレイヤ信号のLDPC復号を実行するか否かを判断する。
具体的には、コアレイヤBCH復号部24は、コアレイヤ信号のBCH復号が成功したか否かを示す情報をEレイヤLDPC復号部35へ送信する。第1の実施形態において説明したノイズ情報に基づくエンハンスドレイヤ信号を復号するか否かの判断の代わりに、EレイヤLDPC復号部35は、当該情報に基づいて、エンハンスドレイヤ信号のLDPC復号を実行するか否かを判断する。
EレイヤLDPC復号部35は、コアレイヤBCH復号部24から、コアレイヤ信号のBCH復号が成功した情報を受信した場合、エンハンスドレイヤ信号のLDPC復号を実行する。一方、EレイヤLDPC復号部35は、コアレイヤBCH復号部24から、コアレイヤ信号のBCH復号が失敗した情報を受信した場合、エンハンスドレイヤ信号のLDPC復号を実行しない。
また、コアレイヤBCH復号部24は、コアレイヤ信号のBCH復号が成功したか否かを示す情報をコアレイヤLDPC復号部23へ送信してもよい。次に、コアレイヤLDPC復号部23は、当該情報に基づいて、LDPC復号の結果を、コアレイヤインタリーブ部31へ送信するか否かを判断してもよい。
以上説明したように、本実施形態に係る信号処理システム1000は、エンハンスドレイヤ信号の復号が成功する可能性が高い場合に、エンハンスドレイヤ信号を復号し、当該可能性が低い場合は、エンハンスドレイヤ信号を復号しない処理を行うことができる。係る機能によれば、より効率的に多重信号を復号することが可能となる。
<<3−2.第2の実施形態に係る復号部240の動作の流れの一例>>
次に第2の実施形態に係る復号部240の多重信号を復号する動作の流れについて説明する。図9は、第2の実施形態に係る復号部240の多重信号を復号する動作の流れの一例を示す図である。
図9を参照すると、まず、バッファ部10は、復調部220から送信された多重信号を受信する(S1201)。次に、コアレイヤ復号部20は、バッファ部10から送信された多重信号を、コアレイヤデマップ部21、コアレイヤデインタリーブ部22、コアレイヤLDPC復号部23、コアレイヤBCH復号部24を用いて復号する(S1202)。次に、コアレイヤLDPC復号部23は、LDPC復号の結果を、コアレイヤインタリーブ部31へ送信する(S1203)。次に、エンハンスドレイヤ復号部30は、コアレイヤインタリーブ部31、コアレイヤマップ部32により、コアレイヤLDPC復号部23から送信されたLDPC復号の結果から、エンハンスドレイヤ信号のコンスタレーションを得る(S1204)。
次に、コアレイヤBCH復号部24は、コアレイヤ信号のBCH復号が成功したか否かを判断する(S1205)。コアレイヤBCH復号部24がコアレイヤ信号のBCH復号が成功した判断した場合(S1205:YES)、コアレイヤBCH復号部24は、当該成功を示す情報をEレイヤLDPC復号部35へ送信する(S1206)。エンハンスドレイヤ復号部30は、当該情報を受信し、エンハンスドレイヤ信号を、Eレイヤデマップ部33、Eレイヤデインタリーブ部34、EレイヤLDPC復号部35、EレイヤBCH復号部36を用いて復号する(S1206)。一方、コアレイヤBCH復号部24がコアレイヤ信号のBCH復号が成功しなかったと判断した場合(S1205:NO)、コアレイヤBCH復号部24は、当該成功を示す情報をEレイヤLDPC復号部35へ送信し、EレイヤLDPC復号部35は、当該情報に基づいてエンハンスドレイヤ信号を復号せず、動作は終了する。
<4.第3の実施形態>
上記では、本開示に係る第2の実施形態について説明した。続いて、本開示に係る第3の実施形態について説明する。基本的に、第1の実施形態および第2の実施形態の説明と重複する内容は省略し、第1の実施形態および第2の実施形態との差分について説明する。
本実施形態に係る復号部240は、例えば、第1の実施形態に係るSN推定結果に基づく判断、および第2の実施形態に係るコアレイヤBCH復号部24によるコアレイヤ信号のBCH復号の結果に基づく判断を組み合わせて、エンハンスドレイヤ信号が復号されるか否かを判断してもよい。
以下一例を具体的に説明する。本実施形態に係るコアレイヤLDPC復号部23は、SN推定結果が所要SNよりも小さい場合でも、LDPC復号の結果を、後述するコアレイヤインタリーブ部31へ送信する。EレイヤLDPC復号部35は、当該LDPC復号の結果を受信し、また、コアレイヤBCH復号部24が送信したコアレイヤ信号のBCH復号が成功したか否かを示す情報に基づいて、エンハンスドレイヤ信号のLDPC復号を実行するか否かを判断する。
このように、本実施形態に係る信号処理システムによれば、エンハンスドレイヤ信号がノイズ情報とコアレイヤ信号の復号結果に基づいて選択的に復号されることが可能である。係る機能によれば、単一の基準に基づく場合と比べて、より効率的に多重信号を復号することができる。
なお、SN推定結果に基づく判断、およびコアレイヤBCH復号部24によるコアレイヤ信号のBCH復号の結果に基づく判断を組み合わせに係る動作は、上記で説明したものに限定されない。また、コアレイヤLDPC復号部23およびEレイヤLDPC復号部35は、上記判断を行わずに、復号処理を実行してもよい。
<5.まとめ>
以上で説明したように、LDM方式で第1の信号と第2の信号とが多重化された多重信号から、第1の信号を復号し、また多重信号から第2の信号をノイズ情報に基づいて選択的に復号することができる。係る機能によれば、LDM方式において、より効率的に多重信号を復号することが可能となる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
LDM(Layered Division Multiplexing)方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、
前記多重信号から、復号された前記第1の信号の復号結果を用いて、前記第2の信号を復号する第2復号部と、
を備え、
前記第2の信号は、前記多重信号の受信状態に係るノイズ情報に基づいて選択的に復号される、
復号回路。
(2)
前記第2の信号は、前記ノイズ情報に基づいて前記受信状態が悪いと判定された場合、復号されない、
前記(1)に記載の復号回路。
(3)
前記第2復号部は、前記多重信号から、復号された前記第1の信号を減算して、前記第2の信号を復号する、
前記(1)または(2)に記載の復号回路。
(4)
前記第1の信号は、第1の復号処理と第2の復号処理の一方または双方により復号され、
前記第2の信号は、前記第1の復号処理と前記第2の復号処理の一方または双方により復号される、
前記(1)〜(3)のいずれかに記載の復号回路。
(5)
前記第1復号部は、前記第1の復号処理と前記第2の復号処理を順次行い、
前記第2の信号は、前記第1の復号処理と前記第2の復号処理のうち、1番目に行われた復号処理の結果を用いて、復号される、
前記(4)に記載の復号回路。
(6)
前記第1復号部は、前記第1の復号処理と前記第2の復号処理を順次行い、
前記第2の信号は、前記第1の復号処理および前記第2の復号処理の結果を用いて、復号される、
前記(4)に記載の復号回路。
(7)
前記第1の復号処理は、LDPC(Low Density Parity Check)復号とBCH復号のうち一方であり、
前記第2の復号処理は、LDPC復号とBCH復号のうち、他方である、
前記(4)〜(6)のいずれかに記載の復号回路。
(8)
前記第2の信号は、さらに前記第1の信号の復号結果に基づいて、選択的に復号される、
前記(1)〜(7)のいずれかに記載の復号回路。
(9)
前記ノイズ情報は、SN(Signal Noise)推定またはCN(Carrier Noise)推定により得られる、
前記(1)〜(8)のいずれかに記載の復号回路。
(10)
前記第1の信号および前記第2の信号は、ATSC(Advanced Television Systems Committee)3.0規格に対応する信号である、
前記(1)〜(9)のいずれかに記載の復号回路。
(11)
前記第1の信号は、コアレイヤ信号であり、
前記第2の信号は、エンハンスドレイヤ信号である、
前記(1)〜(10)のいずれかに記載の復号回路。
(12)
LDM(Layered Division Multiplexing)方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、
前記多重信号から、復号された前記第1の信号の復号結果を用いて、前記第2の信号を復号する第2復号部と、
を備え、
前記第2の信号は、前記第1の信号の復号結果に基づいて、選択的に復号される、
復号回路。
(13)
前記第2の信号は、前記第1の信号の復号が失敗したと判定された場合、復号されない、
前記(12)に記載の復号回路。
1000 信号処理システム
100 受信回路
200 復調回路
220 復調部
240 復号部
10 バッファ部
20 コアレイヤ復号部
21 コアレイヤデマップ部
22 コアレイヤデインタリーブ部
23 コアレイヤLDPC復号部
24 コアレイヤBCH復号部
30 エンハンスドレイヤ復号部
31 コアレイヤインタリーブ部
32 コアレイヤマップ部
33 Eレイヤデマップ部
34 Eレイヤデインタリーブ部
35 EレイヤLDPC復号部
36 EレイヤBCH復号部
300 処理回路

Claims (13)

  1. LDM(Layered Division Multiplexing)方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、
    前記多重信号から、復号された前記第1の信号の復号結果を用いて、前記第2の信号を復号する第2復号部と、
    を備え、
    前記第2の信号は、前記多重信号の受信状態に係るノイズ情報に基づいて選択的に復号される、
    復号回路。
  2. 前記第2の信号は、前記ノイズ情報に基づいて前記受信状態が悪いと判定された場合、復号されない、
    請求項1に記載の復号回路。
  3. 前記第2復号部は、前記多重信号から、復号された前記第1の信号を減算して、前記第2の信号を復号する、
    請求項1に記載の復号回路。
  4. 前記第1の信号は、第1の復号処理と第2の復号処理の一方または双方により復号され、
    前記第2の信号は、前記第1の復号処理と前記第2の復号処理の一方または双方により復号される、
    請求項1に記載の復号回路。
  5. 前記第1復号部は、前記第1の復号処理と前記第2の復号処理を順次行い、
    前記第2の信号は、前記第1の復号処理と前記第2の復号処理のうち、1番目に行われた復号処理の結果を用いて、復号される、
    請求項4に記載の復号回路。
  6. 前記第1復号部は、前記第1の復号処理と前記第2の復号処理を順次行い、
    前記第2の信号は、前記第1の復号処理および前記第2の復号処理の結果を用いて、復号される、
    請求項4に記載の復号回路。
  7. 前記第1の復号処理は、LDPC(Low Density Parity Check)復号とBCH復号のうち一方であり、
    前記第2の復号処理は、LDPC復号とBCH復号のうち、他方である、
    請求項4に記載の復号回路。
  8. 前記第2の信号は、さらに前記第1の信号の復号結果に基づいて、選択的に復号される、
    請求項1に記載の復号回路。
  9. 前記ノイズ情報は、SN(Signal Noise)推定またはCN(Carrier Noise)推定により得られる、
    請求項1に記載の復号回路。
  10. 前記第1の信号および前記第2の信号は、ATSC(Advanced Television Systems Committee)3.0規格に対応する信号である、
    請求項1に記載の復号回路。
  11. 前記第1の信号は、コアレイヤ信号であり、
    前記第2の信号は、エンハンスドレイヤ信号である、
    請求項1に記載の復号回路。
  12. LDM(Layered Division Multiplexing)方式で第1の信号と第2の信号とが多重化された多重信号から、前記第1の信号を復号する第1復号部と、
    前記多重信号から、復号された前記第1の信号の復号結果を用いて、前記第2の信号を復号する第2復号部と、
    を備え、
    前記第2の信号は、前記第1の信号の復号結果に基づいて、選択的に復号される、
    復号回路。
  13. 前記第2の信号は、前記第1の信号の復号が失敗したと判定された場合、復号されない、
    請求項12に記載の復号回路。
JP2018142608A 2018-07-30 2018-07-30 復号回路 Pending JP2020022000A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018142608A JP2020022000A (ja) 2018-07-30 2018-07-30 復号回路
PCT/JP2019/028914 WO2020026899A1 (ja) 2018-07-30 2019-07-23 復号回路
US17/250,427 US11637567B2 (en) 2018-07-30 2019-07-23 Decoding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142608A JP2020022000A (ja) 2018-07-30 2018-07-30 復号回路

Publications (1)

Publication Number Publication Date
JP2020022000A true JP2020022000A (ja) 2020-02-06

Family

ID=69231704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142608A Pending JP2020022000A (ja) 2018-07-30 2018-07-30 復号回路

Country Status (3)

Country Link
US (1) US11637567B2 (ja)
JP (1) JP2020022000A (ja)
WO (1) WO2020026899A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123825A (ja) * 2019-01-30 2020-08-13 ソニーセミコンダクタソリューションズ株式会社 信号処理装置、信号処理方法、受信装置、及び信号処理プログラム
KR102432820B1 (ko) * 2020-04-22 2022-08-17 한국전자통신연구원 4 계층 ldm 신호 송수신 장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137955B2 (ja) 1974-05-24 1976-10-19
US7725799B2 (en) * 2005-03-31 2010-05-25 Qualcomm Incorporated Power savings in hierarchically coded modulation
JP2009033340A (ja) 2007-07-25 2009-02-12 Mitsubishi Electric Corp 車々間通信システム、車載送信装置および車々間通信方法
US8429698B2 (en) 2007-08-01 2013-04-23 Panasonic Corporation Digital broadcast transmission device and digital broadcast reception device
KR102366988B1 (ko) 2014-07-03 2022-02-25 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 신호 멀티플렉싱 장치 및 신호 멀티플렉싱 방법
WO2016006878A1 (ko) 2014-07-09 2016-01-14 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
KR102378065B1 (ko) 2014-07-09 2022-03-25 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
EP3253062B1 (en) 2015-01-27 2019-09-11 LG Electronics Inc. Broadcast signal transmitting apparatus and method thereof
JP6356360B2 (ja) 2015-11-13 2018-07-11 株式会社日立国際電気 音声通信システム
EP3334075A1 (en) * 2016-12-12 2018-06-13 Panasonic Intellectual Property Corporation of America Iterative demapping for superposition modulation

Also Published As

Publication number Publication date
US20210344353A1 (en) 2021-11-04
US11637567B2 (en) 2023-04-25
WO2020026899A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6323753B2 (ja) 送信方法
US10608783B2 (en) Reception device and reception method
US9819364B2 (en) Apparatus and method for transmitting/receiving signal in communication system supporting bit-interleaved coded modulation with iterative decoding scheme
JP3523844B2 (ja) 複数の搬送波を用いた情報シンボルを受信する方法及び装置
US11431545B2 (en) Transmitter, receiver, transmission method, and reception method
JP2018101862A (ja) 送信装置、送信方法、受信装置、及び受信方法
WO2020026899A1 (ja) 復号回路
US20210013913A1 (en) Transmission device, reception device, transmission method, and reception method
TW202029677A (zh) 送訊裝置、送訊方法、收訊裝置、及收訊方法
JP4731442B2 (ja) スケルチ装置
US20190173727A1 (en) Reception device and reception method
JP2011029833A (ja) 復調装置、復調装置の制御方法、復調装置の制御プログラム、および復調装置の制御プログラムを記録した記録媒体
CN110505359B (zh) 无线广播通信系统中非均匀调制解调方法、系统、介质及终端
JP2010200163A (ja) 復調装置、復調方法、復調プログラム、および、コンピュータ読み取り可能な記録媒体
US20190028228A1 (en) Transmission device, reception device, transmission method, and reception method
WO2018214761A1 (zh) 一种比特映射的方法及装置
JP6893314B2 (ja) 送信方法
CN110830159A (zh) 一种无线通信方法、装置及计算机可读存储介质
JP6204803B2 (ja) Ofdm変調方式の送信装置、受信装置、及び伝送方法
JP7267378B2 (ja) 送信装置、及び受信装置
JP6719073B2 (ja) 送信方法
KR20180007729A (ko) 무선 통신 시스템에서 신호를 송/수신하는 장치 및 방법
JP7216521B2 (ja) 送信機、受信機、送信方法、及び、受信方法
JP7137922B2 (ja) 伝送システム、受信装置及び伝送方法
JP2023083457A (ja) 送信装置、受信装置、及びプログラム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208