JP2020020505A - 給湯装置及び給湯装置の制御方法 - Google Patents

給湯装置及び給湯装置の制御方法 Download PDF

Info

Publication number
JP2020020505A
JP2020020505A JP2018143098A JP2018143098A JP2020020505A JP 2020020505 A JP2020020505 A JP 2020020505A JP 2018143098 A JP2018143098 A JP 2018143098A JP 2018143098 A JP2018143098 A JP 2018143098A JP 2020020505 A JP2020020505 A JP 2020020505A
Authority
JP
Japan
Prior art keywords
refrigerant
water
temperature
hot water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018143098A
Other languages
English (en)
Other versions
JP6959194B2 (ja
Inventor
聡 石▲崎▼
Satoshi Ishizaki
聡 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018143098A priority Critical patent/JP6959194B2/ja
Publication of JP2020020505A publication Critical patent/JP2020020505A/ja
Application granted granted Critical
Publication of JP6959194B2 publication Critical patent/JP6959194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】除霜開始タイミングを放熱器出口温度の推移で判断可能な給湯装置を提供する。【解決手段】貯湯タンクと、貯湯タンクに両端が繋がる管と、管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、冷媒を圧縮する圧縮機と、圧縮された冷媒を冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、放熱器出口温度センサの検知温度の推移に基づいて空気熱交換器の除霜を実行する。【選択図】図3

Description

本発明は、給湯装置及び給湯装置の制御方法に関する。
ヒートポンプ式給湯装置はお湯を沸き上げるためのヒートポンプユニットとそのお湯を貯湯するための貯湯ユニットで構成されている。ヒートポンプユニットは圧縮機、水-冷媒熱交換器、減圧装置、空気熱交換器で構成され、それらが環状に接続されている。沸き上げ運転時には空気熱交換器は蒸発器として動作する。そのため、外気温度が低く、湿度が高い場合には空気熱交換器に霜が付着することがあり、沸き上げ能力が低下し、省エネ性を損なってしまう。そこで空気熱交換器の霜を落とす除霜運転が必要となる。
その除霜が必要かどうかを判断する手段として、特許文献1は、外気温度と空気熱交換器出口温度を利用して、外気温度に対して所定温度低い基準温度以下に空気熱交換器出口温度がなった場合に除霜が必要と判断し、除霜運転を行う。
特開2003−222392号公報
しかしながら、外気温度サーミスタはヒートポンプユニットの外部に設けられるため、雪や氷が外気温度サーミスタに付着した場合、空気熱交換器出口温度との温度差が正しくとれないため、上記の方法の場合、空気熱交換器に霜が付着していても、除霜運転を行うことができない虞がある。
上記事情に鑑みてなされた第1の本発明は、
貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、
前記放熱器出口温度センサの検知温度の推移に基づいて前記空気熱交換器の除霜を実行することを特徴とする。
また、上記事情に鑑みてなされた第2の本発明は、
貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置の制御方法であって、
前記膨張弁を開放した状態で前記圧縮機を駆動させるとともに、前記ポンプを駆動させて冷水を前記水−冷媒熱交換器に送り出し始めた後、前記膨張弁の開度を低下させていく初期運転ステップと、
前記圧縮機の回転数及び前記膨張弁の開度を略一定に維持する通常運転ステップと、
前記圧縮機の回転数を増加させる及び/又は前記ポンプの送出流量を低下させる着霜時ステップと、
前記圧縮機の回転数を増加させる及び/又は前記膨張弁の開度を増加させる除霜ステップと、をこの順で実行することを特徴とする。
実施例1の給湯装置の全体構成図 実施例1の給湯装置のモリエル線図上で表したサイクル線図 実施例1の給湯装置の温度チャート 実施例1の給湯装置の除霜運転の制御フローチャート
以下、添付の図面を参照しつつ本発明の実施例を説明する。本発明の各種の構成要素は必ずしも個々に独立したものである必要はなく、例えば、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素の一部と他の構成要素の一部とが重複すること、を許容する。
図1は本実施例の給湯装置の全体構成図である。
給湯装置は、ヒートポンプ100と湯水作成部101と、これらを制御する制御装置11とを有する。
[熱サイクル]
ヒートポンプ100は、冷媒を圧縮する圧縮機1、圧縮された高温冷媒を貯湯タンク12の水に熱交換させることで放熱する水−冷媒熱交換器2、放熱した冷媒を膨張させる膨張弁3、及び膨張した液冷媒を蒸発させる蒸発器4が、熱サイクルとして環状に接続されている。蒸発器4は、外気と熱交換可能に配されている。
圧縮機1と水−冷媒熱交換器2との間には、圧縮機1の冷媒吐出温度を検知する吐出温度センサ7が配されている。吐出温度センサ7の検知温度が高くなるにつれて膨張弁3の開度を低下させることでヒートポンプ100のサイクルCOP(Coefficient Of Performance)を好適にすることができる。
蒸発器4には、外気との熱交換を促進するファン6が配されている。また、ポンプ5によって水−冷媒熱交換器2に送り出される冷水の温度を検知する入水温度センサ9が配されている。水−冷媒熱交換器2の出口と膨張弁3との間には、放熱後冷媒温度を検知する放熱器出口温度センサ20を備える。また、水-冷媒熱交換器2で熱交換された湯の温度を検知する出湯温度サーミスタ10を備える。
[湯水作成部101]
湯水作成部101は、貯湯タンク12と、貯湯タンク12下端側に給水する給水管と、貯湯タンク12上端側から湯水を取り出す給湯管とを有する。また、貯湯タンク12の下端側から水−冷媒熱交換器2を通って貯湯タンク12の上端側にかけては湯水が通過可能な管で接続されており、貯湯タンク12と水−冷媒熱交換器2との間には貯湯タンク12から水−冷媒熱交換器2に向けて送水するポンプ5が配されている。
[熱サイクルによる冷媒の変化]
図2は本実施例の給湯装置のモリエル線図である。
圧縮機1において冷媒は圧縮されるため、冷媒圧力が増大するとともに圧縮機1から受ける圧縮の仕事でエンタルピーがやや増加する。このため、冷媒は圧縮機1によってモリエル線図中、右上に向かって進む(圧縮過程)。
また、水−冷媒熱交換器2において冷媒は放熱するため、冷媒のエンタルピーが減少する。このため、冷媒は水−冷媒熱交換器2によってモリエル線図中、左に向かって進む(放熱過程)。
また、膨張弁3において冷媒は膨張して圧力が減少する。このため、冷媒は膨張弁3によってモリエル線図中、下に向かって進む(膨張過程)。
また、蒸発器4において冷媒は外気と熱交換する。通常、蒸発器4における冷媒温度は外気より低くなるため、冷媒は蒸発器4によって吸熱してエンタルピーが増加する。このため、冷媒は蒸発器4によってモリエル線図中、右に向かって進む(蒸発過程)。
[制御進行に伴う各箇所における温度の変動]
図3は本実施例の給湯装置の水−冷媒熱交換器2出口温度と入水温度の時間経過を示す図である。制御装置11が下記の各制御を指令する。制御装置11は各制御を実行できればそのハードウエア構造は特に制限されず、例えば、熱サイクルに組み込まれたCPU等の演算部、熱サイクルとは別体に設けられた指令装置にすることができる。
(初期運転)
給湯装置が湯沸しを開始すると、まず、膨張弁3を開放した状態で圧縮機1が好ましくは定速で駆動され、また、ポンプ5が駆動して水−冷媒熱交換器2に貯湯タンク12の水を供給する。これにより、圧縮された高温冷媒が水−冷媒熱交換器2を通過するため、放熱器出口温度センサ20の温度(図3中、「水熱交出口冷媒温度」)は急激に上昇し始める。
次に、膨張弁3を徐々に閉じていくと、熱サイクルを循環する冷媒流量が減少するところ、水−冷媒熱交換器2によって放熱されるエンタルピ量は比較的変動しない。したがって、単位流量あたりの冷媒の放熱量(エンタルピ減少量)は増大することから、放熱器出口温度センサ20が検知する冷媒の温度は低下していく。また、貯湯タンク12下部から供給される水は比較的温度一定であるため、放熱器出口温度センサ20と入水温度センサ9の温度差が小さくなる。
膨張弁3の閉塞を目標値まで進めたら、膨張弁3の閉塞を停止させる。すると、圧縮機1の回転数や膨張弁3の開度が(少なくとも概ね)時不変になったことから、熱サイクルは徐々に安定していく。このため、放熱器出口温度センサ20が検知する冷媒の温度は比較的変動しなくなる。すなわち、放熱器出口温度センサ20と入水温度センサ9の温度差が最小となる。
(通常運転)
上記の初期運転後は、圧縮機1の回転数や膨張弁3開度を概ね一定に保つことで、安定した熱量を水−冷媒熱交換器2に供給できるようになる。この場合のモリエル線図中のサイクルを、図2中、四角形のプロット点で結んだ実線で描いている。
しかし、熱サイクルの作動を継続すると、外気との間で熱交換をしている蒸発器4は氷点下の温度を維持し続けていることから徐々に着霜して霜で覆われていく。
(着霜時の運転)
蒸発器4の着霜量が増加すると、蒸発器4の外気との接触面積が減少するため、蒸発器4を通じて冷媒に与えられるエンタルピー量が減少する。このため、着霜するにつれて、蒸発過程におけるモリエル線図は右側に遷移していく。すなわち、サイクルで囲まれる面積が減少することから、1サイクルにおける仕事量が減少していくことがわかる。
一方、蒸発器4にて冷媒を蒸発させることで得られる吸熱量Qは、外気との接触風量Fと、熱交換による吸熱で生じる蒸発器4の温度差ΔTとの積で得られる。蒸発による相転移に必要な吸熱量は一定であることから、接触面積の減少に伴う風量Fの低下に伴い、温度差ΔTが増大することになる。これは、蒸発過程開始時における圧力が低下することを示すため、蒸発過程開始時におけるモリエル線図上の点は下に遷移する。これにより、1サイクルにおける仕事量は増加するものの、一般的には、着霜による冷媒へのエンタルピー供給量よりは低い。このときのサイクルを図2中、三角形のプロット点で結んだ破線で描いている。
したがって、着霜の進行につれてサイクル効率が低下していき、水−冷媒熱交換器2において貯湯タンク12側の水の吸熱量が減少する。したがって本実施例では、まず、通常運転への遷移後、出湯温度センサ10の温度低下を検知したら、サイクル効率が低下してきていると判断して、圧縮機1の回転数を増加させる。これにより冷媒流量が増えるため、水−冷媒熱交換器2における単位流量あたりのエンタルピ減少量が小さくなるので、放熱器出口温度センサ20が検知する冷媒の温度は上昇していく。また、貯湯タンク12下部から供給される水は比較的温度一定であるため、放熱器出口温度センサ20と入水温度センサ9の温度差が大きくなる。
すなわち本実施例は、熱サイクルの駆動開始後、膨張弁3を閉塞していくことで放熱器出口温度センサ20の検知温度が低下していく。その後膨張弁3の閉塞を所定の目標値で停止し、圧縮機回転数を好ましくは略一定にすることで通常運転に移行し、放熱器出口温度センサ20の検知温度の変化が小さくなる。その後、着霜につれて出湯温度センサ10の温度低下を検知したら、圧縮機1回転数を増加させるため放熱器出口温度センサ20の検知温度が上昇し、貯湯タンク12から供給される入水温度センサ9の検知温度との差が大きくなる。
なお、圧縮機1回転数を上昇させることに代えて又は追加して、ポンプ5の駆動を弱めて水の供給量を少なくさせても良い。
(除霜時の運転)
本実施例では、放熱器出口温度センサ20の検知温度が下降し、入水温度センサ9の検知温度との温度差が小さくなり、その下降が緩やかになった、すなわち、放熱器出口温度と入水温度との温度差が最小(または極小)になった後、放熱器出口温度が上昇し、入水温度との温度差が所定の値(おおよそ4℃〜5℃)に拡大した場合に除霜が必要と判断して、除霜運転を開始する。
除霜運転時は、圧縮機1の回転数を例えば最大にし、膨張弁3を例えば全開にすることで、比較的高温の冷媒を蒸発器4に供給することで、除霜運転を行う。
除霜が進行すると吸込み側の冷媒温度も上昇することから、放熱器出口温度センサ20の検知温度が上昇する。本実施例では、この上昇を検知し、所定時間経過した場合除霜を終了させる。
(復帰運転)
除霜終了後は、圧縮機1の回転数および膨張弁3の弁開度を初期運転時程度にまで低下させ、再び初期運転から通常運転までの動作を行う。
[制御フローチャート]
図4は本実施例の制御フローチャートである。運転開始後、放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnowを所定時間毎に計算する(ステップS11)。その後、ΔTnowよりも1つ前の放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnow-1との比較を行い(ステップS12)、ΔTnowがΔTnow-1よりも大きいかどうかを判断する(ステップS12’)。もし、ΔTnowがΔTnow-1よりも小さい場合はステップS11に戻る。
図3の温度チャートに示すように、放熱器出口温度はヒートポンプユニット起動後、高温冷媒が水−冷媒熱交換器2を通過するため、放熱器出口温度センサ20の温度が急激に上昇し始める。そのため、貯湯タンク12から供給される入水温度との差分ΔTnowは大きいが、その後、その差分は小さくなり、通常運転時にはその差分は概ね最小となる。つまり、初期運転から、通常運転への切り替わりを放熱器出口温度と入水温度の差分で判断する。
放熱器出口温度と入水温度との差分が最小となったときのΔTnow-1をΔTminと置き換え(ステップS13)、補正値αをΔTmin+βとして設定する(但し、β>0)(ステップS14)。その後、放熱器出口冷媒温度と入水温度の差分がステップS14で設定した補正値α以上かどうかを判断する(ステップS15)。蒸発器4にて着霜が進行し、霜詰まりが起こっていれば、先に述べたように、放熱器出口冷媒温度が上昇し、放熱器出口冷媒温度と入水温度の差分が大きくなり、補正値α以上となる。放熱器出口冷媒温度と入水温度の差分が補正値α以上でないときは、除霜運転が必要ないと判断し(ステップS15、No)、ステップS15の判断を繰り返し行う。ステップS15にて放熱器出口冷媒温度と入水温度との差分が補正値α以上の場合、除霜運転が必要と判断し、除霜運転を行う(ステップS16)
除霜運転中は、圧縮機1からの高温冷媒が放熱器2に流入するため、放熱器出口温度は上昇し、設定値δ以上を所定時間経過した場合、十分に除霜が行えたと判断し(S17)し、除霜運転を終了する。
本実施例では、放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnowを利用して除霜の必要性を判断したが、放熱器出口温度センサ20の検知温度に代えても良い。尤も、放熱器出口温度センサ20の検知温度は、ポンプ5から送水される水温度の影響を受けるから、貯湯タンク12内の水の例えば全量を湧き上げようとした場合、その終盤では水温度も上昇しており、放熱器出口温度センサ20の検知温度も上昇する。したがって、除霜すべきタイミングとは別に、沸き上がり終盤でも除霜が必要と誤検知してしまう虞があるので、本実施例のように差分値を用いる方が好ましい。
1 圧縮機
2 水−冷媒熱交換器(放熱器)
3 膨張弁
4 蒸発器(空気熱交換器)
5 送水ポンプ
6 蒸発器ファン
7 吐出温度センサ
9 外気温度センサ
10 出湯温度サーミスタ
11 制御装置
12 貯湯タンク
20 放熱器出口温度センサ
100 ヒートポンプ
101 湯水作成部

Claims (5)

  1. 貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
    冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
    前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、
    前記放熱器出口温度センサの検知温度の推移に基づいて前記空気熱交換器の除霜を実行することを特徴とする給湯装置。
  2. 前記放熱器出口温度センサの検知温度が下降を開始し、下降速度が低下した後、上昇に転じたことを検知すると、前記除霜を実行することを特徴とする請求項1に記載の給湯装置。
  3. 前記冷水の温度を検知する入水温度センサを有し、
    前記放熱器出口温度センサの検知温度と前記入水温度センサの検知温度との差分が下降を開始し、下降速度が低下した後、上昇に転じたことを検知すると、前記除霜を実行することを特徴とする請求項1に記載の給湯装置。
  4. 前記除霜の実行は、前記放熱器出口温度センサの検知温度が上昇した後に終了することを特徴とする請求項2又は3に記載の給湯装置。
  5. 貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
    冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
    前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置の制御方法であって、
    前記膨張弁を開放した状態で前記圧縮機を駆動させるとともに、前記ポンプを駆動させて冷水を前記水−冷媒熱交換器に送り出し始めた後、前記膨張弁の開度を低下させていく初期運転ステップと、
    前記圧縮機の回転数及び前記膨張弁の開度を略一定に維持する通常運転ステップと、
    前記圧縮機の回転数を増加させる及び/又は前記ポンプの送出流量を低下させる着霜時ステップと、
    前記圧縮機の回転数を増加させる及び/又は前記膨張弁の開度を増加させる除霜ステップと、をこの順で実行することを特徴とする制御方法。
JP2018143098A 2018-07-31 2018-07-31 給湯装置及び給湯装置の制御方法 Active JP6959194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143098A JP6959194B2 (ja) 2018-07-31 2018-07-31 給湯装置及び給湯装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143098A JP6959194B2 (ja) 2018-07-31 2018-07-31 給湯装置及び給湯装置の制御方法

Publications (2)

Publication Number Publication Date
JP2020020505A true JP2020020505A (ja) 2020-02-06
JP6959194B2 JP6959194B2 (ja) 2021-11-02

Family

ID=69588471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143098A Active JP6959194B2 (ja) 2018-07-31 2018-07-31 給湯装置及び給湯装置の制御方法

Country Status (1)

Country Link
JP (1) JP6959194B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155189A (ja) * 2005-12-02 2007-06-21 Denso Corp ヒートポンプ式給湯装置およびヒートポンプ式給湯装置用制御装置
JP2009138980A (ja) * 2007-12-05 2009-06-25 Corona Corp ヒートポンプ式給湯機
JP2010216751A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd ヒートポンプ式給湯機
JP2012159253A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp 加温システム
JP2013053834A (ja) * 2011-09-06 2013-03-21 Corona Corp ヒートポンプ式給湯装置
JP2013119954A (ja) * 2011-12-06 2013-06-17 Panasonic Corp ヒートポンプ式温水暖房機
JP2014105945A (ja) * 2012-11-28 2014-06-09 Hitachi Appliances Inc ヒートポンプ式給湯機
JP2016023921A (ja) * 2014-07-24 2016-02-08 株式会社ノーリツ ヒートポンプ給湯システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155189A (ja) * 2005-12-02 2007-06-21 Denso Corp ヒートポンプ式給湯装置およびヒートポンプ式給湯装置用制御装置
JP2009138980A (ja) * 2007-12-05 2009-06-25 Corona Corp ヒートポンプ式給湯機
JP2010216751A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd ヒートポンプ式給湯機
JP2012159253A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp 加温システム
JP2013053834A (ja) * 2011-09-06 2013-03-21 Corona Corp ヒートポンプ式給湯装置
JP2013119954A (ja) * 2011-12-06 2013-06-17 Panasonic Corp ヒートポンプ式温水暖房機
JP2014105945A (ja) * 2012-11-28 2014-06-09 Hitachi Appliances Inc ヒートポンプ式給湯機
JP2016023921A (ja) * 2014-07-24 2016-02-08 株式会社ノーリツ ヒートポンプ給湯システム

Also Published As

Publication number Publication date
JP6959194B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6346122B2 (ja) 温水暖房システム
JP6580149B2 (ja) 冷凍サイクル装置
JP4836212B2 (ja) 空気調和機
US9464836B2 (en) Air conditioner and starting control method thereof
JP2019049393A (ja) 温水暖房システム
WO2014102934A1 (ja) ヒートポンプ温水暖房機
JP2005147609A (ja) ヒートポンプ給湯装置
JP5457861B2 (ja) ヒートポンプ装置の除霜運転方法
JP5589607B2 (ja) ヒートポンプサイクル装置
JP6639677B2 (ja) 熱源システム
JP5558132B2 (ja) 冷凍機及びこの冷凍機が接続された冷凍装置
JP2012247116A (ja) ヒートポンプ給湯装置
JP2012007751A (ja) ヒートポンプサイクル装置
JP2021055854A (ja) 冷凍サイクルユニット及びそれを備えた空気調和器及びヒートポンプ式給湯器
JP6086236B2 (ja) 冷凍装置の圧縮機の容量制御方法および容量制御装置
JP2020020505A (ja) 給湯装置及び給湯装置の制御方法
JP5516332B2 (ja) ヒートポンプ式温水暖房機
JP2016023921A (ja) ヒートポンプ給湯システム
JP4251785B2 (ja) ヒートポンプ式温水器
JP2003050066A (ja) 空気調和機の制御装置
JP5045656B2 (ja) ヒートポンプ給湯機
JP5840062B2 (ja) ヒートポンプ式液体加熱装置およびヒートポンプ式給湯機
JP2011153789A (ja) 冷凍サイクル装置
JP2020056571A (ja) 熱源システム
JP2009085476A (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6959194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150