JP2019525843A - 金属溶接用の流体冷却式コンタクトチップ組立体 - Google Patents

金属溶接用の流体冷却式コンタクトチップ組立体 Download PDF

Info

Publication number
JP2019525843A
JP2019525843A JP2019500569A JP2019500569A JP2019525843A JP 2019525843 A JP2019525843 A JP 2019525843A JP 2019500569 A JP2019500569 A JP 2019500569A JP 2019500569 A JP2019500569 A JP 2019500569A JP 2019525843 A JP2019525843 A JP 2019525843A
Authority
JP
Japan
Prior art keywords
refrigerant
guide
metal wire
contact tip
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019500569A
Other languages
English (en)
Other versions
JP7032375B2 (ja
Inventor
ファラ、トム−エリク
ラムスラン、アルネ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Titanium AS
Original Assignee
Norsk Titanium AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Titanium AS filed Critical Norsk Titanium AS
Publication of JP2019525843A publication Critical patent/JP2019525843A/ja
Application granted granted Critical
Publication of JP7032375B2 publication Critical patent/JP7032375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/285Cooled electrode holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3489Means for contact starting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

立体自由形状造形により物体、特にチタン体及びチタン合金体を製造するための方法及びシステムにおいて使用できる流体冷却式コンタクトチップ組立体であって、金属ワイヤを通る電荷の流量を増加させることにより堆積速度を増加させる、流体冷却式コンタクトチップ組立体が提供される。

Description

本発明は、立体自由形状造形により物体、特にチタン体及びチタン合金体を製造するための方法及び装置に関する。
チタン又はチタン合金で作製された構造化金属部品は、従来、ビレットから鋳造、鍛造又は機械加工することにより作製されている。これらの技法には、高価なチタン金属の材料を多く浪費し、金属部品の造形におけるリードタイムが長いという不都合がある。
十分に稠密な物理的物体は、高速プロトタイピング、高速製造法、積層製造法、立体自由形状造形法、付加造形法、付加製造法、又は3D印刷として知られる製造技術により作製することができる。この技術は、コンピュータ支援設計ソフトウェア(CAD)を用いて、まず、作製すべき物体の仮想モデルを構築し、次に、その仮想モデルを、通常水平方向に向けられる薄い平行なスライス又は層に変換する。その後、物理的物体を、例えば溶融した溶接ワイヤからの、溶融金属などの、液状ペーストの形態、粉末の形態、又は他の積層可能な形態、塗り広げ可能な形態、若しくは流体形態の連続した原料の層、或いは仮想層の形状に類似するシート材料として予備成形された連続した原料の層を物体全体が形成されるまで積み重ねることにより作製することができる。それらの層を合わせて融着させ、立体稠密物体を形成する。
立体自由形状造形は、典型的には各物体に対して数時間から数日の範囲の比較的高速の生産速度でほぼ全ての形状の物体の作成を可能にする柔軟な技術である。したがって、この技術は、試作品の形成及び少量生産に適しており、大量生産に規模を拡大することができる。
積層製造法の技術を、複数片の構成材料の堆積を含むように拡張することができ、つまり、物体の仮想モデルの各構造層が、並べて置かれたときに層を形成する1組の部片に分割される。これにより、物体の仮想積層モデルに従って各層を形成する連続したストライプ状にワイヤを基材の上に溶接し、物理的物体全体が形成されるまで各層に対してプロセスを繰り返すことにより、金属物体を形成することができる。溶接技術の精度は、通常、許容可能な寸法の物体を直接形成できないほど粗い。したがって、形成される物体は、通常、許容可能な寸法精度まで機械加工する必要がある未加工物体又は予備成形品とみなされる。
電子ビーム自由形状製造が当該技術分野で知られている(例えば、(非特許文献1)、(非特許文献2)、及び(非特許文献3)を参照)。Taminger及びHafley(2006)は、電子ビーム自由形状造形(EBF)と組み合わせてコンピュータ支援設計データから構造金属部品を直接製造する方法及び装置を説明している。構造部品は、電子ビームにより提供される熱エネルギーにより溶接される金属製溶接ワイヤの連続した層の上に溶接することにより構築される。EBFプロセスは、高真空環境において集束電子ビームにより作られ維持される溶融池内に金属ワイヤを溶融させることを伴う。電子ビーム及び溶接ワイヤの位置決めは、電子ビーム銃と基材を支持するアクチュエータとが1つ又は複数の軸線(X軸線、Y軸線、Z軸線、及び回転軸線)に沿って移動可能にヒンジ連結されるようにして、4軸運動制御システムにより電子ビーム銃及び支持基材の位置を調整することにより得られる。このプロセスは、材料の使用がほぼ100%効率的であり電力消費が95%効果的であると主張されている。この方法は、バルク金属堆積とより精巧で緻密な堆積の両方に用いることができ、この方法は、金属部品を機械加工する従来の手法と比較して、リードタイムの短縮と材料コスト及び機械加工コストの低減とに対して著しい効果を得ると主張されている。電子ビーム技術には、堆積室において10−1Pa以下の高真空に依存するという不都合がある。
TIG溶接トーチを使用して、立体自由形状造形(SFFF)(延性の低い金属供給原材料の連続した層が基材の上に堆積される)により物体を構築することが知られている(例えば、Adamsの(特許文献1)を参照)。電極を使用して流動ガスを励起することによりプラズマアークが生成され、電極には大きさの変化する電流が供給される。堆積前に加工物の所定の標的領域を予熱するために、プラズマ流が所定の標的領域に向けられる。電流が調節されるとともに、プラズマ流に供給原材料が送給されて、溶融した供給原料が所定の標的領域に堆積される。電流が調整されるとともに、溶融した供給原料が高温(典型的には供給原材料の脆性−延性遷移温度を超える温度)に徐々に冷却されて、冷却段階において材料応力の発生が最小限に抑えられる。
Withers et al.(特許文献2)はまた、原料のコストを大幅に低減するようにチタン供給材と合金化成分とを組み合わせることによる比較的低コストのチタン供給材料を用いる、立体自由形状造形(SFFF)プロセスにおいて従来使用されてきた高価なレーザの代りにTIGトーチを使用することを説明している。Withers et al.はまた、合金化元素と混合されワイヤに成形されるチタンスポンジ材料であって、チタン製のニアネットシェイプの構成要素を生産するためにプラズマ溶接トーチ又は他の高出力エネルギービームとの組み合わせでSFFFプロセスにおいて使用できるチタンスポンジ材料の使用を説明している。
Abbott et al.((特許文献3)、2006)は、基材を準備するステップと、レーザ放射及び電気アークを使用して金属供給原料から基材上に第1の溶融金属層を堆積させるステップとを含む、複雑な3次元形状を製造するためのレーザ/アークハイブリッド法を使用する直接金属堆積プロセスを開示している。電気アークは、金属供給原料を電極として使用するガスメタルアーク溶接により提供することができる。Abbott et al.は、ガスメタルアーク溶接との組み合わせでのレーザ照射の使用がアークを安定させてより高い加工速度を提供するとされることを教示している。Abbott et al.は、ワイヤガイドにより案内されてワイヤガイドから出る金属ワイヤを利用する。金属ワイヤの金属が端部において溶融され、堆積箇所の上に端部を位置決めすることにより溶融金属が堆積される。金属ワイヤを溶融させるのに必要な熱は、電極の先端と加工物/堆積基材との間に広がる電気アークにより且つ堆積領域に照射するレーザにより供給される。電気アークにより加熱される金属ワイヤを溶融させることによる溶接は、非反応性ガスを使用してアークを形成する場合には金属不活性ガス溶接(MIG溶接)とも呼ばれる、ガスメタルアーク溶接(GMAW)として知られている。
対処すべき問題は、加工物を形成するための母材上への材料の堆積速度である。金属ワイヤがアークトーチのアークと相互作用する前に金属ワイヤの温度を上昇させて金属ワイヤを予熱することができる。金属ワイヤの予熱は、電極を通る電荷の流量(電流のアンペア)を増加させることにより、又は金属ワイヤの断面を調整して電極の抵抗加熱を高めることにより達成することができる。400℃を超えて加熱されたチタン金属又はチタン合金は、酸素に接触すると酸化する可能性がある。したがって、積層自由形状製造により形成される溶接され加熱された物体を周囲雰囲気中の酸素から保護する必要がある。
しかしながら、大電流の使用により、多くの問題が引き起こされる可能性がある。電流の変化が制御されない場合、金属ワイヤの急速な過熱が起こり、コンタクトチップへの金属ワイヤのバーンバックを生じさせる可能性がある。バーンバックは、コンタクトチップとの金属ワイヤの融着をもたらす可能性があり、これにより、コンタクトチップの交換が必要となる。大電流の使用はまた、コンタクトチップ自体の温度を上昇させる可能性があり、且つコンタクトチップの過熱をもたらす可能性がある。コンタクトチップの過熱の結果の1つは、コンタクトチップの伸びであり得る。コンタクトチップの構成に応じて、かかる伸びの結果として、コンタクトチップが金属ワイヤのより近くに再配置される可能性があり、このことにより、コンタクトチップと金属ワイヤとの間の摩擦が増加する可能性があるとともに、金属ワイヤが損傷するか又は傷つく可能性がある。過熱が原因で起こるコンタクトチップの幾何形状の調整はまた、熱によって誘起される伸び又は凹凸によりコンタクトチップの偏摩耗をもたらす可能性がある。このことは、コンタクトチップ内での電気アークの形成につながる可能性がある。コンタクトチップの過熱はまた、コンタクトチップに微小孔の形成をもたらす可能性があり、微小孔の形成により溶接機器の誤作動が生じる可能性がある。
コンタクトチップにおける大電流の使用により起こり得るこれらの問題により、結果として、コンタクトチップの頻繁な交換と、最悪の場合のシナリオでは、溶接機器の清掃とが必要となる可能性がある。コンタクトチップを交換し且つ/又は機器を清掃するには、機器を停止して、生産を中断する必要がある。機器の停止及び生産の中断は、コストがかかり、生産性に悪影響を及ぼす。
また、当該技術分野では、増加した金属堆積速度で直接金属堆積を行う経済的な方法も必要である。更に、当該技術分野では、過熱に起因するコンタクトチップの頻繁な交換のリスクなしに直接金属堆積により形成される製品のスループット及び歩留まりの向上を可能にする機器が必要である。
米国特許出願公開第2010/0193480号明細書 米国特許出願公開第2006/185473号明細書 国際公開第2006/133034号パンフレット
Taminger and Hafley "Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication" Presetned at the 13th Solid Freeform Fabrication Symposium,August 5−7,2002,Austin,TX;In proceedings,Univrsity of Texas at Austin (2002) Taminger and Hafley("Electron Beam Freeform Fabrication:A Rapid Metal Deposition Process" Proceedings of the 3rd Annual Automotive Composites Conference,September 9−10,2003,Troy,MI,Society of Plastics Engineers(2003) Taminger and Hafley("Electron Beam Freeform Fabrication for Cost Effective Near−Net Shape Manufacturing",NATO/RTOAVT−139 Specialists’Meeting on Cost Effective Manufacture via Net Shape Processing(Amsterdam,the Netherlands,2006)(NATO),pp9−25)
本発明の目的は、過熱に起因するコンタクトチップの頻繁な交換のリスクなしに直接金属堆積により形成される製品のスループット及び歩留まりの向上を可能にする機器を提供することである。別の目的は、高流量の電荷を利用できる、直接金属堆積により形成される製品の生産に使用される機器を提供することである。本明細書で提供される機器は、大電流を扱うことができる。例えば、機器は、100、200、300、350、400アンペア、又はそれ以上の電流を扱うことができる。本明細書で提供される機器はまた、金属ワイヤ及びガイドの温度膨張を軽減する。
本発明の別の目的は、チタン又はチタン合金での物体の高速積層製造のための方法を提供することである。
本発明は、直接金属堆積を行う改良された経済的な方法の必要性に対処する。本発明は更に、直接金属堆積により形成される部品であって、平滑で明確に画定された堆積境界を有する部品のスループット及び歩留まりを向上させる方法の必要性に対処する。
本発明の別の目的及び利点は、コンタクトチップの改良により金属ワイヤ送給の問題が低減されるとともにより低い人件費及び生産性の向上がもたらされることである。本発明は金属ワイヤの使用との相互関係において説明されるが、材料を堆積させるために案内して溶融させることができる任意の導電性構造体を使用できる、例えば、適切なサイズ及び形状の任意の消耗電極を使用できることが留意される。
本明細書で提供される機器は、ワイヤの形態の金属ワイヤを供給し、金属ワイヤにおいて比較的高い流量の電荷を使用し、且つ流体冷却システムを用いてコンタクトチップを冷却することにより堆積速度を増加させる。流体冷却システムは、冷却チャネルをコンタクトチップ若しくはガイド又はこれらの両方に組み込んでいる。冷却チャネルは、電流が流れる場所の近くに位置決めすることができる。いくつかの実施形態において、冷却チャネルは、冷却チャネルへの熱エネルギーの迅速な伝達を可能にするためにコンタクトチップに十分に近接して位置する。
本明細書では、流体冷却式コンタクトチップ組立体が提供される。例示の実施形態が図1に描かれている。流体冷却式コンタクトチップ組立体100は、ガイド120と、電気接続部230によって電源に接続されたコンタクトチップ215を収容する電気接点ユニット200とを含むことができる。いくつかの実施形態において、コンタクトチップ組立体100は、流体冷却式電気接点ユニット200、若しくは流体冷却式ガイド120、又は流体冷却式電気接点ユニット200と流体冷却式ガイド120の両方を含むことができる。
コンタクトチップ組立体100はまた、金属ワイヤを押圧してコンタクトチップ215に接触させるためのワイヤ押圧組立体190を含むことができる。ワイヤ押圧組立体190は、ワイヤ押圧組立体190の作用により金属ワイヤ180に接触させることができる絶縁先端195を含むことができ、絶縁先端195は、金属ワイヤを押圧してコンタクトチップ215に接触させる。ワイヤ押圧組立体190は、Ti若しくはTi合金で作製することができ、又はTi若しくはTi合金を含有することができる。ワイヤ押圧組立体190がコンタクトチップ215に対して金属ワイヤを押圧できるように、ワイヤ押圧組立体190がシャフトを中心に自由に移動することを可能にするシャフトを使用することなどにより、ワイヤ押圧組立体190を電気接点ユニット200に接続することができる。接続シャフトは、ワイヤ押圧組立体190を電気接点ユニット200から熱的に隔離できるように、断熱材料とすることができ又は断熱材料で被覆することができる。本明細書で提供されるシステム、装置及び方法において、消耗コンタクトチップ215は、ガイドとは別個のものであるとともにガイドから離れて位置し、且つ金属ワイヤは、金属ワイヤがガイドの端部分を通過した後にコンタクトチップに接触させる。
ワイヤ押圧組立体190は、金属ワイヤ180を押圧してコンタクトチップ215に接触させる力を及ぼす。ワイヤ押圧組立体190の力は、ばね、油圧機構、空気圧式アクチュエータ、機械ねじ、若しくは電動ピストン組立体、又はこれらの任意の組み合わせを使用して発生させることができる。いくつかの実施形態において、ばねは、ワイヤ押圧組立体190が金属ワイヤ180を押圧してコンタクトチップ215に接触させるようにする圧力を及ぼす。ばねは、圧縮ばね、引張ばね、又はねじりばねとすることができる。ワイヤ押圧組立体190は、複数のばねを含むことができ、これらばねの各々は、圧縮ばね、引張ばね、又はねじりばねとすることができる。
流体冷却式コンタクトチップ組立体は、支持のためにガイド120と電気接点ユニット200とを接続できる支持要素350を含むことができる。コンタクトチップ組立体100が流体冷却式ガイド120を含む場合に、支持要素350は、ガイド冷媒入口157と流体連通するように接続可能な冷媒供給入口570と、ガイド冷媒出口159と流体連通するように接続可能な冷媒供給出口580とを含むように構成することができる。支持要素350は、支持要素350と、電気接点ユニット200などの、取り付けられた任意の構成要素との間に断熱材料560を使用することにより、支持要素350に取り付けられた構成要素のいずれからも熱的に隔離することができる。断熱材料560は、熱エネルギーを容易に伝達しない。断熱材料として使用できる例示の材料としては、セラミック及びプラスチックが挙げられる。
流体冷却式コンタクトチップ組立体は、締結具465を介して支持要素350に固定されたコネクタ450を含むことができる。コネクタ450は、金属ワイヤ送出源400を支持要素350に取り付けることができ、且つ金属ワイヤを収めるための開口部460を含むことができる。金属ワイヤは、ガイド120の一端部へ送出され、ガイド120を通過して、ガイド120の他端部から出て、そこで、金属ワイヤが、加工物の堆積箇所よりも上のプラズマアーク中に位置決めされる。コンタクトチップ215は、ガイド120内の場所においてコンタクトチップ215を金属ワイヤに接触させるように位置決めすることができる。コンタクトチップ215は、金属ワイヤがガイド120の端部から出た後にコンタクトチップ215を金属ワイヤに接触させるように位置決めすることができる。コンタクトチップ215は、送給方向に動かない定められた接触箇所において金属ワイヤに接触させ、その結果、一定の長さの金属ワイヤが抵抗加熱により加熱される。
図2に示すように、電気接点ユニット200は、冷媒入口225と、冷媒入口225に接続されて冷媒入口225と流体連通する進入冷媒チャネル226と、進入冷媒チャネル226に接続されて進入冷媒チャネル226と流体連通する退出冷媒チャネル227と、退出冷媒チャネル227に接続されて退出冷媒チャネル227と流体連通する冷媒出口228とを含む冷却システムを含むことができる。流体冷却式コンタクトチップ組立体はまた、電気接点ユニット200よりも下に位置決めされて、金属ワイヤ180を押圧して電気接点要素200のコンタクトチップ215に接触させるように構成されたワイヤ押圧組立体190を含む。
流体冷却式コンタクトチップ組立体の例示のガイド120が図3に描かれている。ガイド120は、長手方向中心軸線A−A’と、第1の端部140と、反対側の第2の端部150と、ガイド120の長手方向中心軸線に沿ってガイド120の第1の端部140からガイド120の第2の端部150に延びて延在する中心孔130であって、金属ワイヤ180を送給できる中心孔130とを有する。ガイド120は、中心孔130の内側に位置するとともに少なくともガイド120の第1の端部140から第2の端部150にガイド120を横切る電気絶縁性ライニング160を含むことができる。描かれている実施形態において、電気絶縁性ライニング160は、第2の端部150を越えて延びる。電気絶縁性ライニング160は、第1の端部140における入口開口部145と第2の端部150における出口開口部155とを有するとともに、長手方向中心軸線A−A’に沿って直線状の電気絶縁性ライニング160を貫通して延在するガイドチャネル170を含み、且つ電気絶縁性ライニング160は、直線円筒状ガイドチャネル170に通される金属ワイヤ180を入口開口部145から出口開口部155に向けて更には出口開口部155の外へ案内する。電気接点ユニット200の進入冷媒チャネル226は、コンタクトチップ215の近傍に複数の相互接続された平行チャネルを形成するように構成することができる。これらのチャネルは、図2に描かれているように、コンタクトチップ215に対して平行とすることができ、又はコンタクトチップ215に直交することができ、又はコンタクトチップ215の平面に対して任意の向きを有することができる。相互接続されたチャネルは、電気接点ユニット200を通る連続的な流体経路を形成し、流体経路は冷媒入口225を冷媒出口228に接続する。流体冷却式コンタクトチップ組立体100の電気接点ユニット200は、電気接点ユニット200がガイド120よりも上に位置決めされるように構成することができる。
いくつかの実施形態において、流体冷却式コンタクトチップ組立体100は、冷却システムを収容するガイド120を含む。例示の実施形態が図4A〜図4Cに描かれている。冷却システムは、流入冷媒チャネル135と流体連通するように接続可能な冷媒入口157と、流入冷媒チャネル135に接続されて流入冷媒チャネル135と流体連通する流出冷媒チャネル137と、流出冷媒チャネル137に接続されて流出冷媒チャネル137と流体連通する冷媒出口159とを含むことができる。冷媒入口157は、冷媒供給入口570と流体連通するように接続可能であり、且つ冷媒入口159は、冷媒供給出口580と流体連通するように接続可能である(図1を参照)。
本明細書で提供される流体冷却式コンタクトチップ組立体において、ガイド120は、図4A〜図4Cに描かれているように、ガイド120の底部に底部開口部125を含むことができる。底部開口部は、金属ワイヤのいかなる埃又は粒子も成形加工物に接近する前にガイド120から出ることを可能にする。ガイドは、Ti若しくはTi合金、又はCu若しくはCu合金で作製することができ、或いはTi若しくはTi合金、又はCu若しくはCu合金を含むことができる。電気接点ユニット200及びコンタクトチップ215は各々個別に、Cu又はCu合金又は複合材、特に銅/タングステン合金又は複合材で作製することができ、或いはCu又はCu合金又は複合材、特に銅/タングステン合金又は複合材を含有することができる。
本明細書で提供される流体冷却式コンタクトチップ組立体は、金属ワイヤ180がガイド120を通過した後に金属ワイヤ180が加工物の堆積箇所よりも上のPAWトーチの又はプラズマ移行型アーク(PTA)トーチのプラズマアーク中に位置決めされるように構成される。
金属材料の連続した堆積物を互いに母材上に融着させることにより物体が作製される、立体自由形状造形により金属材料の3次元加工物を製造するための方法も提供され、この方法は、流体冷却式コンタクトチップ組立体を使用することを特徴とする。この方法では、作製すべき物体の材料と同じ金属材料の母材に金属材料の連続した堆積物が積層され、連続した各堆積物は、第1のPAWトーチを使用することにより得られる。
好ましい実施形態において、流体冷却式コンタクトチップ組立体は、2つのPAWトーチを利用するシステムと共に使用される。第2のPAWトーチは、溶融金属材料を堆積させるべき位置において、母材が溶融金属ワイヤの溶融液滴に対して受容的になるように、母材を予熱するために使用することができる。いくつかの実施形態では、母材をより受容的なものにするために、母材の少なくとも一部分が予熱用PAWにより溶融される。いくつかの実施形態では、予熱用PAWトーチにより十分な熱が加えられ、金属材料を堆積させるべき位置において母材に溶融池を形成する。
金属ワイヤは、コンタクトチップ組立体から出た後の金属ワイヤの先端部が、金属材料を堆積させるべき母材よりも上に位置決めされるように、流体冷却式コンタクトチップ組立体を通して送給することができる。母材が予熱される実施形態において、コンタクトチップ組立体から出た後の金属ワイヤの先端部は、母材の予熱領域又は更には母材の溶融池(生成されている場合)の上に位置決めすることができる。次いで、PAWトーチは、予熱が実行された場合に金属ワイヤからの溶融金属材料が母材に且つ母材の溶融領域又は部分溶融領域に滴り落ちるように金属ワイヤを加熱して溶融させるために使用される。母材及び/又は1つ若しくは複数のPAWトーチは、溶融金属ワイヤからの溶融金属材料の連続した堆積物が母材上に堆積され固化して3次元加工物を形成するように所定のパターンで移動させることができる。
立体自由形状造形により金属材料の3次元物体を製造するための方法であって、金属材料の連続した堆積物を母材上に堆積させることを含む方法も提供される。金属ワイヤに少なくとも100アンペアの電流を流す流体冷却式電気接点ユニットにガイドを通して金属ワイヤを送給することと、溶融金属材料が母材に滴り落ちるように第1のPAWトーチを使用してワイヤを加熱して溶融させることとにより、連続した各堆積物が得られる。堆積パターンは、溶融ワイヤからの溶融金属材料の連続した堆積物が固化して3次元物体を形成するように母材及び第1のPAWトーチの少なくとも一方を移動させることにより定められる。金属材料を堆積させるべき場所において母材を予熱することができる。予熱は、第2のPAWトーチを使用して実行される。堆積パターンはまた、溶融ワイヤからの溶融金属材料の連続した堆積物が固化して3次元物体を形成するように母材、第1のPAWトーチ、及び第2のPAWトーチの少なくとも1つを移動させることにより定めることができる。提供される方法において、流体冷却式電気接点ユニットは、冷媒供給入口と流体連通するように接続可能な冷媒入口と、冷媒入口に接続されて冷媒入口と流体連通する流入冷媒チャネルと、流入冷媒チャネルに接続されて流入冷媒チャネルと流体連通する流出冷媒チャネルと、流出冷媒チャネルに接続されて流出冷媒チャネルと流体連通する冷媒出口とを含むことができる冷却システムを含む。
提供される方法において、ガイドは、冷媒供給入口と流体連通するように接続可能な冷媒入口と、冷媒入口に接続されて冷媒入口と流体連通する流入冷媒チャネルと、流入冷媒チャネルに接続されて流入冷媒チャネルと流体連通する流出冷媒チャネルと、流出冷媒チャネルに接続されて流出冷媒チャネルと流体連通する冷媒出口とを含む冷却システムを含むことができる。金属ワイヤは、Al、Cr、Cu、Fe、Hf、Sn、Mn、Mo、Ni、Nb、Si、Ta、Ti、V、W、若しくはZr、又はこれらの複合材若しくは合金とするか、或いはAl、Cr、Cu、Fe、Hf、Sn、Mn、Mo、Ni、Nb、Si、Ta、Ti、V、W、若しくはZr、又はこれらの複合材若しくは合金を含有することができる。いくつかの実施形態において、金属ワイヤは、Ti若しくはTi合金、又はニッケル若しくはニッケル合金を含有するワイヤである。
立体自由形状造形により金属材料の3次元物体を製造するためのシステムも提供される。システムは、金属ワイヤを母材よりも上の位置に案内するための流体冷却式ガイドと、金属ワイヤに少なくとも100アンペアの電流を流すために金属ワイヤに電気的に接触する流体冷却式電気接点ユニットと、金属ワイヤを溶融させて金属材料が母材の上に滴り落ちるようにするための第1の溶接トーチと、金属材料の連続した堆積物を母材上に融着させることにより物理的物体が構築されるように堆積プロファイルを定めるための形成すべき物体のコンピュータモデルとを含むことができる。システムはまた、母材を少なくとも溶接トーチに対して移動させるアクチュエータトレイを含むことができる。システムは、第1の溶接トーチを移動させるアクチュエータアームを含むことができる。このシステムは、金属材料を堆積させるべき領域において母材を予熱するための第2の溶接トーチを更に含むことができる。システムはまた、第2の溶接トーチを移動させるアクチュエータアームを有することができる。
本発明の追加の特徴及び利点は、以下の説明に記載されており、且つ部分的にその説明から明らかになるか、又は本発明の実施により知ることができる。本発明の目的及び他の利点は、本明細書及び特許請求の範囲並びに添付の図面において特に指摘された構造により実現され達成されるであろう。
前述の一般的な説明と以下の詳細な説明の両方が、例示的且つ説明的なものであるとともに、特許請求される本発明の更なる解説を提供するように意図されていることを理解されたい。
本発明の更なる理解を提供するために含まれるとともに、本明細書に組み込まれて本明細書の一部を構成する、添付の図面は、本発明の実施形態を図示し、本説明とともに本発明の原理を解説する役割を果たす。明確にするために、図面は原寸に比例したものではなく、いくつかの構成要素が省略されている。
図1は、本明細書で提供される冷却式コンタクトチップ組立体の実施形態の側面斜視図である。 図2は、本明細書で提供される冷却式コンタクトチップ組立体の例示の流体冷却式電気接点ユニットの概略図である。 図3は、ガイド120の例示の構成の概略描写である。 図4Aは、流体冷却式ガイドの例示の実施形態を示す。図4Aでは、内部に流体経路を収容する例示のガイド120が示されている。 図4Bは、流体冷却式ガイドの例示の実施形態を示す。図4Bは、冷却流体をガイド120の周縁の周りに循環させる実施形態の上面図である。 図4Cは、流体冷却式ガイドの例示の実施形態を示す。図4Cは、ワイヤガイド流入冷媒チャネル135とワイヤガイド流出冷媒チャネル137とを収容する、例示のガイド120の断面図である。
A.定義
別段の定めのない限り、本明細書で使用される全ての技術的及び科学的用語は、本発明が属する当該技術分野の当業者により一般的に理解されるのと同じ意味を有する。本明細書中の開示全体を通じて参照される、全ての特許、特許出願、公開出願及び刊行物、ウェブサイト、並びに他の公開資料は、別段の断りのない限り、それらの全体が参照により組み込まれる。本明細書中の用語について複数の定義が存在する場合、本節のものが優先する。URL又は他のそのような識別子若しくはアドレスが参照される場合、そのような識別子は変わる可能性があり、インターネット上の特定の情報は現れたり消えたりする可能性があるが、インターネットを検索することにより同等の情報を見出すことができることが理解される。それらの参照により、そのような情報の利用可能性及び公的な普及が証明される。
ここで使用される場合、単数形「a」、「an」及び「the」は、文脈上別段の明確な指示のない限り、複数の指示対象を含む。
本明細書で使用される場合、範囲及び量は、「約」特定の値又は範囲として表すことができる。「約」は正確な量も含む。よって、「約5パーセント」とは「約5パーセント」及び「5パーセント」も意味する。「約」とは、意図される用途又は目的に対する典型的な実験誤差の範囲内を意味する。
種々の要素、構成要素、領域、層、及び/又はセクションを説明するために本明細書では第1の、第2の、第3のなどの用語が使用され得るが、本明細書で使用される場合には、これらの要素、構成要素、領域、層、及び/又はセクションがこれらの用語により限定されるべきではない。これらの用語は、1つの要素、構成要素、領域、層、又はセクションを別の領域、層、又はセクションと区別するためにのみ使用され得る。「第1の」、「第2の」などの用語及び他の数字用語は、本明細書で使用される場合、文脈上別段の明確な指示のない限り、配列又は順序を暗示するものではない。したがって、以下に述べる第1の要素、構成要素、領域、層、又はセクションを、例示の実施形態の教示から逸脱することなく、第2の要素、構成要素、領域、層、又はセクションと呼ぶことができる。
本明細書で使用される場合、「任意選択の」又は「任意選択的に」とは、続いて説明される事象又は状況が起こるか又は起こらないことと、その説明には事象又は状況が起こる場合及び事象又は状況が起こらない場合が含まれることを意味する。例えば、システム内の任意選択の構成要素は、その構成要素がシステム内に存在してもしなくてもよいことを意味する。
本明細書で使用される場合、「コンタクトチップ」という用語は、MIG溶接作業において金属ワイヤを電気的に接続する要素を指す。
本明細書で使用される場合、「組み合わせ」とは、2つの項目の間又は3つ以上の項目の中での任意の関係を指す。この関係は、空間的な関係とすることができ、又は共通目的のための2つ以上の項目の使用を指す。
本明細書で交換可能に使用される「プラズマ移行型アークトーチ」又は「PTAトーチ」という用語は、電気アーク放電によりプラズマへの不活性ガス流を加熱して励起し、その後、オリフィス(ノズルなど)を通して電気アークを含むプラズマガスの流れを移送し、オリフィスから延びてアークの強烈な熱を標的領域に伝達する抑制されたプルームを形成することができる、任意の装置を指す。PTAトーチの電極がカソードになり且つ標的領域がアノードになるように、電極及び標的領域を直流電源に電気的に接続することができる。これにより、電気アークを含むプラズマプルームが、PTAトーチから供給される熱流束の面積の広がり及び大きさの優れた制御により、標的領域の小さな表面積へ非常に集中した熱流を送出することが確実になる。プラズマ移行型アークには、ゆらぎがほとんどなく、カソードとアノードとの間の長さのずれに対して良好な耐性で、安定し且つ一貫したアークを提供するという利点がある。したがって、PTAトーチは、母材を加熱すること、例えば、母材の少なくとも一部分を溶融させることか、又は母材に溶融池を形成することと、金属ワイヤ供給材を加熱して溶融させることの両方に好適である。PTAトーチは、有利には、タングステンで作製された電極と、銅で作製されたノズルとを有し得る。しかしながら、本発明は、いかなる特定の選択又は種類のPTAトーチにも拘束されない。金属電極ワイヤを溶融させる安定した熱源を提供するPTAトーチとして機能できる任意の既知の又は考えられる装置を使用することができる。
本明細書で使用される場合、「プラズマアーク溶接トーチ」又は「PAWトーチ」とは、プラズマアーク溶接で使用できる溶接トーチを指す。トーチは、ガスが高温に加熱されプラズマを形成して導電性になり、次いで、プラズマが電気アークを加工物に移行させ、そして、アークの強烈な熱が金属を溶融させ且つ/又は2つの金属片を互いに融着させることができるように設計される。PAWトーチは、アークを絞るためのノズルを含むことができ、それにより、アークの出力密度を増加させる。プラズマガスは、典型的にはアルゴンである。プラズマガスを電極に沿って送給してカソードの近傍でイオン化し加速することができる。アークは、加工物の方に向けることができ、且つ(TIGトーチなどにおける)自由燃焼アークよりも安定している。PAWトーチはまた、典型的には、シールドガスを提供するための外側ノズルを有する。シールドガスは、アルゴン、ヘリウム、又はこれらの組み合わせとすることができ、且つシールドガスは、溶融金属の酸化を最小限に抑えるのを補助する。電流は、典型的には最大400Aであり、電圧は、典型的には約25〜35Vの範囲である(但し、最大約14kWとすることができる)。PAWトーチは、プラズマ移行型アークトーチを含む。
本明細書で使用される「金属材料」という用語は、3次元物体を形成するためにワイヤに成形し且つ立体自由形状造形プロセスで用いることができる任意の既知の若しくは考えられる金属又は金属合金を指す。好適な材料の例としては、限定されるものではないが、チタン及びチタン合金(すなわちTi−6Al−4V合金など)、ニッケル及びニッケル合金、並びに他の金属又は金属合金が挙げられる。
本明細書で使用される「母材」という用語は、金属材料を堆積させるべきターゲット材料を指す。母材は、金属材料の第1の層を堆積させるときの保持基材となる。金属材料の1つ又は複数の層が保持基材上に堆積されたときに、母材は、金属材料の新たな層を堆積させるべき堆積した金属材料の上部層となる。
本明細書で使用される「保持基材」という用語は、加工物を形成するように立体自由形状造形のSFFFの技術を使用して、保持基材の材料と同じか又は異なる、追加の材料が堆積される、最初に室内に搬入されるターゲット基材を指す。例示の実施形態において、保持基材は平坦なシートである。代替的な実施形態において、保持基材は鍛造部品であってもよい。代替的な実施形態において、保持基材は、追加の材料を堆積させるべき物体であってもよい。例示の実施形態において、保持基材は、加工物の一部になることができる。保持基材の材料は、金属又は金属合金とすることができる。例示の実施形態において、保持基材は、ワイヤ供給材料と同じ金属で作製される。
本明細書で使用される場合、「加工物」という用語は、立体自由形状造形法を使用して生産される金属体を指す。
本明細書で交換可能に使用される「コンピュータ支援設計モデル」又は「CADモデル」という用語は、本発明の第2の態様による装置の制御システムにおいて用いることができる、形成すべき物体の任意の既知の又は考えられる仮想3次元表現であって、保持基材の位置及び移動を調整するように、且つ、物理的物体が、物体の仮想3次元モデルに従った物理的物体の構築を結果としてもたらすパターンで金属材料の連続した堆積物を保持基材又は母材上に融着させることにより構築されるように、ワイヤ送給器の組み込まれた溶接トーチを動作させるように用いることができる仮想3次元表現を指す。これは、例えば、まず仮想3次元モデルを1組の仮想平行水平層に分割し、次いで、平行層の各々を1組の仮想準1次元部片に分割することにより、3次元物体の仮想ベクトル化積層モデルを形成することにより得られ得る。そして、物理的物体は、物体の仮想ベクトル化積層モデルの第1の層に従うパターンで、金属材料供給材の一連の準1次元部片を支持基材上に堆積させ融着させるように、制御システムを関与させることにより形成することができる。その後、物体の仮想ベクトル化積層モデルの第2の層に従うパターンで、先に堆積した層の上に溶接可能な材料の一連の準1次元部片を堆積させ融着させることにより、物体の第2の層に対するシーケンスを繰り返す。物体全体が形成されるまで、物体の仮想ベクトル化積層モデルの各連続した層に対して、層毎に堆積及び融着プロセスの繰り返しに基づいて堆積が続く。
しかしながら、本発明は、本発明による装置の制御システムを実行するいかなる特定のCADモデル及び/又はコンピュータソフトウェアにも拘束されず、且つ本発明は、いかなる特定の種類の制御システムにも拘束されない。立体自由形状造形により金属3次元物体を構築できる任意の既知の又は考えられる制御システム(CADモデル、コンピュータ支援製造(CAM)システム又はソフトウェア、コンピュータソフトウェア、コンピュータハードウェア及びアクチュエータなど)が用いられてもよい。例示の実施形態において、制御システムは、母材を予熱するための第1のPAWトーチと、金属材料の送給ワイヤを溶融池内に溶融させるための第2のPAWトーチとを別個に動作させるように調節することができる。第1のPAWトーチは、溶融金属材料を堆積させるべき位置において、母材が溶融金属ワイヤ、すなわち溶融金属材料の溶融液滴に対して受容的になるように、母材を予熱するのに十分なエネルギーを提供することができる。母材の予熱は、溶融金属ワイヤの金属溶滴により提供される金属材料による母材への適切な溶け込みを確実にすることができる。第1のPAWトーチは、母材への溶け込みを深くすることにより母材と溶融金属材料との融着を促進する。いくつかの実施形態において、予熱では母材は溶融しない。代替的な実施形態では、母材をより受容的なものにするために、母材の少なくとも一部分が第1のPAWにより溶融される。いくつかの実施形態では、第1のPAWトーチにより十分な熱が加えられ、金属材料を堆積させるべき位置において母材に溶融池を形成する。
母材及びいずれか1つ又は複数のPAWトーチの位置決めは、1つ又は複数のアクチュエータを使用して達成することができる。例示の実施形態において、母材は、母材が載置されるアクチュエータトレイを使用して再配置するか又は移動させることができる。アクチュエータトレイは、母材を任意の方向に移動させることができる。例示の実施形態において、アクチュエータトレイは、軌道又はレールシステム上に設置することができ、且つ母材を任意の所望の方向に移動させることができる。代替的に、アクチュエータトレイは、機械式アーム又はロボットアームを使用して動作させてもよい。アクチュエータはまた、油圧機構を使用して動作させてもよい。同様に、1つ又は複数のPAWトーチは、1つ又は複数のアクチュエータを使用して移動させてもよい。例えば、1つ又は複数のPAWトーチの各々は、ロボットアーム又は機械式アームなどの、個別に制御されるアクチュエータアームに取り付けられてもよい。アクチュエータはまた、油圧機構を使用して動作させてもよい。例えばレール又は軌道システムなどの、アクチュエータアーム用の他の種類の機構の使用も実現することができる。2つ以上のPAWトーチが使用される例示の実施形態において、各PAWトーチは、個別に移動させることができる。2つ以上のPAWトーチを使用する代替的な実施形態において、2つ以上のPAWトーチの位置は、互いに対して固定することができ、且つ1つ又は複数のアクチュエータアームは、2つ以上のPAWトーチを同時に移動させる。例示の実施形態において、アクチュエータトレイは、使用される唯一のアクチュエータであり、1つ又は複数のPAWトーチを堆積中に固定位置に保つ。代替的な実施形態において、アクチュエータトレイは、1つの平面内において母材を2方向にのみを移動させ、その一方で、1つ又は複数のアクチュエータアームは、1つ又は複数のPAWトーチを、例えばアクチュエータトレイが移動する平面に直交する、1方向にのみ移動させる。その逆、すなわち、1つ又は複数のアクチュエータアームが1つの平面内において1つ又は複数のPAWトーチを2方向に移動させ、その一方で、アクチュエータトレイが母材を単一方向に沿って移動させる場合も当然あり得る。代替的な実施形態において、母材は、堆積中に固定位置に維持され、且つ1つ又は複数のアクチュエータアームは、1つ又は複数のPAWトーチを移動させるために使用される。更に代替的な実施形態において、アクチュエータトレイ及び1つ又は複数のアクチュエータアームは全て、母材及び1つ又は複数のPAWトーチを移動させるために使用される。
B.流体冷却式コンタクトチップ組立体
本明細書では、流体冷却式コンタクトチップ組立体が提供される。流体冷却式コンタクトチップ組立体は、過熱に起因するコンタクトチップの頻繁な交換のリスクなしに直接金属堆積により形成される製品のスループット及び歩留まりの向上を可能にする。流体冷却式コンタクトチップ組立体がコンタクトチップの近傍から熱エネルギーを除去するので、従来のコンタクトチップでの流量と比較して高流量の電荷を使用することができ、その結果、より速い速度で加工物を形成する、金属ワイヤから母材上へのより多くの金属の堆積に起因する、金属堆積により形成される製品の生産の生産速度の向上をもたらすことができる。流体冷却式コンタクトチップは、大電流を利用することができる。例えば、350、375、又は400アンペア以上の電流を使用することができる。流体冷却式コンタクトチップ組立体は、内部にチャネルを収容する電気接点ユニットを含むことができ、チャネルは、冷却流体が電気接点ユニットから熱エネルギーを除去するように電気接点ユニットを通って流れることを可能にするように構成される。電気接点ユニットの流体チャネルは、チャネルがコンタクトチップの近傍に位置してコンタクトチップの近傍から熱エネルギーを除去するように構成することができる。このような冷却チャネルの構成は、コンタクトチップの近傍のいかなる過剰な熱エネルギーも除去することができ、且つコンタクトチップの熱膨張を防止することができる。本明細書で提供されるシステム、装置及び方法において、消耗コンタクトチップは、ガイドとは別個のものであるとともにガイドから離れて位置し、且つ金属ワイヤは、金属ワイヤがガイドの端部分を通過した後にコンタクトチップに接触させる。
流体冷却式コンタクトチップ組立体はまた、流体冷却式ガイドを含むことができる。ガイドは、金属ワイヤが横切ることができるガイドの長手方向中心軸線に沿って延在する中心孔を有する。ガイドは、電気接点ユニットよりも下に位置決めされ、且つ金属ワイヤは、ガイドの一端部から入り、ガイドを通過して、ガイドの他端部から出て、そこで、金属ワイヤが、加工物の堆積箇所よりも上のPTAトーチのプラズマアーク中に位置決めされる。ガイドは、冷却流体経路を含むことができる。冷却流体経路は、冷媒チャネルに接続されて冷媒チャネルと流体連通するガイド冷媒入口を含み、冷媒チャネルは、ガイドを横切るとともに、ガイドが熱的に連通する電気接点ユニットから熱エネルギーを吸収するように冷却流体がガイドを通って流れることを可能にする。冷媒チャネルは、ガイド内に収容されるように工学的に設計することができる。例えば、冷却チャネルは、電気接点ユニットの少なくとも一部分に接触するガイドの上部分を冷却チャネルが横切るように位置決めすることができる。冷媒チャネルはまた、ガイドの縁部に配置することができる。
流体冷却式コンタクトチップ組立体100の例示の実施形態が図1に示されている。図示の実施形態において、コンタクト組立体は、ガイド120と、電気接点ユニット200と、ワイヤ押圧組立体190とを含む。支持要素350に電気接点ユニット200を接続することができる。電気接点ユニット200は、電気接点ユニット200と支持要素350との間の接触領域に断熱材料560を使用することにより、支持要素350から熱的に隔離させることができる。断熱材料560が熱エネルギーを容易に伝達しないように断熱材料560を選択することができる。断熱材料560に使用できる例示の材料としては、セラミック及びプラスチックが挙げられる。例示のセラミックは、Al、B、Zr、Mg、Y、Ca、Si、Ce、In、及びSnの酸化物又は窒化物、並びにこれらの組み合わせを含む(例えば、米国特許第6,344,287号明細書(Celik et al,2002)、米国特許第4,540,879号明細書(Haerther et al,1985)、及び米国特許第7,892,597号明細書(Hooker et al,2011)を参照)。
電気接点ユニット200は、コンタクトチップ215と、冷媒入口225と、冷媒出口228とを含む。冷媒入口225及び冷媒出口228は、電気接点ユニット200内に収容されるとともに冷却流体が冷媒入口225から電気接点ユニット200を通って特にコンタクトチップ215の近傍に流れることを可能にする、冷媒チャネル(図2に示す)を通じて流体連通し、冷却流体は、熱エネルギーを吸収した後に、冷媒出口228を通じて電気接点ユニット200から出る。
電気接点ユニット200のサイズは、電気接点ユニット200を通ってコンタクトチップ215に至るより大きな電流の使用を可能にする。電気接点ユニット200は、銅、銅合金、チタン、又はチタン合金で作製することができる。交換可能なコンタクトチップ215は、銅又は銅合金又は複合材で作製することができる。銅合金は、銅(ASTM Classes II〜X)のいずれかを含有することができる。銅合金又は複合材は、Ag、Al、Be、Bo、Cr、In、Mg、Ni、Sn、Sr、W、Zn若しくはZr又はこれらの組み合わせとの組み合わせで銅を含むことができる。特に、コンタクトチップ215は、銅とタングステンとの焼結複合材などの、銅とタングステンの組み合わせを含むことができる。電気接点ユニット200は、コンタクトチップ215に電力を提供するための電気接続部230を含む。電気接続部230は、コンタクトチップ215を金属ワイヤに接触させたときに金属ワイヤがアノードになるように、コンタクトチップ215がDC電源に電気的に接続されることを可能にする。PTAトーチの電極は、PTAトーチがカソードになるようにDC電源に接続される。
図2及び図5は、電気接点ユニット200の例示の実施形態を示している。図2及び図5には、冷却流体経路が示されており、この経路は、冷媒入口225と、電気接点ユニット200を横切るとともに、流体が冷媒入口225からコンタクトチップ215の近傍の領域に流れることを可能にする進入冷媒チャネル226と、温められた冷媒が冷媒出口228を通じて電気接点ユニット200から出ることを可能にする退出冷媒チャネル227とを含む。動作中に、流体冷媒は、熱交換器の機能を果たす、進入冷媒チャネル226を通って流れる。流体冷媒は、電気接点ユニット200から熱エネルギーを吸収する。特定の実施形態において、進入冷媒チャネル226は、コンタクトチップ215の近傍の領域まで延びて、コンタクトチップ215から熱エネルギーを吸収することができる。電気接点ユニット200内の冷却チャネルは、コンタクトチップ215からの熱の抽出を最大化するように構成することができる。熱エネルギーの吸収又は伝達を容易にするために、進入冷媒チャネル226には、特に、冷却流体と冷媒チャネル226の壁との表面接触を増加させることができる、ピン又はフィン又は他の同様の装置などの、突起を並べて設けることができる。
図2及び図3には、進入冷媒チャネル226が、コンタクトチップ215に平行な単層のチャネルを含むものとして示されているが、コンタクトチップ215よりも上の領域を横切るアーク、又は電気接点ユニット200の長さにわたって延びる多数のチャネル、又は多層の進入冷媒チャネル226、又は電気接点ユニット200の周縁に沿って位置決めされる進入冷媒チャネル、又はこれらの組み合わせなどの、他の構成を、電気接点ユニット200を冷却するために使用することができる。
電気接点ユニット内で受けると予想される温度に適した任意の好適な冷却流体を使用することができる。例示の冷却流体は、水、C〜Cアルコール、ポリアルファオレフィン、エチレングリコール若しくはプロピレングリコールなどのアルキレングリコール、又はこれらの混合物を含む。いくつかの実施形態において、冷却流体は、水、水とプロピレングリコールとの混合物、又は水とエチレングリコールとの混合物である。冷却流体は、塩、腐食防止剤、pH調整剤、又はこれらの組み合わせなどの、添加剤を含むことができる。
コンタクトチップ組立体100はまた、ガイド120を含む。例示のガイドが図3に示されている。ガイド120は、長手方向中心軸線A−A’と、第1の端部140と、反対側の第2の端部150と、ガイド120の長手方向中心軸線に沿ってガイド120の第1の端部140からガイド120の第2の端部150に延びて延在する中心孔130とを有することができる。
図1に描かれているように、ガイド120は、概して、電気接点ユニット200よりも下に位置決めされるが、電気接点ユニット200は、ガイド120を電気接点ユニット200よりも上に位置決めできるように構成することができる。金属ワイヤ(図1には図示せず)は、ガイド120の一端部から入り、ガイド120を通過して、ガイド120の他端部から出て、そこで、金属ワイヤが、加工物の堆積箇所よりも上のPAWトーチのプラズマアーク中に位置決めされる。
ガイド120は、金属ワイヤを受け入れて金属ワイヤが支障なくガイドを通過することを可能にするように構成される限り、任意の形状を有することができる。いくつかの実施形態において、ガイド120は、図4Aに示すように、略円形断面を備えたワイヤの形態である金属ワイヤを収めるために概ね円筒形状を有することができる。ガイド120の外側部分の形状は、円形、長円形、楕円形、又は多角形、例えば、正方形、三角形、矩形、五角形、六角形、八角形、若しくはこれらの任意の組み合わせである断面を有することができる。
ガイドは、ガイドを位置合わせするためか、又は支持体若しくは他の要素へのガイドの取り付けを可能にするためか、又は電気接点ユニット200と係合し且つ/若しくはガイド120に対する電気接点ユニット200の配置を案内するためなどの、外面からの突起又は凸部を含むことができる。例えば、図4A及び図4Bに示す実施形態は、支持体へのガイド120の取り付けを可能にする締結具突起122を含む。
ガイド120は、金属ワイヤのいかなる埃又は粒子も成形加工物に接近する前にガイド120から出ることを可能にする底部開口部125を含むことができる。底部開口部125は、ガイド120の端部に延びることができる。ガイド120は、図3に示すように、金属ワイヤ180が支持されずに出口開口部155から出るような先頭形とすることができる。図1及び図5に示すように、ワイヤ押圧組立体190の絶縁先端195は、金属ワイヤ180を押圧してコンタクトチップ215に接触させる。
ガイド120は、ガイド120の少なくとも一部分を金属ワイヤから隔てることができる電気絶縁性ライニング160を含むことができる。電気絶縁性ライニングは、金属ワイヤ180を完全に取り囲む必要はない。例えば、電気絶縁性ライニング160の底部の一部分を除去することができる。例えば、電気絶縁性ライニングの水平直径から測定して、約10°〜約180°の角度をなす円弧セグメントを除去することができる。電気絶縁性ライニングが円形断面を有する場合、180°の角度をなす円弧セグメントの除去により、金属ワイヤ180の上部分を覆う半円形の電気絶縁性ライニングが得られる。
溶接中にガイドがさらされる条件での使用に好適な電気絶縁材料を含有する電気絶縁性ライニングを使用して、ガイドを金属ワイヤから電気的に絶縁することができる。電気絶縁材料は、電気絶縁性セラミックとするか、又は電気絶縁性セラミックを含有することができる。そのようなセラミックは、当該技術分野において知られており、Al、B、Zr、Mg、Y、Ca、Si、Ce、In、及びSnの酸化物又は窒化物、並びにこれらの組み合わせを含むことができる。電気絶縁材料は、窒化アルミニウム、酸化アルミニウム、窒化マグネシウム、酸化マグネシウム、石英、窒化ケイ素、窒化ホウ素、二酸化ジルコニウム、並びにこれらの混合物及び組み合わせとするか、又はこれらを含有することができる。電気絶縁性ライニングは、ガイド内に収容されるように構成することができる。電気絶縁性ライニングは、ガイドの一端部又は両端部から延びるように構成することができる。
電気絶縁性ライニングが金属ワイヤの通過する中心孔の近傍に絶縁性セラミックを含む場合に、絶縁性セラミックは、金属ワイヤ絶縁性セラミックの表面の粗さを低減するための表面処理を含むことができる。表面処理は、金属ワイヤが電気絶縁性ライニングを通過するときの金属ワイヤの擦傷又は引っ掻き傷を最小限に抑えるか又はなくすのに役立つことができる。例えば、電気絶縁性ライニングの表面は、ライニング表面と電極との間の摩擦を生じさせる引力を低減する表面光沢を含むように処理することができる。レーザグレージング処理は、摩擦を低減するとともにより平滑な絶縁性セラミック面を作り出すために、表面上の表面細孔、ひび割れ又は変形を低減するために使用することができる。電気絶縁性ライニングの表面は、ダイヤモンドライクカーボンコーティングを含むように処理することができる。摩擦を低減するためにPTFEを電気絶縁性ライニングの表面に塗布することができる。表面処理は、金属ワイヤと粗い絶縁性セラミック面との相互作用に起因して生じる可能性のある金属ワイヤの小片の形成を最小限に抑えるのに役立つことができる。
ガイド120は、ガイド120と支持要素350との間の接触箇所に断熱材料560を含めることにより、支持要素350から熱的に隔離させることができる。断熱材料560として使用できる例示の材料としては、セラミック及びプラスチックが挙げられる。
ガイド120は、冷却流体経路を含むことができる。冷却流体経路は、コンタクトチップ215の大電流により生じる可能性のある、ガイド120内の金属ワイヤの温度膨張を最小限に抑えるか又はなくすことができる。冷却流体経路は、ガイド120の温度膨張を最小限に抑えるか又はなくすことができる。ガイド120の熱膨張は、ガイドと金属ワイヤとの間の摩擦の増加をもたらす可能性があり、電極を損傷させるか又は傷つける可能性があり、これにより、金属ワイヤが変位して金属ワイヤがアーク中に適切に位置決めされない可能性がある。過熱が原因で起こるガイド120の幾何形状の変化はまた、熱によって誘起される伸び又は凹凸により偏った接触摩耗をもたらす可能性がある。ガイド120の過熱はまた、ガイド120に変形、微小孔又は疲労を生じさせる可能性があり、これにより、ガイド120が故障する可能性がある。
例示の実施形態が図4Aに示されている。この実施形態において、冷却流体経路は、流入冷媒チャネル135に接続されて流入冷媒チャネル135と流体連通するガイド冷媒入口157を含み、流入冷媒チャネル135は、ガイド120を横切るとともに、ガイド120が熱的に連通する電気接点ユニット200から熱エネルギーを吸収するように冷却流体がガイド120を通って流れることを可能にする。図示の実施形態において、流入冷媒チャネル135は、電気接点ユニット200の少なくとも一部分に接触するガイド120の上部分を横切る。熱エネルギーを吸収した後に、冷却流体は、流出冷却チャネル137を通ってガイド冷媒出口159へ流れ、ガイド120から出る。
別の実施形態が図4B及び図4Cに描かれている。描かれている実施形態において、ガイド冷媒入口157は、ガイド120の縁部に配置される、流入冷媒チャネル135に接続されて流入冷媒チャネル135と流体連通する。熱エネルギーを吸収した後に、冷却流体は、ガイドチャネル120の別の縁部に配置される流出冷却チャネル137を通って流れ、ガイド冷媒出口159を通じてガイドチャネル120から出る。
図4Aには、流入冷媒チャネル135が、ガイド120の上面に平行な単層のチャネルを含むものとして示されているが、ガイド120の上面に直交して配置されるチャネル、又はガイド120の長さにわたって延びる多数のチャネル、又は多層の流入冷媒チャネル135、又はガイド200の周縁に沿って位置決めされる進入冷媒チャネルを含む組み合わせなどの、他の構成を、ガイド120を冷却するために使用することができる。
動作中に、冷却流体は、冷媒供給入口570を通ってガイド冷媒入口157へ流れ、熱エネルギーを吸収するように流入冷媒チャネル135を通って流れ、そして、温められた冷却流体が、流出冷却チャネル137を通って流れ、ガイド冷媒出口159を通じてガイドチャネル120から出る。図1を参照すると、ガイド冷媒入口157は冷媒供給入口570に接続され、且つガイド冷媒出口159は冷媒供給源580に接続される。熱エネルギーの吸収又は伝達を容易にするために、流入冷媒チャネル135には、特に、冷却流体と流入冷媒チャネル135の壁との表面接触を増加させることができる、ピン又はフィン又は他の同様の装置などの、突起を並べて設けることができる。
電気接点ユニット内で受けると予想される温度に適した任意の好適な冷却流体を使用することができる。例示の冷却流体は、水、C〜Cアルコール、ポリアルファオレフィン、エチレングリコール若しくはプロピレングリコールなどのアルキレングリコール、又はこれらの混合物を含む。いくつかの実施形態において、冷却流体は、水、水とプロピレングリコールとの混合物、又は水とエチレングリコールとの混合物である。冷却流体は、塩、腐食防止剤、pH調整剤、又はこれらの組み合わせなどの、添加剤を含むことができる。冷却流体は比熱を有し、且つその質量流量は、ガイド120及び電気接点ユニット200の効率的な冷却を達成するように調整することができる。
コネクタ450は、締結具465を介して支持要素350に固定することができる。コネクタ450は、金属ワイヤ送出源400を支持要素350に取り付けることができ、且つ金属ワイヤを収めるための開口部460を含むことができる。金属ワイヤは、ガイド120の一端部へ送出され、ガイド120を通過して、ガイド120の他端部から出て、そこで、金属ワイヤが、加工物の堆積箇所よりも上のプラズマアーク中に位置決めされる。コンタクトチップ215は、ガイド120内の場所においてコンタクトチップ215を金属ワイヤに接触させるように位置決めすることができる。コンタクトチップ215は、金属ワイヤがガイド120の端部から出た後にコンタクトチップ215を金属ワイヤに接触させるように位置決めすることができる。
本明細書で提供されるコンタクトチップ組立体は、金属ワイヤを押圧してコンタクトチップに接触させるワイヤ押圧組立体を含む。ワイヤ押圧組立体は、ピン、クリップ、レバー、又は他の構造体を含む任意の構造体とすることができ、且つ金属ワイヤに圧力を加えて金属ワイヤをコンタクトチップに接触した状態に保つことができる、L字形状、直線形状、丸形状、又は角形状などの任意の形状を有することができる。ワイヤ押圧組立体は、押圧組立体の残り部分に電気を伝達せずに金属ワイヤに接触できる絶縁先端を含むことができる。代替的な実施形態において、押圧組立体は絶縁材料で完全に被覆される。例示の実施形態において、押圧組立体は、絶縁材料で作製される。本明細書で提供される構成では、金属ワイヤと電気接点ユニットのコンタクトチップとの間に単一の接触箇所を有することが可能である。この単一の接触箇所は、送給方向に動かない定められた接触箇所を提供することができる。これにより、一定の長さの金属ワイヤを抵抗加熱により加熱することが可能となる。例示の実施形態が図1に示されており、且つ異なる視点からの図が図3に示されている。ワイヤ押圧組立体190は、金属ワイヤ180を押圧してコンタクトチップ215に接触させる絶縁先端195を含む。絶縁先端は、コンタクトチップがさらされる環境及び温度に適合する任意の材料で作製することができる。例えば、押圧組立体の少なくとも先端に又は押圧組立体の先端若しくはより大きな部分のコーティングに使用できる絶縁材料は、電気絶縁性セラミックとするか、又は電気絶縁性セラミックを含有することができる。例示のセラミックは、Al、B、Zr、Mg、Y、Ca、Si、Ce、In、及びSnの酸化物又は窒化物、並びにこれらの組み合わせを含む。電気絶縁材料は、窒化アルミニウム、酸化アルミニウム、窒化マグネシウム、酸化マグネシウム、石英、窒化ケイ素、窒化ホウ素、二酸化ジルコニウム、並びにこれらの混合物及び組み合わせとするか、又はこれらを含有することができる。例示の実施形態において、押圧組立体は、Ti又はTi合金で作製することができ、押圧組立体の先端は被覆されるか又は上記電気絶縁材料の1つで作製される。
いくつかの実施形態において、ワイヤ押圧組立体190は、金属ワイヤ180を押圧してコンタクトチップ215に接触させるために、金属ワイヤ180がワイヤ押圧組立体190の上を通るときに金属ワイヤ180に対して圧力を及ぼすことができる。例示の実施形態において、圧力は上向きの圧力である。金属ワイヤ180をコンタクトチップ215に接触した状態に保つ圧力は、例えばばねを使用することにより達成することができる。ばねは、コンタクトチップ180又はワイヤ押圧組立体190がワイヤを傷つけるほど強力ではないが、コンタクトチップ215と金属ワイヤ180との接触を維持するのに十分に強力であるような適切な強度又は大きさの力を及ぼすように選択することができる。ばねを使用して、結果としてワイヤ押圧組立体190が金属ワイヤを押圧してコンタクトチップ215に接触させる圧力を及ぼすことができる。圧縮ばね、引張ばね、若しくはねじりばね、又はこれらの任意の組み合わせなどの、任意の種類のばねを使用することができる。いくつかの実施形態では、約0.001〜約10N/mのばね定数を有する圧縮ばねを、金属ワイヤがコンタクトチップ215に接触するようにワイヤ押圧組立体190をコンタクトチップ215に向けて上方に押し上げるために使用することができる。
金属ワイヤの直径は、本発明のある実施形態によれば、約0.8mm〜約5mmの範囲とすることができる。金属ワイヤは、例えば1.0mm、1.6mm、2.4mmなどの、実際に実現可能な任意の寸法を有することができる。金属ワイヤの送給速度及び位置決めは、金属ワイヤが母材の予熱領域よりも上の意図された位置に達したときに、金属ワイヤが連続的に加熱されて溶融されることを確実にするために、PAWトーチへの電力供給の効率に合わせて制御及び調整することができる。
電気接点ユニットは、金属ワイヤに接触させるコンタクトチップを収容する。コンタクトチップは、金属ワイヤを直流電源に電気的に接続する。例示の実施形態において、コンタクトチップは、コンタクトチップがワイヤに接触する曲面又は半曲面を有し得る。曲面又は半曲面は、接触させるべきワイヤを収めるような適切な大きさとすることができる。例えば、約1.6mmの直径を有するワイヤに対して、コンタクトチップは、約1.8mmの直径を有する曲面又は凹面を有し得る。また、コンタクトチップの表面積は、電流伝達により生じる過熱を回避するのに更に役立つように十分に大きくすることができる。例示の実施形態において、コンタクトチップの幅又は厚さは、約1mm〜約10mmの範囲とすることができる。コンタクトチップは、銅若しくは銅合金とするか、又は銅若しくは銅合金を含有することができる。銅合金は、銅(ASTM Classes II〜X)のいずれかを含有することができる。銅合金は、Ag、Al、Be、Bo、Cr、In、Mg、Ni、Sn、Sr、W、Zn若しくはZrのいずれか1つ又はこれらの組み合わせとの組み合わせで銅を含むことができる。例えば、コンタクトチップは、WとCuとの焼結組成物、又はCuとWとの合金を含むことができる。
自由形状造形により形成される金属体の標的領域に電源を接続することもできる。いくつかの実施形態では、金属ワイヤがカソードになり且つ標的領域がアノードになるように、電気的接続が行われる。いくつかの実施形態では、金属ワイヤがアノードになり且つ標的領域がカソードになるように、電気的接続が行われる。金属ワイヤがプラズマ移行型アーク(PTA)トーチのアークの中に入ると、電気アークを含むプラズマプルームが、PTAトーチから供給される熱流束の面積の広がり及び大きさの優れた制御により、標的領域の小さな表面積へ非常に集中した熱流を送出する。PTAトーチには、ゆらぎがほとんどなく、カソードとアノードとの間の長さのずれに対して良好な耐性で、安定し且つ一貫したアークを提供するという利点がある。PTAトーチは、タングステンで作製された電極と、銅又は銅合金で作製されたノズルとを有することができる。しかしながら、本発明は、いかなる特定の選択又は種類のPTAトーチにも拘束されない。PTAトーチとして機能できる任意の既知の又は考えられる装置を使用することができる。また、本発明は、PTAトーチではないPAWトーチを使用して実現されてもよい。
電気絶縁材料は、電気接点ユニットをPAWトーチのアークから隔離するために使用することができる。電気絶縁材料が出口開口部からある距離だけ延びるように、電気絶縁材料を金属ワイヤのガイドの出口開口部に位置決めすることができる。出口開口部から延びる電気絶縁材料の長さは、約0.1〜10mm、又は約0.5〜5mm、又は約1mmとすることができる。ガイド120の端部を越えて延びる電気絶縁材料160を示す、例示の実施形態が図4Aに示されている。
流体冷却式コンタクトチップ組立体は、金属材料の連続した堆積物を互いに母材上に融着させることにより物体が作製される、立体自由形状造形により金属材料の3次元加工物を製造するための方法において使用することができる。好ましい実施形態において、流体冷却式コンタクトチップ組立体は、国際公開第2012/134299号パンフレット(Stempfer,2012)で説明されているような、2つのPAWトーチ、より好ましくは2つのPTAトーチを利用するシステムと共に使用される。本明細書で提供される方法において、作製すべき物体の材料と同じ金属材料の母材には、金属材料の連続した堆積物が積層され、連続した各堆積物は、溶融金属ワイヤからの溶融金属の溶滴に対して母材をより受容的なものにするために、金属材料を堆積させるべき位置において第1のPAWトーチを使用して母材を予熱することと、コンタクトチップ組立体から出た後の金属ワイヤの先端部が、溶融金属を堆積させるべき予熱された母材よりも上に位置決めされるように、流体冷却式コンタクトチップ組立体を通して金属ワイヤを送給することと、金属ワイヤからの溶融金属材料が母材の予熱表面に滴り落ちるように第2のPAWトーチを使用して金属ワイヤを加熱して溶融させることと、溶融金属材料の連続した堆積物が固化して3次元加工物を形成するように、第1及び第2のPAWトーチの位置に対して母材を所定のパターンで移動させることとにより得られる。第1のPAWトーチは、母材の予熱表面上の溶融金属ワイヤからの過熱した金属溶滴の適切な溶け込みを確実にするために母材にエネルギーを付与することができる。いくつかの実施形態では、母材の表面の少なくとも一部分を溶融させるのに十分なエネルギーが第1のPAWトーチにより付与される。いくつかの実施形態において、第1のPAWトーチは、溶融金属ワイヤからの溶融金属溶滴を加えるべき位置において母材に溶融池を形成する。
2トーチシステムは、母材への熱供給とは関係なく金属ワイヤへの熱供給を増加させることを可能にする。これらの構成では、PTAトーチを使用するときに、第1のPTAトーチの電極と母材との間のアーク放電により電荷を移動させる電気回路を画定するために、(溶融金属ワイヤの溶融溶滴に対する母材の受容性を高めるなどのために、母材を加熱するために母材よりも上に位置決めされた)第1のPTAトーチの電極が負極性になり且つ母材が正極性になるように、直流電源を接続することができる。第2のPTAトーチの電極と金属ワイヤとの間のアーク放電により電荷を移動させる電気回路を形成するために、直流電源の負極を、(流体冷却式コンタクトチップ組立体から出た金属ワイヤの先端部付近に位置決めされた)第2のPTAトーチの電極に接続することができ、且つ正極が金属ワイヤに接続される。第1のPTAトーチ及び第2のPTAトーチは、同じか又は別個の電源を有することができ、且つトーチの各々への電力供給を個別に調整するための同じか又は別個の調整器を有することができる。
C.例
以下の例は、単に例示的な目的のために含まれており、本明細書で提供される実施形態の範囲を限定することを意図するものではない。
流体冷却式コンタクトチップ組立体の実施形態の例が図1に概略的に示されている。例示の実施形態において、コンタクト組立体は、チタンで作製されたガイド120と、銅で作製された電気接点ユニット200と、少なくとも部分的に絶縁性セラミックで被覆された、チタンで作製されたワイヤ押圧組立体190とを含む。図示のように、電気接点ユニット200は、コンタクトチップ215がPTAトーチ付近に位置するように構成され位置決めされる。図1には示さない、別個に制御されるPTAトーチが、母材を予熱するために使用される。第1のPTAトーチは、溶融金属材料を堆積させるべき位置において、母材が溶融金属ワイヤの溶融液滴に対して受容的になるように、母材を予熱する。いくつかの実施形態では、母材をより受容的なものにするために、母材の少なくとも一部分が第1のPTAにより溶融される。いくつかの実施形態では、第1のPTAトーチにより十分な熱が加えられ、金属材料を堆積させるべき位置において母材に溶融池を形成する。別個の第2のPTAトーチは、金属ワイヤを溶融させる。この装置は、母材を予熱するために母材に付与される熱エネルギーの量とは無関係に、金属ワイヤに発生する熱エネルギーの量を増加させることを可能にする。
電気接点ユニット200は、チタンで作製された支持要素350に接続される。電気接点ユニット200は、電気接点ユニット200と支持要素350との間の接触領域にプラスチック又はセラミックを隔離材料560として使用することにより、支持要素350から熱的に隔離される。隔離材料560は、熱エネルギーを容易に伝達しない材料である。隔離材料として使用できる例示の材料としては、セラミック及びプラスチックが挙げられる。電気接点ユニット200は、金属ワイヤがガイド120の端部から出た後にコンタクトチップ215を金属ワイヤに接触させるように位置決めされた銅合金製のコンタクトチップ215を含む。
電気接点ユニット200は、冷媒入口225と冷媒出口228とを含む冷却システムを含む。冷媒入口225及び冷媒出口228は、電気接点ユニット200内に収容されるとともに冷却流体が冷媒入口225から電気接点ユニット200を通って特にコンタクトチップ215の近傍に流れることを可能にする、冷媒チャネル(図2に示す)を通じて流体連通し、冷却流体は、熱エネルギーを吸収した後に、冷媒出口228を通じて電気接点ユニット200から出る。この例において、冷却流体は水であった。
電気接点ユニット200は、コンタクトチップ215に電力を提供するための電気接続部230を含む。電気接続部230は、コンタクトチップ215を金属ワイヤに接触させたときに金属ワイヤがアノードになるように、コンタクトチップ215をDC電源に接続する。PTAトーチの電極は、PTAトーチがカソードになるようにDC電源に接続される。
例のコンタクトチップ組立体100はまた、チタン製のガイド120を含む。ガイド120は、電気接点ユニット200よりも下に位置決めされる。金属ワイヤは、ガイド120の一端部から入り、ガイド120を通過して、ガイド120の他端部から出て、そこで、金属ワイヤが、加工物の堆積箇所よりも上のPTAトーチのプラズマアーク中に位置決めされる。図示の例では、金属ワイヤがガイド120から出た後にコンタクトチップ215を金属ワイヤに接触させる。この例において、ガイド120は、図4Aに示すように、略円形断面を備えたワイヤの形態である金属ワイヤを収めるために概ね円筒形状及び円形断面を有する。ガイド120の外側部分の形状は、円形断面を有する。この例のガイド120は、図4A及び図4Bに図示するように、支持体350へのガイド120の取り付けを可能にする締結具突起122を含む。この例のガイド120はまた、金属ワイヤのいかなる埃又は粒子も成形加工物に接近する前にガイド120から出ることを可能にする底部開口部125を含む。
この例において、ガイド120は、金属ワイヤがガイド120から出るときにガイド120を金属ワイヤから隔離して金属ワイヤの一部分を完全に取り囲む、酸化アルミニウムセラミック製の電気絶縁性ライニング160をガイド120の退出端部に含む(図4Bを参照)。ガイド120は、ガイド120と支持要素350との間の接触箇所の間にセラミック又はプラスチック断熱材を含めることにより、支持要素350から熱的に隔離される。
この例において、ガイド120は、冷却流体が水である冷却流体経路を含む。冷却流体経路は、流入冷媒チャネル135に接続されて流入冷媒チャネル135と流体連通するガイド冷媒入口157を含み、流入冷媒チャネル135は、ガイド120を横切るとともに、ガイド120が熱的に連通する電気接点ユニット200から熱エネルギーを吸収するように冷却流体がガイド120を通って流れることを可能にする。この例において、流入冷媒チャネル135は、電気接点ユニット200の少なくとも一部分に接触するガイド120の上部分を横切る。熱エネルギーを吸収した後に、冷却流体は、流出冷却チャネル137を通ってガイド冷媒出口159へ流れ、ガイド120から出る。
上述のように、流体冷却式コンタクトチップ組立体が、国際特許出願の国際公開第2012/134299号パンフレット(Stempfer,2012)で説明されているような、2トーチ溶接システムにおいて使用された。2トーチシステムは、金属ワイヤへの熱流束を増加させるとともに溶融金属性金属ワイヤの堆積速度を増加させることが、同時に母材を過熱させずに且つスパッタ発生のリスク又は母材の過剰な溶融又は母材における過剰な溶融池の形成なしに、可能となるように、母材への熱供給とは関係なく金属ワイヤへの熱供給を増加させることを可能にする。この例では、第1のPTAトーチの電極と母材との間のアーク放電により電荷を移動させる電気回路を画定するために、(母材を予熱するために母材よりも上に位置決めされた)第1のPTAトーチの電極が負極性になり且つ母材が正極性になるように、直流電源が接続される。第2のPTAトーチの電極と金属ワイヤとの間のアーク放電により電荷を移動させる電気回路を形成するために、(流体冷却式コンタクトチップ組立体から出た金属ワイヤの先端部付近に位置決めされた)第2のPTAトーチの電極を直流電源の負極に接続し、且つ金属ワイヤを正極に接続した。この例において、第1のPTAトーチ及び第2のPTAトーチは、別個の電源と、トーチの各々への電力供給を個別に調整するための別個の調整器とを有していた。母材の堆積領域の温度と金属ワイヤの温度とを監視するための別個の熱検出器を各PTAトーチと共に使用した。アークの幅及び位置決めを調整するために磁気アーク偏向手段も使用した。
使用された金属ワイヤは、2.4mmの直径を有するグレード5のチタン合金であった。金属ワイヤの送給速度(ワイヤ速度)及び位置決めは、先端部が母材の予熱領域よりも上の意図された位置に達したときに、金属ワイヤが連続的に加熱されて溶融されることを確実にするために、第2のPTAトーチへの電力供給の効率に従って制御及び調整された。この例では、(母材よりも上の)第1のPTAトーチには約250アンペア(A)の電流が提供され、且つ第2のPTAトーチには最大300Aの電流が提供された。約5kg/hの堆積速度が達成された。
制御システム(コンピュータ支援製造システムなど)は同時に、意図された堆積スポット(形成すべき物体のCADモデルにより与えられる)に位置するように母材及び1つ若しくは複数のPAW又はPTAトーチを常に位置決めし移動させる1つ若しくは複数のアクチュエータ(図示せず)を動作させてアクチュエータの係合を調整するように関与させることができる。制御システムはまた、母材の予熱領域、すなわち母材の溶融池が、溶融金属材料を堆積させるべき場所となるように、予熱用PAW又はPTAトーチを制御する任意のアクチュエータを動作させるように関与させることができる。
本明細書で説明する本発明の例示の実施形態において使用される制御システムは、堆積機器の部分的又は完全な自動化を提供することができる。制御システムは、コンピュータプロセッサ若しくは中央処理装置(CPU)、CPUディスプレイ、1つ若しくは複数の電源、電源接続部、入力及び/若しくは出力としての信号モジュール、アナログ信号の一体型シールド、記憶装置、回路基板、メモリチップ若しくは他の記憶媒体、内部で具現化されたコンピュータ可読プログラムを有する非一時的コンピュータ可読記憶媒体、又はこれらの任意の組み合わせを含むことができる。コンピュータ可読プログラムは、システムのいずれか1つ又は組み合わせを自動化するための適切なソフトウェアを含むことができる。例示の制御モジュールとしては、限定されるものではないが、Siemens AG(Munich,Germany)のSIMATIC−S7−1500、Bosch Rexroth AG(Lohr am Main,Germany)から入手可能なIndraMotion MTX system、及びSIGMATEK GmbH & Co.KG(Lamprechtshausen,Austria)から入手可能なSIGMATEK C−IPC(小型の産業用コンピュータシステム)が挙げられる。
本発明の範囲から逸脱することなく、本発明に種々の修正及び変形を加えることができることは、当業者には明らかであろう。したがって、本発明は、本発明の修正及び変形が添付の特許請求の範囲及びその均等物の範囲内にあるという条件でそれら修正及び変形を網羅することが意図される。
以下は、明細書及び添付の図面で使用される参照番号の一覧表である。
100 コンタクトチップ組立体
120 ガイド
122 締結具突起
125 底部開口部
130 中心孔
135 ワイヤガイド流入冷媒チャネル
137 ワイヤガイド流出冷媒チャネル
140 第1の端部
145 入口開口部
150 第2の端部
155 出口開口部
157 ワイヤガイド冷媒入口
159 ワイヤガイド冷媒出口
160 電気絶縁性ライニング
170 ガイドチャネル
180 金属ワイヤ(ワイヤ)
190 ワイヤ押圧組立体
195 絶縁先端
200 電気接点ユニット
215 コンタクトチップ
225 冷媒入口
226 進入冷媒チャネル
227 退出冷媒チャネル
228 冷媒出口
230 電気接続部
350 支持要素
400 金属ワイヤ送出源
450 コネクタ
460 金属ワイヤを収めるための開口部
465 締結具
560 断熱材料
570 冷媒供給入口
580 冷媒供給出口
2は、電気接点ユニット200の例示の実施形態を示している。図2及び図5には、冷却流体経路が示されており、この経路は、冷媒入口225と、電気接点ユニット200を横切るとともに、流体が冷媒入口225からコンタクトチップ215の近傍の領域に流れることを可能にする進入冷媒チャネル226と、温められた冷媒が冷媒出口228を通じて電気接点ユニット200から出ることを可能にする退出冷媒チャネル227とを含む。動作中に、流体冷媒は、熱交換器の機能を果たす、進入冷媒チャネル226を通って流れる。流体冷媒は、電気接点ユニット200から熱エネルギーを吸収する。特定の実施形態において、進入冷媒チャネル226は、コンタクトチップ215の近傍の領域まで延びて、コンタクトチップ215から熱エネルギーを吸収することができる。電気接点ユニット200内の冷却チャネルは、コンタクトチップ215からの熱の抽出を最大化するように構成することができる。熱エネルギーの吸収又は伝達を容易にするために、進入冷媒チャネル226には、特に、冷却流体と冷媒チャネル226の壁との表面接触を増加させることができる、ピン又はフィン又は他の同様の装置などの、突起を並べて設けることができる。
2には、進入冷媒チャネル226が、コンタクトチップ215に平行な単層のチャネルを含むものとして示されているが、コンタクトチップ215よりも上の領域を横切るアーク、又は電気接点ユニット200の長さにわたって延びる多数のチャネル、又は多層の進入冷媒チャネル226、又は電気接点ユニット200の周縁に沿って位置決めされる進入冷媒チャネル、又はこれらの組み合わせなどの、他の構成を、電気接点ユニット200を冷却するために使用することができる。
ガイド120は、金属ワイヤのいかなる埃又は粒子も成形加工物に接近する前にガイド120から出ることを可能にする底部開口部125を含むことができる。底部開口部125は、ガイド120の端部に延びることができる。ガイド120は、図3に示すように、金属ワイヤ180が支持されずに出口開口部155から出るような先頭形とすることができる。図1に示すように、ワイヤ押圧組立体190の絶縁先端195は、金属ワイヤ180を押圧してコンタクトチップ215に接触させる。

Claims (29)

  1. 流体冷却式コンタクトチップ組立体であって、
    ガイドと、
    電気接点ユニットであって、
    電源に接続されたコンタクトチップと、
    冷却システムであって、
    冷媒入口と、
    前記冷媒入口に接続されて前記冷媒入口と流体連通する進入冷媒チャネルと、
    前記進入冷媒チャネルに接続されて前記進入冷媒チャネルと流体連通する退出冷媒チャネルと、
    前記退出冷媒チャネルに接続されて前記退出冷媒チャネルと流体連通する冷媒出口と、
    金属ワイヤを押圧して電気接点要素の前記コンタクトチップに接触させるように構成されたワイヤ押圧組立体と
    を含む冷却システムと
    を備える電気接点ユニットと
    を備える、流体冷却式コンタクトチップ組立体。
  2. 前記ガイドが、
    長手方向中心軸線と、第1の端部と、反対側の第2の端部と、前記ガイドの前記長手方向中心軸線に沿って前記第1の端部から前記反対側の第2の端部に延びて延在する中心孔であって、金属ワイヤを送給できる中心孔と、
    冷却システムであって、
    冷媒供給入口と流体連通するように接続可能な冷媒入口と、
    前記冷媒入口に接続されて前記冷媒入口と流体連通する流入冷媒チャネルと、
    前記流入冷媒チャネルに接続されて前記流入冷媒チャネルと流体連通する流出冷媒チャネルと、
    前記流出冷媒チャネルに接続されて前記流出冷媒チャネルと流体連通する冷媒出口と
    を含む冷却システムを備える、請求項1に記載の流体冷却式コンタクトチップ組立体。
  3. 前記進入冷媒チャネルが、前記コンタクトチップの近傍に複数の相互接続された平行チャネルを備える、請求項1〜2のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  4. 前記ガイドが底部開口部を更に備える、請求項1〜3のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  5. 前記ガイドがTi又はTi合金を含む、請求項1〜4のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  6. 前記電気接点ユニットがCu又はCu合金を含む、請求項1〜5のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  7. 前記コンタクトチップがCu又はCu合金を含む、請求項1〜6のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  8. ワイヤ押圧組立体は、前記ワイヤ押圧組立体が前記金属ワイヤを押圧して前記コンタクトチップに接触させるようにする圧力を及ぼすばねを備える、請求項1〜7のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  9. 前記ワイヤ押圧組立体が絶縁先端を備え、
    前記絶縁先端が、前記金属ワイヤを押圧して前記コンタクトチップに接触させるときに前記金属ワイヤに接触する、請求項8に記載の流体冷却式コンタクトチップ組立体。
  10. 前記ワイヤ押圧組立体が、Ti又はTi合金を含み、且つ電気接点ユニットに接続される、請求項1〜9のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  11. 前記ガイド及び前記電気接点ユニットが接続される支持要素と、
    金属ワイヤ送出源と
    を更に備える、請求項1〜10のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  12. 前記支持要素と前記電気接点ユニットとの間に断熱材料を更に含む、請求項11に記載の流体冷却式コンタクトチップ組立体。
  13. 前記支持要素が、
    前記ガイド冷媒入口と流体連通するように接続可能な冷媒供給入口と、
    前記ガイド冷媒出口と流体連通するように接続可能な冷媒供給出口と
    を更に備える、請求項11に記載の流体冷却式コンタクトチップ組立体。
  14. 前記金属ワイヤが前記ガイドを通過した後に、前記金属ワイヤが、加工物よりも上のプラズマアークに接触する、請求項1〜13のいずれか一項に記載の流体冷却式コンタクトチップ組立体。
  15. 立体自由形状造形により金属材料の3次元物体を製造するための方法であって、
    金属材料の連続した堆積物を前記母材上に堆積させることを含み、
    金属ワイヤに電流を流す流体冷却式電気接点ユニットにガイドを通して金属ワイヤを送給することと、
    溶融金属材料が母材に滴り落ちるように第1のPAWトーチを使用して前記ワイヤを加熱して溶融させることと
    により、連続した各堆積物が得られる、方法。
  16. 前記溶融ワイヤからの溶融金属材料の前記連続した堆積物が固化して前記3次元物体を形成するように前記母材及び前記第1のPAWトーチの少なくとも一方を移動させることにより堆積パターンを定めることを更に含む、請求項15に記載の方法。
  17. 前記金属材料を堆積させるべき場所において前記母材を予熱することを更に含む、請求項15〜16のいずれか一項に記載の方法。
  18. 前記予熱することが、第2のPAWトーチを使用して実行される、請求項17に記載の方法。
  19. 前記溶融ワイヤからの溶融金属材料の前記連続した堆積物が固化して前記3次元物体を形成するように前記母材、前記第1のPAWトーチ及び前記第2のPAWトーチの少なくとも1つを移動させることにより堆積パターンを定めることを更に含む、請求項18に記載の方法。
  20. 前記流体冷却式電気接点ユニットが、
    冷却システムであって、
    冷媒供給入口と流体連通するように接続可能な冷媒入口と
    前記冷媒入口に接続されて前記冷媒入口と流体連通する流入冷媒チャネルと、
    前記流入冷媒チャネルに接続されて前記流入冷媒チャネルと流体連通する流出冷媒チャネルと、
    前記流出冷媒チャネルに接続されて前記流出冷媒チャネルと流体連通する冷媒出口と
    を備える冷却システムを含む、請求項15〜19のいずれか一項に記載の方法。
  21. 前記ガイドが、
    冷却システムであって、
    冷媒供給入口と流体連通するように接続可能な冷媒入口と
    前記冷媒入口に接続されて前記冷媒入口と流体連通する流入冷媒チャネルと、
    前記流入冷媒チャネルに接続されて前記流入冷媒チャネルと流体連通する流出冷媒チャネルと、
    前記流出冷媒チャネルに接続されて前記流出冷媒チャネルと流体連通する冷媒出口とを備える冷却システムを含む、請求項15〜20のいずれか一項に記載の方法。
  22. 前記金属ワイヤが、任意のワイヤの形態であり、且つAl、Cr、Cu、Fe、Hf、Sn、Mn、Mo、Ni、Nb、Si、Ta、Ti、V、W、若しくはZr、又はこれらの複合材若しくは合金を含む、請求項15〜21のいずれか一項に記載の方法。
  23. 前記金属ワイヤに流される電流が少なくとも100アンペアである、請求項15〜22のいずれか一項に記載の方法。
  24. 立体自由形状造形により金属材料の3次元物体を製造するためのシステムであって、
    金属ワイヤを母材よりも上の位置に案内するための流体冷却式ガイドと、
    前記金属ワイヤに電流を流すために前記金属ワイヤに電気的に接触する流体冷却式電気接点ユニットと、
    前記金属ワイヤを溶融させて金属材料が前記母材の上に滴り落ちるようにするための第1の溶接トーチと、
    前記金属材料の連続した堆積物を前記母材上に融着させることにより物理的物体が構築されるように堆積プロファイルを定めるために形成される前記物体のコンピュータモデルと
    を備える、システム。
  25. 前記母材を少なくとも前記溶接トーチに対して移動させるアクチュエータトレイを更に備える、請求項24に記載のシステム。
  26. 前記第1の溶接トーチを移動させるアクチュエータアームを更に備える、請求項24〜25のいずれか一項に記載のシステム。
  27. 前記金属材料を堆積させるべき領域において前記母材を予熱するための第2の溶接トーチを更に備える、請求項24〜26のいずれか一項に記載のシステム。
  28. 前記第2の溶接トーチを移動させるアクチュエータアームを更に備える、請求項27に記載のシステム。
  29. 前記金属ワイヤに流される電流が少なくとも100アンペアである、請求項24〜28のいずれか一項に記載の方法。
JP2019500569A 2016-07-08 2017-03-17 金属溶接用の流体冷却式コンタクトチップ組立体 Active JP7032375B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/206,158 US10709006B2 (en) 2016-07-08 2016-07-08 Fluid-cooled contact tip assembly for metal welding
US15/206,158 2016-07-08
PCT/EP2017/056392 WO2018007032A1 (en) 2016-07-08 2017-03-17 Fluid-cooled contact tip assembly for metal welding

Publications (2)

Publication Number Publication Date
JP2019525843A true JP2019525843A (ja) 2019-09-12
JP7032375B2 JP7032375B2 (ja) 2022-03-08

Family

ID=58360995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019500569A Active JP7032375B2 (ja) 2016-07-08 2017-03-17 金属溶接用の流体冷却式コンタクトチップ組立体

Country Status (12)

Country Link
US (1) US10709006B2 (ja)
EP (1) EP3481578B1 (ja)
JP (1) JP7032375B2 (ja)
KR (1) KR102308069B1 (ja)
CN (1) CN109689268B (ja)
AU (1) AU2017294025B2 (ja)
CA (1) CA3030044A1 (ja)
DK (1) DK3481578T3 (ja)
EA (1) EA035505B1 (ja)
ES (1) ES2886636T3 (ja)
SG (1) SG11201811253VA (ja)
WO (1) WO2018007032A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047708A2 (de) * 2019-09-12 2021-03-18 Kjellberg Stiftung VERSCHLEIßTEIL FÜR EINEN LICHTBOGENBRENNER UND PLASMABRENNER SOWIE LICHTBOGENBRENNER UND PLASMABRENNER MIT DEMSELBEN UND VERFAHREN ZUM PLASMASCHNEIDEN SOWIE VERFAHREN ZUR HERSTELLUNG EINER ELEKTRODE FÜR EINEN LICHTBOGENBRENNER UND PLASMABRENNER
CN111037915A (zh) * 2019-11-29 2020-04-21 南通大学 熔融沉积式3d打印线材的接线装置及其接线方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104549A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Arc welder
JPH04344873A (ja) * 1991-05-23 1992-12-01 Babcock Hitachi Kk ホツトワイヤ溶接装置
JPH05228631A (ja) * 1991-07-17 1993-09-07 Kubota Corp ホットワイヤー用ガイドチップの水冷アダプター
JP2013146768A (ja) * 2012-01-20 2013-08-01 Ihi Inspection & Instrumentation Co Ltd ホットワイヤ供給装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2179108A (en) 1937-06-12 1939-11-07 Borg Warner Nozzle for arc-welding machine
DE2949318C2 (de) 1979-12-05 1982-10-28 Mannesmann AG, 4000 Düsseldorf Lichtbogenschweißbrenner
US4309590A (en) * 1980-02-29 1982-01-05 Westinghouse Electric Corp. Narrow groove welding torch
JPS56144876A (en) 1980-04-14 1981-11-11 Mitsubishi Electric Corp Carbon dioxide welding equipment
US4540879A (en) 1983-06-09 1985-09-10 Ideal Carbide Die Co. Alignment tooling for metal cylinder welding machines
US4591685A (en) * 1983-10-12 1986-05-27 The Boeing Company Narrow gap welding torch
US4667083A (en) 1986-02-14 1987-05-19 Westinghouse Electric Corp. Torch for preheating a continuously fed welding wire
DE3941980A1 (de) 1989-12-20 1991-06-27 Loeffler Hans Joachim Thermische schutzvorrichtung fuer einen schneidbrenner
US5313046A (en) * 1992-09-28 1994-05-17 Frank Zamuner Welding torch
US5808270A (en) 1997-02-14 1998-09-15 Ford Global Technologies, Inc. Plasma transferred wire arc thermal spray apparatus and method
US6344287B1 (en) 1997-04-14 2002-02-05 Florida State University High temperature compatible insulation for superconductors and method of applying insulation to superconductors
JP3633228B2 (ja) 1997-08-19 2005-03-30 日本軽金属株式会社 高速mig溶接用溶接トーチ
US5973291A (en) * 1998-08-11 1999-10-26 Lincoln Global, Inc. Method and system for determining the feedability of welding wire
IT1307534B1 (it) 1999-12-17 2001-11-06 Trafimet Spa Tubetto di contatto per torce di saldatura a filo continuo
ATE507024T1 (de) * 2001-11-07 2011-05-15 Commw Scient Ind Res Org Berührungsspitze für elektrisches lichtbogenschweissen unter verwendung eines drahtes
US20040079741A1 (en) * 2002-10-24 2004-04-29 Keegan James M. Apparatus and method for protecting a welding implement contact tip
SE0301159D0 (sv) 2003-04-17 2003-04-17 Esab Ab Kontaktmunstycke för elektrisk ljusbågssvetsning
US20060081675A1 (en) * 2004-10-14 2006-04-20 Lincoln Global, Inc. Coating wire drive parts
CA2600864C (en) 2005-01-31 2014-08-19 Materials & Electrochemical Research Corp. A low cost process for the manufacture of near net shape titanium bodies
WO2006133034A1 (en) 2005-06-06 2006-12-14 Mts Systems Corporation Direct metal deposition using laser radiation and electric arc
US7892597B2 (en) 2006-02-09 2011-02-22 Composite Technology Development, Inc. In situ processing of high-temperature electrical insulation
JP5344112B2 (ja) 2007-09-07 2013-11-20 トヨタ自動車株式会社 アーク溶接用トーチ
KR101071813B1 (ko) * 2008-11-21 2011-10-11 (주)일흥 용접 로봇용 토치
US20100193480A1 (en) 2009-01-30 2010-08-05 Honeywell International Inc. Deposition of materials with low ductility using solid free-form fabrication
GB2489493B (en) 2011-03-31 2013-03-13 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freeform fabrication
BR112014015316B1 (pt) * 2011-12-20 2018-12-11 Esab Ab ponta de contato para uso em soldagem por arco elétrico com gás de proteção

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104549A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Arc welder
JPH04344873A (ja) * 1991-05-23 1992-12-01 Babcock Hitachi Kk ホツトワイヤ溶接装置
JPH05228631A (ja) * 1991-07-17 1993-09-07 Kubota Corp ホットワイヤー用ガイドチップの水冷アダプター
JP2013146768A (ja) * 2012-01-20 2013-08-01 Ihi Inspection & Instrumentation Co Ltd ホットワイヤ供給装置

Also Published As

Publication number Publication date
AU2017294025B2 (en) 2022-09-29
AU2017294025A1 (en) 2019-01-24
US10709006B2 (en) 2020-07-07
CA3030044A1 (en) 2018-01-11
US20180014397A1 (en) 2018-01-11
EA201990014A1 (ru) 2019-07-31
SG11201811253VA (en) 2019-01-30
ES2886636T3 (es) 2021-12-20
CN109689268B (zh) 2021-08-17
EA035505B1 (ru) 2020-06-25
WO2018007032A1 (en) 2018-01-11
KR102308069B1 (ko) 2021-10-05
JP7032375B2 (ja) 2022-03-08
KR20190039071A (ko) 2019-04-10
DK3481578T3 (da) 2021-09-20
EP3481578A1 (en) 2019-05-15
EP3481578B1 (en) 2021-07-28
CN109689268A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6211156B2 (ja) 立体自由形状造形法によって金属物体を構築するシステム及び立体自由形状造形法によって金属材料の3次元物体を製造する方法
CN109689267B (zh) 用于由两个焊枪通过固体自由成形制造来构建金属物体的方法和设备
JP6956167B2 (ja) ワイヤ・アーク精度調整システム
JP6952758B2 (ja) Mig金属溶接用のコンタクトチップ組立体
KR102308069B1 (ko) 금속 용접을 위한 유체-냉각식 접촉 팁 조립체
US11134559B2 (en) Plasma torch system
EA040501B1 (ru) Узел контактного наконечника для сварки металлов металлическим электродом в инертном газе

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20190305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7032375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150