JP2019525700A - 高周波数高電力コンバータシステム - Google Patents

高周波数高電力コンバータシステム Download PDF

Info

Publication number
JP2019525700A
JP2019525700A JP2018568704A JP2018568704A JP2019525700A JP 2019525700 A JP2019525700 A JP 2019525700A JP 2018568704 A JP2018568704 A JP 2018568704A JP 2018568704 A JP2018568704 A JP 2018568704A JP 2019525700 A JP2019525700 A JP 2019525700A
Authority
JP
Japan
Prior art keywords
magnetron
resonant
power converter
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018568704A
Other languages
English (en)
Inventor
チャオ ジー
チャオ ジー
アラン ジェイムズ ワトソン
アラン ジェイムズ ワトソン
ジョナサン チャールズ クレア
ジョナサン チャールズ クレア
Original Assignee
ザ ユニヴァーシティー オブ ノッティンガム
ザ ユニヴァーシティー オブ ノッティンガム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ユニヴァーシティー オブ ノッティンガム, ザ ユニヴァーシティー オブ ノッティンガム filed Critical ザ ユニヴァーシティー オブ ノッティンガム
Publication of JP2019525700A publication Critical patent/JP2019525700A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/523Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/683Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the high voltage side of the circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/685Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the low voltage side of the circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

高周波数高電力コンバータシステムは、並列に配置された複数の共振タンク回路と、各変圧器が単一の一次巻線と複数の二次巻線とを有する複数の変圧器と、真空電子デバイスとを含み、各共振タンク回路の出力は、それぞれ異なる変圧器に印加され、変圧器の出力は、真空電子デバイスを駆動するように配置される。【選択図】図1

Description

本発明は、高周波数高電力コンバータシステムに関し、より具体的には、但し排他的にではなく、マグネトロンを含むシステムに関する。
高電力密度及び高効率を有する小型の電力供給に対する要求が高まっている。スイッチモード・コンバータを用いた従前の配置では、制御された半導体デバイスを用いて、各スイッチング動作中に全負荷電流をターンオン又はターンオフする。数キロヘルツのオーダの周波数、例えば2.5kHzの場合、このような配置は許容できることが立証されている。
しかしながら、半導体のスイッチング損失及びスイッチング応力はどちらもスイッチング周波数に線形比例するので、より高い周波数ではその両方が存在する。また、大電流及び電圧の派生(derivative)によって生じる電磁妨害(EMI)は、重大な問題であり得る。
本発明によれば、高周波数高電力コンバータシステムは、並列に配置された複数の共振タンク回路と、各変圧器が単一の一次巻線と複数の二次巻線とを有する複数の変圧器と、真空電子デバイスとを含み、各共振タンク回路の出力は、それぞれ異なる変圧器に印加され、変圧器の出力は、真空電子デバイスを駆動するように配置される。
真空電子デバイスは、マグネトロン、又は例えばクライストロンのような他のタイプの真空電子デバイスとすることができる。1つの実施形態において、マグネトロンは、連続波(CW)マグネトロンとして動作するが、他の実施形態においてはパルス式である。
1つの実施形態において、3つの変圧器が3並列単相構成内に含まれ、広範囲の動作点にわたる高効率特性と、共振タンク回路内の不均衡の存在下での高いレジリエント性(high resilient properties)とをもたらす。高電力高電圧用途の場合、多相構成の使用は、半導体デバイス及び共振要素に対する電気的圧力を著しく軽減し、かつ、リップルの相殺によりフィルタ要件のサイズの大幅な削減をもたらす。このことにより、高周波数における高効率の動作が可能になり、その結果として、変圧器、フィルタ及び付随するコストがより小さくなる。1つの実施形態において、電力レベルは、100kWであり、スイッチング周波数は20〜30kHzである。
1つの実施形態において、複数の共振タンク回路の各々は、直列共振直列負荷共振タンクである。直列共振直列負荷(series resonant series loaded、SRSL)共振タンクは、開路条件下で安全に動作することができる。これは、負荷がマグネトロンである場合に特に有利である。別の実施形態において、複数の共振タンク回路の各々は、直列共振並列負荷(series resonant parallel loaded、SRPL)タンクである。他の構成も可能である。
1つの実施形態において、複数のインバータ回路が含まれる。各インバータ回路は、複数の半導体スイッチを含み、複数のインバータ回路のそれぞれ異なるインバータが、複数の共振タンク回路の各々の入力に接続される。インバータ回路の各々は、Hブリッジとして接続された4つの半導体スイッチを含むことができる。しかしながら、半ブリッジ又は3相ブリッジ又は他の同様の構成のような他の構成を用いることができる。
1つの実施形態において、半導体スイッチは、IGBTスイッチであるが、他のタイプを用いることができる。IGBTスイッチは、比較的低コストで容易に調達される標準的な既製品のモジュールに含まれ得る。
インバータ回路は、半導体スイッチの実質的ゼロ電流ソフトスイッチングを提供するように制御することができる。これを達成できる1つの有利な方式は、複合周波数及び位相偏移変調(combined frequency and phase shift modulation、CFPM)を用いることによってインバータ回路を制御して、半導体スイッチを、これらが電流を導通していないとき又は電圧を支持していないときにスイッチングする、すなわち実質的ゼロ電流/ゼロ電圧ソフトスイッチング(ZVS)を提供することである。1つの実施形態において、相の各々においてソフトスイッチングの独立制御が実装され、柔軟性がもたらされる。これは、ハードスイッチングが用いられる従前のシステムとは対照的である。ハードスイッチングでは、デバイス間の電圧の急激な変化に伴って1つの半導体スイッチデバイスから別の半導体スイッチデバイスへの急激な転流が存在し、各スイッチング遷移(switching transition)がエネルギー損失を生じさせる。平均電力損失は、デバイスにおける各遷移のエネルギー損失及びスイッチング周波数によって支配され、このことにより、許容可能な効率に対するスイッチング周波数限界が制限される。
変圧器のサイズは、その変圧器が動作するように設計された周波数に直接関連し、周波数が高いほど、コンポーネントは通常小さくなる。しかしながら、周波数が高いほど、半導体のスイッチングに関連した損失は高くなり、システム効率が低下する。ソフトスイッチングは、電力効率に著しい影響を与えることなく高周波数でパワーエレクトロニクスをスイッチングすることを可能にする。高周波数で動作することの更なる利点は、負荷におけるフィルタリングに対する要件が軽減することである。マグネトロン負荷の場合、良好な品質のRF出力を得るためには、管を通って流れる電流は、最小限のリップルしか有さないものであるべきであり、すなわちフラットであるべきである。これを達成するためにフィルタリングが用いられ、動作周波数が高いほど、フィルタリング・コンポーネントを小さくすることができる。このことは、マグネトロンにおけるアーク条件下でフィルタ・コンポーネントからマグネトロンに移動するエネルギーが従前のシステムよりも著しく低くなり、それゆえマグネトロンの寿命が延びるという、更なる利点を有する。
経時的に共振タンクの電流と電圧の間の位相差は変化し得るので、その結果ソフトスイッチングの損失が生じる。1つの実施形態において、半導体スイッチの実質的ゼロ電流ソフトスイッチングからの任意の逸脱を打ち消すために、トラッキング配置が含まれる。トラッキング配置は、半導体スイッチの実質的ゼロ電流ソフトスイッチング(ZCS)を提供するための補正周波数を生成するようなものとすることができる。ZCSにおいて、半導体スイッチが回路電流路内にないときにスイッチングされる。
1つの実施形態において、複数の二次巻線の各二次巻線に、それぞれの高電圧整流器が接続される。各高電圧整流器の出力間にキャパシタンスを接続することができ、キャパシタンスは互いに直列に接続される。
1つの有利な実施形態において、3つの変圧器が含まれ、3つの変圧器の一次巻線に印加される電力は、互いに120度位相偏移している。他の実施形態において、2つの変圧器又は3つよりも多くの変圧器を含めることができる。しかしながら、3つの変圧器を3分岐において使用すると、2つの変圧器の配置よりもリップル出力が低くなり、かつ、4つ以上の変圧器並びにそれに付随する回路及びコンポーネントを有するコンバータよりもコストが低くなる。多相手法を採用することで高調波の相殺が達成されるので、必要とされるフィルタリングがより少なくなり、損失及びサイズ要件が低減される。
1つの実施形態において、一次電力を受け取るための入力と、共通DCリンクを介して電力を複数の共振回路に印加するための出力とを有する、ユーティリティ・インタフェース電力コンバータが含まれる。ユーティリティ・インタフェース電力コンバータは、複数の固体スイッチを含むことができる。パルス幅変調を用いてスイッチの状態を制御するためのコントローラが含まれる。
ユーティリティ・インタフェース電力コンバータは、複数の共振回路に対する安定なDC電圧源を提供することを目的とする。これはまた、例えばEngineering Recommendation G5/4のような種々の規則に従ってユーティリティ・プライム電力供給から電気エネルギーを引き込むべきである。1つの実施形態において、例えば、750〜1000VのDC源が3相AC供給から誘導される。別の実施形態において、ユーティリティは、低品質であり、例えば、この電源に接続された負荷の性質の結果として品質のばらつきを発生させ得る発電機から誘導されたものである。本発明による高周波数高電力コンバータシステムの使用は、低品質のユーティリティへの接続を可能にすること又は遠隔位置若しくはモバイルシステム上の発電機上で動作することによって、顕著な動作能力を提供することができる。
本発明のいくつかの実施形態をここで単なる例として、添付図面を参照して説明する。
本発明によるシステムを模式的に示す。 図1のシステムの一部を模式的に示す。 マグネトロンの電圧−電流特性を示すグラフである。 図1のシステムに含まれるユーティリティ・インタフェース電力コンバータをより詳細に模式的に示す。 図1のシステムに含まれるマグネトロン・インタフェース電力コンバータをより詳細に模式的に示す。 図1のシステムの動作を模式的に示す。 図5のマグネトロン・インタフェース電力コンバータのキャパシタ配置を模式的に示す。 図5のマグネトロン・インタフェース電力コンバータのキャパシタ配置を模式的に示す。 制御配置を模式的に示す。 インバータを示す 3つのインバータ及びそれらの出力を模式的に示す。 ソフトスイッチングを模式的に示す。 トラッキングを含む制御配置を模式的に示す。
図1を参照すると、高周波数高電力発電機システムは、マグネトロン1を含み、これは、工業的処理での使用又は他の目的のための高電力の連続波(CW)RF出力を発生させる。この実施形態において、RF電力レベルは100kWとすることができ、周波数は20〜30kHzとすることができる。マグネトロン1は、ユーティリティ・インタフェース電力コンバータ3及びマグネトロン・インタフェース電力コンバータ4を介して、この場合は送電網であるプライム電力源2に接続される。プライム電力源2の出力は、品質が変動する傾向があり、周波数及び電圧のゆらぎを伴う。このような品質の変動は、多くのタイプの負荷にとっては有害ではない。しかしながら、負荷が高電力マグネトロンである場合、供給の乱れは、マグネトロン出力の品質の低下につながることがあり、マグネトロンの動作停止を引き起こすことがある。発電機システムが工業的プロセスに配備されている場合、このことは、コストがかさむ破壊的なプラントのシャットダウンにつながることがある。
ユーティリティ・インタフェース電力コンバータ3は、プライム電力源2から3相AC供給を受け取り、これを、改善された安定性及び品質でマグネトロン・インタフェース4に印加される750〜1000VのDC出力に変換する。ユーティリティ・インタフェース電力コンバータ3は、電力網からの電気エネルギーの引き込みに関する該当規則にも従わなければならない。
別の実施形態において、高周波数高電力発電機システムは、プライム電力供給としてのローカル発電機に接続される。ローカル発電機は、特に、その発電機が他の目的のための付加的な、需要負荷(demanding load)を有している場合には、典型的には電力網より著しく低品質の出力を提供し、通常は単相AC供給を提供し、これをユーティリティ・インタフェース電力コンバータ3が安定な750〜1000VのDC出力に変換する。
マグネトロン・インタフェース電力コンバータ4は、ユーティリティ・インタフェース電力コンバータ3の750〜1000DC出力を受け取り、高電圧低リップルDC源を生成して、マグネトロン1に流入する電力を約20kV、6〜6.5Aに制御する。マグネトロン・インタフェース電力コンバータ4は、低電圧電力エレクトロニクス、電圧スケール変更のための変圧器、高電圧整流及びフィルタリングを含む。
電力源2の状態に関する情報を提供するユーティリティ測定値が、ライン5に沿ってグローバル制御ユニット6に送られる。グローバル制御ユニット6はさらに、マグネトロン測定値をライン7上で受け取り、マグネトロン出力を受ける目標アプリケーションからのRF監視データをライン8上で受け取る。測定値及びデータは、直接読取値であってもよく、又は介在する1つ又は複数の測定モジュールを介して提供されてもよい。
電力供給ユニット(PSU)コントローラ9は、ユーティリティ・インタフェース電力コンバータ3及びマグネトロン・インタフェース電力コンバータ4に制御信号を印加する。PSUコントローラ9はまた、ユーティリティ・インタフェース電力コンバータ3及びマグネトロン・インタフェース電力コンバータ4から測定値を受け取り、制御信号の調整を支援するフィードバックを提供する。PSUコントローラ9はまた、ユーティリティ測定値及びマグネトロン測定値をそれぞれライン5及びライン7上で受け取る。さらに、グローバル制御ユニット6もまた、PSUコントローラ9に制御信号を送る。グローバル制御ユニット6はまた、マグネトロン・ヒータPSU10及びマグネトロン電磁石PSU11にも要求信号を送る。
図2を参照すると、ユーティリティ・インタフェース電力コンバータ3は、プライム電力源に接続された、チョーク及びパルス幅変調器フィルタ12を含む。チョーク及びパルス幅変調器フィルタ12の出力は、アクティブ・フロントエンド・モジュール13に印加され、これは、マグネトロン・インタフェース電力コンバータ4に含まれるインバータ段15に接続されたDCリンク出力14を有する。インバータ段15の出力は、共振タンク、高電圧変圧器16及び高電圧整流器17を介して、マグネトロン1に印加される。図3は、マグネトロン負荷の電圧−電流特性を示す。マグネトロンの高度に非線形性の抵抗特性に起因して、マグネトロン1に印加された電圧がマグネトロン閾値を下回っているとき、マグネトロン負荷は大型抵抗器と同様に挙動する。ひとたびマグネトロンが導通すると、実効抵抗が降下し、マグネトロン電流が上昇する。閾値は、電磁石電流によって設定され、マグネトロンが異なる電圧−電流曲線によって動作することを可能にする。閾値点の位置は、マグネトロンが導通を開始した後の抵抗曲線の傾きを決定する。傾き値が小さいことは、どんなに小さい電圧リップルでも、マグネトロンに供給される電流に大きい変動を生じさせること及び生成されるRFの品質を低下させることを含意する。
図4を参照すると、これは図1のシステムの一部をより詳細に示したものであり、ユーティリティ・インタフェース電力コンバータ3は、6つのIGBTスイッチモジュールを含み、これらは各々がIGBTスイッチ18と逆並列のダイオードとを含み、3つの並列接続された半レッグ(half−leg)構成に配置され、DCバス19とインタフェースする。ユーティリティ電圧及び電流並びにDCリンク電圧の測定値が取得され、分離されスケール変更された測定信号が、10個のアナログ−デジタル(A2D)チャネルを有するFPGAカード20を含むPSUコントローラ9に印加される。プロセッサ21は、所定の割込み周波数において、FPGAカード20におけるトランスデューサ出力をサンプリングする。制御機構の性能は、サンプル間の割込み期間中にデータの現在のサンプルを用いて評価される。グローバル制御ユニット6は、パルス幅変調(PWM)要求をFPGAカード20に送り、ここでPWM信号がパルスに変換される。得られたPWMパルスは、光ファイバ・ラインを介してIGBTスイッチ18のゲート駆動回路に伝送される。絶縁されたゲート駆動回路は、これらのパルスをレベルシフトして、IGBTスイッチ18をON及びOFF状態に駆動する。このことは、ユーティリティ・インタフェース電力コンバータ3が、プライム電力源2における単位変位力率(Displacement Power Factor、DPF)に従うと同時に、ユーティリティ・インタフェース電力コンバータ3を通る要求された電力潮流を制御する、パルス幅変調された電圧を生成することを可能にする。
プライム電力源2が接続されたときにIGBTスイッチ18が損傷を受けたり又は破壊されたりすることを防止するために、プライム電力源2とIGBTスイッチモジュールとの間に予備充電回路(pre−charge circuit)22が含まれる。全ての正弦波整流器は、コンバータのDCリンクを供給電圧のピークライン間マグニチュード(peak line to line magnitude )まで予備充電するための配置を必要とする。このような配置がなければ、コンバータがプライム電力源2に接続されるやいなや大きな突入電流が流れることになり、潜在的に、この動作期間にわたって制御されていない3相ダイオードブリッジを形成するIGBTスイッチモジュールのダイオードに応力をかけるか又は破壊することになる。
予備充電回路22は、各相に2つの並列路を使用し、一方は突入電流を制限する抵抗器を経由する経路であり、他方は事実上、短絡である。DCリンクコンデンサを予備充電するために、全ての相で最初に抵抗路が動作し、DCリンクコンデンサは、電流制限抵抗器を通じて供給のピークライン間電圧まで充電される。この時点で、主接触器を作動させ、かつ抵抗路を開路して、予備充電サイクルを完了し、正常な回路動作を開始させる。予備充電抵抗器における損失は非常に高いものとなり得るので、コンバータが稼働して著しい電力を供給から引き込んでいるときには抵抗路が回路内に組み込まれないことを、インターロックが保証する。他の実施形態において、図4に示すキャパシタ及び抵抗器の配置の代わりに、サイリスタベースの予備充電補助回路が用いられる。
ユーティリティ・インタフェース電力コンバータ3はまた、放電回路23又は同様のシステムを含み、これは、不利な動作条件下で又はシステムをシャットダウンするときに、システム内に蓄えられた電荷を安全に放電することを可能にする。
図5を参照すると、マグネトロン・インタフェース電力コンバータ4は、3並列単相構成を有し、広範囲の動作点にわたる高効率特性と、共振回路内の不均衡の存在下での良好な弾力性とをもたらす。マグネトロン・インタフェースコンバータ4の各相又は分岐は、単相Hブリッジ・インバータ24a、24b及び24cと、それに関連付けられたそれぞれの共振回路25a、25b及び25cと、高電圧変圧器ユニット(HVTRU)26a、26b及び26cと、整流段27a、27b、及び27cとを含む。各インバータ24a、24b及び24cは、この場合はIGBTスイッチである4つの二方向半導体スイッチを逆並列ダイオードと共に含む。全部で12個のIGBTスイッチが含まれる。
インバータ24a、24b及び24cは、可変の周波数及びデューティサイクルを有する準方形波電圧の平衡セットを生成して、共振回路(又はタンク)25a、25b及び25cを励起する。1つの実施形態において、周波数は20kHzとすることができ、デューティサイクルは、πとすることができる。インバータ動作中、周波数及びデューティサイクルの両方を変更することができる。
DCリンクコンデンサ28は、3つのインバータ24a、24b及び24cにわたって接続され、ユーティリティ・インタフェース電力コンバータ3によって供給される。DCリンクコンデンサ28は、振幅1kVのDC電圧源と考えることができる。
容量性フィルタ配置29が整流段27a、27b、及び27cの後に続き、マグネトロン負荷を駆動するのに必要な電圧を蓄積する。
多相構成の各相は、総電力の3分の1に寄与するので、総電力の全てがただ1つの相によって担われる配置に比べて、半導体デバイス及び共振要素に対する制約が著しく軽減される。インバータ出力における3つの方形波電圧間に互いに120度の位相偏移が設定され、負荷側でリップル相殺を提供するようになっている。
各インバータ24a、24b及び24cの出力は、そのそれぞれの共振回路25a、25b及び25cに印加され、インバータ電圧と電流と間で位相偏移の同調をとる。このことにより、ソフトスイッチング遷移の達成、従って高スイッチング周波数における高変換効率が可能になる。この実施形態において、タンク内に貯蔵されたエネルギーと負荷に供給されるエネルギーとの間の比を定めるタンク品質係数Qは、2.5である。タンク共振周波数は20kHzである。
共振回路25a、25b及び25cは、直列共振直列負荷(SRSL)共振タンクである。SRSL共振タンクは、開路条件下で安全に動作することができる。マグネトロンが導通を開始する前、マグネトロン・インタフェース・コンバータ4から見える有効負荷は、マグネトロン動的抵抗であり、その値は非常に大きいので、これを開路として扱うことができる。この実施形態において、マグネトロン動的抵抗は26kΩである。SRSL共振タンクは、直列共振並列負荷(SRPL)共振タンク配置によって達成されるよりも低い伝導損失及び高い変換効率を提供する。
SRSL共振タンク配置の使用は、マグネトロン・インタフェース・コンバータ4が、マグネトロン電磁石の電流によって設定される異なるV−I曲線にわたる可変の動作点で動作することを可能にする。この実施形態において、例えば、マグネトロン・インタフェース・コンバータ4は、14kVから19kVまでの間、かつ90kWから120kWまでの間で動作する。マグネトロン・インタフェース・コンバータの設計及びコンポーネントの選択は、最大出力電圧を決定する指定されたワーキングポイントから導出される。例えば、Vout=19kVかつPout=120kWにおいて、対応する等価抵抗は3kΩである。マグネトロンが導通を開始した後、電圧は、閾値から指定値又は公称値まで上昇し、負荷抵抗は26kΩから3kΩまで低減することになる。
各HVTRU 26a、26b及び26cは、単一の一次巻線と、複数の二次巻線とを有する。単一の一次巻線の使用は、寄生パラメータを最小限にし、製造を容易にするので、有利である。
HVTRU 26a、26b及び26cは、電圧を、共振回路25a、25b及び25cから、マグネトロン負荷が必要とするレベルまで逓昇する。HVTRU 26a、26b及び26cはまた、共振回路25a、25b及び25cと整流段27a、27b、及び27cとの間に電気絶縁を提供する。3つのHVTRU 26a、26b及び26cの二次巻線電圧は、相間相互作用を完全に減結合することを目的として、それぞれの単相整流段27a、27b、及び27cによって整流される。
SRSL共振回路25a、25b及び25cの各々は、その次のHVTRU 26a、26b及び26cにとっては正弦波電流源に見える。そのため、整流段27a、27b、及び27cの後のフィルタリング段では、キャパシタンスのみが必要とされる。寄生インダクタンスのみが存在するので、誘導的平滑化整流器(inductively smoothed rectifier)を使用する必要はない。
3相が減結合されるので、コンバータは、相障害をライドスルー(ride through)することができる。例えば、相Bが壊れた場合、コンバータは、相A及び相Cのみで動作することができ、より低い電圧出力を生成する。DCリンクが健全であり、かつ故障した相の整流器内に電流をバイパスする健全なアームが存在する条件で、例えば図6(この場合には相Bが故障しており、バイパス路は破線で示される)に示すような条件で、相の障害はどこであってもよい。
図7は、図5に示す配置の一部を示し、図7bは、1つの分岐についての容量性フィルタ配置29の一部の拡大図である。HVTRU 26aの複数の二次巻線30a、30b及び30cの各々は、それぞれの全ブリッジ・ダイオード整流器31a、31b ...31nに接続され、これらはその出力間にキャパシタンス32a、32b ...32nを有する。キャパシタンス32a、32b ...32nは、直列に接続される。他の2つの分岐は、同じコンデンサ構成を有し、3つの分岐用のキャパシタンスの全てがマグネトロン負荷の両端にわたって直列に接続される。
マグネトロン1によって生成されるRF出力の品質は、マグネトロン1に印加される電流のリップル及び変動に直接影響を受ける。閉ループ電流制御配置を用いて、マグネトロン負荷に供給される出力電力を制御する。出力電流制御及び保護での使用のために5つの電流変数が測定される。すなわち、マグネトロン1に供給されるマグネトロン・インタフェース電力コンバータ4の出力電流、DCリンク14によって提供される全電流、並びに3つの共振回路又はタンク25a、25b及び25cを通って流れる電流である。測定値は、光学トランスデューサ又は他の適切なトランスデューサを用いて取得され、分離されスケール変更された測定信号は、図4に関して前述したFPGA20及びプロセッサ21とインタフェースする。DCリンク電圧は、ユーティリティ・インタフェース電力コンバータ3によって監視され及び調節される。DCリンク14の電圧レベル及び出力電流要求を用いて、インバータ24a、24b及び24cのIGBTスイッチに対する対応するゲート信号がFPGA20及びプロセッサ21によって決定され、FPGA20及びプロセッサ21は、図5において破線で示される光ファイバ・ラインを介してインバータ24a、24b及び24cのIGBTスイッチのゲート駆動回路に制御信号を伝送する。
マグネトロン1は、マグネトロン電磁石の電流を制御することによって、異なるV−I曲線に沿って動作することができる。マグネトロン1の電磁石電流及び目標RF出力電力を一緒に用いて、対応するマグネトロン電流基準値Ioutput*に到達する。この実施形態においては、2Dルックアップテーブルがグローバル制御ユニット6に含まれ、電磁石電流及び目標RF電力からIoutput*を得るために用いられる。
図8を参照して、高帯域幅電流トランスデューサ33が、マグネトロン負荷1へ流れる電流Ioutputを測定する。測定された電流Ioutputは、比較器34においてIoutput*と比較されて誤り信号を与え、これがプロポーショナル・インテグラル(PI)コントローラ35に伝送される。PIコントローラ35の出力は、変調指数計算器36に印加され、変調指数計算器36はまた、37においてDCリンク14の実際の電圧を受け取り、これら入力を用いて、対応するコンバータ変調指数(MI)を次式から計算し、
Figure 2019525700
ここでQはタンクの品質係数であり、Fはスイッチング周波数とタンク共振周波数との間の比であり、φはタンク入力電圧と電流との間の位相である。
得られた変調指数MIは、複合周波数及び位相偏移変調(CFPM)変調器38に伝送され、これがゲート信号発生器39を制御して、Hブリッジ・インバータ24a、24b及び24cの全てのIGBTスイッチのソフトスイッチングを達成する。
複合周波数及び位相偏移変調の使用は、IGBTスイッチのソフトスイッチングの達成を可能にし、それにより高変換効率を保証する。
Hブリッジ・インバータ24a、24b及び24cのうちの1つを図9aに示す。図9bは、インバータ24a、24b及び24cの3相構成及び出力を示す。図10は、図9aを参照してCFPM変調の概念及びスイッチング波形を示し、ここでVdcはDCリンク電圧を表し、VAN及びVBNは各インバータレッグからの出力電圧を表し、VAB及びVABfは、タンク入力電圧及びその基本成分を表し、ITはタンク電流を表し、IT1、IT2、IT3、IT4、ID3及びID4は、それぞれIGBT T1、T2、T3、T4、ダイオードD3及びD4を通って流れる電流を表す。
インバータ24a、24b及び24cのうちの1つの、2つのHブリッジ半部分の位相偏移がタンク入力電圧と電流との間の位相偏移の2倍に設定されている場合(すなわちΦ=2φ)、IGBT T1及びT2は、常にタンク電流のゼロ交差点でオン及びオフに切り換わり、IGBT T3及びT4は、ソフト・ターンオン及びハード・ターンオフを有する。スナバ・キャパシタは、電圧の上昇速度を遅くして、ゼロ電圧スイッチング(ZVS)に極めて近い動作を達成する。それゆえ、システムが指定されたワーキングポイントにおいて動作しているとき、インバータ24a、24b及び24cの全てのIGBTスイッチにおいてフルパワーでのソフトスイッチングが達成され、品質係数Qが実質的に一定になる。
共振タンク電流がタンク入力電圧より進んでいるか又は遅れているとき、ソフトスイッチングの損失が存在し得る。ゼロ電流スイッチング(ZCS)トラッキング配置は、ソフトスイッチングが回復されることを可能にする。図11を参照すると、CFPM変調器38は、周波数計算器40、位相偏移計算器41、及び三角波発生器42を含み、三角波発生器42の出力は、39においてゲート信号を生成するのに使用される。
電流トランスデューサは、共振タンク電流情報を検出する。共振タンク電流の値をHブリッジゲート信号と共に用いて、タンク電圧と電流との間の実際の状態を判定することができる。この入力を用いて、(ZCS)トラッキング配置43は、補償周波数成分を生成する。補償周波数成分は、三角波発生器42に注入され、スイッチング周波数を上げる又は下げることによってスイッチング周波数を調整するように作用する。トラッキング配置の作用は、制御ループの作用に比べて遅く、それゆえコンバータの動作に対するその影響は低い。
別の実施形態において、トラッキング・システムは含まれない。
図中に示された種々の要素の機能は、「プロセッサ」と表示された機能ブロックを含めて、専用ハードウェア、並びに適切なソフトウェアと関連してソフトウェアを実行可能なハードウェアの使用を通じて提供することができる。プロセッサ及び他のコンポーネントは、暗黙的に、制限なしにかつ適切な場合、デジタル信号プロセッサ(DSP)ハードウェア、ネットワークプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラム可能ゲートアレイ(FPGA)、ソフトウェアを格納するための読出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び不揮発性ストレージを含むことができる。他のハードウェアも、従来のもの及び/又はカスタムのものを、含めることができる。
本発明は、その精神又は本質的な性質から逸脱することなく、他の特定の形態で具体化することができる。説明した実施形態は、あらゆる点で単なる例証であるとみなすべきであり、制限的であるとみなすべきではない。本発明の範囲は、従って、上記説明によってではなく添付の特許請求の範囲によって示されるものである。特許請求の範囲の均等の意味及び範囲内の全ての変更は、それらの範囲内に包含されるべきものである。
1:マグネトロン
2:プライム電力源
3:ユーティリティ・インタフェース電力コンバータ
4:マグネトロン・インタフェース電力コンバータ
5、7、8:ライン
6:グローバル制御ユニット
9:電力供給ユニット(PSU)コントローラ
10:マグネトロン・ヒータPSU
11:マグネトロン電磁石PSU
14:DCリンク
21:プロセッサ
22:予備充電回路
23:放電回路
24a、24b、24c:インバータ
25a、25b、25c:共振回路又はタンク
26a、26b、26c:高電圧変圧器ユニット(HVTRU)
27a、27b、27c:整流段
28:DCリンクコンデンサ
29:容量性フィルタ配置

Claims (18)

  1. 高周波数高電力コンバータシステムであって、
    並列に配置された複数の共振タンク回路と、
    各変圧器が単一の一次巻線と複数の二次巻線とを有する複数の変圧器と、
    真空電子デバイスと、を含み、
    各共振タンク回路の出力がそれぞれ異なる変圧器に印加され、前記変圧器の出力が前記真空電子デバイスを駆動するように配置されている、システム。
  2. 前記真空電子デバイスはマグネトロンである、請求項1に記載のシステム。
  3. 前記マグネトロンは連続波出力を有する、請求項2に記載のシステム。
  4. 前記複数の共振タンク回路の各々が、直列共振直列負荷共振タンクである、請求項1〜3のいずれかに記載のシステム。
  5. 複数のインバータ回路を含み、各インバータ回路は、複数の半導体スイッチを含み、前記複数のインバータ回路のそれぞれ異なるインバータが前記複数の共振タンク回路の各々の入力に接続される、請求項1〜4のいずれかに記載のシステム。
  6. 前記複数のインバータ回路の各々が、Hブリッジとして接続された4つの半導体スイッチを含む、請求項5に記載のシステム。
  7. 前記半導体スイッチがIGBTスイッチである、請求項5又は6に記載のシステム。
  8. 前記インバータ回路は、前記半導体スイッチの実質的ゼロ電流ソフトスイッチングを提供するように制御される、請求項5〜7のいずれかに記載のシステム。
  9. 前記インバータ回路を制御して実質的ゼロ電流ソフトスイッチングを提供するための複合周波数及び位相偏移変調CFPMを含む、請求項8に記載のシステム。
  10. CFPMを適用するために用いられる変調指数MIを計算するための変調指数計算器を含み、ここで
    Figure 2019525700
    であり、ここでQはタンクの品質係数であり、Fはスイッチング周波数とタンク共振周波数との間の比である、請求項9に記載のシステム。
  11. 前記半導体スイッチの実質的ゼロ電流ソフトスイッチングからの逸脱を打ち消すためのトラッキング配置を含む、請求項8〜10のいずれかに記載のシステム。
  12. 前記トラッキング配置が、前記半導体スイッチの実質的ゼロ電流ソフトスイッチングを提供するための補正周波数を生成する、請求項11に記載のシステム。
  13. 前記複数の二次巻線の各二次巻線に接続されたそれぞれの高電圧整流器を含む、請求項1〜12のいずれかに記載のシステム。
  14. 各高電圧整流器の出力間にキャパシタンスが接続されており、前記キャパシタンスは、互いに直列に接続されている、請求項13に記載のシステム。
  15. 3つの変圧器が含まれ、前記3つの変圧器の一次巻線に印加される電圧が互いに120度位相偏移している、請求項1〜14のいずれかに記載のシステム。
  16. 一次電力を受け取るための入力と、共通DCリンクを介して複数の共振回路へ電力を印加するための出力とを有する、ユーティリティ・インタフェース電力コンバータを含む、請求項1〜15のいずれかに記載のシステム。
  17. 前記ユーティリティ・インタフェース電力コンバータが複数の固体スイッチを含み、パルス幅変調を用いて前記スイッチの状態を制御するためのコントローラを含む、請求項16に記載のシステム。
  18. 電力レベルが約100kWであり、スイッチング周波数が数十kHzであり、フルパワーにおけるタンク品質係数が約2.5である、請求項1〜17のいずれかに記載のシステム。
JP2018568704A 2016-06-30 2017-06-29 高周波数高電力コンバータシステム Pending JP2019525700A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1611493.6A GB2551824A (en) 2016-06-30 2016-06-30 High frequency high power converter system
GB1611493.6 2016-06-30
PCT/GB2017/051894 WO2018002619A1 (en) 2016-06-30 2017-06-29 High frequency high power converter system

Publications (1)

Publication Number Publication Date
JP2019525700A true JP2019525700A (ja) 2019-09-05

Family

ID=56891348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568704A Pending JP2019525700A (ja) 2016-06-30 2017-06-29 高周波数高電力コンバータシステム

Country Status (11)

Country Link
US (1) US20190157980A1 (ja)
EP (1) EP3479652A1 (ja)
JP (1) JP2019525700A (ja)
KR (1) KR20190021363A (ja)
CN (1) CN109964537A (ja)
AU (1) AU2017287807A1 (ja)
CA (1) CA3029195A1 (ja)
GB (1) GB2551824A (ja)
MX (1) MX2019000292A (ja)
WO (1) WO2018002619A1 (ja)
ZA (1) ZA201900276B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
CN108347184A (zh) * 2018-01-30 2018-07-31 安徽省金屹电源科技有限公司 一种煤粉锅炉点火用等离子体柜专用电源
PL3599376T3 (pl) * 2018-07-24 2021-12-13 General Electric Renovables España S.L. Turbiny wiatrowe i sposoby
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
KR20230025034A (ko) 2018-08-10 2023-02-21 이글 하버 테크놀로지스, 인코포레이티드 RF 플라즈마 반응기용 플라즈마 시스(sheath) 제어
US20200373114A1 (en) * 2019-05-24 2020-11-26 Eagle Harbor Technologies, Inc. Klystron Driver
CN112436729B (zh) * 2019-08-26 2022-09-27 哈尔滨工业大学 一种基于谐振式dc-dc变换器调功的感应加热装置
TWI778449B (zh) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 高電壓脈衝電路
KR20230150396A (ko) 2019-12-24 2023-10-30 이글 하버 테크놀로지스, 인코포레이티드 플라즈마 시스템을 위한 나노초 펄서 rf 절연
US11088625B1 (en) * 2020-05-26 2021-08-10 Institute Of Electrical Engineering, Chinese Academy Of Sciences Three-phase CLLC bidirectional DC-DC converter and a method for controlling the same
US11290022B2 (en) * 2020-09-01 2022-03-29 Virginia Tech Intellectual Properties, Inc. Bidirectional architectures with partial energy processing for DC/DC converters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222444A (ja) * 1994-02-01 1995-08-18 Hitachi Medical Corp Dc−dcコンバータ
JP2002101661A (ja) * 2000-09-21 2002-04-05 Origin Electric Co Ltd 電力コンバータ
JP2002171766A (ja) * 2000-11-30 2002-06-14 Fuji Electric Co Ltd 共振形インバータ
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2010200412A (ja) * 2009-02-23 2010-09-09 Fanuc Ltd Pwm整流器
US20160021726A1 (en) * 2014-07-21 2016-01-21 Drgem Corp. High-frequency wave type of x-ray generator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940008029B1 (ko) * 1991-06-28 1994-08-31 삼성전자 주식회사 마그네트론 구동용 전원장치
US5587892A (en) * 1994-10-04 1996-12-24 Delco Electronics Corp. Multi-phase power converter with harmonic neutralization
GB9607381D0 (en) * 1996-04-04 1996-06-12 Council Cent Lab Res Councils Dc power converter
CN1178371C (zh) * 1997-02-25 2004-12-01 松下电器产业株式会社 高频加热设备
TW569651B (en) * 2002-07-05 2004-01-01 Delta Electronics Inc High-frequency heating device
US8134851B2 (en) * 2003-11-04 2012-03-13 International Rectifier Corporation Secondary side synchronous rectifier for resonant converter
US7283379B2 (en) * 2005-01-07 2007-10-16 Harman International Industries, Incorporated Current controlled switch mode power supply
JP4301342B2 (ja) * 2007-12-18 2009-07-22 サンケン電気株式会社 Dc/dcコンバータ
KR101658783B1 (ko) * 2010-05-26 2016-09-23 삼성전자주식회사 영전류 검출 회로를 포함하는 전력 변환기 및 전력 변환 방법
US8664871B2 (en) * 2010-07-26 2014-03-04 Heraeus Noblelight Fusion Uv Inc. High voltage power supply for powering a magnetron in a UV curing lamp assembly
US8488340B2 (en) * 2010-08-27 2013-07-16 Flextronics Ap, Llc Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit
JP5955520B2 (ja) * 2011-09-09 2016-07-20 東京エレクトロン株式会社 マイクロ波処理装置およびその制御方法
RU2631664C2 (ru) * 2012-06-19 2017-09-26 Конинклейке Филипс Н.В. Режимы управления для резонансного преобразователя постоянного тока
US9263961B2 (en) * 2013-07-23 2016-02-16 Raytheon Company Wide input DC/DC resonant converter to control reactive power
US9461553B2 (en) * 2013-11-21 2016-10-04 Majid Pahlevaninezhad High efficiency DC/DC converter and controller
US9584029B2 (en) * 2014-06-02 2017-02-28 Utah State University Multi-mode control for a DC-to-DC converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222444A (ja) * 1994-02-01 1995-08-18 Hitachi Medical Corp Dc−dcコンバータ
JP2002101661A (ja) * 2000-09-21 2002-04-05 Origin Electric Co Ltd 電力コンバータ
JP2002171766A (ja) * 2000-11-30 2002-06-14 Fuji Electric Co Ltd 共振形インバータ
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2010200412A (ja) * 2009-02-23 2010-09-09 Fanuc Ltd Pwm整流器
US20160021726A1 (en) * 2014-07-21 2016-01-21 Drgem Corp. High-frequency wave type of x-ray generator

Also Published As

Publication number Publication date
GB2551824A (en) 2018-01-03
MX2019000292A (es) 2019-12-16
KR20190021363A (ko) 2019-03-05
GB201611493D0 (en) 2016-08-17
EP3479652A1 (en) 2019-05-08
AU2017287807A1 (en) 2019-01-24
CN109964537A (zh) 2019-07-02
ZA201900276B (en) 2021-06-30
CA3029195A1 (en) 2018-01-04
US20190157980A1 (en) 2019-05-23
WO2018002619A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP2019525700A (ja) 高周波数高電力コンバータシステム
RU2460197C2 (ru) Источник бесперебойного питания (ибп) с чистыми входами, с быстродействующим регулированием выпрямителя и увеличенным сроком службы аккумуляторной батареи
RU2499349C2 (ru) Блок управления силовым инвертором преобразования постоянного тока в переменный ток схемы резонансного силового преобразователя, в частности преобразователя постоянного тока в постоянный ток, для использования в цепях генератора высокого напряжения современного устройства компьютерной томографии или рентгенографической системы
US9634576B2 (en) System and method for unified common mode voltage injection
JP5059879B2 (ja) 三相で高電力の無停電電源
JP6335889B2 (ja) 共振型dc−dcコンバータのための制御モード
CN110048617B (zh) 分相功率转换装置、方法和系统
US10141851B2 (en) Resonant DC to DC power converter
US20150194885A1 (en) Method for producing an output voltage and assembly for performing the method
RU2629005C2 (ru) Преобразовательный узел с параллельно включенными многоступенчатыми полупроводниковыми преобразователями, а также способ управления им
Banaei et al. Mitigation of voltage sag, swell and power factor correction using solid-state transformer based matrix converter in output stage
Liang et al. A six-switch solid state variable capacitor with minimum DC capacitance
JP5708988B2 (ja) 高周波電源装置
Bhaskar et al. Dual pid loop controller for HF link inverter in two-stage SST
KR102328616B1 (ko) 기존의 배전용 변압기에 작은 전력 변환기를 추가한 지능형 변압기 토폴로지
Davari et al. A smart current modulation scheme for harmonic reduction in three-phase motor drive applications
Kishan et al. Paralleling of inverters with dynamic load sharing
Pandurengan et al. Five-level transformerless common ground type inverter with reduced device count
Jang et al. Design of High-efficiency Soft-switching Converters for High-power Microwave Generation
WO2023214462A1 (ja) 電力変換装置
Xing et al. A novel control method for neutral point clamped inverters with a single Z-source network
Lambert et al. Simplified modeling and control of a high-power high-voltage isolated dc-dc converter
Palanisamy et al. A transformerless three‐level three‐phase boost PWM inverter for PV applications
Mollov et al. A frequency multiplication resonant inverter with constant frequency phase control
Hameed et al. A Reduced Switch Multiport AC-DC Converter with Galvanically Isolated Auxiliary DC Port

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211115