JP2019517236A - 部分ステップ機能及び保持ステップ機能を備えたアキシャル型ブラシレスdcモータ - Google Patents

部分ステップ機能及び保持ステップ機能を備えたアキシャル型ブラシレスdcモータ Download PDF

Info

Publication number
JP2019517236A
JP2019517236A JP2018560641A JP2018560641A JP2019517236A JP 2019517236 A JP2019517236 A JP 2019517236A JP 2018560641 A JP2018560641 A JP 2018560641A JP 2018560641 A JP2018560641 A JP 2018560641A JP 2019517236 A JP2019517236 A JP 2019517236A
Authority
JP
Japan
Prior art keywords
rotor
coil
coil phase
motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018560641A
Other languages
English (en)
Inventor
キング,ユランダ
カルキンス,スコット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTS Corp
Original Assignee
CTS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTS Corp filed Critical CTS Corp
Publication of JP2019517236A publication Critical patent/JP2019517236A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/22Control of step size; Intermediate stepping, e.g. microstepping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/125Magnet axially facing armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/42Arrangements for controlling dynamo-electric motors rotating step by step characterised by non-stepper motors being operated step by step
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Stepping Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Brushless Motors (AREA)

Abstract

複数のコイルを含むステータと、磁極の複数の対を備える磁石を含み、1つまたは複数のフルステップにおいてステータに対して移動するように適合されたロータと、1つまたは複数のフルステップより小さい部分ステップにおいてロータをステータに対して移動させる、及び/または部分ステップまたは1つまたは複数のフルステップにおいてロータを保持するように適合されたコイル相回路とを備えるアキシャル型ブラシレスDCモータ。【選択図】図1

Description

関連出願の相互参照
本特許出願は、2016年2月5日に提出された米国特許出願シリアル番号15/017,237の優先権及びその出願日の利益を主張し、またその部分継続出願であり、その開示及び内容は、参照によりその全体が本明細書に明白に組み込まれている。
本特許出願はまた、2016年5月19日に提出された米国仮特許出願シリアル番号62/338,780の優先権及びその出願日の利益を主張しており、その開示及び内容は、参照によりその全体が本明細書に明白に組み込まれている。
発明の分野
本発明は一般に、電気モータに関し、詳細には、部分ハーフ機能、保持機能、及びマイクロステッピング機能を備えたアキシャル型ブラシレスDCモータに関する。
本発明は、King等に対する米国特許公開第2016/0241107号に開示されるタイプのアキシャル型ブラシレス電気モータを対象としており、その開示及び内容は全て、あたかも本明細書に全面的に記載されるように、参照により本明細書に組み込まれている。
よりコスト効果の高いアキシャル型ブラシレスモータに対する要望が依然としてある。
本発明は、米国特許公開番号第2016/0241107号に開示されるタイプのアキシャル型ブラシレス電気モータに、部分ハーフ機能要素、保持機能要素、及びマイクロステップ機能要素を加えることによってこのような要望を満足させる、または有利に分解能を高め、かつ共振を抑える目的を満たす。
本発明は、複数のコイルを含むステータと、磁極の複数の対を備える磁石を含み、1つまたは複数のフルステップにおいてステータに対して移動するように適合されたロータと、1つまたは複数のフルステップより小さい部分ステップにおいてロータをステータに対して移動させる、及び/または1つまたは複数の部分ステップあるいは1つまたは複数のフルステップにおいてロータを保持するように適合されたコイル相回路(coil phase circuit)とを備えるアキシャル型ブラシレスDCモータを概ね対象としている。
一実施形態において、コイル相回路は、モータの作動中、ロータの磁極の複数の対の1つまたは複数の配向を切り換え、1つまたは複数のフルステップにおけるハーフステップにおいてロータを保持するように適合された3相回路である。
一実施形態において、コイル相回路は、モータの作動中、ロータの磁極の複数の対の1つまたは複数の配向を切り換え、部分ステップまたは1つまたは複数のフルテップにおいてロータを保持するように適合された3相コイル回路である。
一実施形態において、コイル相回路は、1相コイル回路と、1相コイルに結合されたモータブリッジと、モータブリッジに結合されたモータサプライと、モータブリッジに結合されたマイクロプロセッサと、1つまたは複数のフルステップにおけるマイクロステップにおいてモータの作動中ロータを移動させるためにマイクロプロセッサに結合されたホール効果センサとを含む。
一実施形態において、コイル相回路は、1つまたは複数のフルステップにおいて、モータの作動中マイクロステップにおいてロータを移動させるために接地に結合された共通の接合部において併せて結合された複数のコイル回路部分を含む。
本発明はまた、複数のコイルを含むステータと、磁極の複数の対を備える磁石を含み、フルステップ位置においてステータに対して移動するように適合されたロータと、共通の中央の接続地点で直列に接続された第1の、第2の及び第3のコイル相部分を含むコイル相回路であって、コイル相部分の各々は、平行に構成された一対のコイルを含んでおり、電流が、フルステップ位置より小さい部分ステップ位置においてステータに対してロータを移動させるため、及び/または部分ステップ位置またはフルステップ位置においてロータを保持するために、磁石の磁極の複数の対の1つまたは複数の配向を切り換えるように適合された方式でコイル相回路を通って流れるように適合されているコイル相回路とを備えるアキシャル型ブラシレスDCモータを対象としている。
一実施形態において、ロータは、電流の流れを、共通の中心の接続地点を通る、第1のコイル相部分と、第3のコイル相部分との間から、共通の中心の接続地点を通る、第2のコイル相部分と、第3のコイル相部分との間に切り換えることによって、最初の駆動位置から、フルステップ位置より小さい部分ステップ位置になるように可動である。
一実施形態において、ロータは、電流の流れを、共通の中心の接続地点を通る、第1のコイル相部分と、第3のコイル相部分との間から、共通の中心の接続地点を通る、第1のコイル相部分及び第2のコイル相部分と、第3のコイル相部分との間に切り換えることによって、最初の駆動位置から、フルステップ保持位置になるように可動である。
本発明はまた、複数のコイルを含むステータと、磁石を含み、フルステップ位置または部分ステップ位置においてステータに対して移動するように適合されたロータと、共通の中心の接続地点で直列に併せて結合された第1の、第2の及び第3のコイル相部分を含むコイル相回路であって、第1の、第2の及び第3のコイル相部分の各々は、平行に結合された一対のコイルを含んでおり、最初の駆動位置と、フルステップ保持位置または部分ステップ保持位置との間でステータに対してロータを移動させるために通電可能であるコイル相回路とを備えるアキシャル型ブラシレスDCモータを対象としている。
一実施形態において、ロータは、電流の流れを、コイル相回路の第1のコイル相部分、第2のコイル相部分及び第3のコイル相部分を通るように切り換えることによって、最初の駆動位置と、フル保持位置または部分的保持位置との間でステータに対して可動である。
一実施形態において、ロータは、電流が、共通の中心の接続地点を通って、第1のコイル相部分と、第3のコイル相部分を通って流れる最初の駆動位置から、電流の流れが、第2のコイル相部分及び第3のコイル相部分を通って流れるように切り換えられる部分保持ハーフステップ位置まで可動である。
一実施形態において、ロータは、電流が、共通の中心の接続地点を通って、第1のコイル相部分と、第3のコイル相部分を通って流れる最初の駆動位置から、電流の流れが、第1のコイル相部分及び第2のコイル相部分の両方を通って、共通の中心の接続地点を通って第3のコイル相部分へと流れるように切り換えられるフルステップ保持位置まで可動である。
本発明の他の利点及び特徴も存在しており、これらは以下の本発明の実施形態の説明、図面及び添付のクレームからより容易に明らかになるであろう。
明細書の一部を形成する添付の図面において、その全体を通して同様の部分を指すのに同様の参照符号が利用される。
本発明による部分ステップ機能、マイクロステップ機能及び保持ステップ機能を内蔵するアキシャル型ブラシレスDCモータの斜視図である。 図1に示されるアキシャル型ブラシレスDCモータの垂直方向の断面図である。 図1に示されるアキシャル型ブラシレスDCモータの部分組立斜視図である。 図3Aは、アキシャルモータのロータの最初の駆動位置における、アキシャルモータのステータと、ロータの位置の簡素化された平面図である。図3Bは、アキシャルモータのロータの最初の駆動位置におけるアキシャルモータのステータコイル相回路を通る電流の流れを描く概略図である。図3Cは、アキシャルモータのロータの最初の駆動位置におけるアキシャルモータのロータ磁極の配向の概略図である。 図4Aは、アキシャルモータのロータのハーフステップ位置における、アキシャルモータのステータと、ロータの位置の簡素化された平面図である。図4Bは、アキシャルモータのロータのハーフステップ位置におけるアキシャルモータのステータコイル相回路を通る電流の流れを描く概略図である。図4Cは、アキシャルモータのロータのハーフステップ位置におけるアキシャルモータのロータ磁極の配向の概略図である。 図5Aは、アキシャルモータのロータのハーフステップ位置における、アキシャルモータのステータと、ロータの位置の簡素化された平面図である。図5Bは、アキシャルモータのロータのハーフステップ位置におけるアキシャルモータのステータコイル回路を通る電流の流れを描く概略図である。図5Cは、アキシャルモータのロータのハーフステップ位置におけるアキシャルモータのロータ磁極の配向の概略図である。 図6Aは、アキシャルモータのロータのフルステップ保持位置における、アキシャルモータのステータと、ロータの位置の簡素化された平面図である。図6Bは、キシャルモータのロータのフルステップ保持位置におけるアキシャルモータのステータコイル相回路を通る電流の流れを描く概略図である。図6Cは、アキシャルモータのロータのフルステップ保持位置におけるアキシャルモータのロータ磁極の配向の概略図である。 マイクロステッピングモータ駆動装置と、ステータコイル相回路のブロック図である。 接地接続を有するマイクロステッピングステータコイル相回路の概略図である。
図1、図2及び図2Aは、本発明による部分ステップ機能、保持ステップ機能及びマイクロステップ機能を内蔵するアキシャル型ブラシレスDCモータ10を描いており、これは、King等に対する米国特許公開第2016/0241107号に開示され、かつCTS社に譲渡されたタイプ及び構造であり、この特許の開示及び内容は全て、あたかも本明細書に全面的に記載されるように、本出願に組み込まれ、その一部を形成している。
アキシャル型ブラシレスDCモータ10は、米国特許出願公開第2016/0241107号により詳細に記載され、あたかも本明細書に全面的に記載されるように参照により本明細書に組み込まれる要素の中でもとりわけ、ステータまたはステータ組立体12と、ロータまたはロータ組立体14と、内部の細長い貫通孔40を画定する細長い略円筒形のスリーブブッシュ16と、スリーブブッシュ16の下方端部に設置された玉軸受18と、スリーブブッシュ16の上方端部に設置された推力軸受20と、細長いモータシャフト21とを備える。図示される実施形態では、アキシャル型ブラシレスDCモータ10は、3相8極6スロットのアキシャル型ブラシレスDCモータである。
ステータ組立体12は、中央の貫通孔または開口23を画定するディスクの形態及び形状の平坦なベース22と、その中央の貫通孔23を画定するベース22の内壁によって画定される内部の円周方向の肩部24と、各々が複数のモータ設置用の貫通孔13aを画定している複数の周辺部のモータ設置用ブラケット13とを含む。
図示される実施形態では、ベース22は、粉末金属から作成される。複数の、すなわち、図1、図2及び図3の実施形態では6つのステータアーマチュアポスト25が、ベース22の内側面から一体となって垂直に上向きかつ外向きに突出している。図示される実施形態では、アーマチュアポスト25は概ね三角形の形状であり、互いに対して、及び中央の貫通孔または開口23に対して離間される関係で、中央の貫通孔または開口23を取り囲むように1周全体に延在する。
ステータ組立体12はまた、複数のボビン26が複数のポスト25をそれぞれ取り囲む関係で、複数のポスト25に接してそれぞれ設置された複数の細長い熱可塑性ボビン26も含んでいる。
複数の電気コイルパック28が、複数のボビン26をそれぞれ取り囲んでいる。ボビン26及びコイルパック28は、ボビン26と、コイル28の各々の間にスロットまたは隙間30が画定されるように互いに対してベース22上に位置決めされる。図示される実施形態は、6つのスロットまたは隙間30を画定している。
ロータ組立体14は、中央の貫通孔または開口34を画定するディスクの形態及び形状の平坦なベース32を含む。ベース32は、粉末金属から作成される。平坦な磁石36が、ロータベース32の底面38の外側面に当接して据えられる。図示される実施形態において、磁石36は、ディスクの形態及び形状であり、ロータベース32内に画定された中央の貫通孔または開口34より大きな直径を有し、かつそこから離間された中央の貫通孔または開口39を画定している。図示される実施形態では、磁石36は、圧縮ボンドされたネオフェライト材料で作成され、N−S磁極の複数の対で構成されており、さらにより具体的には、8つの交互に配置されたN−S極を備えた磁石36である。
ロータ組立体14及びステータ組立体12は、ロータ組立体14の磁石36の外側の底面が、ステータ組立体12のアーマチュアポスト25の外側の頂面、ボビン26及びコイル28と向かい合わせに、そこから離間され、かつそれらと平行して位置決めされた状態の重なり合う関係で、かつさらにステータ組立体12のベース22から離間され、それと平行する関係で互いに対して位置決めされている。このような関係において、コイル28の2つの対(または4つのコイルまたは2相)は、任意の通信段階においてロータ組立体14及び磁石36の回転に応答して通電される。
スリーブブッシュ16、軸受18及び20、ならびにモータシャフト21は、ステータ組立体12のベース22及びロータ組立体14に概ね垂直の関係で配向されており、モータシャフト21の回転に応答して、ステータ組立体12に対するロータ組立体14の回転を可能にする関係で組み立てられている。
具体的には、図示される実施形態では、スリーブブッシュ16の下方端部は、スリーブブッシュ16がステータ組立体12のベース22から上向きかつ外向きに概ね垂直に延在する関係で、かつさらにアーマチュアポスト25、ボビン26及び電気コイルパック28がそれぞれスリーブブッシュ16を取り囲み、そこから離間される関係で、ステータ組立体12のベース22内に画定された開口23内へと延出し、ステータ組立体12の中心にスリーブブッシュ16を設置するためにベース22の内部に画定された肩部24に当接するように据えられる。
モータシャフト21は、スリーブブッシュ16の内部を貫通して延在し、ステータ12のベース22内に画定された内部貫通孔23を貫通して延在する下方端部を含んでおり、これによりステータ組立体12のベース22に垂直な関係で配向され、位置決めされる。
玉軸受18及び推力軸受20は、モータシャフト21を、スリーブブッシュ16と、ステータ組立体12のベース22の両方に対して回転するようにスリーブブッシュ16に取り付ける。
具体的には、図示される実施形態では、玉軸受18は、スリーブブッシュ16の下方端部内に配置され、この下方端部に形成された鍔42に当接するように位置決めされ、モータシャフト21の下方端部を、スリーブブッシュ16の下方端部と、ステータ12のベース22の両方に対して回転するようにスリーブブッシュ16の下方端部に取り付けるためにモータシャフト21の下方端部を取り囲んでいる。
推力軸受20は、スリーブブッシュ16の上方端部に形成された鍔44の中に据えられ、モータシャフト21の上方端部を、スリーブブッシュ16の上方端部に対して回転するように取り付けるためにモータシャフト21の上方端部を取り囲んでいる。
ロータ14のベース32は、モータシャフト21の上方端部に取り付けられ、それを取り囲んでいる。磁石36は、ロータ14のベース32の下面に取り付けられ、モータシャフト21の上方端部を取り囲み、そこから離間されている。
本発明によると、ロータ14は、標準的なフルステップにおいてのみならず、以下でより詳細に考察されるように部分ハーフステップまたはマイクロステップにおいても、何らかのフィードバックセンサを有して、またはそれなしで、ステータ12に対して移動し、モータシャフト21の上方端部を中心に回転するように設計される。
図3B、図4B、図5B及び図6Bは、ステータ組立体12の3相コイル回路50を描いており、これは図示される実施形態では、平行に配置されたコイル28の第1の対を含む1相Uコイル回路部分50aと、平行に配置されたコイル28の第2の対を含む第2の相Wコイル回路分50bと、平行に配置されたコイル28の第3の対を含む第3の相Vコイル回路部分50cとで構成された概ね「Y字」形の回路である。
相U回路50a及びコイル28は、数字52によって全体的に指示される共通の接続地点において相W回路50b及び相V回路50cの両方ならびにコイル28と直列に結合されている。
図3A、図3B及び図3Cはそれぞれ、モータ10のロータ14の最初の始動駆動位置における、モータ10のロータ位置、3相ステータコイル回路50及びロータ磁極の配向を描いている。
より具体的には、図3Aは、最初の始動の7.5度の駆動位置におけるロータ14、より具体的にはその磁石36を描いており、図3Bは、全体的に文字Iで指示される、ステータコイル相回路50の相U及び相W部分またはコイル28のセットを通る通電及び電流の流れを描いており、図3Cは、図3Bに描かれるようなコイル28の通電から生じるロータ磁極の配向を描いている。
図4A、図4B及び図4Cは、ステータ組立体12に対するモータ10のロータ14の第1のハーフステップ保持位置における、モータ10のロータ位置、3相ステータコイル回路50及びロータ磁極の配向をそれぞれ描いている。
より具体的には、図4Aは、電流が全体的に文字Iによって指示されており、図3Bに図示されるようなコイルの相U及び相Wのセットではなく、コイル相回路50の相Vコイル及び相Wコイル28を通って流れる、図3Bの通電から図4Bの通電へのコイル28の通電の切り換えから生じる、図3Cのロータ磁極の配向から図4Cのロータ磁極の配向への切り換えに応答して、図3Aに図示されるロータ14の最初の駆動位置に対して7.5度回された、または回転されたロータ14、及びより具体的にはその磁石36を描いている。
なおもより具体的には、図3A及び図4Aにおいて、文字Nと、Sは、ロータ14の磁石36のN極と、S極を指示している。
図3Bにおいて、電流は、文字Iによって全体的に指示されており、相Uコイル回路部分50aから、そこを通り抜けて、共通の中央の接続地点52を経由し、そこを通り抜けて相Wコイル回路部分50cへと流れ、そこを通り抜けて流れるのに対して、図4Bでは、電流は切り換えられており、図3Bに示されるように相Uコイル回路部分50aではなく、相Vコイル回路部分50bから、そこを通り抜けて、共通の中央の接続地点52を経由し、そこを通り抜けて相Wコイル回路部分50cへと流れ、そこを通り抜けて流れる。
図3C及び図4Cにおいて、文字N、S及びOは、ロータ14の磁石36のN極、S極及び中性極をそれぞれ表している。図3Cにおいて、一対のS磁極は、相W及び相W1コイル回路部分と対応付けられており、一対のN磁極は、相U及び相U1コイル回路部分と対応付けられており、一対のO磁極は、相V及び相V1コイル回路部分と対応付けられている。図4Cにおいて、S磁極は、相W及び相W1コイル回路部分と対応付けられており、N磁極は、相V及び相V1コイル回路部分と対応付けられており、O磁極は、相U及び相U1コイル回路部分と対応付けられている。
本発明によると、ロータ14は、コイル通電が、図4Bの通電から図3Bの通電に戻るように切り換えられ、その結果として、ロータ磁極の配向を図4Cの配向から図3Cの配向に戻すように切り換えて、ロータ14を図4Aの位置に対してさらに7.5度移動させる、または回すことで、ロータ14がその完全な15度のステップ回転を完了し、終了することを可能にするまでハーフステップの図4Aの位置に保持される。
本発明によると、ロータ14の15度のフルステップ回転におけるロータ14の7.5度の部分ハーフステップ回転の追加は、少なくとも以下の利点を提供する。すなわちそれが分解能を2倍にし、共振を抑えることによってシステム及びモータの性能を向上させる、それは、モータがより大きな回数のフルステップを有する必要性をなくすコスト効果が高い解決策である、及び位置の誤差が累積されない、といった利点を提供する。
モータ10はまた、図5A、図5B、図5C、図6A、図6B及び図6Cを参照して以下に記載されるように3相モードでのフルステップ保持にも適合されている。
図5A、図5B及び図5Cは、図3A、図3B及び図3Cと同様であり、よって図3A、図3B及び図3Cの先の説明は、図5A、図5B及び図5Cに関して参照によりここに組み込まれている。
図6A、図6B及び図6Cは、文字及び参照符号Iによって全体的に指示される電流が、相Uコイル回路部分50aを通り、共通の接続地点52を経由し、そこを通り抜けて相Wコイル回路部分50cを通って流れる図5Bに描かれる駆動コイル通電回路から、文字及び参照符号0.5Iによって全体的に指示される電流が、相Uコイル回路部分50a及び相Vコイル回路部分50bの両方からそれぞれ、そこを通り抜けて、共通の接続地点52を経由し、そこを通り抜けて相Wコイル回路部分50cへと流れ、そこを通り抜ける図6Bに描かれるコイル通電回路へのコイル相通電回路の切り換えに応答する15度のその回転の後のフルステップ保持位置にあるロータ14を描いている。
コイル通電のパターンのこのような切り換えは、図6Cに描かれるようなロータ磁極の配向の変化または切り換えをもたらし、そこでは、一対のS極は、相W及び相W1コイル回路部分と対応付けられており、N極の第1の対は、U及びU1コイル回路部分と対応付けられており、N極の第2の対は、相V及び相V1コイル回路部分と対応付けられている。
図6Bに描かれるようなステータコイル相回路50の個々の相Uコイル回路部分50a、相Vコイル回路部分50b及び相Wコイル回路部分50cの通電は、ロータ14を図6Aの位置に保持する。図6Bの通電から図4Bに描かれるような通電に戻るようなコイルの通電の切り換えは、ロータ14に対する保持を解放し、上記に記載したようにロータ14のさらなるハーフステップ回転またはフルステップ回転を可能にする。
本発明のモータ10はまた、フルステップにおけるハーフステップ移動の代わりにマイクロステップにも適合される。
一実施形態によると、ロータ14のマイクロステッピングは、図3B、図4B、図5B及び図6Bに描かれる3つの接続されたコイル通電相及び回路を、図7に描かれる3つの別々のコイル通電相または回路100に分離することによって達成されてよく、各々は、平行に結合された一対のコイル28を含む1相コイル回路102と、1相コイル回路102に結合されたモータブリッジ104と、モータブリッジ104に結合されたモータサプライ106と、モータブリッジ104に結合されたマイクロプロセッサ108と、マイクロプロセッサ108に結合されたホール効果センサ(複数可)110とを含んでいる。
別の実施形態によると、ロータ14のマイクロステッピングは、図8において数字150によって全体的に指示される接地接続を、それ以外は図3B、図4B、図5B及び図6Bに描かれる3相コイル回路に対して構造が同一である図8に描かれる3相コイル回路50の共通の地点52に加えることによって達成される場合もある。
これらの実施形態によると、各入力相電流が正弦波形及び余弦波形によって駆動される場合、このときモータ10は、同期方式で作動することができ、マイクロステッピングは、各相における電流の方向と、振幅の両方を制御することによって、及びより具体的には、相コイルを通って流れる電流を、一方向の電流に対する全体または反対方向の電流に対する全体のいずれかの一部分にすることによってモータの分解能を高める技術である。正弦及び余弦マイクロステッピングは、最も一般的な形態であるが、他の波形も同様に使用することができる。
上記に記載したアキシャル型ブラシレスDCモータの多くの変形形態及び修正形態は、本発明の新規の特徴の精神及び範囲から逸脱することなく成し遂げられてよい。本明細書に例示されるアキシャル型ブラシレスDCモータの構造またはステッピング機能に関する限定は意図されていない、または推測されるべきではないことをこれにより理解されたい。当然のことながら、全てのこのような修正形態は、特許請求の範囲内に入るように、添付の特許請求の範囲によって網羅されることが意図される。

Claims (12)

  1. 複数のコイルを含むステータと、
    磁極の複数の対を備える磁石を含み、1つまたは複数のフルステップにおいて前記ステータに対して移動するように適合されたロータと、
    前記1つまたは複数のフルステップより小さい部分ステップにおいて前記ロータを前記ステータに対して移動させる、及び/または前記1つまたは複数の部分ステップあるいは前記1つまたは複数のフルステップにおいて前記ロータを保持するように適合されたコイル相回路と、
    を備える、アキシャル型ブラシレスDCモータ。
  2. 前記コイル相回路は、前記モータの作動中、前記ロータの磁極の前記複数の対の1つまたは複数の配向を切り換え、前記1つまたは複数のフルステップにおけるハーフステップにおいて前記ロータを保持するように適合された3相回路である、請求項1に記載のアキシャル型ブラシレスDCモータ。
  3. 前記コイル相回路は、前記モータの作動中、前記ロータの磁極の前記複数の対の1つまたは複数の配向を切り換え、前記部分ステップまたは前記1つまたは複数のフルステップにおいて前記ロータを保持するように適合された3相コイル回路である、請求項1に記載のアキシャル型ブラシレスDCモータ。
  4. 前記コイル相回路は、1相コイル回路と、前記1相コイルに結合されたモータブリッジと、前記モータブリッジに結合されたモータサプライと、前記モータブリッジに結合されたマイクロプロセッサと、前記1つまたは複数のフルステップにおけるマイクロステップにおいて前記モータの作動中、前記ロータを移動させるために前記マイクロプロセッサに結合されたホール効果センサとを含む、請求項1に記載のアキシャル型ブラシレスDCモータ。
  5. 前記コイル相回路は、前記1つまたは複数のフルステップにおいて、前記モータの作動中、マイクロステップにおいて前記ロータを移動させるために接地に結合された共通の接合部において併せて結合された複数のコイル回路部分を含む、請求項1に記載のアキシャル型ブラシレスDCモータ。
  6. 複数のコイルを含むステータと、
    磁極の複数の対を備える磁石を含み、フルステップ位置において前記ステータに対して移動するように適合されたロータと、
    共通の中央の接続地点で直列に接続された第1の、第2の及び第3のコイル相部分を含むコイル相回路であって、前記コイル相部分の各々は、平行に構成された一対のコイルを含んでおり、電流が、前記フルステップ位置より小さい部分ステップ位置において前記ステータに対して前記前記ロータを移動させるため、及び/または前記部分ステップ位置または前記フルステップ位置において前記ロータを保持するために、前記磁石の磁極の前記複数の対の1つまたは複数の配向を切り換えるように適合された方式で前記コイル相回路を通って流れるように適合されているコイル相回路と、
    を備えるアキシャル型ブラシレスDCモータ。
  7. 前記ロータは、前記電流の流れを、前記共通の中心の接続地点を通る、前記第1のコイル相部分と、前記第3のコイル相部分との間から、前記共通の中心の接続地点を通る、前記第2のコイル相部分と、前記第3のコイル相部分との間に切り換えることによって、最初の駆動位置から、前記フルステップ位置より小さい部分ステップ位置になるように可動である、請求項6に記載のアキシャル型ブラシレスDCモータ。
  8. 前記ロータは、前記電流の流れを、前記共通の中心の接続地点を通る、前記第1のコイル相部分と、前記3のコイル相部分との間から、前記共通の中心の接続地点を通る、前記第1のコイル相部分及び前記第2のコイル相部分と、前記第3のコイル相部分との間へと切り換えることによって、最初の駆動位置から、フルステップ保持位置になるように可動である、請求項6に記載のアキシャル型ブラシレスDCモータ。
  9. 複数のコイルを含むステータと、
    磁石を含み、フルステップ位置または部分ステップ位置において前記ステータに対して移動するように適合されたロータと、
    共通の中心の接続地点で直列に併せて結合された第1の、第2の、及び第3のコイル相部分を含むコイル相回路であって、前記第1の、前記第2の及び前記第3のコイル相部分の各々は、平行に結合された一対のコイルを含んでおり、最初の駆動位置と、フルステップ保持位置または部分ステップ保持位置との間で前記ステータに対して前記ロータを移動させるために通電可能である、前記コイル相回路と、
    を備えるアキシャル型ブラシレスDCモータ。
  10. 前記ロータは、前記電流の流れを、前記コイル相回路の前記第1のコイル相部分、前記第2のコイル相部分及び前記第3のコイル相部分を通るように切り換えることによって、前記最初の駆動位置と、フル保持位置または部分的保持位置との間で前記ステータに対して可動である、請求項9に記載のアキシャル型ブラシレスDCモータ。
  11. 前記ロータは、電流が、前記共通の中心の接続地点を通って、前記第1のコイル相部分及び前記第3のコイル相部分を通って流れる前記最初の駆動位置から、前記電流の流れが、前記第2のコイル相部分及び前記第3のコイル相部分を通って流れるように切り換えられる部分保持ハーフステップ位置まで可動である、請求項10に記載のアキシャル型ブラシレスDCモータ。
  12. 前記ロータは、電流が、前記前記共通の中心の接続地点を通って、前記第1のコイル相部分及び前記第3のコイル相部分を通って流れる前記最初の駆動位置から、前記電流の流れが、前記第1のコイル相部分及び前記第2のコイル相部分の両方を通って流れ、前記共通の中心の接続地点を通って前記第3のコイル相部分へと流れるように切り換えられるフルステップ保持位置まで可動である、請求項10に記載のアキシャル型ブラシレスDCモータ。
JP2018560641A 2016-05-19 2017-05-16 部分ステップ機能及び保持ステップ機能を備えたアキシャル型ブラシレスdcモータ Withdrawn JP2019517236A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662338780P 2016-05-19 2016-05-19
US62/338,780 2016-05-19
US15/596,004 2017-05-16
PCT/US2017/032807 WO2017200980A1 (en) 2016-05-19 2017-05-16 Axial brushless dc motor with fractional and hold step function
US15/596,004 US10454403B2 (en) 2016-02-05 2017-05-16 Axial brushless DC motor with fractional and hold step function

Publications (1)

Publication Number Publication Date
JP2019517236A true JP2019517236A (ja) 2019-06-20

Family

ID=58745528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018560641A Withdrawn JP2019517236A (ja) 2016-05-19 2017-05-16 部分ステップ機能及び保持ステップ機能を備えたアキシャル型ブラシレスdcモータ

Country Status (5)

Country Link
US (1) US10454403B2 (ja)
EP (1) EP3459162A1 (ja)
JP (1) JP2019517236A (ja)
KR (1) KR20190006498A (ja)
WO (1) WO2017200980A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368060B2 (en) 2015-07-29 2022-06-21 Chevron U.S.A. Inc. Motors including tessellating semi-Halbach stators
DE102018113373A1 (de) * 2018-06-05 2019-12-05 Hema Maschinen- Und Apparateschutz Gmbh Antriebsvorrichtung und Drehfenster mit dieser Antriebsvorrichtung
US10892654B2 (en) * 2018-11-09 2021-01-12 Shenzhen Shanxiang Intelligent Technology Enterprise Axial magnetic field motor with grain-oriented silicon steel sheets
US11658530B2 (en) 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction
US20230042319A1 (en) * 2021-08-06 2023-02-09 Regal Beloit America, Inc. Electrical machine including axial flux rotor and coreless stator

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977184A (en) 1933-08-09 1934-10-16 Haydon Arthur William Electric motor and clock
US2699365A (en) 1950-07-28 1955-01-11 Landis & Gyr Ag Magnetic bearing for electricity meters
US2703737A (en) 1952-05-15 1955-03-08 Maytag Co Self-adjusting thrust bearings
US3117268A (en) * 1960-10-26 1964-01-07 Superior Electric Co Electric motor control circuit
DE2321435C2 (de) 1973-04-27 1982-05-06 Siemens AG, 1000 Berlin und 8000 München Anordnung zur Erhöhung der Axialkraft während des Motoranlaufs bei einem Verschiebeanker-Motor mit Käfigläufer
US4223255A (en) 1977-10-28 1980-09-16 Goldman Gary S Electric wheel
JPS5523711A (en) 1978-07-29 1980-02-20 Sony Corp Rotary electric machine
DE2919236C2 (de) 1979-05-12 1982-08-12 Kernforschungsanlage Jülich GmbH, 5170 Jülich Magnetisches Schwebelager für einen Rotor
JPS576591A (en) 1980-06-11 1982-01-13 Japan Servo Co Ltd Direct current brushless motor and drive controller thereof
JPH0622394B2 (ja) 1983-01-14 1994-03-23 ソニー株式会社 3相ブラシレスモータ
US4692674A (en) * 1985-04-26 1987-09-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Brushless DC motor control system responsive to control signals generated by a computer or the like
GB8613789D0 (en) 1986-06-06 1986-07-09 Bonar Bray Ltd Magnetic field sensor coil
US4739867A (en) 1986-06-30 1988-04-26 Aetna Bearing Company Self-aligning bearing
US4902924A (en) 1986-12-19 1990-02-20 Canon Kabushiki Kaisha Brushless motor
JPS63277455A (ja) 1987-05-07 1988-11-15 Shicoh Eng Co Ltd ハイブリツドモ−タ
JPH01315244A (ja) 1987-12-29 1989-12-20 Fujitsu Ltd アキシャルフラックス型ブラシレスモータ
US5514923A (en) * 1990-05-03 1996-05-07 Gossler; Scott E. High efficiency DC motor with generator and flywheel characteristics
US5168187A (en) * 1991-02-20 1992-12-01 Dana Corporation, Warner Electric Brake & Clutch Division Axial pole stepping motor
US5334898A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
JP3768571B2 (ja) 1995-10-06 2006-04-19 日本電産株式会社 スピンドルモータ
FR2754953B1 (fr) 1996-10-21 1999-02-26 Moving Magnet Tech Moteur polyphase, notamment pour l'entrainement d'une aiguille d'un afficheur
TW333724B (en) 1997-03-17 1998-06-11 Ind Tech Res Inst The spindle motor of optic disk driver
US5828151A (en) 1997-08-27 1998-10-27 Cts Corporation Self aligning actuator with low bearing wear
US6348751B1 (en) 1997-12-12 2002-02-19 New Generation Motors Corporation Electric motor with active hysteresis-based control of winding currents and/or having an efficient stator winding arrangement and/or adjustable air gap
DE69926561T2 (de) 1998-03-27 2006-06-08 Isa Innovations Sa Elektromotor
JP2000041368A (ja) 1998-07-17 2000-02-08 Minebea Co Ltd スピンドルモータ
US6441530B1 (en) 2000-12-01 2002-08-27 Petersen Technology Corporation D.C. PM motor with a stator core assembly formed of pressure shaped processed ferromagnetic particles
JP4823425B2 (ja) 2001-01-15 2011-11-24 ミネベア株式会社 Dcモータ
US6605883B2 (en) 2001-04-20 2003-08-12 Japan Servo Co., Ltd. Multi-phase flat-type PM stepping motor and driving circuit thereof
US6995494B2 (en) 2002-10-14 2006-02-07 Deere & Company Axial gap brushless DC motor
EP1668764B1 (en) 2003-10-03 2008-08-27 Foster-Miller, Inc. Rotary pump with electromagnetic lcr bearing
DE10357503A1 (de) * 2003-12-09 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Ansteuerung eines Gleichstrommotors
TWI253223B (en) 2004-11-22 2006-04-11 Benq Corp Method of protecting an electronic device driven by dc motor and a testing circuit of the positioning signals thereof
JP4706339B2 (ja) * 2005-06-03 2011-06-22 株式会社富士通ゼネラル アキシャルエアギャップ型電動機
WO2007098220A2 (en) 2006-02-20 2007-08-30 Black & Decker Inc. Dc motor with dual commutator bar set and selectable series and parallel connected coils
US20080061649A1 (en) 2006-09-08 2008-03-13 Lg Electronics Inc. Axial gap motor and method for manufacturing the same
JP2009033907A (ja) 2007-07-30 2009-02-12 Hitachi Ltd スピンドルモータ
WO2011040267A1 (ja) 2009-09-29 2011-04-07 Ntn株式会社 転がり軸受
AU2010317647B2 (en) 2009-11-13 2016-03-03 Regal Beloit Australia Pty Ltd Electric motor assembly
JP5576246B2 (ja) 2010-01-06 2014-08-20 株式会社神戸製鋼所 アキシャルギャップ型ブラシレスモータ
JP5554099B2 (ja) 2010-03-18 2014-07-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
DE102010021813B4 (de) 2010-05-27 2012-05-31 Schaeffler Technologies Gmbh & Co. Kg Stoßfestes Schrägkugellager
WO2013088670A1 (ja) 2011-12-12 2013-06-20 パナソニック株式会社 ブラシレスモータ
US9331528B2 (en) 2013-03-15 2016-05-03 Regal Beloit America, Inc. Stator tooth assembly for axial flux stator and methods of assembling the same
DE102013109877A1 (de) * 2013-09-10 2015-03-12 Zf Lenksysteme Gmbh Verfahren zur Ansteuerung eines Elektromotors
FR3022414B1 (fr) * 2014-06-12 2016-07-01 Mmt Sa Ensemble mecatronique pour l'entrainement d'un organe exterieur utilisant un moteur sans balai et un ensemble simple de composants electroniques.
US10148152B2 (en) 2015-02-10 2018-12-04 Cts Corporation Axial brushless DC motor

Also Published As

Publication number Publication date
WO2017200980A1 (en) 2017-11-23
US10454403B2 (en) 2019-10-22
KR20190006498A (ko) 2019-01-18
EP3459162A1 (en) 2019-03-27
US20170250637A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP2019517236A (ja) 部分ステップ機能及び保持ステップ機能を備えたアキシャル型ブラシレスdcモータ
AU2013236987B2 (en) Brushless DC motor
US20070273240A1 (en) System for and method of rotating wheels in rotary air-to-air energy recovery and desiccant dehumidification systems
US20170229949A1 (en) Single phase brushless direct current motor
JP2013099241A (ja) スイッチドリラクタンスモータの駆動装置及びその方法
JP2004518391A (ja) 無鉄電機子アセンブリを有するリニアブラシレスdcモータ
JP4423294B2 (ja) 多相ステップモータ
JP2013066360A (ja) スイッチドリラクタンスモータ
KR900003897Y1 (ko) 디스크형 브러시리스 팬 모터
JP2005051884A (ja) 環状コイル式永久磁石型リニアモータとこれを駆動源とするシリンジポンプ駆動装置
JP3447795B2 (ja) ブラシレスモータ
KR101850864B1 (ko) 외전형 브러시 리스 직류 전동기의 회전자 조립체 조립장치
JP4809038B2 (ja) ブラシレス・コアレス・センサレスモータ
CN109314455A (zh) 具有分步和固步功能的轴向无刷直流马达
KR100323850B1 (ko) 원판형 이상 진동모터
JP2004343876A (ja) モータとそれを用いた送風機
JP2009207298A (ja) ステッピングモータ
JP3633965B2 (ja) ブラシレスモータ
US20140340014A1 (en) Analog Three Phase Self Excited Brushless Direct Current Motor
US20170229948A1 (en) Single phase brushless direct current motor
JP2002186902A (ja) 直流モータ及びその電機子構造
JP3436573B2 (ja) マイクロモータ
KR900005025Y1 (ko) 공 냉장치
JPH03164053A (ja) モータ
RU2004112568A (ru) Электрический двигатель

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200428

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200907