JP2019215320A - 光電センサ並びに物体の検出及び距離測定方法 - Google Patents

光電センサ並びに物体の検出及び距離測定方法 Download PDF

Info

Publication number
JP2019215320A
JP2019215320A JP2019072246A JP2019072246A JP2019215320A JP 2019215320 A JP2019215320 A JP 2019215320A JP 2019072246 A JP2019072246 A JP 2019072246A JP 2019072246 A JP2019072246 A JP 2019072246A JP 2019215320 A JP2019215320 A JP 2019215320A
Authority
JP
Japan
Prior art keywords
light
emitted
sensor
pulse train
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019072246A
Other languages
English (en)
Inventor
シュテファン シュミッツ
Stephan Schmitz
シュミッツ シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Publication of JP2019215320A publication Critical patent/JP2019215320A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】監視領域内の物体の検出及び距離測定を行うための光電センサを提供する。【解決手段】パルス列符号で変調された発射光線(18)を送出するための発光器(12)と、監視領域(16)内の物体により反射された発射光線(20)から受光信号を生成するための受光器(24)と、受光信号とそれに付随するパルス列符号とに基づいて光伝播時間を測定し、その時間から距離値を算定するように構成された制御及び評価ユニット(26)とを備える。発光器(12)は複数の測定点の走査のためにパルス列符号で変調された複数の発射光線(18)を同時に送出するように構成され、受光器(24)は複数の反射された発射光線(20)から複数の受光信号を生成するための多数の受光素子を備えている。【選択図】図1

Description

本発明は、請求項1又は9のプレアンブルに記載の光電センサ並びに監視領域内の物体の検出及び距離測定方法に関する。
レーザスキャナや3次元カメラといった光電センサには、深度情報も得られるものがいくつかある。これにより3次元画像データが得られる(これは距離画像や深度図とも呼ばれる)。追加的な距離の次元は、捕らえられた前景にある物体に関するより多くの情報を取得して様々な課題を解決するために数多くの用途で利用できる。
深度情報を求める方法には様々なものが知られている。本願で考慮される光伝播時間測定法(飛行時間:TOF)ではパルス化又は振幅変調された光で前景が照らされる。センサは反射光の伝播時間を測定する。パルス法ではそのために光パルスが送出され、発光時点から受光時点までの時間が測定される。位相法では周期的な振幅変調が行われ、発射光と受信光の間の位相差が測定される。
3次元カメラでは伝播時間が画素毎又は画素グループ毎に測定される。例えばパルス法では、光伝播測定用のTDC(時間デジタル変換器)が画素に接続されるか、場合によっては画素と一緒にウエハ上に統合される。位相法で3次元画像データを取得するための技術としてはフォトミキシング検出法(Photomischdetektion:PMD)がある。
レーザスキャナでは、レーザにより生成された光線が偏向ユニットを介して周期的に監視領域を掃引する。測定される距離情報に加えて、偏向ユニットの回転位置から物体の角度位置が推定され、以て距離値を含む画像データが極座標の形で走査周期の完了毎に得られる。追加的に仰角を変化させたり仰角方向に多光線走査を行ったりすれば、空間領域から3次元画像データが得られる。大部分のレーザスキャナでは走査運動が回転鏡で達成される。ただし、回転鏡を用いる代わりに、一又は複数の発光器及び受光器を有する測定ヘッド全体を回転させることも知られている。これは例えば特許文献1に記載されている。
3次元カメラとレーザスキャナにはそれぞれ長所と短所があり、特定の用途のために適正なセンサを選択する際にそれを考量する必要がある。3次元カメラを用いれば可動式の機械部品なしで広い空間領域を一度に捕らえることができる。レーザスキャナは回転が必要である上、まさに3次元領域の走査の場合に一定の測定時間を要するが、その代わり、発光エネルギーをその都度一点に集めることで長い射程とより信頼性の高い測定値が得られる。
従来技術において、回転式偏向ユニットなしで面的な走査を行うシステムを作る努力が行われている。例えば特許文献2では、光源が発するパルス化された発射光線がMEMSミラーで走査対象の面に沿ってX方向及びY方向に導かれる。反射された光パルスはSPAD(シングルフォトンアバランシェダイオード)のマトリックスで受光される。該マトリックスでは発射光線で現在照らされている領域を観察しているSPADだけが活性化される。これにより回転系は確かに無くなるが、少なくとも、高い分解能で高速撮影を行うにはスキャン行程に時間がかかりすぎる。
光格子について、例えば特許文献3及び4から、各光線を互いに直交したパルス列で変調することが知られている。光格子では光線を巡回的にオン状態にするのが普通であるが、前記手法によりそれを破り、発光器を同時に駆動することが可能になる。対向する各発光器の有効信号はそこから来ると期待されるパルス列に基づいて他の発光器の信号や外部光から区別される。しかし、光格子は深度図を得るために適したセンサではない。
特許文献5は、擬似ランダム符号列を用いて走査光線を変調し、該擬似ランダム符号列との相関を求めることにより光伝播時間を測定するレーザスキャナを開示している。これによりレーザスキャナが外部光や多重反射に対してより頑強になるが、このシステムもまた回転式の偏向ユニットを基にしており、故障の恐れや高コストという既述の欠点がある。また、高さ方向に追加的な偏向を行えば面的な走査も可能であるが、そうすると測定周期が非常に長くなる。その上、特許文献5で提示されているのは、時間的に圧縮された第1の部分と伸長された第2の部分から成る特殊な擬似ランダム符号列である。これにより測定の状態は改善するが、前述の基本的な問題は解決されない。
特許文献6もまた擬似ランダム符号列により信号雑音特性を改善するレーザスキャナに関するものである。こちらには、その二値的な擬似ランダム符号列が非常に多数の「0」とごく少数の「1」しか含まないという特徴がある。このようにすれば、信号は高い周波数の部分をより多く持つようになるため、外部光による低い周波数の雑音から分離することができる。しかし、ここでもまたレーザスキャナの基本的な欠点には触れられていない。
DE 197 57 849 B4 EP 2 708 914 A1 EP 2 012 144 B1 EP 2 103 962 B1 EP 2 626 722 B1 EP 2 730 942 B1
故に、本発明の課題は、改良された距離測定型センサを提供することである。
この課題は、請求項1又は9に記載の光電センサ並びに監視領域内の物体の検出及び距離測定方法により解決される。本センサは距離測定により3次元画像データを取得する。このデータは広範囲に取得することができるが、その測定点の横方向の分布を一又は複数の部分領域(関心領域:ROI)に限定してもよい。本センサは、パルス列符号を有する発射光線を生成するための発光器と、監視領域内で反射された発射光線を受光するための発光器とを含む。制御及び評価ユニットが、発光器の受光信号及び変調された既知のパルス列に基づいて、特に受光信号とパルス列との相関を求めることにより、光伝播時間を測定し、その時間から発射光線を反射した被検知物体までの距離値を算定する。
本発明の出発点となる基本思想は、複数の発射光線を用いて同時に測定を行うことにある。これらの発射光線はそれぞれパルス列符号で変調され、複数の受光信号を生成するために受光器の異なる受光素子で検出される。従って、制御及び評価ユニットはその受光信号に基づいて複数の測定点までの複数の距離を一度に測定できる。受光器の受光素子は光格子の場合のように間隔を空けて空間的に分かれてはおらず、互いに隣接している。これは特に受光器が画素マトリックスとして構成されていることによる。また、光格子なら反射された発射光線ではなく発射光線そのものを対向する受光器で直接受光するはずである。「同時に」送出するとは、必ずしも各パルス列の開始及び/又は終了の時点が同じであるという意味ではないが、少なくとも、複数の発射光線のパルス列が送出される時間帯は重なっている。
本発明には、複数の測定点を並行して捕らえることにより広い領域を高速に走査し、以てセンサの動作を高速化できるという利点がある。特に横方向の位置分解能及び/又は距離測定精度を高くして特定の関心領域を捕らえることも考えられる。パルス列により外部光から区別できるため、信号雑音特性が良くなり、それに応じて測定の頑強性と精度が高まるとともに射程が長くなる。3次元カメラの面的な照明に比べて光の出力が測定点に集中されるため、信号雑音特性が更に改善される。
複数の発射光線に変調されたパルス列は互いに異なっていること、特に互いに直交していることが好ましい。そうすれば、制御及び評価ユニットは異なる各パルス列との相関を求めることにより発射光線を識別し、互いに区別することができる。即ち、ある受光素子に付随しない発射光線が該素子に混入しても、その光線はパルス列が合っていないため外部光と同様に軽微な影響しか及ぼさない。直交するパルス列にはまさに相互の相関性がほとんどないという特性があるため、各発射光線を、該光線で照らされる測定点を観察する受光素子に非常に正確に割り当てることができる。
パルス列としては擬似ランダム符号列を用いることが好ましく、「1」がそれぞれ1つのパルスで符号化されたバイナリ符号がより好ましい。好適な擬似ランダム符号列の例はM系列(Maximum length sequence)である。ただし、基本的には他の擬似ランダム符号列を用いてもよい。模範的な選択としてはバーカー符号(Barker code)、ゴールド符号(Gold code)、カサミ系列(Kasami sequence)又はアダマール・ウォルシュ系列(Hadamard-Walsh sequence)が挙げられる。
パルス列は、冒頭で言及した特許文献5に記載のように、より狭い時間ラスタを持つ第1の部分と、より広い時間ラスタを持つ第2の部分とを有していることが好ましい。また、冒頭で言及した特許文献6に従ってパルス列の中で「0」が優勢であることが好ましく、それが非常に明白であることがより好ましい。より詳しい説明と達成可能な利点については該当の文献を参照されたい。本発明において「0」の割合を高くすれば、発射光線を同時に送出するにも関わらず、どの時点でも「1」つまりパルスが基本的に1個又はせいぜい数個しか生成されないという特別な利点が得られる。これにより、放射される光出力を複数の発射光線により大きく増加させることなく、各時点で高いレーザ出力を用いることができる。
発光器は、少なくとも1つの発射光線をその方向を変えて送出することで、監視領域内において該発射光線で照らされる測定点が別の受光素子により観察されるように構成されていることが好ましい。それには、発射光線を個別に、グループ毎に又は全てまとめて1つ又は2つの横方向に偏向させるために、個別の又は結合された偏向部を複数又は全ての発射光線に対して設ければよい。これにより、発射光線の測定点を少なくとも偏向可能な範囲内で自由に選択できる。また、関心領域のような特定の測定点に固定したり、監視領域全体を走査したりすることも可能である。複数の発射光線によりそのような走査が明らかに高速になる。
発光器は光源の列状の配置を備えていることが好ましい。これにより、列の全体、つまり好ましくは水平又は垂直な視野の全体を同時に捕らえることができる。
発光器は、複数の発射光線を前記列状の配置に対して横に方向を変化させて送出するように構成されていることが好ましい。各光線の方向を一緒に変化させれば、列状の配置が監視領域を面的に走査する。これは、例えば冒頭で言及した特許文献2のような点状の走査に比べて配列方向の測定点の数に相当する倍数分だけ高速である。また、各光線の方向を列状の配置に対して全て一緒にではなく、個別に又はグループ化して横に変化させることも考えられる。これにより、例えば関心領域の縁部などに対応する輪郭に対して列を適合させる。
列状の配置に沿った方向にも光線の方向を変化させることができることが好ましい。これにより、配列方向の視野を完全にはカバーしない短めの列状の配置をスキャン中に実質的に長くすることができる。また、中間位置に立ち寄ることにより、超解像の考え方に従って配列方向の解像度を高めることも可能である。
発光器にパターン生成素子、特に回折光学素子(DOE)が割り当てられていることで、該パターン生成素子に入射する光線から複数の発射光線が生成されることが好ましい。これにより発射光線が分割又は多重化される。こうして生じる部分発射光線は必然的に同じパルス列で符号化されている。しかし、パターン生成素子により光線の間に比較的大きな間隔を空けることで、光線が互いに全く又は殆ど妨害しないようにすることができる。複数の光源を持つ発光器を用いれば、互いに入り組んだ複数のパターンを生成することもできる。これらのパターンは密度も高くなるが、パルス符号が同じ測定点同士の間にはかなり大きな間隔を保つことができる。
制御及び評価ユニットは、発射光線で照らされた測定点を観察する受光素子だけをその都度作動させる又は読み出すように構成されていることが好ましい。このようにすれば、有効信号に寄与し得ない受光素子の受光信号が生成又は評価されることがなくなる。SPADマトリックスを受光器として用いる場合、バイアス電圧を降伏電圧より下げることによりSPADをオフ状態に切り替えることができる。そうなるとSPADは数桁のオーダーで感度を失うため、切断されたものとみなすことができる。オフ状態への切り替えには、電力消費と発熱に寄与するだけの無駄なアバランシェが誘発されなくなるという利点もある。もっとも、技術の如何に関わらず、不要な受光素子をオン状態にしておき、単にその受光信号を読み出さない又は評価時に考慮しないようにすることも可能である。受光器の段階ではなく、予め光学的に、例えば電気光学式シャッターを用いて不要な受光素子による受光を防ぐようにしてもよい。ただし、暗雑音は無くならない。そしてまさにSPADの場合、暗雑音が相当な割合を占める恐れがある。
本センサはレーザスキャナとして構成され、監視領域を周期的に走査するための回転可能な偏向ユニットを備えていることが好ましい。回転可能な偏向ユニットとは、発光器と受光器が固定的に配置されている場合に周期的に光線を偏向させるための回転鏡、特に多面鏡ホイール、あるいは発光器及び受光器を備える一体回転型の偏向ユニットである。冒頭で言及した公知のレーザスキャナと違って、本発明のレーザスキャナはパルス列で符号化された複数の発射光線を用いる多光線スキャナである。
本発明に係る方法は、前記と同様のやり方で仕上げていくことが可能であり、それにより同様の効果を奏する。そのような効果をもたらす特徴は、例えば本願の独立請求項に続く従属請求項に模範的に記載されているが、それらに限られるものではない。
以下、本発明について、更なる特徴及び利点をも考慮しつつ、模範的な実施形態に基づき、添付の図面を参照しながら詳しく説明する。
光源と受光素子のマトリックス配置を有する距離測定型の光電センサの概略図。 可変的に調整できる発光器を有する別の実施形態のセンサの概略図。 発光器の線状の配置と該線状の配置に直交する偏向部とを有する別の実施形態のセンサの概略図。 照明される測定点が回折光学素子で複製される別の実施形態のセンサの概略図。 レーザスキャナとして構成された別の実施形態のセンサの概略図。
図1は距離測定型の光電センサ10の概略図である。発光器12を用いて、変調された発射光が発光光学系14を通じて監視領域16内へ送出される。発光器12は発射光を複数の発射光線18に束ねることができる。従って、利用可能な光出力を実際の測定点に集中させることができる。これにより、単なる面的な照明に比べて信号雑音比が著しく改善される。発光器12としてここでは個別に又はグループ毎に駆動可能な多数の個別発光器から成るアレイ、例えば垂直共振器面発光レーザ(VCSEL)アレイが用いられる。他の好適な発光器12としては、LEDや端面放射型レーザダイオードといった他の光源の多重配置や、光学的なフェイズドアレイ(Phased array)がある。他の実施例については後で図2〜4を参照して説明する。
発光器12は各発射光線18をそれぞれパルス列で変調する。同じパルス列を全ての発射光線18に用いてはならない場合、そのためには個別発光器を個々に又はグループ毎にオン/オフするだけでなく、異なる変調で駆動することもできなければならない。そうすれば各発射光線18がそのパルス列に基づいて区別可能になり、それにより複数の測定点で同時に測定を行うことができる。ここで「同時」とは、各測定を完全に同期させて進めなければならないという意味ではないが、それらが互いに時間的に重なっていることは当然である。
パルス列として好ましくは各パルスが「1」に対応するバイナリ符号が送出される。異なる発射光線18のパルス列は擬似ランダム符号とすることができる。この符号は相関性ができるだけ低いばかりではなく、例えばM系列やバーカー符号、ゴールド符号、カサミ系列又はアダマール・ウォルシュ系列のようにほぼ直交してさえいる。また、冒頭で言及した特許文献5及び6に記載のように、パルス列をまず時間的に圧縮し、次に伸長すること、及び/又は、大部分が「0」であるパルス列を用いることも可能である。数値例として、パルス幅が250ps以下という通常の値であれば、20μsの時間範囲の間に計80000個のタイムスロットが利用できる。
発射光線18が監視領域16内で物体に当たると、それは反射された発射光線20としてセンサ10へ送り返される。反射された発射光線20は受光光学系22を通じて受光器24に達する。既出の発光光学系14と同様に受光光学系22は単なるレンズで表されているが、これは複数レンズ型の対物レンズ、絞り、その他の光学素子を有する任意の光学系を代表している。反射型又は回折型の光学系も考えられる。また、発光器12と受光器24が二軸型で並んでいる基本構造も必須ではなく、単一光線式の光電センサに関するいかなる公知の構造にも置き換え可能である。その一例としてビームスプリッタを持つ又は持たない同軸型の配置が挙げられる。
受光器24は多数の受光素子を備えており、ここではSPADアレイとして構成されている。SPADは高感度で、高度に集積可能である。また、SPADはバイアス電圧を降伏電圧より下げることで実質的にオフ状態にできる。これにより、所望の測定点、即ち、反射された発射光線20の入射が期待される箇所に対応するSPADだけをその都度、オン状態に切り替えることができる。SPADアレイの代わりに、フォトダイオードやアバランシェフォトダイオード(APD)の多重配置や、CCD又はCMOSの技術における他のマトリックス型受光器も考えられる。その場合は必要に応じて所望の測定点に対応する特定の画素又は画素グループだけを読み出す。こうして、その都度ちょうど照明されている測定点に視野を有利に制限することで、損失出力を低減させ、外部光に対する耐性を高めることができる。あるいは、照明されない領域を暗くするために、例えば電気光学式シャッターを用いて光学的に視野を制限してもよい。
制御及び評価ユニット26が発光器12及び受光器24と接続されている。これにより、その都度、所望の個別発光器又はVCSELを作動させて変調させることで、パルス列で変調された発射光線18を生成する。好ましくは、反射された発射光線20により実際に照明された受光素子又はSPADの受光信号だけを評価することで、監視領域内で検知された物体の測定点までの光伝播時間を求め、その時間から距離を測定する。光伝播時間の測定のために、例えば各受光信号とそれに付随する発射光線18の変調に用いられたパルス列との相関が求められる。こうして得られた相関信号において評価ユニット26は相関が最大となる位置を求め、その位置から受光時点を特定する。少なくとも制御及び評価ユニット26の一部、例えば発射光線18を変調するための信号の生成部や、画素と関連付けて受光信号の評価及び相関計算を行う部分は、発光器12乃至は受光器24と一緒に共通の部品上に統合することができる。
パルス符号に基づいて、光の混ざり合い及び外部光のいずれに関しても非常に頑強な複数の発射光線18を用いた同時測定が可能である。こうしてレーザスキャナと3次元カメラの利点が組み合わされる。即ち、複数の測定点で距離値が得られ、しかもそれが発射光線を1本しか用いない順次検出に比べて明らかに高速であるにも関わらず、面的に照明及び撮像を行う場合と違って測定点に測定光を集中させることができる。
図2はセンサ10の別の実施形態の概略図である。図1の実施形態では、発光器12として個別発光器をマトリックス状に配置したものが設けられ、特定の個別発光器を選択して作動させることで発射光線18の方向を調整している。これに対して図2の発光器12は可変的に調整できる複数(ここでは例として3個)の個別発光器12a〜cを備えている。これにより、発射光線18a〜cを特定の可変的な測定点28a〜cに向けて調整することができる。ここでもまた、発射光線18a〜cの現在の調整状態で反射光線20a〜cが到来すると期待される箇所でのみ受光器24の受光素子を作動させる又は読み出すことが好ましい。
図2では発射光線18a〜cの偏向部が位置調節ユニット30a〜cにより単に概略的に描かれている。これについては様々な実装が可能である。例えば、発光光学系14a〜cの横方向の位置を変化させるピエゾ式アクチュエータが挙げられるが、重要なのは相対位置であるから、個別発光器12a〜cの位置を変化させてもよい。他の例としてはMEMSミラー、回転鏡、回転プリズム又は音響光学変調器といった追加の光学素子が挙げられる。好ましい実施形態では、2種類の混合できない媒質間の境界層を電極配列の駆動により傾けることができる液体レンズが発光光学系14a〜cとして用いられる。
いずれにせよ、位置調節ユニット30a〜cを用いて、それに付随する測定点28a〜cを、センサ10が距離測定を行うZ方向に垂直な横方向又はXY方向にずらすことができる。これにより数多くの応用の可能性が開ける。測定点28a〜cが体系的にまとまって監視領域16全体を走査する面的なスキャンの場合、例えば冒頭で言及した特許文献2に記載の従来のシステムに比べて個別発光器12a〜cの数に相当する倍数分だけ走査が高速になる。一方、一又は複数の関心領域に狙いを定めることも考えられる。その場合は特に、平均計算等の統計的な処理により距離測定を改善するために測定時間を長くしたり、横方向の位置分解能を高めるために、今や狭くなった領域をより細かいラスタで走査したりすることが考えられる。
図3はセンサ10の別の実施形態の概略図である。本実施形態の発光器12は線状に配列されたq個の個別発光器12〜12を備えている。好ましくはこれらの個別発光器がq通りの互いに直交したパルス列を送出する。平行光を生成する発光光学系141…qがそれぞれあるが、これらは簡略化のため図示していない。発光路だけが描かれている。受光器24としてはここでも例えばSPADマトリックスが考慮される。
これにより垂直方向の視野の全体が既にカバーできる。このような細長い領域を監視するだけの実施形態も考えられる。しかし、好ましくは図示したように位置調節ユニット30を設けて、垂直方向に描かれる線を水平方向の角度範囲にわたって方向転換させることで面的なスキャンができるようにする。ここで「垂直」及び「水平」という概念は入れ替え可能であることは当然である。位置調節ユニット30としてここではMEMSミラーが設けられているが、図2に関して提示した代替物、例えば個別発光器121…q又は発光光学系141…qに作用するピエゾ式アクチュエータや液体レンズ等も同様に考えられる。特に個別発光器121…qは、それぞれVCSELの列としたり、VCSELカラム毎に別々に変調ができる共通のVCSELマトリックスとしたりすることができる。そうすると、発射光線181…qの各発光点が水平に移動するが、その際に全ての点を一緒に移動させて面的なスキャンを行ったり、同時に測定を行う点が曲線を成すように各点を別々に移動させたりできる。
垂直な視野をスキャン中に拡大するため、及び/又は、垂直方向の位置分解能を高めるために、位置調節ユニット39で垂直方向の運動を生じさせることも考えられる。位置分解能を高めるには、垂直方向における個別発光器121…qの間の中間スペースに立ち寄って一回又は複数回、間隔を狭める。
特許文献6に記載のようにパルス列の大多数が「0」である好ましい形態の場合、2つの個別発光器121…qが同じ時点でオン状態になることはめったに又は全くない。それらの発光器は確かに同時にパルス列を送出するが、ある観察時点において同時に「1」即ちパルスを送出することは実際にはほとんどない。これにより給電部を非常に簡素化することができる。多数又は全ての個別発光器121…qに電流を供給できる必要はない。
発射光線18、そして測定点28が互いに十分に広い間隔を空けて位置していれば、もはや混信の恐れはない。即ち、受光器24上で空間的な分離が保たれていることが保証できるなら、パルス列を繰り返すこと、つまり前述の条件の下で複数の個別発光器121…qが同じパルス列を用いることが許される。これにより、符号長を変えずに同時に駆動される個別発光器121…qの数を更に多くすることができる。
図3の実施形態でもまた、特定の受光素子だけに狙いを定めたオン状態への切り替え若しくは読み出し、又は電子シャッター等を用いた光学的な制限を行うことにより、受光器24上のオン状態の受光範囲を現在照明されている測定点28に制限することが有効である。ここで、各時点でオン状態の受光範囲が、個別発光器121…qの線状の配列の現在位置に応じてその都度列状の部分になるようにすれば好ましい。
図4はセンサ10の別の実施形態の概略図である。位置調節ユニット30の代わりに、ここでは模範例として2つの個別発光器12a〜bにそれぞれパターン生成素子32a〜b(特に回折光学素子)が割り当てられている。パターン生成素子32a〜bを結合して1つの共通のパターン生成素子にしてもよい。
パターン生成素子32a〜bはそれぞれ個別発光器12a〜bの入射光線を複製して複数の発射光線18a1…3、18b1…3を生成する。それらに付随する反射された受信光線20は図を見やすくするため省略している。
十分な空間的分離という前述の条件を満たすため、同じ個別発光器12a〜bに対応する測定点28a1…3、28b1…3は互いに十分に離れている。つまり、同じ個別発光器12a〜bの発射光線18a1…3、18b1…3は同じパルス列で符号化されてもいるが、相互の遮断は、前記の配置つまりはパターン生成素子32a〜bの設計により保証される。異なる個別発光器12a〜bの測定点28a1…3、28b1…3はパルス列が異なるため近接させることができる。従って、近接条件は実際上、重大な制約とはならない。なぜならそれは互いに入り組んだ照明パターンによってほぼ帳消しにできるからである。
測定点28a1…3、28b1…3から成るパターンでスキャン運動を実行するために、図2の実施形態と同様に追加的に位置調節ユニット30を設けることが考えられる。これは特に発光器12aとパターン生成素子32aがそれぞれ1つしかない実施形態に当てはまる。
図5は多光線レーザスキャナとしての別の実施形態における光電センサの概略断面図である。本センサ10は大きく分けて可動式の偏向ユニット34と、台座ユニット36とを含む。偏向ユニット34は光学的な測定ヘッドである一方、台座ユニット36には給電部、評価用電子機器、接続部等、その他の要素が収納されている。稼働時には、台座ユニット36の駆動部38により回転軸40を中心として偏向ユニット34を回転駆動することで、監視領域16を周期的に走査する。
偏向ユニット34は少なくとも1つの走査モジュールを備えている。本実施形態ではこれは4個の個別発光器と4個の受光素子を有する4光線式のシステムとして構成されている。従ってここでは4本のパルス符号化された発射光線18が生成される。このような走査モジュールの構成は単なる模範例であり、原理的には図1〜4に提示したいずれのセンサ10でも、一体回転型のシステムとして1つの走査モジュールにすること、又は複数の走査モジュールとして多重的に設けることができる。これにより極めて多様に光線を配置し、部分的には走査運動を重畳することも可能となり、その光線で監視領域16内の測定点28を捕らえる乃至は走査することができる。
この実施例の発光器12と受光器24は一緒に回路基板42上に配置されている。この基板は回転軸40上にあり、駆動部38のシャフトに結合されている。これは単なる模範例と理解すべきであり、実際には任意の数及び配置の回路基板が考えられる。
非接触式の給電及びデータインターフェイス44が可動式の偏向ユニット34と静止した台座ユニット36とを接続している。台座ユニット36内には制御及び評価ユニット26があるが、少なくともその一部は偏向ユニット34内の回路基板42上又は他の場所に収納してもよい。制御及び評価ユニット40は前述の機能の他に駆動部38も制御し、レーザスキャナに関して公知である角度測定ユニット(図示せず)の信号を受け取る。角度測定ユニットは各時点における偏向ユニット34の角度位置を特定する。
これにより、1回転の間に各発射光線18で1つの平面が走査され、走査ユニット34の角度位置と光伝播時間を用いて測定される距離から成る極座標の形で各測定点28が得られる。厳密には仰角が0度の場合、つまり図5にはない水平な発射光線18だけが実際に平面を走査する。有限の仰角を持つ他の発射光線18は、その仰角に応じた異なる鋭さで形成される円錐の側面をそれぞれ走査する。上方及び下方に異なる角度で偏向される複数の発射光線18を用いる場合、全体として複数の砂時計を入れ子にしたような走査構造になる。図1〜4に示した実施形態のように発射光線18に別の運動をさせたり、偏向ユニット34を仰角方向に動かしたりすれば、走査構造がより複雑になり、所望の広がり及び走査密度で空間的な監視領域16を捕らえるためにその構造を適応させることができる。いずれにせよ、パルス符号化により可能となる複数の発射光線18を用いた同時走査により、従来のレーザスキャナに比べて検出が明らかに高速になる。
図示したセンサ10は回転式の測定ヘッドつまり偏向ユニット34を有するレーザスキャナである。あるいは回転鏡や切り子面ミラーホイールを用いて周期的な偏向を行うことも考えられる。更に別の実施形態では、回転運動の代わりに、又はそれに加えて、該回転運動の軸に垂直な第2の軸を中心として偏向ユニット34を揺動させることで、仰角方向にも走査運動を生じさせる。もっとも、そのような運動は代わりに図1〜4に示した原理で達成することが好ましい。

Claims (10)

  1. 監視領域(16)内の物体の検出及び距離測定を行うための光電センサ(10)であって、パルス列符号で変調された発射光線(18)を送出するための発光器(12)と、前記監視領域(16)内の物体により反射された発射光線(20)から受光信号を生成するための受光器(24)と、前記受光信号とそれに付随するパルス列符号とに基づいて光伝播時間を測定し、その時間から距離値を算定するように構成された制御及び評価ユニット(26)とを備える光電センサ(10)において、
    前記発光器(12)が複数の測定点(28)の走査のためにパルス列符号で変調された複数の発射光線(18)を同時に送出するように構成され、前記受光器(24)が複数の反射された発射光線(20)から複数の受光信号を生成するための多数の受光素子を備えていることを特徴とする光電センサ(10)。
  2. 前記複数の発射光線(18)に変調されたパルス列が互いに異なっていること、特に互いに直交していることを特徴とする請求項1に記載のセンサ(10)。
  3. 前記発光器(12)が、少なくとも1つの発射光線(18)をその方向を変えて送出することで、前記監視領域(16)内において該発射光線(18)で照らされる測定点(28)が別の受光素子により観察されるように構成されていることを特徴とする請求項1又は2に記載のセンサ(10)。
  4. 前記発光器(12)が光源(121…q)の列状の配置を備えていることを特徴とする請求項1又は2に記載のセンサ(10)。
  5. 前記発光器(12)が、前記複数の発射光線(18)を前記列状の配置に対して横に方向を変化させて送出するように構成されていることを特徴とする請求項4に記載のセンサ(10)。
  6. 前記発光器(12)にパターン生成素子(32)が割り当てられていることで、該パターン生成素子(32)に入射する光線から複数の発射光線(18a1…3、18b1…3)が生成されることを特徴とする請求項1〜5のいずれかに記載のセンサ(10)。
  7. 前記制御及び評価ユニット(26)が、前記発射光線(18)で照らされた測定点(28)を観察する受光素子だけをその都度作動させる又は読み出すように構成されていることを特徴とする請求項1〜6のいずれかに記載のセンサ(10)。
  8. レーザスキャナとして構成され、前記監視領域(16)を周期的に走査するための回転可能な偏向ユニット(34)を備えていることを特徴とする請求項1〜7のいずれかに記載のセンサ(10)。
  9. 監視領域(16)内の物体の検出及び距離測定の方法であって、パルス列符号で変調された発射光線(18)を送出し、前記監視領域(16)内の物体により反射された発射光線(20)から受光器(24)において受光信号を生成し、該受光信号をそれに付随するパルス列符号を含めて評価することで、光伝播時間を測定し、該時間から距離値を算定する方法において、
    複数の測定点(28)の走査のためにパルス列符号で変調された複数の発射光線(18)を同時に送出し、反射された発射光線(20)から同じ受光器(24)の異なる受光素子において複数の受光信号を生成し、各受光信号とそれに対応するパルス列符号との相関をそれぞれ求めることで、前記複数の測定点(28)までのそれぞれの距離値を算定することを特徴とする方法。
  10. 少なくとも1つの発射光線(18)の方向を変化させることで、別の測定点(28)を照明し、該測定点に付随する反射された発射光線(20)を別の受光素子において受光することを特徴とする請求項9に記載の方法。
JP2019072246A 2018-04-09 2019-04-04 光電センサ並びに物体の検出及び距離測定方法 Pending JP2019215320A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018108340.8A DE102018108340A1 (de) 2018-04-09 2018-04-09 Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
DE102018108340.8 2018-04-09

Publications (1)

Publication Number Publication Date
JP2019215320A true JP2019215320A (ja) 2019-12-19

Family

ID=65904284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072246A Pending JP2019215320A (ja) 2018-04-09 2019-04-04 光電センサ並びに物体の検出及び距離測定方法

Country Status (3)

Country Link
US (1) US20190310370A1 (ja)
JP (1) JP2019215320A (ja)
DE (1) DE102018108340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420915B2 (ja) 2020-12-03 2024-01-23 深▲せん▼市▲レイ▼神智能系統有限公司 レーザーレーダー

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200256954A1 (en) * 2019-02-07 2020-08-13 Analog Devices, Inc. Optical pulse coding in a lidar system
CA3146414A1 (en) 2019-07-15 2021-03-25 Blackmore Sensors & Analytics, Llc Method and system for sidelobe suppression in phase encoded doppler lidar
CN112394363B (zh) * 2020-10-21 2023-12-12 深圳奥锐达科技有限公司 一种多线扫描距离测量系统
US20230092581A1 (en) * 2021-09-22 2023-03-23 Qualcomm Incorporated Apparatus and method for light-based range estimation
DE102021125131A1 (de) 2021-09-28 2023-03-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lidar-system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675050A (ja) * 1992-08-25 1994-03-18 Fujitsu Ltd レンジファインダ
JPH08189970A (ja) * 1995-01-10 1996-07-23 Mitsubishi Electric Corp 対象物の位置検出装置
JPH08248133A (ja) * 1995-03-07 1996-09-27 Omron Corp 位置情報検出装置、位置情報検出装置を用いた車両搭載用レーダ、および路上障害物認識方法
JP2005351851A (ja) * 2004-06-14 2005-12-22 Mitsui Eng & Shipbuild Co Ltd 3次元画像情報取得装置
JP2006242801A (ja) * 2005-03-04 2006-09-14 Mitsui Eng & Shipbuild Co Ltd 3次元画像情報取得装置
JP2008107286A (ja) * 2006-10-27 2008-05-08 Mitsui Eng & Shipbuild Co Ltd 画像情報取得装置
JP2010151958A (ja) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc 光走査装置及びレーザレーダ装置
JP2013160769A (ja) * 2012-02-07 2013-08-19 Sick Ag 光電センサ並びに物体検出及び距離測定方法
US20170176579A1 (en) * 2015-12-20 2017-06-22 Apple Inc. Light detection and ranging sensor
JP2017129573A (ja) * 2015-12-15 2017-07-27 ジック アーゲー 光電センサ及び物体検出方法
DE102016113149A1 (de) * 2016-07-15 2018-01-18 Triple-In Holding Ag Aufnahme von Entfernungsprofilen
JP2019507340A (ja) * 2016-01-31 2019-03-14 ベロダイン ライダー, インク. 多重パルスlidarに基づく三次元撮像
JP2019516101A (ja) * 2016-04-22 2019-06-13 オプシス テック リミテッド 多波長lidarシステム
JP2019529916A (ja) * 2016-09-19 2019-10-17 ブリックフェルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Lidarのためのコード化されたレーザー光パルスシーケンス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757849C5 (de) 1997-12-24 2013-11-21 Sick Ag Scanner und Vorrichtung zur optischen Erfassung von Hindernissen, sowie deren Verwendung
EP2012144B1 (de) 2007-07-05 2012-01-11 Sick Ag Lichtgitter und Verfahren zum Betrieb eines Lichtgitters
DE102008015286A1 (de) 2008-03-20 2009-10-01 Sick Ag Optoelektronischer Sensor
EP2708914A1 (de) 2012-09-18 2014-03-19 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung einer Tiefenkarte
EP2730942B1 (de) 2012-11-13 2015-03-18 Sick Ag Optoelektronischer Scanner
EP3460520B1 (en) * 2017-09-25 2023-07-19 Hexagon Technology Center GmbH Multi-beam laser scanner

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675050A (ja) * 1992-08-25 1994-03-18 Fujitsu Ltd レンジファインダ
JPH08189970A (ja) * 1995-01-10 1996-07-23 Mitsubishi Electric Corp 対象物の位置検出装置
JPH08248133A (ja) * 1995-03-07 1996-09-27 Omron Corp 位置情報検出装置、位置情報検出装置を用いた車両搭載用レーダ、および路上障害物認識方法
JP2005351851A (ja) * 2004-06-14 2005-12-22 Mitsui Eng & Shipbuild Co Ltd 3次元画像情報取得装置
JP2006242801A (ja) * 2005-03-04 2006-09-14 Mitsui Eng & Shipbuild Co Ltd 3次元画像情報取得装置
JP2008107286A (ja) * 2006-10-27 2008-05-08 Mitsui Eng & Shipbuild Co Ltd 画像情報取得装置
JP2010151958A (ja) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc 光走査装置及びレーザレーダ装置
JP2013160769A (ja) * 2012-02-07 2013-08-19 Sick Ag 光電センサ並びに物体検出及び距離測定方法
JP2017129573A (ja) * 2015-12-15 2017-07-27 ジック アーゲー 光電センサ及び物体検出方法
US20170176579A1 (en) * 2015-12-20 2017-06-22 Apple Inc. Light detection and ranging sensor
JP2019507340A (ja) * 2016-01-31 2019-03-14 ベロダイン ライダー, インク. 多重パルスlidarに基づく三次元撮像
JP2019516101A (ja) * 2016-04-22 2019-06-13 オプシス テック リミテッド 多波長lidarシステム
DE102016113149A1 (de) * 2016-07-15 2018-01-18 Triple-In Holding Ag Aufnahme von Entfernungsprofilen
JP2019529916A (ja) * 2016-09-19 2019-10-17 ブリックフェルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Lidarのためのコード化されたレーザー光パルスシーケンス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420915B2 (ja) 2020-12-03 2024-01-23 深▲せん▼市▲レイ▼神智能系統有限公司 レーザーレーダー

Also Published As

Publication number Publication date
US20190310370A1 (en) 2019-10-10
DE102018108340A1 (de) 2019-10-10

Similar Documents

Publication Publication Date Title
JP2019215320A (ja) 光電センサ並びに物体の検出及び距離測定方法
JP6899005B2 (ja) 光検出測距センサ
US20220137189A1 (en) Method and device for optically measuring distances
US20190324143A1 (en) Optoelectronic sensor and method of distance determination
US11609422B2 (en) Optoelectronic sensor and method of detecting objects
JP6682569B2 (ja) 光電センサ及び物体検出方法
JP4405154B2 (ja) イメージングシステムおよび物体の画像を取得する方法
JP2017129573A (ja) 光電センサ及び物体検出方法
CN102947726A (zh) 扫描3d成像仪
US11567180B2 (en) Methods and systems for dithering active sensor pulse emissions
CN110082771A (zh) 用于检测对象的光电传感器和方法
JP2016109679A (ja) 光電センサ及び物体検出方法
US20210311193A1 (en) Lidar sensor for optically detecting a field of vision, working device or vehicle including a lidar sensor, and method for optically detecting a field of vision
US20200124708A1 (en) Optoelectronic sensor and method for detecting objects
CN112154348A (zh) 距离成像装置和方法
KR102578977B1 (ko) 라이다 시스템
US20210199776A1 (en) A lidar device including an accelerated runtime analysis
KR102623088B1 (ko) Dmd를 구비한 3차원 이미지 장치 및 그 동작 방법
JP6506672B2 (ja) 光電センサ
EP4283330A1 (en) Lidar device with spatial light modulators
KR20200127568A (ko) 디지털 마이크로미러 장치를 이용하는 tof 센서 및 그 동작 방법
JP2019168235A (ja) 走査装置及び測距装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323