JP2019203863A - Wavefront sensor, wavefront measuring device, optical element manufacturing method, and optical system manufacturing method - Google Patents

Wavefront sensor, wavefront measuring device, optical element manufacturing method, and optical system manufacturing method Download PDF

Info

Publication number
JP2019203863A
JP2019203863A JP2018101008A JP2018101008A JP2019203863A JP 2019203863 A JP2019203863 A JP 2019203863A JP 2018101008 A JP2018101008 A JP 2018101008A JP 2018101008 A JP2018101008 A JP 2018101008A JP 2019203863 A JP2019203863 A JP 2019203863A
Authority
JP
Japan
Prior art keywords
wavefront
light
beam splitting
light beam
splitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018101008A
Other languages
Japanese (ja)
Other versions
JP2019203863A5 (en
JP7199835B2 (en
Inventor
杉本 智洋
Tomohiro Sugimoto
智洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018101008A priority Critical patent/JP7199835B2/en
Priority to US16/416,894 priority patent/US11513344B2/en
Priority to EP19175679.0A priority patent/EP3575760A1/en
Publication of JP2019203863A publication Critical patent/JP2019203863A/en
Publication of JP2019203863A5 publication Critical patent/JP2019203863A5/ja
Application granted granted Critical
Publication of JP7199835B2 publication Critical patent/JP7199835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0292Testing optical properties of objectives by measuring the optical modulation transfer function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J2009/002Wavefront phase distribution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Filters (AREA)

Abstract

To realize a low-cost wavefront sensor that dispenses with the mechanism and process for fine-adjusting the relative positions of a beam dividing element and an imaging element.SOLUTION: The wavefront sensor comprises a beam dividing element for dividing the light to be detected into a plurality of lights, an imaging element for receiving the plurality of lights, and computation means for calculating the wavefront of the light to be detected, on the basis of the intensity distribution of the plurality of lights having been received by the imaging element. The beam dividing element and the imaging element are in contact, or a reference plate glass is included between the beam dividing element and the imaging element, the reference plate glass being in contact with both of the beam dividing element and the imaging element. When calculating the wavefront of the light to be detected, the computation means corrects the positional deviation of the relative positions of the beam dividing element and the imaging element from a design position by a computation that involves rotating the positional deviation around a specific axis.SELECTED DRAWING: Figure 1

Description

本発明は、光学素子や光学系の波面を計測する波面センサに関する。   The present invention relates to a wavefront sensor that measures a wavefront of an optical element or an optical system.

光学素子や光学系の透過光または反射光の波面計測に、シャック・ハルトマンセンサやタルボ干渉計といった波面センサが用いられている。波面センサは、光束を複数の光に分割する光束分割素子(2次元マイクロレンズアレイや2次元回折格子)と、その複数の光を受光する撮像素子(CMOSやCCD)を備えている。波面センサの計測精度は、光束分割素子と撮像素子の相対位置精度に依存する。   Wavefront sensors such as Shack-Hartmann sensors and Talbot interferometers are used for wavefront measurement of transmitted light or reflected light of optical elements and optical systems. The wavefront sensor includes a light beam splitting element (two-dimensional microlens array or two-dimensional diffraction grating) that splits a light beam into a plurality of lights, and an image sensor (CMOS or CCD) that receives the plurality of lights. The measurement accuracy of the wavefront sensor depends on the relative position accuracy of the light beam splitting element and the image sensor.

特許文献1に開示された波面センサは、光束分割素子と撮像素子の相対位置を精度よく調整する機構を設けている。   The wavefront sensor disclosed in Patent Document 1 is provided with a mechanism for accurately adjusting the relative position of the light beam splitting element and the imaging element.

特表2012−533758号公報Special table 2012-533758 gazette

特許文献1に開示された波面センサでは、光束分割素子と撮像素子の相対位置を精密調整することを前提としている。そのため、その精密調整機構及び精密調整工程の分だけ波面センサのコストが高くなる。   The wavefront sensor disclosed in Patent Document 1 is premised on the precise adjustment of the relative position of the light beam splitting element and the imaging element. Therefore, the cost of the wavefront sensor is increased by the precision adjustment mechanism and the precision adjustment process.

本発明は、光束分割素子と撮像素子の相対位置を精密調整する機構及び工程を省いた低コストの波面センサを提供することを例示的な目的とする。   An object of the present invention is to provide a low-cost wavefront sensor that omits a mechanism and a process for precisely adjusting the relative position of a light beam splitting element and an imaging element.

本発明の一実施形態としての波面センサは、被検光を複数の光に分割する光束分割素子と、前記複数の光を受光する撮像素子と、前記撮像素子で受光した前記複数の光の強度分布に基づいて前記被検光の波面を算出する演算手段とを有し、前記光束分割素子と前記撮像素子とが接しており、または、前記光束分割素子と前記撮像素子の間に基準平板ガラスを有し、前記基準平板ガラスが前記光束分割素子と前記撮像素子との両方に接しており、前記演算手段は、前記被検光の波面の算出において、前記光束分割素子と前記撮像素子の相対位置の位置ずれを、特定の軸の周りに回転させる演算により補正することを特徴とする。   A wavefront sensor according to an embodiment of the present invention includes a light beam splitting element that divides test light into a plurality of lights, an imaging element that receives the plurality of lights, and an intensity of the plurality of lights received by the imaging element. Computing means for calculating the wavefront of the test light based on the distribution, wherein the light beam splitting element and the image sensor are in contact, or a reference flat glass between the light beam splitting element and the image sensor And the reference flat glass is in contact with both the light beam splitting element and the image sensor, and the calculating means calculates a relative wavefront of the light beam splitting element and the image sensor in calculating the wavefront of the test light. The positional deviation is corrected by an operation of rotating around a specific axis.

本発明の他の実施形態としての波面計測装置は、光源と、前記光源からの光を被検光学系に入射させる投光系と、上記の波面センサを有することを特徴とする。   A wavefront measuring apparatus according to another embodiment of the present invention includes a light source, a light projecting system for causing light from the light source to enter a test optical system, and the wavefront sensor described above.

本発明の他の実施形態としての光学系の製造方法は、光学系を組み立てるステップと、上記の波面計測装置を用いて前記光学系の波面収差を計測することにより、前記光学系の光学性能を評価するステップを含むことを特徴とする。   An optical system manufacturing method according to another embodiment of the present invention includes: assembling an optical system; and measuring the wavefront aberration of the optical system using the wavefront measuring device described above, thereby improving the optical performance of the optical system. The method includes a step of evaluating.

本発明の他の実施形態としての光学素子の製造方法は、光学素子を加工するステップと、上記の波面計測装置を用いて前記光学素子の波面収差を計測することにより、前記光学素子の光学性能を評価するステップを含むことを特徴とする。   An optical element manufacturing method according to another embodiment of the present invention includes: a step of processing an optical element; and measuring the wavefront aberration of the optical element using the wavefront measuring device described above. The method includes a step of evaluating.

本発明によれば、光束分割素子と撮像素子の相対位置を精密調整する機構及び工程を省いた低コストの波面センサが得られる。   According to the present invention, it is possible to obtain a low-cost wavefront sensor that omits a mechanism and a process for precisely adjusting the relative position of a light beam splitting element and an imaging element.

実施例1の波面センサの概略構成を示す図。1 is a diagram illustrating a schematic configuration of a wavefront sensor according to Embodiment 1. FIG. 実施例2の波面センサの概略構成を示す図。FIG. 5 is a diagram illustrating a schematic configuration of a wavefront sensor according to a second embodiment. 撮像素子のカバーガラスが歪んでいる場合の波面センサの概略構成を示す図。The figure which shows schematic structure of the wavefront sensor in case the cover glass of an image pick-up element is distorted. 実施例3の波面計測装置の概略構成を示す図。FIG. 6 is a diagram illustrating a schematic configuration of a wavefront measuring apparatus according to a third embodiment. 光学系の製造方法の製造工程を示す図。The figure which shows the manufacturing process of the manufacturing method of an optical system. 光学素子の製造方法の製造工程を示す図。The figure which shows the manufacturing process of the manufacturing method of an optical element.

以下、図面を参照しつつ、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明における実施例1の波面センサ100の概略構成を示している。波面センサ100は、光束分割素子(マイクロレンズアレイ)10、基準平板ガラス20、撮像素子(例えばCMOSやCCD)30、演算手段(コンピュータ)80で構成される。撮像素子30の面30a(本実施例では受光部)に対して、水平方向にx軸とy軸が、垂直方向にz軸が定義されている。x軸とy軸の方向は、撮像素子30の画素の2次元配列方向と一致している。撮像素子30の面30aは、z=0の位置にある。   FIG. 1 shows a schematic configuration of a wavefront sensor 100 according to the first embodiment of the present invention. The wavefront sensor 100 includes a light beam splitting element (microlens array) 10, a reference flat glass 20, an imaging element (for example, CMOS or CCD) 30, and an arithmetic means (computer) 80. With respect to the surface 30a of the image pickup device 30 (light receiving unit in this embodiment), an x axis and ay axis are defined in the horizontal direction, and a z axis is defined in the vertical direction. The x-axis and y-axis directions coincide with the two-dimensional arrangement direction of the pixels of the image sensor 30. The surface 30a of the image sensor 30 is at the position of z = 0.

光束分割素子10の光入射側の面(第1面)10aはレンズ構造(光束を分割する機能)を有し、光出射側の面(第2面)10bは平面である。基準平板ガラス20の光入射側の面(第1面)20a、光出射側の面(第2面)20bは、ともに平面であり、第1面20aと第2面20bとは平行になっている(第1面20aと第2面20bのなす角度が0.005度以下である)。光束分割素子10の第2面10bと基準平板ガラス20の第1面20aとが接しており、また、基準平板ガラス20の第2面20bと撮像素子30の面30aとが接している。   The light incident side surface (first surface) 10a of the light beam splitting element 10 has a lens structure (function to split the light beam), and the light output side surface (second surface) 10b is a flat surface. The light incident side surface (first surface) 20a and the light emission side surface (second surface) 20b of the reference flat glass 20 are both flat surfaces, and the first surface 20a and the second surface 20b are parallel to each other. (The angle formed by the first surface 20a and the second surface 20b is 0.005 degrees or less). The second surface 10b of the light beam splitting element 10 and the first surface 20a of the reference flat glass 20 are in contact with each other, and the second surface 20b of the reference flat glass 20 and the surface 30a of the imaging device 30 are in contact with each other.

波面センサ100に平行光が入射したとき、光束分割素子10の各レンズの集光点がほぼ撮像素子30の面30a上に形成されるように、光束分割素子10の厚みT及び屈折率N、基準平板ガラス20の厚みT及び屈折率Nを選択する。例えば、数式1を満たすように選択する。 When parallel light is incident on the wavefront sensor 100, the thickness Tm and the refractive index N of the light beam splitting element 10 are formed so that the condensing point of each lens of the light beam splitting element 10 is substantially formed on the surface 30a of the image sensor 30. m , the thickness T p of the reference flat glass 20, and the refractive index N p are selected. For example, selection is made so as to satisfy Formula 1.

Figure 2019203863
・・・数式1
Figure 2019203863
... Formula 1

ここでfは光束分割素子10の各レンズの焦点距離である。   Here, f is a focal length of each lens of the light beam splitting element 10.

波面センサ100は、光束分割素子10と撮像素子30の相対位置を精密調整する機構を備えていない。さらに、波面センサ100を組み立てるときは、精密調整工程を省略し、光束分割素子10、基準平板ガラス20、撮像素子30が接するように不図示の治具で固定するか、または、接着剤等で固定するだけである。接着剤を使用する場合、接着剤は、各素子が接する面(10bと20a、20bと30a)に塗布するのではなく、側面(光が透過しない面)に塗布する。接着剤を使用する代わりに、オプティカルコンタクトで結合させてもよい。   The wavefront sensor 100 does not include a mechanism for precisely adjusting the relative position between the light beam splitting element 10 and the imaging element 30. Further, when assembling the wavefront sensor 100, the precision adjustment step is omitted, and the light beam splitting element 10, the reference flat glass 20, and the imaging element 30 are fixed with a jig (not shown) so as to be in contact, or with an adhesive or the like. Just fix it. When an adhesive is used, the adhesive is not applied to the surfaces (10b and 20a, 20b and 30a) in contact with each element, but is applied to the side surfaces (surfaces through which light is not transmitted). Instead of using an adhesive, it may be bonded by optical contact.

本実施例では、光束分割素子10と撮像素子30が基準平板ガラス20に接することで、光束分割素子10と撮像素子30のz方向の相対位置が高精度に位置決めされている。つまり、光束分割素子10の第1面10aと撮像素子30の面30aの距離が一定である。したがって、従来実施していたz方向の相対位置の精密調整は省くことができる。一方、光束分割素子10のマイクロレンズの配列方向と撮像素子30の画素の配列方向(=x方向、y方向)は、精密調整を省略した影響で一致していない。つまり、光束分割素子10のマイクロレンズの配列方向は、撮像素子30の画素の配列方向に対して、z軸(撮像素子30の面30aに直交する軸)周りに回転している。このz軸(特定の軸)周りの回転による相対位置誤差は、後述する演算処理で補正する。   In the present embodiment, the light beam splitting element 10 and the image sensor 30 are in contact with the reference flat glass 20, so that the relative positions of the light beam splitting element 10 and the image sensor 30 in the z direction are positioned with high accuracy. That is, the distance between the first surface 10a of the light beam splitting element 10 and the surface 30a of the imaging element 30 is constant. Therefore, precise adjustment of the relative position in the z direction, which has been conventionally performed, can be omitted. On the other hand, the arrangement direction of the microlenses of the light beam splitting element 10 and the arrangement direction of the pixels of the imaging element 30 (= x direction, y direction) do not match due to the effect of omitting the fine adjustment. That is, the arrangement direction of the microlenses of the light beam splitting element 10 is rotated around the z axis (the axis orthogonal to the surface 30a of the imaging element 30) with respect to the arrangement direction of the pixels of the imaging element 30. The relative position error due to the rotation around the z axis (specific axis) is corrected by a calculation process described later.

波面センサ100に、ある波面W(x,y)を有する被検光90が入射すると、図1のように、撮像素子30の面30a上に、波面形状に応じた集光スポットが形成される。そして、撮像素子30で集光スポットの強度分布(複数の光の強度分布)が受光される。撮像素子30で受光された強度分布のデータは、コンピュータ80に送られ、各集光スポットの重心座標が計算される。光束分割素子10のi行j列に位置するマイクロレンズの座標を(Xij,Yij,T+T)、そのレンズによって形成される集光スポットの重心座標を(Xij+δXij,Yij+δXij,0)とすると、数式2の関係式が成り立つ。ただし、φxij、φyijは、各マイクロレンズに入射するx方向、y方向それぞれの入射角である。 When the test light 90 having a certain wavefront W (x, y) is incident on the wavefront sensor 100, a condensing spot corresponding to the wavefront shape is formed on the surface 30a of the image sensor 30 as shown in FIG. . Then, the image sensor 30 receives the intensity distribution of the condensed spot (intensity distribution of a plurality of lights). The intensity distribution data received by the image sensor 30 is sent to the computer 80, and the barycentric coordinates of each focused spot are calculated. The coordinates of the microlens located in the i row and j column of the light beam splitting element 10 are (X ij , Y ij , T m + T p ), and the barycentric coordinates of the condensing spot formed by the lens are (X ij + δX ij , Y ij + δX ij , 0), the relational expression of Expression 2 is established. Here, φ xij and φ yij are incident angles in the x direction and the y direction incident on each microlens.

Figure 2019203863
・・・数式2
Figure 2019203863
... Formula 2

各マイクロレンズに入射する光の角度が小さければ、数式2は、数式1を用いて数式3のように近似的に変形できる。   If the angle of the light incident on each microlens is small, Equation 2 can be approximated using Equation 1 as Equation 3.

Figure 2019203863
・・・数式3
Figure 2019203863
... Formula 3

光束分割素子10のマイクロレンズの配列方向と撮像素子30の画素の配列方向とがほぼ一致していると仮定する(つまり、従来通り精密調整した場合)。このとき、光束分割素子10のマイクロレンズの座標Xij,Yijは、数式4のように、x方向とy方向それぞれに光束分割素子30のマイクロレンズの周期(例えばΛ=150μm)で配列された値になる。
ij=Λj+a
ij=Λi+b
・・・数式4
It is assumed that the arrangement direction of the microlenses of the light beam splitting element 10 and the arrangement direction of the pixels of the image sensor 30 are substantially the same (that is, when fine adjustment is performed as usual). At this time, the coordinates X ij and Y ij of the microlens of the light beam splitting element 10 are arranged in the x direction and the y direction with the period of the microlens of the light beam splitting element 30 (for example, Λ = 150 μm) as in Expression 4. Value.
X ij = Λj + a
Y ij = Λi + b
... Formula 4

ここで、aはx座標のオフセット定数、bはy座標のオフセット定数である。一方、本実施例では、光束分割素子10のマイクロレンズの配列方向が、撮像素子30の画素の配列方向に対してz軸(特定の軸)周りに回転しているので、数式5のように補正をする必要がある。   Here, a is an x-coordinate offset constant and b is an y-coordinate offset constant. On the other hand, in this embodiment, since the arrangement direction of the microlenses of the light beam splitting element 10 is rotated around the z axis (specific axis) with respect to the arrangement direction of the pixels of the image pickup element 30, It is necessary to correct.

Figure 2019203863
・・・数式5
Figure 2019203863
... Formula 5

ここで、θはz軸周りの回転による相対位置誤差である。θの量は、あらかじめ、波面センサ100に平行光を入射させたときに撮像素子30で測定される集光スポットの重心座標配列から計算しておく。この数式5を、数式2または数式3と組み合わせることで、被検光の波面W(x,y)を算出することができる。精密調整無しでも偶然θの値が小さいときがある。そのときは、数式5の代わりに数式4を用いてもよい。 Here, θ z is a relative position error due to rotation around the z axis. The amount of theta z is in advance calculated from the centroid coordinate array of the focused spot as measured by image sensor 30 when is incident parallel light to the wavefront sensor 100. By combining Formula 5 with Formula 2 or Formula 3, the wavefront W (x, y) of the test light can be calculated. Even without precise adjustment there are times when a small value of accidental θ z. In that case, Formula 4 may be used instead of Formula 5.

以上のように、本実施例では、光束分割素子10と撮像素子30を基準平板ガラス20に接するように配置することで、光束分割素子10と撮像素子30のz方向の相対位置を高精度に位置決めしている。そして、z軸(特定の軸)周りの回転による相対位置誤差に関しては数式5のような演算で補正することで、精密調整機構及び精密調整工程を省き、低コストの波面センサを実現している。また、本実施例には次のような効果もある。   As described above, in this embodiment, the light beam splitting element 10 and the image sensor 30 are arranged so as to be in contact with the reference flat glass 20, so that the relative position in the z direction of the light beam split element 10 and the image sensor 30 can be accurately determined. Positioning. The relative position error due to rotation around the z-axis (specific axis) is corrected by the calculation of Equation 5, thereby eliminating the precision adjustment mechanism and the precision adjustment process and realizing a low-cost wavefront sensor. . The present embodiment also has the following effects.

光束分割素子10の有効領域外(≒周辺部)を保持する従来の固定方法では、光束分割素子10の自重変形、応力による変形、熱膨張・熱収縮による変形の影響を受けて、光束分割素子10と撮像素子30のz方向の距離に、非線形な分布が発生することがある。ここで、非線形な分布とは、例えば、有効領域の中央に凹または凸をもつ2次関数(+高次関数)のような分布である。一方、本実施例では、光束分割素子10の全有効領域を基準平板ガラス20が支えているため、上記のような非線形な分布を抑制することができる。つまり、堅牢な波面センサが実現できる。   In the conventional fixing method for holding the outside of the effective region (≈peripheral portion) of the light beam splitting element 10, the light beam splitting element 10 is affected by the deformation of the light beam splitting element 10 due to its own weight deformation, stress deformation, thermal expansion / heat shrinkage. A non-linear distribution may occur in the distance between the image sensor 10 and the image sensor 30 in the z direction. Here, the non-linear distribution is, for example, a distribution such as a quadratic function (+ high order function) having a concave or convex shape at the center of the effective region. On the other hand, in the present embodiment, since the reference flat glass 20 supports the entire effective area of the light beam splitting element 10, it is possible to suppress the nonlinear distribution as described above. That is, a robust wavefront sensor can be realized.

本実施例では、光束分割素子10の屈折率Nと基準平板ガラス20の屈折率Nが異なる(つまり、光束分割素子10と基準平板ガラス20の材質が異なる)前提で説明したが、両者の屈折率(材質)は同じでもよい。その場合、数式2、数式3において、TにT+Tを、Tに0を代入した式になる。もし、厚みT+Tを有する光束分割素子10を製造できるのであれば、基準平板ガラス20は無くてもよい。その場合、光束分割素子10と撮像素子30が直接接していることになる。一般的に、フォトリソグラフィで製作したマイクロレンズアレイは厚みが1mm程度である。光束分割素子10の厚みを増やして基準平板ガラス20を除くためには、例えば、マイクロレンズの焦点距離f〜5mm、マイクロレンズアレイの屈折率N〜1.5のとき、厚み〜7.5mm(従来の7、8倍)程度のマイクロレンズアレイを準備する必要がある。 In this embodiment, the refractive index N p of the refractive index N m and reference plate glass 20 of the light-flux splitter 10 is different (i.e., the material of the beam splitting element 10 and the reference plate glass 20 are different) has been described on the assumption that both May have the same refractive index (material). In this case, in Equation 2, Equation 3, the T m + T p to T m, by an expression obtained by substituting 0 into T m. If the light beam splitting element 10 having the thickness T m + T p can be manufactured, the reference flat glass 20 may be omitted. In this case, the light beam splitting element 10 and the image sensor 30 are in direct contact. Generally, a microlens array manufactured by photolithography has a thickness of about 1 mm. To remove the reference plate glass 20 by increasing the thickness of the light-flux splitter 10, for example, focal length f~5mm of microlenses, when the refractive index N m to 1.5 of the microlens array, the thickness ~7.5mm It is necessary to prepare a microlens array of about 7 to 8 times the conventional size.

本実施例では、光束分割素子10の第1面10aはレンズ構造、第2面10bは平面としたが、第1面10aが平面で、第2面10bがレンズ構造(もしくは、第1面10a、第2面10bともにレンズ構造)でもよい。その場合、数式1の代わりに、f=T/Nを満たす基準平板ガラス20を準備する必要がある。そして、数式2、数式3は、Tに0を代入した式になる。 In the present embodiment, the first surface 10a of the light beam splitting element 10 is a lens structure and the second surface 10b is a flat surface, but the first surface 10a is a flat surface and the second surface 10b is a lens structure (or the first surface 10a). The second surface 10b may have a lens structure). In that case, it is necessary to prepare the reference flat glass 20 satisfying f = T p / N p instead of Equation 1. Equations 2 and 3 are obtained by substituting 0 for Tm .

本実施例では、数式5のように、光束分割素子10のマイクロレンズの座標をθ回転させる演算をしているが、その代わりに、各集光スポットの重心座標のずれ量δXij,δXijを−θ回転させてもよい。 In this embodiment, as shown in Equation 5, the calculation of rotating the coordinates of the microlens of the light beam splitting element 10 by θ z is performed, but instead, the shift amounts δX ij and δX of the center-of-gravity coordinates of each focused spot ij may be rotated - [theta] z of.

本実施例では、波面センサとして、光束分割素子10にマイクロレンズアレイを用いたシャック・ハルトマンセンサを採用したが、代わりにピンホールアレイを用いたハルトマンセンサや、回折格子を用いたタルボ干渉計にしてもよい。波面回復の方法は、本実施例のように各集光スポットの重心座標を計算する方法でもよいし、フーリエ変換法でもよい。   In this embodiment, a Shack-Hartmann sensor using a microlens array as the light beam splitting element 10 is used as the wavefront sensor. Instead, a Hartmann sensor using a pinhole array or a Talbot interferometer using a diffraction grating is used. May be. The wavefront recovery method may be a method of calculating the barycentric coordinates of each focused spot as in this embodiment, or a Fourier transform method.

図2は、本発明における実施例2の波面センサ200の概略構成を示している。実施例1と同様の構成については、同一の符号を付して説明する。波面センサ200は、光束分割素子10、基準平板ガラス20、カバーガラス35を有する撮像素子30、コンピュータ80で構成される。本実施例では、カバーガラス35も含めて撮像素子30と定義し、撮像素子30の面30aはカバーガラス(光透過部材)35の面を意味する。カバーガラス35と撮像素子30の受光部30bの間には空気の層があるとする。   FIG. 2 shows a schematic configuration of the wavefront sensor 200 according to the second embodiment of the present invention. The same configurations as those in the first embodiment will be described with the same reference numerals. The wavefront sensor 200 includes a light beam splitting element 10, a reference flat glass 20, an imaging element 30 having a cover glass 35, and a computer 80. In this embodiment, the cover glass 35 and the image pickup device 30 are defined, and the surface 30 a of the image pickup device 30 means the surface of the cover glass (light transmission member) 35. It is assumed that there is an air layer between the cover glass 35 and the light receiving unit 30b of the image sensor 30.

本実施例では、実施例1の構成(図1)に加えてカバーガラス35(厚みT、屈折率N)と空気(厚みT、屈折率1)の層があるため、実施例1の数式1、数式2のそれぞれに相当するものは、数式6、数式7になる。本実施例の構成においては、数式5と数式7(または数式6のfを数式3に代入した式)を組み合わせることで被検光の波面を算出することができる。 In this example, since there is a layer of cover glass 35 (thickness T c , refractive index N c ) and air (thickness T a , refractive index 1) in addition to the configuration of FIG. Equations 1 and 2 correspond to Equations 6 and 7, respectively. In the configuration of the present embodiment, the wavefront of the test light can be calculated by combining Expression 5 and Expression 7 (or an expression obtained by substituting f of Expression 6 into Expression 3).

Figure 2019203863
・・・数式6
Figure 2019203863
... Formula 6

Figure 2019203863
・・・数式7
Figure 2019203863
... Formula 7

本実施例では、撮像素子30の受光部30bの前方(+z軸方向)にカバーガラス35があるとしたが、カバーガラスの代わりにローパスフィルタや赤外カットフィルタ、もしくは、それら複数の組合せがあってもよい。光束分割素子10の光束分割面10a(レンズや回折格子の構造がある面)から、撮像素子30の受光部30bにいたるまでに、厚みT、屈折率N(k=1,2,・・・,M)の層があるとき、数式6、数式7は数式8、数式9のように一般化される。 In the present embodiment, the cover glass 35 is provided in front of the light receiving unit 30b of the image sensor 30 (+ z-axis direction). However, a low-pass filter, an infrared cut filter, or a combination of these may be used instead of the cover glass. May be. Thickness T k , refractive index N k (k = 1, 2,...) From the light beam splitting surface 10a (surface having a lens or diffraction grating structure) of the light beam splitting device 10 to the light receiving unit 30b of the imaging device 30. .., M) When there is a layer, Equation 6 and Equation 7 are generalized as Equation 8 and Equation 9.

Figure 2019203863
・・・数式8
Figure 2019203863
... Formula 8

Figure 2019203863
・・・数式9
Figure 2019203863
... Formula 9

上記の説明では、撮像素子30内において、受光部30bに対してカバーガラス35が平行かつ歪無く取り付けられていると仮定した。しかし、使用する撮像素子によっては、図3の波面センサ201のようにカバーガラス35の取り付け精度が悪い場合もありうる。その場合、光束分割素子10と基準平板ガラス20が撮像素子30の受光部30bに対して傾いた状態になる(x軸周り及びy軸周りの回転による相対位置誤差が生じる)。光束分割素子10の面積が、例えば、15×15mm、基準平板ガラス20の厚みが、例えば5mm程度であれば、光束分割素子10と基準平板ガラス20のセットで構成される部分は、ほぼ歪み無しで配置できる。光束分割素子10を大面積にする場合は、面積に応じて基準平板ガラス20の厚みも大きくすれば歪を抑制できる。   In the above description, it is assumed that the cover glass 35 is attached to the light receiving unit 30b in parallel and without distortion in the imaging element 30. However, depending on the imaging device to be used, the cover glass 35 may be attached with poor accuracy as in the wavefront sensor 201 of FIG. In this case, the light beam splitting element 10 and the reference flat glass 20 are inclined with respect to the light receiving portion 30b of the image sensor 30 (relative position errors are caused by rotation around the x axis and the y axis). If the area of the light beam splitting element 10 is, for example, 15 × 15 mm and the thickness of the reference flat glass 20 is, for example, about 5 mm, the portion constituted by the set of the light beam splitting element 10 and the reference flat glass 20 has almost no distortion. Can be arranged. When the light beam splitting element 10 has a large area, distortion can be suppressed by increasing the thickness of the reference flat glass 20 in accordance with the area.

図3の構成の場合、光束分割素子10の厚みT、基準平板ガラス20の厚みT、カバーガラス35の厚みTは、図2と同様に、場所によらず一定とみなせる(カバーガラス35も、形状が変わるだけで厚みはほぼ一定)。一方、空気の層の厚み(カバーガラス35と受光面30bの間の空気層だけでなく、基準平板ガラス20の第2面20bと撮像素子30の面30aの間の空気層も加算した厚み)は、分布をもつ(T=T(Xij,Yij)=Taij)。この厚み分布Taijを無視すると、波面算出誤差が発生する。従来では、この分布を取り除くために光束分割素子10を精密調整していたが、本実施例では、精密調整の代わりに空気層の厚みの補正計算(x軸およびy軸を特定の軸とした軸周りの回転による補正演算)をすることで、従来の精密調整機構及び工程を省略する。 In the case of the configuration of FIG. 3, the thickness T m of the light beam splitting element 10, the thickness T p of the reference flat glass 20, and the thickness T c of the cover glass 35 can be regarded as constant regardless of the location (cover glass). 35, the thickness is almost constant just by changing the shape. On the other hand, the thickness of the air layer (the thickness obtained by adding not only the air layer between the cover glass 35 and the light receiving surface 30b but also the air layer between the second surface 20b of the reference flat glass 20 and the surface 30a of the image sensor 30). Has a distribution (T a = T a (X ij , Y ij ) = T aij ). If this thickness distribution T aij is ignored, a wavefront calculation error occurs. Conventionally, the light beam splitting element 10 is precisely adjusted to remove this distribution. However, in this embodiment, instead of the precise adjustment, correction calculation of the thickness of the air layer (x axis and y axis are used as specific axes). The conventional precision adjustment mechanism and process are omitted by performing a correction calculation by rotation around the axis.

本実施例の構成では、光束分割素子10と基準平板ガラス20のセットが歪み無く傾いているだけとみなせるので、空気の層の厚み分布Taijは、数式10のように、線形に変化する分布と近似できる。
aij=T+AXij+BYij
・・・数式10
In the configuration of the present embodiment, it can be considered that the set of the light beam splitter 10 and the reference flat glass 20 is tilted without distortion. Therefore, the thickness distribution T aij of the air layer is a distribution that varies linearly as in Expression 10. Can be approximated.
T aij = T a + AX ij + BY ij
... Formula 10

ここで、A、Bは比例定数、Tは空気層の厚み分布の平均値である。数式10の第2項および第3項は、xy平面内において、y軸からarctan(B/A)回転した軸(撮像素子30の面30aに平行な軸)に関して、arctan(√(A+B))回転する補正を加えていることを意味する。この数式10のTaijを、数式7のTに代入して波面を算出すれば、図3の構成の波面センサにおける波面が得られる。 Here, A, and B proportional constant, T a is the average value of the thickness distribution of the air layer. The second term and the third term of Expression 10 are arctan (√ (A 2 + B) with respect to an axis (axis parallel to the surface 30a of the image sensor 30) rotated arctan (B / A) from the y axis in the xy plane. 2 )) Means that rotating correction is added. If the wavefront is calculated by substituting T aij in Equation 10 into T a in Equation 7, the wavefront in the wavefront sensor having the configuration of FIG. 3 can be obtained.

図4は、実施例1の波面センサ100を用いた波面計測装置1の概略構成を示している。波面計測装置1は、光源50、投光系60、波面センサ100で構成されており、被検物70の波面を計測する。本実施例では、被検物70は複数の光学素子を組み合わせた光学系または単一の光学素子である。   FIG. 4 shows a schematic configuration of the wavefront measuring apparatus 1 using the wavefront sensor 100 of the first embodiment. The wavefront measuring apparatus 1 includes a light source 50, a light projecting system 60, and a wavefront sensor 100, and measures the wavefront of the test object 70. In this embodiment, the test object 70 is an optical system in which a plurality of optical elements are combined or a single optical element.

光源50から射出した発散光は、投光系60で収束し、被検物70に入射する。被検物70を透過した光は、波面センサ100に入射し、被検物70の波面収差90が計測される。この波面収差の計測結果を、光学系や光学素子の製造方法にフィードバックすることができる。光源50としては、例えば、レーザダイオードやLEDが用いられる。投光系60は、例えば、単レンズ、複数レンズ、CGH(Computer−Generated Holography)により構成される。本実施例によれば、光束分割素子と撮像素子の相対位置を精密調整する機構及び工程を省いた波面センサを利用することにより、低コストの波面計測装置を実現することができる。   The diverging light emitted from the light source 50 is converged by the light projecting system 60 and enters the test object 70. The light transmitted through the test object 70 enters the wavefront sensor 100, and the wavefront aberration 90 of the test object 70 is measured. The measurement result of the wavefront aberration can be fed back to the optical system and the optical element manufacturing method. As the light source 50, for example, a laser diode or an LED is used. The light projecting system 60 includes, for example, a single lens, a plurality of lenses, and a CGH (Computer-Generated Holography). According to the present embodiment, a low-cost wavefront measuring device can be realized by using a wavefront sensor that omits a mechanism and a process for precisely adjusting the relative position of the light beam splitting element and the imaging element.

図5は、光学系の製造方法を示している。まず、複数の光学素子を用いて光学系を組み立て、各光学素子の位置を調整する(S11)。組立調整された光学系は、その光学性能が評価され(S12)、精度不足である場合は再度組立調整を行う。この光学性能評価に、実施例1や実施例2の波面センサを備えた波面計測装置1を利用することができる。   FIG. 5 shows a method for manufacturing the optical system. First, an optical system is assembled using a plurality of optical elements, and the position of each optical element is adjusted (S11). The optical performance of the assembled and adjusted optical system is evaluated (S12), and if the accuracy is insufficient, the assembly and adjustment are performed again. For this optical performance evaluation, the wavefront measuring apparatus 1 including the wavefront sensor of the first embodiment or the second embodiment can be used.

図6は、モールド加工を利用した光学素子の製造方法を示している。光学素子は、光学素子の設計工程(S21)、金型の設計工程(S22)、及び、設計された金型を用いた光学素子のモールド工程(S23)を経て製造される。モールドされた光学素子は、その形状精度が評価され(S24)、精度不足である場合は金型を補正して(S25)再度モールドを行う。形状精度が良好であれば、光学素子の光学性能が評価される(S26)。光学性能が低い場合は、光学面を補正した光学素子を設計し直す(S27)。光学性能が良好である場合は、モールドされる光学素子の量産工程(S28)に進む。この光学性能の評価に波面計測装置1を利用することができる。上記光学素子の製造方法は、モールドに限られず、研削、研磨による光学素子の製造にも同様に適用することができる。   FIG. 6 shows a method of manufacturing an optical element using mold processing. The optical element is manufactured through an optical element design process (S21), a mold design process (S22), and an optical element mold process (S23) using the designed mold. The molded optical element is evaluated for its shape accuracy (S24). If the accuracy is insufficient, the mold is corrected (S25), and the molding is performed again. If the shape accuracy is good, the optical performance of the optical element is evaluated (S26). If the optical performance is low, the optical element whose optical surface is corrected is redesigned (S27). If the optical performance is good, the process proceeds to the mass production process (S28) of the optical element to be molded. The wavefront measuring apparatus 1 can be used for this optical performance evaluation. The manufacturing method of the optical element is not limited to a mold, and can be similarly applied to manufacturing an optical element by grinding and polishing.

以上、説明した各実施例は代表的な例に過ぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   The embodiments described above are merely representative examples, and various modifications and changes can be made to the embodiments when the present invention is implemented.

10 光束分割素子
20 基準平板ガラス
30 撮像素子
80 演算手段
DESCRIPTION OF SYMBOLS 10 Light beam splitting element 20 Reference | standard flat glass 30 Image pick-up element 80 Calculation means

Claims (11)

被検光を複数の光に分割する光束分割素子と、
前記複数の光を受光する撮像素子と、
前記撮像素子で受光した前記複数の光の強度分布に基づいて前記被検光の波面を算出する演算手段とを有し、
前記光束分割素子と前記撮像素子とが接しており、または、前記光束分割素子と前記撮像素子の間に基準平板ガラスを有し、前記基準平板ガラスが前記光束分割素子と前記撮像素子に接しており、
前記演算手段は、前記被検光の波面の算出において、前記光束分割素子と前記撮像素子の相対位置の位置ずれを、特定の軸の周りに回転させる演算により補正することを特徴とする波面センサ。
A light beam splitting element that splits the test light into a plurality of lights;
An image sensor for receiving the plurality of lights;
Calculating means for calculating a wavefront of the test light based on an intensity distribution of the plurality of lights received by the imaging device;
The light beam splitting element and the image sensor are in contact with each other, or a reference flat glass is provided between the light beam splitting element and the image sensor, and the reference flat glass is in contact with the light beam splitting element and the image sensor. And
In the calculation of the wavefront of the test light, the calculation means corrects a positional shift between the relative positions of the light beam splitting element and the imaging element by a calculation that rotates around a specific axis. .
前記特定の軸は、前記撮像素子の面に直交する軸であることを特徴とする請求項1に記載の波面センサ。   The wavefront sensor according to claim 1, wherein the specific axis is an axis orthogonal to a surface of the image sensor. 前記特定の軸は、前記撮像素子の面に平行な軸であることを特徴とする請求項1または2に記載の波面センサ。   The wavefront sensor according to claim 1, wherein the specific axis is an axis parallel to a surface of the image sensor. 前記演算手段は、前記基準平板ガラスの厚み及び屈折率に基づいて前記被検光の波面を算出することを特徴とする請求項1から3のいずれか1項に記載の波面センサ。   The wavefront sensor according to any one of claims 1 to 3, wherein the calculation means calculates a wavefront of the test light based on a thickness and a refractive index of the reference flat glass. 前記光束分割素子は、光入射側の面が光束を分割する機能を有し、光出射側の面が平面であり、
前記撮像素子または前記基準平板ガラスは、前記光束分割素子の光出射側の平面に接し、
前記演算手段は、前記光束分割素子の厚み及び屈折率に基づいて前記被検光の波面を算出することを特徴とする請求項1から4のいずれか1項に記載の波面センサ。
The light beam splitting element has a function of splitting a light beam on a light incident side surface, and a light output side surface is a plane,
The image sensor or the reference flat glass is in contact with a light emission side plane of the light beam splitting element,
5. The wavefront sensor according to claim 1, wherein the calculation unit calculates a wavefront of the test light based on a thickness and a refractive index of the light beam splitting element.
前記撮像素子は、受光部の光入射側に光透過部材を有し、
前記光束分割素子または前記基準平板ガラスは、前記撮像素子の前記光透過部材と接し、
前記演算手段は、前記光透過部材の厚み及び屈折率に基づいて波面を算出することを特徴とする請求項1から5のいずれか1項に記載の波面センサ。
The image sensor has a light transmitting member on the light incident side of the light receiving unit,
The light beam splitting element or the reference flat glass is in contact with the light transmission member of the imaging element,
The wavefront sensor according to any one of claims 1 to 5, wherein the calculation means calculates a wavefront based on a thickness and a refractive index of the light transmitting member.
前記光透過部材は、カバーガラス、ローパスフィルタ、赤外カットフィルタの少なくとも1つにより構成されていることを特徴とする請求項6に記載の波面センサ。   The wavefront sensor according to claim 6, wherein the light transmission member includes at least one of a cover glass, a low-pass filter, and an infrared cut filter. 前記光束分割素子と前記撮像素子の間に基準平板ガラスを有し、該基準平板ガラスの光入射側の面と光出射側の面がなす角度は0.005度以下であることを特徴とする請求項1から7のいずれか1項に記載の波面センサ。   A reference flat glass is provided between the light beam splitting element and the imaging element, and an angle formed by a light incident side surface and a light emission side surface of the reference flat glass is 0.005 degrees or less. The wavefront sensor according to claim 1. 光源と、
前記光源からの光を被検物に入射させる投光系と、
前記被検物から出射した被検光を受光して該被検光の波面を算出する請求項1から8のいずれか1項に記載の波面センサを有することを特徴とする波面計測装置。
A light source;
A light projecting system for causing light from the light source to enter the test object;
9. A wavefront measuring apparatus comprising the wavefront sensor according to claim 1, wherein the wavefront sensor according to any one of claims 1 to 8 calculates a wavefront of the test light by receiving the test light emitted from the test object.
光学系を組み立てるステップと、
請求項9に記載の波面計測装置を用いて前記光学系の波面収差を計測することにより、前記光学系の光学性能を評価するステップを含むことを特徴とする光学系の製造方法。
Assembling the optical system;
A method for manufacturing an optical system, comprising the step of evaluating the optical performance of the optical system by measuring the wavefront aberration of the optical system using the wavefront measuring apparatus according to claim 9.
光学素子を加工するステップと、
請求項9に記載の波面計測装置を用いて前記光学素子の波面収差を計測することにより、前記光学素子の光学性能を評価するステップを含むことを特徴とする光学素子の製造方法。
Processing the optical element;
A method for manufacturing an optical element, comprising the step of evaluating the optical performance of the optical element by measuring the wavefront aberration of the optical element using the wavefront measuring apparatus according to claim 9.
JP2018101008A 2018-05-25 2018-05-25 Wavefront sensor, wavefront measuring device, optical element manufacturing method, optical system manufacturing method Active JP7199835B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018101008A JP7199835B2 (en) 2018-05-25 2018-05-25 Wavefront sensor, wavefront measuring device, optical element manufacturing method, optical system manufacturing method
US16/416,894 US11513344B2 (en) 2018-05-25 2019-05-20 Sensor and measurement apparatus for wavefront of light from optical element, and method of manufacturing optical element and optical system
EP19175679.0A EP3575760A1 (en) 2018-05-25 2019-05-21 Wavefront sensor, wavefront measurement apparatus, method of manufacturing optical element, and method of manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101008A JP7199835B2 (en) 2018-05-25 2018-05-25 Wavefront sensor, wavefront measuring device, optical element manufacturing method, optical system manufacturing method

Publications (3)

Publication Number Publication Date
JP2019203863A true JP2019203863A (en) 2019-11-28
JP2019203863A5 JP2019203863A5 (en) 2021-07-26
JP7199835B2 JP7199835B2 (en) 2023-01-06

Family

ID=66630110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101008A Active JP7199835B2 (en) 2018-05-25 2018-05-25 Wavefront sensor, wavefront measuring device, optical element manufacturing method, optical system manufacturing method

Country Status (3)

Country Link
US (1) US11513344B2 (en)
EP (1) EP3575760A1 (en)
JP (1) JP7199835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829671A (en) * 2020-09-08 2020-10-27 中国工程物理研究院应用电子学研究所 High-resolution wavefront detection device and wavefront restoration method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917304A (en) * 2020-06-17 2023-04-04 康宁公司 Method and apparatus for measuring characteristics of glass-based substrate
WO2022158957A1 (en) 2021-01-21 2022-07-28 Latvijas Universitates Cietvielu Fizikas Instituts Coded diffraction pattern wavefront sensing device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936720A (en) * 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
JP2002270491A (en) * 2001-03-12 2002-09-20 Nikon Corp Aligner, aligner manufacturing method, wave front aberration measuring apparatus and microdevice manufacturing method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
WO2010058193A2 (en) * 2008-11-19 2010-05-27 Bae Systems Plc Mirror structure
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2011196732A (en) * 2010-03-18 2011-10-06 Hitachi Ltd Method for measuring wavefront aberration and device of the same
JP2015055544A (en) * 2013-09-11 2015-03-23 キヤノン株式会社 Wavefront measurement instrument, wavefront measurement method, method of manufacturing optical element, and assembly adjustment device of optical system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119905B2 (en) * 2003-08-26 2006-10-10 Ut-Battelle Llc Spatial-heterodyne interferometry for transmission (SHIFT) measurements
JP5689879B2 (en) 2009-07-20 2015-03-25 ソルラブス、 インコーポレイテッドThorlabs, Inc. Shack-Hartmann sensor with removable lenslet array
JP2014191190A (en) * 2013-03-27 2014-10-06 Fujifilm Corp Infrared absorbing composition, infrared cut filter, camera module and method for manufacturing camera module
JP2015210241A (en) * 2014-04-30 2015-11-24 キヤノン株式会社 Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936720A (en) * 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
JP2002270491A (en) * 2001-03-12 2002-09-20 Nikon Corp Aligner, aligner manufacturing method, wave front aberration measuring apparatus and microdevice manufacturing method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
WO2010058193A2 (en) * 2008-11-19 2010-05-27 Bae Systems Plc Mirror structure
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2011196732A (en) * 2010-03-18 2011-10-06 Hitachi Ltd Method for measuring wavefront aberration and device of the same
JP2015055544A (en) * 2013-09-11 2015-03-23 キヤノン株式会社 Wavefront measurement instrument, wavefront measurement method, method of manufacturing optical element, and assembly adjustment device of optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PFUND,J. ET AL.: "Misalignment effects of the Shack-Hartmann sensor", APPLIED OPTICS, vol. 37, no. 1, JPN6022017751, 1 January 1998 (1998-01-01), pages 22 - 27, XP002322182, ISSN: 0004876402, DOI: 10.1364/AO.37.000022 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829671A (en) * 2020-09-08 2020-10-27 中国工程物理研究院应用电子学研究所 High-resolution wavefront detection device and wavefront restoration method
CN111829671B (en) * 2020-09-08 2023-01-03 中国工程物理研究院应用电子学研究所 High-resolution wavefront detection device and wavefront restoration method

Also Published As

Publication number Publication date
US11513344B2 (en) 2022-11-29
EP3575760A1 (en) 2019-12-04
US20190361226A1 (en) 2019-11-28
JP7199835B2 (en) 2023-01-06

Similar Documents

Publication Publication Date Title
EP0866956B1 (en) Wavefront measuring system with integral geometric reference (igr)
JP5909365B2 (en) Contact probe
JP2019203863A (en) Wavefront sensor, wavefront measuring device, optical element manufacturing method, and optical system manufacturing method
JP2024063078A (en) Wavefront measuring device, wavefront measuring method, and method for manufacturing optical system and optical element
JP6072317B2 (en) Eccentricity measuring method and eccentricity measuring device
RU2470258C1 (en) Angle measurement device
CN108317959A (en) A kind of displacement detection device based on wedge fringes
US6823599B1 (en) Alignment structure and method for multiple field camera
CN110631510B (en) High-precision angle measuring device and method based on Michelson structure
CN110160443B (en) Optical fiber point diffraction interference device and method for transient three-coordinate measurement
JP2011122857A (en) Method and device for measuring aspherical object
CN100385224C (en) Bipoint-source interference detection method and device of spherical reflection mirror
US20200240770A1 (en) Device and Method for Calibrating a Measuring Apparatus Using Projected Patterns and a Virtual Plane
JP4400985B2 (en) Shape measuring device
CN112504164A (en) Measuring device and method capable of dynamically measuring surface shape of planar optical element
JP4857619B2 (en) Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
CN109839086B (en) Method and device for measuring rigid displacement error of deformable mirror
JP2017009405A (en) Shape measurement method, shape measurement device and shape measurement program
JP2018072375A (en) Method of measuring eccentricity of optical component holding frame
JP4007473B2 (en) Wavefront shape measurement method
RU2705177C1 (en) Autocollimation device for centering optical elements
US20220179202A1 (en) Compensation of pupil aberration of a lens objective
RU2461797C1 (en) Device to measure bend of artillery barrel
JP6210832B2 (en) Measuring method and measuring device
RU2630196C2 (en) Laser autocomlimating microscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R151 Written notification of patent or utility model registration

Ref document number: 7199835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151