JP4400985B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP4400985B2
JP4400985B2 JP2000053591A JP2000053591A JP4400985B2 JP 4400985 B2 JP4400985 B2 JP 4400985B2 JP 2000053591 A JP2000053591 A JP 2000053591A JP 2000053591 A JP2000053591 A JP 2000053591A JP 4400985 B2 JP4400985 B2 JP 4400985B2
Authority
JP
Japan
Prior art keywords
interference fringe
wafer
fringe image
reference plane
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000053591A
Other languages
Japanese (ja)
Other versions
JP2001241923A (en
Inventor
康司 米田
勉 森本
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000053591A priority Critical patent/JP4400985B2/en
Publication of JP2001241923A publication Critical patent/JP2001241923A/en
Application granted granted Critical
Publication of JP4400985B2 publication Critical patent/JP4400985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,干渉計を用いてウェーハの形状(厚さ分布)を測定する形状測定装置に関するものである。
【0002】
【従来の技術】
ウェーハの厚さ分布を測定する手法としては,例えば特開平11−260873号公報に提案されているものが知られている。
上記公報に記載されているウェーハ形状測定装置Z0は,図11に示すように,エッジ部において鉛直保持されたウェーハ1の両面側に2つの光学測定系10,20が対向配置され,上記ウェーハ1の周縁に向けて厚さ測定部50が配置されている。上記各光学測定系10,20は,それぞれ測定光12,22を出射する発光器11,21,上記測定光12,22を平行ビームとするコリメータレンズ14,24,上記平行ビームが透過する基準平面15,25,上記ウェーハ1の主面1a及び裏面1bで反射された測定光が上記基準平面15,25及び上記コリメータレンズ14,24等を経て入射される受光器16,26とを備えている。上記受光器16,26では,上記基準平面15,25での反射光と,上記ウェーハ1の主面1a,裏面1bでの反射光とで形成される干渉縞が観測される。演算器17では,上記受光器16,26で観測された干渉縞の画像に基づいて上記ウェーハ1の主面1a及び裏面1bの平面形状が演算され,上記厚さ測定部50で測定されたウェーハ1の所定位置での厚さ実測値を基準として上記ウェーハ1の絶対形状(厚さ分布)が求められる。
【0003】
【発明が解決しようとする課題】
しかしながら,上記従来のウェーハ形状測定装置Z0で得られるウェーハ1の主面1a及び裏面1bの平面形状は,あくまでも上記基準平面15,25を理想平面と仮定した上でのものであって,実際に得られる平面形状は上記基準平面15,25の平面誤差が重畳されたものとなる。
ここで,上記基準平面の平面形状は,小基板(例えば直径100mm以下)で且つ高精度に研磨された光学ガラス(オプティカルフラット)でもλ/20(λは測定光の波長)程度以下にすることは困難,若しくは非常に高価となる。これが,大口径ウェーハの測定に適用できる例えば直径300mmの大口径の基板を基準平面にするとなると,自重撓みによる変形等の影響も無視できなくなり,また大口径基板の研磨精度も悪いことから,高精度な平坦面を実現することは更に困難となる。光源としてHe−Neレーザを用いた場合,波長λは633nmであり,λ/20の平坦度は約30nmに相当する。従って,両面の測定で誤差が重畳することを考えると測定時の最大誤差は60nmオーダにもなるため,上記従来のウェーハ形状測定装置Z0では高精度の形状測定を行うことは難しい。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,基準平面の平面形状に依存せず高精度にウェーハの厚さ分布測定を行うことが可能な形状測定装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために,本発明は,ウェーハの主面側及び裏面側に対向配置される2つの基準平面と,上記主面側の基準平面を介して上記ウェーハの主面に向けて照射された平行光の上記ウェーハ主面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する主面側干渉縞画像取得手段と,
上記裏面側の基準平面を介して上記ウェーハの裏面に向けて照射された平行光の上記ウェーハ裏面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する裏面側干渉縞画像取得手段と,上記ウェーハを上記2つの基準平面間から取り除いた状態で,上記2つの基準平面に向けて照射された平行光の上記一方の基準平面における反射光と他方の基準平面における反射光とで形成される干渉縞画像を取得する基準平面干渉縞画像取得手段と, 上記主面側干渉縞画像取得手段,上記裏面側干渉縞画像取得手段,及び上記基準平面干渉縞画像取得手段で得られた3つの干渉縞画像に基づいて上記ウェーハの厚さ分布を算出する形状算出手段とを具備してなり,
上記形状算出手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像より求められる上記2つの基準平面の距離Lt(x,y)と,上記主面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの主面とそれに対向する上記基準平面との距離La(x,y)と,上記裏面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの裏面とそれに対向する上記基準平面との距離Lb(x,y)とに基づいて,上記ウェーハの計算上の厚さ分布T(x,y)を次式により求めるものである形状測定装置であって,
T(x,y)=Lt(x,y)−La(x,y)−Lb(x,y)
上記ウェーハの少なくとも1か所の任意位置での厚さを実測する絶対厚さ測定手段を具備し,
上記形状算出手段は,上記絶対厚さ測定手段でウェーハの厚さが実測される上記任意位置での上記計算上の厚さ分布T(x,y)上における計算厚さが,その位置における上記絶対厚さ測定手段で実測された上記ウェーハの絶対厚さに等しくなるように上記計算上の厚さ分布T(x,y)を平行移動させて上記ウェーハの絶対厚さ分布を取得するものである形状測定装置として構成されている。
【0005】
ここで,上記主面側の基準平面の平面形状をRef1(x,y),上記裏面側の基準平面の平面形状をRef2(x,y),ウェーハ主面の形状をA(x,y),ウェーハ裏面の形状をB(x,y)とすると,上記La(x,y),Lb(x,y),Lt(x,y)は次のように表される。
La(x,y)=Ref1(x,y)−A(x,y)+OffsetA
… (2)
Lb(x,y)=−{Ref2(x,y)−B(x,y)}
+OffsetB … (3)
Lt(x,y)=Ref1(x,y)−Ref2(x,y)
+Offset12 … (4)
(但し,OffsetA,OffsetB,Offset12はλ/2の整数倍,λは測定用光源の波長)
上記(2)〜(4)式を用いて上記(1)式は次のように変形できる。
T(x,y)=B(x,y)−A(x,y)+OffsetC(OffsetCはλ/2の整数倍)
… (1)′
上記(1)′式より,上記(1)式で求められるウェーハ1の厚さ分布T(x,y)は,上記2つの基準平面の平面形状Ref1(x,y),Ref2(x,y)に依存しない値であることがわかる。即ち,発明によれば,基準平面の平面形状に依存せず高精度にウェーハの厚さ分布測定を行うことが可能となる。
【0006】
更に,上記ウェーハの少なくとも1か所の任意位置での厚さを実測する絶対厚さ測定手段を具備し,上記形状算出手段が,上記絶対厚さ測定手段でウェーハの厚さが実測される上記任意位置での上記計算上の厚さ分布T(x,y)上における計算厚さが,その位置における上記絶対厚さ測定手段で実測された上記ウェーハの絶対厚さに等しくなるように上記計算上の厚さ分布T(x,y)を平行移動させて上記ウェーハの絶対厚さ分布を取得するように構成することも可能である。
更に,上記基準平面干渉縞画像取得手段で得られた干渉縞画像に基づいて,上記ウェーハの主面側及び裏面側にそれぞれ設置される光学系の角度ズレを調整する角度ズレ調整手段を具備することが望ましい。これにより,光学系の角度ズレによる測定精度への悪影響を除去し,更に高精度の測定が可能となる。
ここで,上記角度ズレ調整手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像の干渉縞数若しくは干渉縞の濃淡変化が最小となるように上記2つの光学系の角度を調整する,或いは,上記基準平面干渉縞画像取得手段で得られた干渉縞画像から求められる距離分布が最小となるように上記2つの光学系の角度を調整するように構成すればよい。
【0007】
更に,上記ウェーハを含む測定系全体を鉛直方向から若干傾斜した状態に設置し,上記ウェーハが鉛直方向から若干傾斜した状態で保持されるようにすれば,上記ウェーハの支持点に対して垂直抗力が働いてウェーハの振動が抑えられるため,鉛直支持の場合に比べて上記ウェーハはより安定し,振動による測定精度への悪影響を排除できる。更に,ウェーハを水平に保持した場合と比べて上記垂直抗力による撓みは小さく,測定レンジを超えてしまうこともない。
このとき,測定値にはウェーハの自重撓みによる変形量が僅かながら重畳されているため,更に上記ウェーハの自重撓みによる変形量を演算する変形量演算手段を具備し,上記形状算出手段が,上記3つの干渉縞画像に基づいて得られた上記ウェーハの厚さ分布から上記変形量演算手段で得られた自重撓みによる変形量を減算するように構成することが望ましい。
【0008】
また,上記ウェーハの厚さ分布を互いに重複部分を有する複数の部分領域毎に測定し,それら部分領域毎の厚さ分布を得ると共に,それら部分領域毎の厚さ分布情報を合成することによってウェーハ全体の厚さ分布を取得するように構成すれば,ウェーハが大口径となってもそれに応じた大型の測定光学系を用いる必要がなく,低コストの装置で大口径ウェーハの測定が可能となる。
このとき,上記部分領域は,ウェーハの平坦度評価に用いられるサイトフラットネスの定義に基づいてウェーハの部分的領域の平坦度を評価することが望ましい。これにより,高精度の測定結果が必要な部分についてはサイトフラットネスによる高精度の測定結果が得られると共に,それら高精度の測定結果を合成して比較的精度要求の低い全体領域での測定結果を得るため,各部分領域の重複領域をそれほど大きく取る必要がない。
【0009】
【発明の実施の形態】
以下,添付図面を参照して本発明の実施の形態につき説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る形状測定装置Z1の概略構成図,図2は上記形状測定装置Z1における光学系の座標系,及び4つの距離分布La(x,y),Lb(x,y),Lt(x,y),T(x,y)の定義を示す図,図3はLa(x,y),Lb(x,y),Lt(x,y),及びそれらを用いて求められる厚さ分布T(x,y)の関係を示す図,図4は変形例1に係る形状測定装置Z1′の概略構成図,図5は厚さ分布T(x,y)と厚さ実測値tとから絶対厚さ分布を求める手順の説明図,図6は光学測定系10,20の角度ズレの説明図,図7は変形例3に係るウェーハ1の支持状態を示す図,図8はウェーハ1上のサイトフラットネス領域の一例を示す図,図9は図8に係るサイトフラットネス領域に対する部分領域の設定の一例を示す図,図10はウェーハ1の全面領域を測定する場合の部分領域の一例を示す図である。
【0010】
本実施の形態に係る形状測定装置Z1は,図1に示すように,その基本的な装置構成は上記従来の形状測定装置Z0とほぼ同様である。本形状測定装置Z1が上記従来の形状測定装置Z0と異なるのは,主として演算器17′による演算処理の内容である。
まず,図1を用いて形状測定装置Z1の概略構成を説明する。
形状測定装置Z1では,測定対象となるウェーハ1が,エッジ部を図示しないクランプ等で保持することにより鉛直に支持されている。上記ウェーハ1の両面側には,2つの光学測定系10,20が対向配置されている。上記各光学測定系10,20は,それぞれ発光器11,21,ハーフミラー13,23,コリメータレンズ14,24,基準平面15,25,及び受光器16,26を備えている。また,上記受光器16,26は演算器17′に接続されている。
【0011】
上記発光器11,21から出射された測定光12,22は,上記ハーフミラー13,23を透過し,上記コリメータレンズ14,24において平行光とされた後,その一部が上記基準平面15,25を透過して上記ウェーハ1の主面1a,裏面1bに照射される。上記ウェーハ1の主面1a,裏面1bでの反射光は,再度上記基準平面15,25を透過し,上記コリメータレンズ14,24を経て上記ハーフミラー13,23で反射され,上記受光器16,26に入射する。また,上記基準平面15,25における反射光も,同様に上記コリメータレンズ14,24を経て上記ハーフミラー13,23で反射され,上記受光器16,26に入射する。ここで,上記ウェーハ1の主面1a,裏面1bでの反射光と上記基準平面15,25での反射光との光路差は,上記受光器16,26において干渉縞として観測される。上記受光器16,26において観測された干渉縞画像は,それぞれ上記演算器17′に取り込まれる。ここで,上記受光器16で得られたウェーハ1の主面1aと基準平面15とで形成される干渉縞画像をa,上記受光器26で得られたウェーハ1の裏面1bと基準平面25とで形成される干渉縞画像をbとする。
【0012】
また,上記演算器17′には,上記2つの干渉縞画像a,bの他に,上記基準平面15と上記基準平面25とで形成される干渉縞画像cが取り込まれる。上記干渉縞画像cは,上記ウェーハ1を上記2つの光学測定系10,20の間から取り除いた状態で,例えば発光器11からの測定光の上記基準平面15及び25における反射光を上記受光器16で受光することにより観測できる。また,発光器21からの測定光の上記基準平面15及び25における反射光を上記受光器26で受光するようにしてもよい。
ここで,上記受光器16が主面側干渉縞画像取得手段の一例,上記受光器26が裏面側干渉縞画像取得手段の一例,上記受光器16若しくは受光器26が基準平面干渉縞画像取得手段の一例である。
【0013】
上記演算器17′(形状算出手段の一例)では,上記干渉縞画像a〜cを用いて,次のような演算を行う。
まず,上記干渉縞画像a〜cに基づいて,基準平面15とウェーハ主面1aとの間の距離La(x,y),基準平面25とウェーハ裏面1bとの間の距離Lb(x,y),基準平面15と基準平面25との間の距離Lt(x,y)が求められる(図2参照)。
そして,上記3つの距離La(x,y),Lb(x,y),Lt(x,y)に基づいて,上記(1)式により上記ウェーハ1の厚さ分布T(x,y)が求められる。
上記手順で得られたLa(x,y),Lb(x,y),Lt(x,y),及びそれらを用いて求められたウェーハ1の厚さ分布T(x,y)の関係を図3に示す。
【0014】
ここで,基準平面15の平面形状をRef1(x,y),基準平面25の平面形状をRef2(x,y),ウェーハ主面1aの形状をA(x,y),ウェーハ裏面1bの形状をB(x,y)とすると,上記La(x,y),Lb(x,y),Lt(x,y)は上記(2)〜(4)式のように表される。上記(2)〜(4)式を用いると,上記(1)式は上記(1)′のように変形できる。
上記(1)′式より,上記(1)式で求められるウェーハ1の厚さ分布T(x,y)は,基準平面15,25の平面形状Ref1(x,y),Ref2(x,y)に依存しない値であることがわかる。
即ち,本実施の形態に係る形状測定装置Z1によれば,基準平面の平面形状に依存せず高精度にウェーハの厚さ分布測定を行うことが可能となる。これにより,基準平面は必ずしも理想平面である必要がないため,装置の低コスト化が実現できる。
【0015】
(変形例1)
上記実施の形態に係る形状測定装置Z1の構成では,上記(1)′式に示すように,求められる厚さ分布T(x,y)は未知のOffset量を含むものとなる。そこで,図4に示すように,更にウェーハ1の任意位置での厚さを実測する厚さ測定器50(絶対厚さ測定手段に相当)を搭載すれば,得られた厚さ実測値tに基づいてウェーハ1の絶対厚さ分布を求めることが可能である。図5に,上記実施の形態で求められた厚さ分布T(x,y)と上記厚さ測定器50で得られた厚さ実測値tとから絶対厚さ分布を求める手順の概略を示す。即ち,厚さ分布T(x,y)上における上記厚さ実測値tの測定点での値が上記厚さ実測値tと一致するように,上記厚さ分布T(x,y)を平行移動させればよい。
【0016】
(変形例2)
また,例えば図6に示すように,光学測定系10に対する光学測定系20の平行度が角度θだけずれていると,この角度θのズレに相当する傾斜誤差が,求められる厚さ分布T(x,y)に誤差として含まれてしまう。そこで,上記形状測定装置Z1,Z1′には,更に光学測定系10,20の平行度を調整する角度ズレ調整機構(不図示)を設けることが望ましい。
ここで,上記角度ズレ調整機構は,上記干渉縞画像c(基準平面15と基準平面25とで形成される干渉縞画像),若しくはそれより得られる距離情報に基づいて上記角度ズレを調整することが可能である。即ち,基準平面15と基準平面25との平行度が一致した時には,例えば
▲1▼基準平面15と基準平面25とで形成される干渉縞画像cの干渉縞数が最小又は干渉縞の濃淡変化が最小となる,又は,
▲2▼干渉縞画像cから得られる形状(距離)分布が最小となる
という性質を利用して上記光学測定系10,20の平行度を調整することが可能である。
【0017】
(変形例3)
上記の例で示した形状測定装置Z1,Z1′では,測定対象であるウェーハ1を垂直に支持するように構成されている。これは,重力による撓みの影響を排除するためである。例えばウェーハ1を水平にして例えばエッジ部で支持すると,ウェーハ1の自重による撓みが生じるため,測定されたウェーハ1の厚さ分布から重力による影響を取り除く必要があるが,このとき,重力による撓みの大きさが極端に大きくなり,測定レンジを超えてしまうことがある。
一方で,上記のようにウェーハ1を垂直に支持した場合には,支持の遊びによってウェーハが微小に振動し,測定に悪影響を及ぼすことが懸念される。
そこで,例えば図7に示すように,測定対象であるウェーハ1を鉛直から若干(1〜10度程度)傾けた状態でそのエッジを支持(図7ではクランプ30a〜30cにより3点で支持)すれば,上記支持点に対して垂直抗力が働いて振動が抑えられるため,鉛直支持の場合に比べて上記ウェーハ1は安定する。この時,上記ウェーハ1の両側に設置される光学測定系10,20も同様に傾けて設置する必要がある。
ここで,測定された上記ウェーハ1の厚さ分布は,上記垂直抗力による撓み分が重畳されているため,これを差し引く必要がある。上記垂直抗力による撓み分は,予めウェーハ1の形状に関する情報(厚さ,半径,密度),ウェーハ1の弾性係数,図7で示す支持位置などから材料力学的に求めておくことが可能である(変形量演算手段)。ここで,上記のようにウェーハ1を鉛直から若干(1〜10度程度)傾けた場合には,ウェーハ1を水平に保持した場合と比べて上記垂直抗力による撓みは小さく,測定レンジを超えてしまうこともない。
【0018】
(変形例4)
近年,測定対象であるウェーハは大型化する傾向にあるが,それら大型のウェーハに対しては例えば大型の光学測定系を用いることで対応できる。しかしながら,大型の光学測定系になればなるほど,測定光の平行度,強度ムラ,可干渉性などについての厳しい要求を満たすことが困難となり,またコストも上昇する。そこで,上記形状測定装置Z1,Z1′においては,大口径のウェーハを対象とする場合にはその全面を一括測定できるような大型の光学測定系ではなく小型の光学測定系10,20を用い,ウェーハ1の測定領域を互いに重複部分を有する複数の部分領域に分割してそれら部分領域毎に厚さ分布測定を行い,それら部分領域毎の厚さ分布を,互いの重複部分を一致させるように合成して測定領域全体の厚さ分布を得るように構成してもよい。
この場合,上記部分領域として,ウェーハの平坦度評価に用いられるサイトフラットネスの定義に基づく領域(以下,サイトフラットネス領域という)を用いることが望ましい。図8に,ウェーハ1上のサイトフラットネス領域の一例を示す。また,図9に,上記部分領域の取り方の一例を示す。図9では,4つのサイトフラットネス領域を1つの部分領域としている。各部分領域では,サイトフラットネスに要求される高精度(20nm以下程度)にて厚さ分布測定を行い,各サイトフラットネス毎に測定結果を出力する。そして,測定領域全体の厚さ分布は,上記部分領域毎の測定結果を合成する。測定領域全体の結果は,サイトフラットネスと比べて要求精度は緩いため(グローバルフラットネス),上記サイトフラットネスの結果を合成することにより,それほど大きな重畳領域を確保することなく要求精度を満足する結果を得ることが可能である。
図10は,ウェーハ1の全面領域を測定する場合の部分領域の一例を示す。例えばφ300mmウェーハの場合,φ60mm程度の測定開口径を有する光学測定系を用いて,1回で測定可能な部分領域を□40mm確保し,N=8分割にてウェーハ全面で64分割(実際には4隅不要のため60分割)し,部分領域毎の測定を行うことが可能である。
【0019】
【発明の効果】
以上説明したように,本発明は,ウェーハの主面側及び裏面側に対向配置される2つの基準平面と,上記主面側の基準平面を介して上記ウェーハの主面に向けて照射された平行光の上記ウェーハ主面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する主面側干渉縞画像取得手段と,上記裏面側の基準平面を介して上記ウェーハの裏面に向けて照射された平行光の上記ウェーハ裏面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する裏面側干渉縞画像取得手段と,上記ウェーハを上記2つの基準平面間から取り除いた状態で,上記2つの基準平面に向けて照射された平行光の上記一方の基準平面における反射光と他方の基準平面における反射光とで形成される干渉縞画像を取得する基準平面干渉縞画像取得手段と,上記主面側干渉縞画像取得手段,上記裏面側干渉縞画像取得手段,及び上記基準平面干渉縞画像取得手段で得られた3つの干渉縞画像に基づいて上記ウェーハの厚さ分布を算出する形状算出手段とを具備してなることを特徴とする形状測定装置として構成されているため,求められるウェーハの厚さ分布は,上記2つの基準平面の平面形状に依存しない値となる。即ち,基準平面の平面形状に依存せず高精度にウェーハの厚さ分布測定を行うことが可能となる。
【0020】
更に,上記ウェーハの少なくとも1か所の絶対厚さを測定する絶対厚さ測定手段を具備し,上記形状算出手段は,上記絶対厚さ測定手段で得られた上記ウェーハの絶対厚さに基づいて上記ウェーハの絶対厚さ分布を算出するように構成することも可能である。
更に,上記基準平面干渉縞画像取得手段で得られた干渉縞画像に基づいて,上記ウェーハの主面側及び裏面側にそれぞれ設置される光学系の角度ズレを調整する角度ズレ調整手段を具備することが望ましい。これにより,光学系の角度ズレによる測定精度への悪影響を除去し,更に高精度の測定が可能となる。
【0021】
更に,上記ウェーハを含む測定系全体を鉛直方向から若干傾斜した状態(例えば1〜10度)に設置し,上記ウェーハが鉛直方向から若干傾斜した状態で保持されるようにすれば,上記ウェーハの支持点に対して垂直抗力が働いてウェーハの振動が抑えられるため,鉛直支持の場合に比べて上記ウェーハはより安定し,振動による測定精度への悪影響を排除できる。更に,ウェーハを水平に保持した場合と比べて上記垂直抗力による撓みは小さく,測定レンジを超えてしまうこともない。
このとき,測定値にはウェーハの自重撓みによる変形量が僅かながら重畳されているため,更に上記ウェーハの自重撓みによる変形量を演算する変形量演算手段を具備し,上記形状算出手段が,上記3つの干渉縞画像に基づいて得られた上記ウェーハの厚さ分布から上記変形量演算手段で得られた自重撓みによる変形量を減算するように構成することが望ましい。
【0022】
また,上記ウェーハの厚さ分布を互いに重複部分を有する複数の部分領域毎に測定し,それら部分領域毎の厚さ分布を得ると共に,それら部分領域毎の厚さ分布情報を合成することによってウェーハ全体の厚さ分布を取得するように構成すれば,ウェーハが大口径となってもそれに応じた大型の測定光学系を用いる必要がなく,低コストの装置で大口径ウェーハの測定が可能となる。
このとき,上記部分領域は,ウェーハの平坦度評価に用いられるサイトフラットネスの定義に基づく領域とすることが望ましい。これにより,高精度の測定結果が必要な部分についてはサイトフラットネスによる高精度の測定結果が得られると共に,それら高精度の測定結果を合成して比較的精度要求の低い全体領域での測定結果を得るため,各部分領域の重複領域をそれほど大きく取る必要がない。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る形状測定装置Z1の概略構成図。
【図2】 上記形状測定装置Z1における光学系の座標系,及び4つの距離分布La(x,y),Lb(x,y),Lt(x,y),T(x,y)の定義を示す図。
【図3】 La(x,y),Lb(x,y),Lt(x,y),及びそれらを用いて求められる厚さ分布T(x,y)の関係を示す図。
【図4】 変形例1に係る形状測定装置Z1′の概略構成図。
【図5】 厚さ分布T(x,y)と厚さ実測値tとから絶対厚さ分布を求める手順の説明図。
【図6】 光学測定系10,20の角度ズレの説明図。
【図7】 変形例3に係るウェーハ1の支持状態を示す図。
【図8】 ウェーハ1上のサイトフラットネス領域の一例を示す図。
【図9】 図8に係るサイトフラットネス領域に対する部分領域の設定の一例を示す図。
【図10】 ウェーハ1の全面領域を測定する場合の部分領域の一例を示す図。
【図11】 従来技術に係る形状測定装置Z0の概略構成図。
【符号の説明】
1…ウェーハ
1a…主面
1b…裏面
11,21…発光器
12,22…測定光
13,23…ハーフミラー
14,24…コリメータレンズ
15,25…基準平面
16,26…受光器(主面側干渉縞画像取得手段,裏面側干渉縞画像取得手段,及び基準平面干渉縞画像取得手段の一例)
17′…演算器(形状算出手段の一例)
50…厚さ測定器(絶対厚さ測定手段の一例)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shape measuring apparatus that measures the shape (thickness distribution) of a wafer using an interferometer.
[0002]
[Prior art]
As a method for measuring the thickness distribution of a wafer, for example, one proposed in Japanese Patent Application Laid-Open No. 11-260873 is known.
In the wafer shape measuring apparatus Z0 described in the above publication, as shown in FIG. 11, two optical measuring systems 10 and 20 are arranged opposite to each other on both sides of the wafer 1 held vertically at the edge portion. A thickness measuring unit 50 is arranged toward the periphery of the. Each of the optical measurement systems 10 and 20 includes light emitters 11 and 21 that emit measurement light 12 and 22, respectively, collimator lenses 14 and 24 that use the measurement light 12 and 22 as parallel beams, and a reference plane through which the parallel beams pass. 15 and 25, and light receivers 16 and 26 on which the measurement light reflected by the main surface 1a and the back surface 1b of the wafer 1 is incident through the reference planes 15 and 25, the collimator lenses 14 and 24, and the like. . In the light receivers 16 and 26, interference fringes formed by the reflected light on the reference planes 15 and 25 and the reflected light on the main surface 1a and the back surface 1b of the wafer 1 are observed. In the calculator 17, the planar shapes of the main surface 1 a and the back surface 1 b of the wafer 1 are calculated based on the interference fringe images observed by the light receivers 16 and 26, and the wafer measured by the thickness measuring unit 50 is calculated. The absolute shape (thickness distribution) of the wafer 1 is obtained on the basis of the actual thickness measured at a predetermined position.
[0003]
[Problems to be solved by the invention]
However, the planar shapes of the main surface 1a and the back surface 1b of the wafer 1 obtained by the conventional wafer shape measuring apparatus Z0 are based on the assumption that the reference planes 15 and 25 are ideal planes. The obtained planar shape is obtained by superimposing the plane errors of the reference planes 15 and 25.
Here, the planar shape of the reference plane should be less than or equal to about λ / 20 (λ is the wavelength of the measurement light) even with a small substrate (for example, a diameter of 100 mm or less) and optical glass (optical flat) polished with high precision. Is difficult or very expensive. For example, if a large-diameter substrate having a diameter of 300 mm that can be applied to the measurement of a large-diameter wafer is used as a reference plane, the influence of deformation due to its own weight can no longer be ignored, and the polishing accuracy of the large-diameter substrate is also poor. It becomes more difficult to realize an accurate flat surface. When a He—Ne laser is used as the light source, the wavelength λ is 633 nm, and the flatness of λ / 20 corresponds to about 30 nm. Therefore, considering that errors are superimposed in the measurement on both sides, the maximum error during the measurement is on the order of 60 nm, so it is difficult to perform highly accurate shape measurement with the conventional wafer shape measuring apparatus Z0.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a shape measuring apparatus capable of measuring the thickness distribution of a wafer with high accuracy without depending on the planar shape of a reference plane. It is to be.
[0004]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention irradiates the main surface of the wafer via two reference planes arranged opposite to the main surface side and the back surface side of the wafer and the reference plane on the main surface side. Main surface side interference fringe image acquisition means for acquiring an interference fringe image formed by the reflected light of the parallel light reflected on the wafer main surface and the reflected light on the reference plane;
  Back side for acquiring an interference fringe image formed by reflected light on the back side of the wafer and reflected light on the reference plane of parallel light irradiated toward the back side of the wafer through the reference plane on the back side With the interference fringe image acquisition means and the wafer removed from between the two reference planes, the reflected light on the one reference plane and the reflected light on the other reference plane irradiated to the two reference planes Reference plane interference fringe image acquisition means for acquiring an interference fringe image formed by reflected light, the main surface side interference fringe image acquisition means, the back surface side interference fringe image acquisition means, and the reference plane interference fringe image acquisition means And a shape calculating means for calculating the thickness distribution of the wafer based on the three interference fringe images obtained in
  The shape calculating means obtains the distance Lt (x, y) between the two reference planes obtained from the interference fringe image obtained by the reference plane interference fringe image obtaining means and the principal surface side interference fringe image obtaining means. The distance La (x, y) between the main surface of the wafer obtained from the obtained interference fringe image and the reference plane opposed thereto, and the interference fringe image obtained by the back side interference fringe image acquisition means. Based on the distance Lb (x, y) between the back surface of the wafer and the reference plane opposed thereto, the thickness measurement T (x, y) calculated for the wafer is calculated by the following equation.Because
  T (x, y) = Lt (x, y) −La (x, y) −Lb (x, y)
Comprising an absolute thickness measuring means for actually measuring the thickness at an arbitrary position of at least one of the wafers;
The shape calculating means has a calculated thickness on the calculated thickness distribution T (x, y) at the arbitrary position where the thickness of the wafer is actually measured by the absolute thickness measuring means. The absolute thickness distribution of the wafer is obtained by translating the calculated thickness distribution T (x, y) so as to be equal to the absolute thickness of the wafer actually measured by the absolute thickness measuring means. A shape measuring deviceIt is configured as.
[0005]
  Here, the planar shape of the reference plane on the main surface side is Ref1 (x, y), the planar shape of the reference plane on the back surface side is Ref2 (x, y), and the shape of the wafer main surface is A (x, y). When the shape of the back surface of the wafer is B (x, y), La (x, y), Lb (x, y), and Lt (x, y) are expressed as follows.
    La (x, y) = Ref1 (x, y) -A (x, y) + OffsetA
                                                            (2)
    Lb (x, y) =-{Ref2 (x, y) -B (x, y)}
                    + OffsetB (3)
    Lt (x, y) = Ref1 (x, y) −Ref2 (x, y)
                    + Offset12 (4)
    (However, OffsetA, OffsetB, and Offset12 are integer multiples of λ / 2, and λ is the wavelength of the light source for measurement)
  Using the above equations (2) to (4), the above equation (1) can be modified as follows.
    T (x, y) = B (x, y) −A (x, y) + OffsetC (OffsetC is an integral multiple of λ / 2)
                                                          ... (1) '
  From the above equation (1) ′, the thickness distribution T (x, y) of the wafer 1 obtained by the above equation (1) is the planar shapes Ref1 (x, y) and Ref2 (x, y) of the two reference planes. It can be seen that the value does not depend on. That is,BookAccording to the invention, it is possible to measure the thickness distribution of the wafer with high accuracy without depending on the planar shape of the reference plane.
[0006]
  In addition, at least one location on the waferMeasure the thickness at an arbitrary positionHaving an absolute thickness measuring means, and said shape calculating meansHowever, the calculated thickness on the calculated thickness distribution T (x, y) at the arbitrary position where the thickness of the wafer is actually measured by the absolute thickness measuring means is the absolute thickness measurement at the position. The absolute thickness distribution of the wafer is obtained by translating the calculated thickness distribution T (x, y) so as to be equal to the absolute thickness of the wafer actually measured by the means.It is also possible to configure so as to.
  Furthermore, an angle deviation adjusting means for adjusting the angle deviation of the optical system respectively installed on the main surface side and the back surface side of the wafer is provided based on the interference fringe image obtained by the reference plane interference fringe image acquisition means. It is desirable. As a result, the adverse effect on the measurement accuracy due to the angle deviation of the optical system can be removed, and the measurement can be performed with higher accuracy.
  Here, the angle deviation adjusting means adjusts the angles of the two optical systems so as to minimize the number of interference fringes of the interference fringe image obtained by the reference plane interference fringe image obtaining means or the change in shading of the interference fringes. Alternatively, the angle of the two optical systems may be adjusted so that the distance distribution obtained from the interference fringe image obtained by the reference plane interference fringe image acquisition means is minimized.
[0007]
Furthermore, if the entire measurement system including the wafer is installed in a state slightly tilted from the vertical direction so that the wafer is held in a state slightly tilted from the vertical direction, a vertical drag against the supporting point of the wafer is obtained. Since the vibration of the wafer is suppressed, the wafer is more stable than the case of vertical support, and the adverse effect on measurement accuracy due to vibration can be eliminated. Furthermore, the deflection due to the vertical drag is smaller than when the wafer is held horizontally and does not exceed the measurement range.
At this time, since the deformation amount due to the deflection of the wafer due to its own weight is slightly superimposed on the measurement value, the measurement value further includes a deformation amount calculation means for calculating the deformation amount due to the deflection of the wafer due to its own weight, and the shape calculation means includes the above-mentioned shape calculation means. It is desirable that the deformation amount due to self-weight deflection obtained by the deformation amount calculating means is subtracted from the thickness distribution of the wafer obtained based on three interference fringe images.
[0008]
  In addition, the thickness distribution of the wafer is measured for each of a plurality of partial areas having overlapping portions, and the thickness distribution for each of the partial areas is obtained and the thickness distribution information for each of the partial areas is synthesized. If it is configured to acquire the entire thickness distribution, it is not necessary to use a large measurement optical system corresponding to the large-diameter wafer, and it is possible to measure a large-diameter wafer with a low-cost apparatus. .
  At this time, the partial area is based on the definition of site flatness used for wafer flatness evaluation.To evaluate the flatness of a partial area of the waferIt is desirable to do. As a result, high-precision measurement results by site flatness can be obtained for parts that require high-precision measurement results, and these high-precision measurement results are combined to obtain measurement results in the entire area where relatively low accuracy requirements are required. Therefore, it is not necessary to make the overlapping area of each partial area so large.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of a shape measuring apparatus Z1 according to an embodiment of the present invention, and FIG. 2 is a coordinate system of an optical system in the shape measuring apparatus Z1 and four distance distributions La (x, y), FIG. 3 is a diagram showing definitions of Lb (x, y), Lt (x, y), and T (x, y). FIG. 3 shows La (x, y), Lb (x, y), Lt (x, y), FIG. 4 is a schematic configuration diagram of a shape measuring apparatus Z1 ′ according to the first modification, and FIG. 5 is a diagram showing a thickness distribution T (x, y). 6 is an explanatory diagram of a procedure for obtaining an absolute thickness distribution from the measured thickness value t, FIG. 6 is an explanatory diagram of an angular deviation of the optical measurement systems 10 and 20, and FIG. 7 is a support state of the wafer 1 according to the modification 3. FIG. 8 is a diagram showing an example of the site flatness region on the wafer 1, and FIG. 9 is a portion corresponding to the site flatness region according to FIG. Illustrates an example of a frequency setting, FIG. 10 is a diagram showing an example of a partial area of the case of measuring the entire region of the wafer 1.
[0010]
As shown in FIG. 1, the basic configuration of the shape measuring apparatus Z1 according to the present embodiment is substantially the same as that of the conventional shape measuring apparatus Z0. The main difference between the shape measuring apparatus Z1 and the conventional shape measuring apparatus Z0 is the content of the calculation processing by the calculator 17 '.
First, a schematic configuration of the shape measuring apparatus Z1 will be described with reference to FIG.
In the shape measuring apparatus Z1, the wafer 1 to be measured is supported vertically by holding the edge portion with a clamp or the like (not shown). Two optical measurement systems 10 and 20 are disposed opposite to each other on both sides of the wafer 1. Each of the optical measurement systems 10 and 20 includes light emitters 11 and 21, half mirrors 13 and 23, collimator lenses 14 and 24, reference planes 15 and 25, and light receivers 16 and 26, respectively. The light receivers 16 and 26 are connected to a calculator 17 '.
[0011]
The measurement lights 12 and 22 emitted from the light emitters 11 and 21 are transmitted through the half mirrors 13 and 23 and converted into parallel light in the collimator lenses 14 and 24, and a part thereof is the reference plane 15 and The main surface 1a and the back surface 1b of the wafer 1 are irradiated through 25. Reflected light from the main surface 1a and the back surface 1b of the wafer 1 passes through the reference planes 15 and 25 again, is reflected by the half mirrors 13 and 23 through the collimator lenses 14 and 24, and receives the light receivers 16 and 25. 26 is incident. Similarly, the reflected light on the reference planes 15 and 25 is reflected by the half mirrors 13 and 23 through the collimator lenses 14 and 24 and enters the light receivers 16 and 26. Here, the optical path difference between the reflected light on the main surface 1 a and the back surface 1 b of the wafer 1 and the reflected light on the reference planes 15 and 25 is observed as interference fringes in the light receivers 16 and 26. The interference fringe images observed at the light receivers 16 and 26 are respectively taken into the arithmetic unit 17 '. Here, an interference fringe image formed between the main surface 1a of the wafer 1 obtained by the light receiver 16 and the reference plane 15 is a, and the back surface 1b of the wafer 1 obtained by the light receiver 26 and the reference plane 25 are Let the interference fringe image formed in step b be b.
[0012]
Further, in addition to the two interference fringe images a and b, the computing unit 17 ′ takes in an interference fringe image c formed by the reference plane 15 and the reference plane 25. The interference fringe image c shows, for example, the reflected light on the reference planes 15 and 25 of the measurement light from the light emitter 11 in the state where the wafer 1 is removed from between the two optical measurement systems 10 and 20. It can be observed by receiving light at 16. Further, the light reflected by the reference planes 15 and 25 of the measurement light from the light emitter 21 may be received by the light receiver 26.
Here, the light receiver 16 is an example of a main surface side interference fringe image acquisition means, the light receiver 26 is an example of a back surface side interference fringe image acquisition means, and the light receiver 16 or the light receiver 26 is a reference plane interference fringe image acquisition means. It is an example.
[0013]
The computing unit 17 ′ (an example of a shape calculating unit) performs the following computation using the interference fringe images a to c.
First, based on the interference fringe images a to c, the distance La (x, y) between the reference plane 15 and the wafer main surface 1a, and the distance Lb (x, y) between the reference plane 25 and the wafer back surface 1b. ), A distance Lt (x, y) between the reference plane 15 and the reference plane 25 is obtained (see FIG. 2).
Based on the above three distances La (x, y), Lb (x, y), and Lt (x, y), the thickness distribution T (x, y) of the wafer 1 is expressed by the above equation (1). Desired.
The relationship between La (x, y), Lb (x, y), Lt (x, y) obtained by the above procedure, and the thickness distribution T (x, y) of the wafer 1 obtained using them is shown. As shown in FIG.
[0014]
Here, the planar shape of the reference plane 15 is Ref1 (x, y), the planar shape of the reference plane 25 is Ref2 (x, y), the shape of the wafer main surface 1a is A (x, y), and the shape of the wafer back surface 1b. Is B (x, y), La (x, y), Lb (x, y), and Lt (x, y) are expressed as in the above equations (2) to (4). When the above equations (2) to (4) are used, the above equation (1) can be transformed as in the above (1) ′.
From the above equation (1) ′, the thickness distribution T (x, y) of the wafer 1 obtained by the above equation (1) is the planar shapes Ref1 (x, y) and Ref2 (x, y) of the reference planes 15 and 25. It can be seen that the value does not depend on.
That is, according to the shape measuring apparatus Z1 according to the present embodiment, it is possible to measure the thickness distribution of the wafer with high accuracy without depending on the planar shape of the reference plane. As a result, the reference plane does not necessarily have to be an ideal plane, so that the cost of the apparatus can be reduced.
[0015]
(Modification 1)
In the configuration of the shape measuring apparatus Z1 according to the above embodiment, as shown in the above equation (1) ′, the obtained thickness distribution T (x, y) includes an unknown offset amount. Therefore, as shown in FIG. 4, if a thickness measuring device 50 (corresponding to an absolute thickness measuring means) that actually measures the thickness of the wafer 1 at an arbitrary position is mounted, the obtained thickness measurement value t is obtained. Based on this, it is possible to determine the absolute thickness distribution of the wafer 1. FIG. 5 shows an outline of a procedure for obtaining an absolute thickness distribution from the thickness distribution T (x, y) obtained in the above embodiment and the measured thickness value t obtained by the thickness measuring device 50. . That is, the thickness distribution T (x, y) is parallel so that the value at the measurement point of the measured thickness value t on the thickness distribution T (x, y) matches the measured thickness value t. Move it.
[0016]
(Modification 2)
For example, as shown in FIG. 6, if the parallelism of the optical measurement system 20 with respect to the optical measurement system 10 is shifted by an angle θ, an inclination error corresponding to the deviation of the angle θ results in a thickness distribution T ( x, y) is included as an error. Therefore, it is desirable to provide an angle deviation adjusting mechanism (not shown) for adjusting the parallelism of the optical measuring systems 10 and 20 in the shape measuring devices Z1 and Z1 ′.
Here, the angle deviation adjusting mechanism adjusts the angle deviation based on the interference fringe image c (interference fringe image formed by the reference plane 15 and the reference plane 25) or distance information obtained therefrom. Is possible. That is, when the parallelism between the reference plane 15 and the reference plane 25 matches,
(1) The number of interference fringes of the interference fringe image c formed by the reference plane 15 and the reference plane 25 is minimized, or the change in shading of the interference fringes is minimized, or
(2) The shape (distance) distribution obtained from the interference fringe image c is minimized.
It is possible to adjust the parallelism of the optical measurement systems 10 and 20 by using the property.
[0017]
(Modification 3)
The shape measuring apparatuses Z1 and Z1 ′ shown in the above example are configured to vertically support the wafer 1 to be measured. This is to eliminate the influence of bending due to gravity. For example, if the wafer 1 is horizontal and supported by, for example, an edge portion, the wafer 1 is bent due to its own weight. Therefore, it is necessary to remove the influence of gravity from the measured thickness distribution of the wafer 1. May become extremely large and exceed the measurement range.
On the other hand, when the wafer 1 is supported vertically as described above, there is a concern that the wafer may vibrate slightly due to the play of the support and adversely affect the measurement.
Thus, for example, as shown in FIG. 7, the wafer 1 to be measured is supported slightly at a tilt (about 1 to 10 degrees) from the vertical (supported at three points by clamps 30a to 30c in FIG. 7). For example, since the vertical drag acts on the support point to suppress vibration, the wafer 1 is more stable than in the case of vertical support. At this time, the optical measurement systems 10 and 20 installed on both sides of the wafer 1 need to be similarly inclined.
Here, the measured thickness distribution of the wafer 1 is superposed with the deflection due to the normal force, so it is necessary to subtract it. The amount of deflection due to the normal force can be obtained in advance from the viewpoint of material mechanics based on information (thickness, radius, density) on the shape of the wafer 1, the elastic coefficient of the wafer 1, the support position shown in FIG. (Deformation amount calculation means). Here, when the wafer 1 is tilted slightly (about 1 to 10 degrees) from the vertical as described above, the deflection due to the vertical drag is small compared with the case where the wafer 1 is held horizontally, exceeding the measurement range. There is no end to it.
[0018]
(Modification 4)
In recent years, wafers to be measured tend to be large, but these large wafers can be dealt with by using, for example, a large optical measurement system. However, the larger the optical measurement system, the more difficult it becomes to meet strict requirements for the parallelism, intensity unevenness, and coherence of the measurement light, and the cost also increases. Therefore, in the shape measuring apparatuses Z1 and Z1 ′, when a large-diameter wafer is used, a small optical measuring system 10 or 20 is used instead of a large optical measuring system capable of collectively measuring the entire surface. The measurement area of the wafer 1 is divided into a plurality of partial areas having overlapping portions, and the thickness distribution measurement is performed for each partial area, and the thickness distribution for each partial area is made to coincide with each other. You may comprise so that it may synthesize | combine and the thickness distribution of the whole measurement area | region may be obtained.
In this case, it is desirable to use an area based on the definition of site flatness used for wafer flatness evaluation (hereinafter referred to as a site flatness area) as the partial area. FIG. 8 shows an example of the site flatness area on the wafer 1. FIG. 9 shows an example of how to take the partial area. In FIG. 9, four site flatness areas are defined as one partial area. In each partial region, the thickness distribution measurement is performed with high accuracy (about 20 nm or less) required for the site flatness, and the measurement result is output for each site flatness. And the thickness distribution of the whole measurement area | region synthesize | combines the measurement result for every said partial area | region. The result of the whole measurement area is less required accuracy than the site flatness (global flatness), so by combining the above site flatness results, the required accuracy can be satisfied without securing a large overlap area. It is possible to obtain a result.
FIG. 10 shows an example of a partial area when the entire area of the wafer 1 is measured. For example, in the case of a φ300 mm wafer, an optical measurement system having a measurement aperture diameter of about φ60 mm is used to secure a partial area □ 40 mm that can be measured at one time, and N = 8 divisions and 64 divisions on the entire wafer surface (in practice, It is possible to perform measurement for each partial region by dividing it into 60 divisions because four corners are unnecessary.
[0019]
【The invention's effect】
As described above, the present invention is irradiated toward the main surface of the wafer through the two reference planes opposed to the main surface side and the back surface side of the wafer and the reference plane on the main surface side. The main surface side interference fringe image acquisition means for acquiring the interference fringe image formed by the reflected light of the parallel light on the wafer main surface and the reflected light on the reference plane, and the reference surface on the back side through the reference plane Backside interference fringe image acquisition means for acquiring an interference fringe image formed by reflected light on the backside of the wafer and reflected light on the reference plane of parallel light irradiated toward the backside of the wafer; An interference fringe image formed by the reflected light on the one reference plane and the reflected light on the other reference plane of the parallel light irradiated toward the two reference planes in a state removed from between the two reference planes Reference plane interference to obtain The thickness of the wafer based on the three interference fringe images obtained by the image acquisition means, the main surface side interference fringe image acquisition means, the back surface side interference fringe image acquisition means, and the reference plane interference fringe image acquisition means. And a shape measuring device characterized by comprising a shape calculating means for calculating the distribution, so that the obtained wafer thickness distribution is a value that does not depend on the planar shape of the two reference planes. Become. That is, it is possible to measure the thickness distribution of the wafer with high accuracy without depending on the planar shape of the reference plane.
[0020]
Furthermore, an absolute thickness measuring means for measuring at least one absolute thickness of the wafer is provided, and the shape calculating means is based on the absolute thickness of the wafer obtained by the absolute thickness measuring means. It is also possible to configure so as to calculate the absolute thickness distribution of the wafer.
Furthermore, an angle deviation adjusting means for adjusting the angle deviation of the optical system respectively installed on the main surface side and the back surface side of the wafer is provided based on the interference fringe image obtained by the reference plane interference fringe image acquisition means. It is desirable. As a result, the adverse effect on the measurement accuracy due to the angle deviation of the optical system can be removed, and the measurement can be performed with higher accuracy.
[0021]
Furthermore, if the entire measurement system including the wafer is installed in a state slightly inclined from the vertical direction (for example, 1 to 10 degrees) and the wafer is held in a state slightly inclined from the vertical direction, Since vertical vibration acts on the support point and the vibration of the wafer is suppressed, the wafer is more stable than in the case of vertical support, and the adverse effect on measurement accuracy due to vibration can be eliminated. Furthermore, the deflection due to the vertical drag is smaller than when the wafer is held horizontally and does not exceed the measurement range.
At this time, since the deformation amount due to the deflection of the wafer due to its own weight is slightly superimposed on the measurement value, the measurement value further includes a deformation amount calculation means for calculating the deformation amount due to the deflection of the wafer due to its own weight, and the shape calculation means includes the above-mentioned shape calculation means. It is desirable that the deformation amount due to self-weight deflection obtained by the deformation amount calculating means is subtracted from the thickness distribution of the wafer obtained based on three interference fringe images.
[0022]
In addition, the thickness distribution of the wafer is measured for each of a plurality of partial areas having overlapping portions, and the thickness distribution for each of the partial areas is obtained and the thickness distribution information for each of the partial areas is synthesized. If it is configured to acquire the entire thickness distribution, it is not necessary to use a large measurement optical system corresponding to the large-diameter wafer, and it is possible to measure a large-diameter wafer with a low-cost apparatus. .
At this time, the partial region is preferably a region based on the definition of site flatness used for wafer flatness evaluation. As a result, high-precision measurement results by site flatness can be obtained for parts that require high-precision measurement results, and these high-precision measurement results are combined to obtain measurement results in the entire area where relatively low accuracy requirements are required. Therefore, it is not necessary to make the overlapping area of each partial area so large.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a shape measuring apparatus Z1 according to an embodiment of the present invention.
FIG. 2 is a definition of an optical system coordinate system and four distance distributions La (x, y), Lb (x, y), Lt (x, y), and T (x, y) in the shape measuring apparatus Z1. FIG.
FIG. 3 is a diagram illustrating a relationship among La (x, y), Lb (x, y), Lt (x, y), and a thickness distribution T (x, y) obtained using them.
FIG. 4 is a schematic configuration diagram of a shape measuring apparatus Z1 ′ according to a first modification.
FIG. 5 is an explanatory diagram of a procedure for obtaining an absolute thickness distribution from a thickness distribution T (x, y) and a measured thickness value t.
FIG. 6 is an explanatory diagram of an angle shift of the optical measurement systems 10 and 20;
7 is a view showing a support state of a wafer 1 according to Modification 3. FIG.
FIG. 8 is a diagram showing an example of a site flatness region on the wafer 1;
FIG. 9 is a diagram showing an example of setting a partial region for the site flatness region according to FIG. 8;
FIG. 10 is a diagram showing an example of a partial area when measuring the entire area of the wafer 1;
FIG. 11 is a schematic configuration diagram of a shape measuring apparatus Z0 according to a conventional technique.
[Explanation of symbols]
1 ... wafer
1a ... Main surface
1b ... Back side
11, 21 ... Light emitter
12, 22 ... Measuring light
13, 23 ... half mirror
14, 24 ... Collimator lens
15, 25 ... Reference plane
16, 26... Light receiver (an example of main surface side interference fringe image acquisition means, back side interference fringe image acquisition means, and reference plane interference fringe image acquisition means)
17 '... Calculator (an example of shape calculation means)
50 ... Thickness measuring device (an example of absolute thickness measuring means)

Claims (9)

ウェーハの主面側及び裏面側に対向配置される2つの基準平面と,
上記主面側の基準平面を介して上記ウェーハの主面に向けて照射された平行光の上記ウェーハ主面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する主面側干渉縞画像取得手段と,
上記裏面側の基準平面を介して上記ウェーハの裏面に向けて照射された平行光の上記ウェーハ裏面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する裏面側干渉縞画像取得手段と,
上記ウェーハを上記2つの基準平面間から取り除いた状態で,上記2つの基準平面に向けて照射された平行光の上記一方の基準平面における反射光と他方の基準平面における反射光とで形成される干渉縞画像を取得する基準平面干渉縞画像取得手段と,
上記主面側干渉縞画像取得手段,上記裏面側干渉縞画像取得手段,及び上記基準平面干渉縞画像取得手段で得られた3つの干渉縞画像に基づいて上記ウェーハの厚さ分布を算出する形状算出手段とを具備してなり,
上記形状算出手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像より求められる上記2つの基準平面の距離Lt(x,y)と,上記主面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの主面とそれに対向する上記基準平面との距離La(x,y)と,上記裏面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの裏面とそれに対向する上記基準平面との距離Lb(x,y)とに基づいて,上記ウェーハの計算上の厚さ分布T(x,y)を次式により求めるものである形状測定装置であって,
T(x,y)=Lt(x,y)−La(x,y)−Lb(x,y)
上記ウェーハの少なくとも1か所の任意位置での厚さを実測する絶対厚さ測定手段を具備し,
上記形状算出手段は,上記絶対厚さ測定手段でウェーハの厚さが実測される上記任意位置での上記計算上の厚さ分布T(x,y)上における計算厚さが,その位置における上記絶対厚さ測定手段で実測された上記ウェーハの絶対厚さに等しくなるように上記計算上の厚さ分布T(x,y)を平行移動させて上記ウェーハの絶対厚さ分布を取得するものである形状測定装置。
Two reference planes arranged opposite to the main surface side and the back surface side of the wafer;
An interference fringe image formed by the reflected light on the wafer main surface and the reflected light on the reference plane of the parallel light irradiated toward the main surface of the wafer through the reference surface on the main surface side is acquired. Main surface side interference fringe image acquisition means,
Back side for acquiring an interference fringe image formed by reflected light on the back side of the wafer and reflected light on the reference plane of parallel light irradiated toward the back side of the wafer through the reference plane on the back side Interference fringe image acquisition means;
With the wafer removed from between the two reference planes, the parallel light irradiated toward the two reference planes is formed by reflected light on the one reference plane and reflected light on the other reference plane. A reference plane interference fringe image obtaining means for obtaining an interference fringe image;
A shape for calculating the thickness distribution of the wafer based on three interference fringe images obtained by the main surface side interference fringe image acquisition means, the back surface side interference fringe image acquisition means, and the reference plane interference fringe image acquisition means. A calculating means,
The shape calculating means obtains the distance Lt (x, y) between the two reference planes obtained from the interference fringe image obtained by the reference plane interference fringe image obtaining means and the principal surface side interference fringe image obtaining means. The distance La (x, y) between the main surface of the wafer obtained from the obtained interference fringe image and the reference plane opposed thereto, and the interference fringe image obtained by the back side interference fringe image acquisition means. Based on the distance Lb (x, y) between the back surface of the wafer and the reference plane opposed thereto, the thickness measurement T (x, y) calculated for the wafer is calculated by the following equation. Because
T (x, y) = Lt (x, y) −La (x, y) −Lb (x, y)
Comprising an absolute thickness measuring means for actually measuring the thickness at an arbitrary position of at least one of the wafers;
The shape calculating means has a calculated thickness on the calculated thickness distribution T (x, y) at the arbitrary position where the thickness of the wafer is actually measured by the absolute thickness measuring means. The absolute thickness distribution of the wafer is obtained by translating the calculated thickness distribution T (x, y) so as to be equal to the absolute thickness of the wafer actually measured by the absolute thickness measuring means. A shape measuring device.
ウェーハの主面側及び裏面側に対向配置される2つの基準平面と,
上記主面側の基準平面を介して上記ウェーハの主面に向けて照射された平行光の上記ウェーハ主面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する主面側干渉縞画像取得手段と,
上記裏面側の基準平面を介して上記ウェーハの裏面に向けて照射された平行光の上記ウェーハ裏面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する裏面側干渉縞画像取得手段と,
上記ウェーハを上記2つの基準平面間から取り除いた状態で,上記2つの基準平面に向けて照射された平行光の上記一方の基準平面における反射光と他方の基準平面における反射光とで形成される干渉縞画像を取得する基準平面干渉縞画像取得手段と,
上記主面側干渉縞画像取得手段,上記裏面側干渉縞画像取得手段,及び上記基準平面干渉縞画像取得手段で得られた3つの干渉縞画像に基づいて上記ウェーハの厚さ分布を算出する形状算出手段とを具備してなり,
上記形状算出手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像より求められる上記2つの基準平面の距離Lt(x,y)と,上記主面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの主面とそれに対向する上記基準平面との距離La(x,y)と,上記裏面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの裏面とそれに対向する上記基準平面との距離Lb(x,y)とに基づいて,上記ウェーハの計算上の厚さ分布T(x,y)を次式により求めるものである形状測定装置であって,
T(x,y)=Lt(x,y)−La(x,y)−Lb(x,y)
上記基準平面干渉縞画像取得手段で得られた干渉縞画像に基づいて,上記ウェーハの主面側及び裏面側にそれぞれ設置される光学系の角度ズレを調整する角度ズレ調整手段を具備してなる形状測定装置。
Two reference planes arranged opposite to the main surface side and the back surface side of the wafer;
An interference fringe image formed by the reflected light on the wafer main surface and the reflected light on the reference plane of the parallel light irradiated toward the main surface of the wafer through the reference surface on the main surface side is acquired. Main surface side interference fringe image acquisition means,
Back side for acquiring an interference fringe image formed by reflected light on the back side of the wafer and reflected light on the reference plane of parallel light irradiated toward the back side of the wafer through the reference plane on the back side Interference fringe image acquisition means;
With the wafer removed from between the two reference planes, the parallel light irradiated toward the two reference planes is formed by reflected light on the one reference plane and reflected light on the other reference plane. A reference plane interference fringe image obtaining means for obtaining an interference fringe image;
A shape for calculating the thickness distribution of the wafer based on three interference fringe images obtained by the main surface side interference fringe image acquisition means, the back surface side interference fringe image acquisition means, and the reference plane interference fringe image acquisition means. A calculating means,
The shape calculating means obtains the distance Lt (x, y) between the two reference planes obtained from the interference fringe image obtained by the reference plane interference fringe image obtaining means and the principal surface side interference fringe image obtaining means. The distance La (x, y) between the main surface of the wafer obtained from the obtained interference fringe image and the reference plane opposed thereto, and the interference fringe image obtained by the back side interference fringe image acquisition means. Based on the distance Lb (x, y) between the back surface of the wafer and the reference plane opposed thereto, the thickness measurement T (x, y) calculated for the wafer is calculated by the following equation. Because
T (x, y) = Lt (x, y) −La (x, y) −Lb (x, y)
An angle deviation adjusting means for adjusting the angle deviation of the optical system respectively installed on the main surface side and the back surface side of the wafer based on the interference fringe image obtained by the reference plane interference fringe image acquisition means. Shape measuring device.
ウェーハの主面側及び裏面側に対向配置される2つの基準平面と,
上記主面側の基準平面を介して上記ウェーハの主面に向けて照射された平行光の上記ウェーハ主面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する主面側干渉縞画像取得手段と,
上記裏面側の基準平面を介して上記ウェーハの裏面に向けて照射された平行光の上記ウェーハ裏面での反射光と上記基準平面での反射光とで形成される干渉縞画像を取得する裏面側干渉縞画像取得手段と,
上記ウェーハを上記2つの基準平面間から取り除いた状態で,上記2つの基準平面に向けて照射された平行光の上記一方の基準平面における反射光と他方の基準平面における反射光とで形成される干渉縞画像を取得する基準平面干渉縞画像取得手段と,
上記主面側干渉縞画像取得手段,上記裏面側干渉縞画像取得手段,及び上記基準平面干渉縞画像取得手段で得られた3つの干渉縞画像に基づいて上記ウェーハの厚さ分布を算出する形状算出手段とを具備してなり,
上記形状算出手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像より求められる上記2つの基準平面の距離Lt(x,y)と,上記主面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの主面とそれに対向する上記基準平面との距離La(x,y)と,上記裏面側干渉縞画像取得手段で得られた干渉縞画像より求められる上記ウェーハの裏面とそれに対向する上記基準平面との距離Lb(x,y)とに基づいて,上記ウェーハの計算上の厚さ分布T(x,y)を次式により求めるものである形状測定装置であって,
T(x,y)=Lt(x,y)−La(x,y)−Lb(x,y)
上記ウェーハを含む測定系全体が鉛直方向から若干傾斜した状態に設置され,上記ウェーハが鉛直方向から若干傾斜した状態で保持されてなる形状測定装置。
Two reference planes arranged opposite to the main surface side and the back surface side of the wafer;
An interference fringe image formed by the reflected light on the wafer main surface and the reflected light on the reference plane of the parallel light irradiated toward the main surface of the wafer through the reference surface on the main surface side is acquired. Main surface side interference fringe image acquisition means,
Back side for acquiring an interference fringe image formed by reflected light on the back side of the wafer and reflected light on the reference plane of parallel light irradiated toward the back side of the wafer through the reference plane on the back side Interference fringe image acquisition means;
With the wafer removed from between the two reference planes, the parallel light irradiated toward the two reference planes is formed by reflected light on the one reference plane and reflected light on the other reference plane. A reference plane interference fringe image obtaining means for obtaining an interference fringe image;
A shape for calculating the thickness distribution of the wafer based on three interference fringe images obtained by the main surface side interference fringe image acquisition means, the back surface side interference fringe image acquisition means, and the reference plane interference fringe image acquisition means. A calculating means,
The shape calculating means obtains the distance Lt (x, y) between the two reference planes obtained from the interference fringe image obtained by the reference plane interference fringe image obtaining means and the principal surface side interference fringe image obtaining means. The distance La (x, y) between the main surface of the wafer obtained from the obtained interference fringe image and the reference plane opposed thereto, and the interference fringe image obtained by the back side interference fringe image acquisition means. Based on the distance Lb (x, y) between the back surface of the wafer and the reference plane opposed thereto, the thickness measurement T (x, y) calculated for the wafer is calculated by the following equation. Because
T (x, y) = Lt (x, y) −La (x, y) −Lb (x, y)
Whole measurement system including the wafer is placed in a slightly inclined state from the vertical direction, the wafer is Ru shape measuring device name is held in a state of being slightly inclined from the vertical direction.
上記角度ズレ調整手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像の干渉縞数若しくは干渉縞の濃淡変化が最小となるように上記2つの光学系の角度を調整する請求項に記載の形状測定装置。The angle deviation adjusting means adjusts the angles of the two optical systems so that the number of interference fringes of the interference fringe image obtained by the reference plane interference fringe image obtaining means or the change in shading of the interference fringes is minimized. 2. The shape measuring apparatus according to 2. 上記角度ズレ調整手段は,上記基準平面干渉縞画像取得手段で得られた干渉縞画像から求められる距離分布が最小となるように上記2つの光学系の角度を調整する請求項記載の形状測定装置。 3. The shape measurement according to claim 2 , wherein the angle deviation adjusting means adjusts the angles of the two optical systems so that a distance distribution obtained from the interference fringe image obtained by the reference plane interference fringe image obtaining means is minimized. apparatus. 上記傾斜が1〜10度の範囲に設定されてなる請求項記載の形状測定装置。The shape measuring apparatus according to claim 3, wherein the inclination is set in a range of 1 to 10 degrees. 上記ウェーハの自重撓みによる変形量を演算する変形量演算手段を具備し,
上記形状算出手段は,上記3つの干渉縞画像に基づいて得られた上記ウェーハの厚さ分布から上記変形量演算手段で得られた自重撓みによる変形量を減算する請求項又は記載の形状測定装置。
A deformation amount calculating means for calculating a deformation amount due to the self-weight deflection of the wafer;
The shape according to claim 3 or 6 , wherein the shape calculation means subtracts a deformation amount due to its own weight obtained by the deformation amount calculation means from a thickness distribution of the wafer obtained based on the three interference fringe images. measuring device.
上記ウェーハの厚さ分布を互いに重複部分を有する複数の部分領域毎に測定し,それら部分領域毎の厚さ分布を得ると共に,それら部分領域毎の厚さ分布情報を合成することによってウェーハ全体の厚さ分布を取得する請求項1〜のいずれかに記載の形状測定装置。The thickness distribution of the wafer is measured for each of a plurality of partial areas having overlapping portions, and the thickness distribution for each of the partial areas is obtained and the thickness distribution information for each of the partial areas is synthesized. shape measuring apparatus according to any one of claims 1 to 7 to obtain the thickness distribution. 上記部分領域における上記厚さ分布は,ウェーハの平坦度評価に用いられるサイトフラットネスの定義に基づいて計測されたものである請求項記載の形状測定装置。The shape measuring apparatus according to claim 8 , wherein the thickness distribution in the partial region is measured based on a definition of site flatness used for wafer flatness evaluation.
JP2000053591A 2000-02-29 2000-02-29 Shape measuring device Expired - Lifetime JP4400985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053591A JP4400985B2 (en) 2000-02-29 2000-02-29 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053591A JP4400985B2 (en) 2000-02-29 2000-02-29 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2001241923A JP2001241923A (en) 2001-09-07
JP4400985B2 true JP4400985B2 (en) 2010-01-20

Family

ID=18574955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053591A Expired - Lifetime JP4400985B2 (en) 2000-02-29 2000-02-29 Shape measuring device

Country Status (1)

Country Link
JP (1) JP4400985B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057735B2 (en) * 2002-11-14 2006-06-06 Fitel U.S.A. Corp. Method for measuring the optical and physical thickness of optically transparent objects
US7268887B2 (en) * 2004-12-23 2007-09-11 Corning Incorporated Overlapping common-path interferometers for two-sided measurement
JP2006275883A (en) * 2005-03-30 2006-10-12 Mitsutoyo Corp Dimension measuring method, and both-end face interferometer
JP4729423B2 (en) * 2006-03-28 2011-07-20 株式会社ミツトヨ Optical interferometer
JP5416025B2 (en) * 2010-04-22 2014-02-12 株式会社神戸製鋼所 Surface shape measuring device and semiconductor wafer inspection device
CN102829740B (en) * 2012-09-12 2015-08-19 昆山允可精密工业技术有限公司 Contact type measurement instrument
CN111430260B (en) * 2020-05-15 2023-07-07 长江存储科技有限责任公司 Wafer detection method and device

Also Published As

Publication number Publication date
JP2001241923A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
US7599071B2 (en) Determining positional error of an optical component using structured light patterns
US20110298896A1 (en) Speckle noise reduction for a coherent illumination imaging system
JP4170937B2 (en) Method and apparatus for measuring the shape and thickness change of polished opaque plates
US7342666B2 (en) Method and apparatus for measuring holding distortion
US20020167675A1 (en) Interferometer system
JPH0760086B2 (en) Method and apparatus for measuring shape error of object
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
US20150176973A1 (en) A dual interferometer system with a short reference flat distance for wafer shape and thickness variation measurement
JP4400985B2 (en) Shape measuring device
US6674512B2 (en) Interferometer system for a semiconductor exposure system
US8537369B1 (en) Method and apparatus for measuring the shape and thickness variation of a wafer by two single-shot phase-shifting interferometers
US20200240770A1 (en) Device and Method for Calibrating a Measuring Apparatus Using Projected Patterns and a Virtual Plane
JP7361166B2 (en) Multi-axis laser interferometer and displacement detection method
JP3772444B2 (en) Stage device, coordinate measuring device, and position measuring method
JP4208565B2 (en) Interferometer and measurement method having the same
JP4781702B2 (en) Tilt measurement interferometer device
JP3907518B2 (en) Shape measuring device
JP5010964B2 (en) Angle measuring method and apparatus
JP4007473B2 (en) Wavefront shape measurement method
JP5236993B2 (en) Block gauge holder
JPH11194022A (en) Device for measuring flatness of semiconductor wafer
JP2631003B2 (en) Sample shape measuring apparatus and its measuring method
JPH10221029A (en) Apparatus for measuring aspherical shape
US20200232789A1 (en) Devices and Methods for Calibrating a Measuring Apparatus Using Projected Patterns
JP3169189B2 (en) Method and apparatus for measuring surface shape of surface to be measured

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4400985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

EXPY Cancellation because of completion of term