JP3169189B2 - Method and apparatus for measuring surface shape of surface to be measured - Google Patents

Method and apparatus for measuring surface shape of surface to be measured

Info

Publication number
JP3169189B2
JP3169189B2 JP04114292A JP4114292A JP3169189B2 JP 3169189 B2 JP3169189 B2 JP 3169189B2 JP 04114292 A JP04114292 A JP 04114292A JP 4114292 A JP4114292 A JP 4114292A JP 3169189 B2 JP3169189 B2 JP 3169189B2
Authority
JP
Japan
Prior art keywords
measured
measurement
surface shape
measuring
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04114292A
Other languages
Japanese (ja)
Other versions
JPH05240626A (en
Inventor
博幸 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP04114292A priority Critical patent/JP3169189B2/en
Publication of JPH05240626A publication Critical patent/JPH05240626A/en
Application granted granted Critical
Publication of JP3169189B2 publication Critical patent/JP3169189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被測定面の表面形状、
特に被測定面の平面性を測定する被測定面の表面形状測
定方法及び被測定面の表面形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape of a surface to be measured,
In particular, the present invention relates to a method for measuring the surface shape of a surface to be measured and a device for measuring the surface shape of the surface to be measured for measuring the flatness of the surface to be measured.

【0002】[0002]

【従来の技術】従来から、光学的な被測定面の表面形状
を測定する表面形状測定方法として、3面合わせ方法
(例えば、D.Malacara,Optical Shop Testing (John Wi
ley & Sons,1978)p41〜42の記載を参照)が知られてい
る。
2. Description of the Related Art Conventionally, as a surface shape measuring method for measuring an optical surface shape of a surface to be measured, a three-plane matching method (for example, D. Malacara, Optical Shop Testing (John Wi
ley & Sons, 1978) see pages 41-42).

【0003】この3面合わせ方法は3個の被測定面A、
B、Cを準備し、この被測定面A、B、Cのうちから2
個を選択し、図3に示すように互いに向い合わせて光波
を干渉させる。
[0003] This three-plane alignment method uses three measurement surfaces A,
B and C are prepared, and two of the surfaces A, B and C to be measured are prepared.
Individuals are selected and made to interfere with each other as shown in FIG.

【0004】いま、被測定面を図4に示すように直交座
標系(X,Y)を用いて表わし、被測定面の点(X,
Y)における被測定面A、B、Cの理想平面からのズレ
量をWA(X,Y)、WB(X,Y)、WC(X,Y)と
表わす。
Now, the surface to be measured is represented using a rectangular coordinate system (X, Y) as shown in FIG.
The surface to be measured in Y) A, B, W the amount of deviation from the ideal plane of C A (X, Y), W B (X, Y), representing W C (X, Y) and.

【0005】また、被測定面Aと被測定面Bとを互いに
向い合わせて得られる2面間の光路差の測定値をW
1(X,Y)、被測定面Aと被測定面Cとを互いに向か
い合わせて得られる2面間の光路差の測定値をW
2(X,Y)、被測定面Bと被測定面Cとを互いに向い
合わせて得られる2面間の光路差の測定値をW3(X,
Y)とすると、下記の関係式が得られる。
Further, the measured value of the optical path difference between two surfaces obtained by facing the measured surface A and the measured surface B to each other is represented by W
1 (X, Y), the measured value of the optical path difference between the two surfaces obtained by facing the measured surface A and the measured surface C to each other is W
2 (X, Y), the measured value of the optical path difference between the two surfaces obtained by facing the measured surface B and the measured surface C to each other is W 3 (X, Y).
Y), the following relational expression is obtained.

【0006】 W1(X,Y)=WA(X,Y)+WB(−X,Y) …(1) W2(X,Y)=WA(X,Y)+WC(−X,Y) …(2) W3(X,Y)=WB(X,Y)+WC(−X,Y) …(3) ここで、各式の右辺の第1項と第2項とでXの符号が反
転しているのは、Y軸を軸として反転させて測定を行う
場合、左側の被測定面の点(X,Y)に対応する右側の
被測定面の点は(−X,Y)だからである。なお、上記
各式においては、2面間の距離に関係する平面成分は、
演算の結果に影響しないので省略されている。
W 1 (X, Y) = W A (X, Y) + W B (−X, Y) (1) W 2 (X, Y) = W A (X, Y) + W C (−X , Y) ... (2) W 3 (X, Y) = W B (X, Y) + W C (-X, Y) ... (3) here, the first term and the second term of the right side of each equation The reason why the sign of X is inverted is that when the measurement is performed with the Y axis being inverted, the point on the right measured surface corresponding to the point (X, Y) on the left measured surface is (−). X, Y). In each of the above equations, the plane component related to the distance between the two surfaces is:
It is omitted because it does not affect the result of the operation.

【0007】上記各式において、表面形状WAの変数
X、表面形状WBの変数X、−X、表面形状WCの変数−
Xはその座標の原点が必ずしも同じではない。というの
は、測定の際の被測定面の光軸O回りの回転、各被測定
面の交換によって絶対的位置が定まらないからである。
しかしながら、測定の都度、各被測定面A、B、Cにつ
いての原点を光軸O上に定め、その原点をX=0と置い
て、上記式を解くこととする。
[0007] In the above formulas, variables X of the surface shape W A, the surface shape W B of the variable X, -X, the surface shape W C variables -
X does not always have the same coordinate origin. This is because the absolute position cannot be determined by the rotation of the measured surface around the optical axis O and the replacement of each measured surface during measurement.
However, each time measurement is performed, the origin of each of the surfaces A, B, and C to be measured is determined on the optical axis O, and the origin is set as X = 0, and the above equation is solved.

【0008】X=0とおいて、上記(1)式ないし
(3)式を用いて、WA(0,Y)、WB(0,Y)、W
C(0,Y)を求めると、下記の式が得られる。
[0008] at the X = 0, the above items (1) to equation using equation (3), W A (0, Y) , W B (0, Y), W
When C (0, Y) is obtained, the following equation is obtained.

【0009】 WA(0,Y)={W1(0,Y)+W2(0,Y)−W3(0,Y)}/2 …(4) WB(0,Y)={W1(0,Y)−W2(0,Y)+W3(0,Y)}/2 …(5) WC(0,Y)={−W1(0,Y)+W2(0,Y)+W3(0,Y)}/2 …(6) 従って、各被測定面A、B、CのY軸方向に沿っての理
想平面からのずれ量(各面の相対変位)を求めることが
できる。
[0009] W A (0, Y) = {W 1 (0, Y) + W 2 (0, Y) -W 3 (0, Y)} / 2 ... (4) W B (0, Y) = { W 1 (0, Y) −W 2 (0, Y) + W 3 (0, Y)} / 2 (5) W C (0, Y) = {− W 1 (0, Y) + W 2 (0 , Y) + W 3 (0, Y)} / 2 (6) Therefore, the amount of deviation (relative displacement of each surface) of each of the measured surfaces A, B, and C from the ideal plane along the Y-axis direction is calculated. You can ask.

【0010】しかしながら、被測定面の全体の表面形状
を求めるためには、各被測定面A、B、Cのうち向い合
わせた被測定面同志の少なくとも一方を少しずつ光軸回
りに回転させる必要があり、この回転操作を被測定面A
と被測定面Bとの組み合せ、被測定面Aと被測定面Cと
の組み合せ、被測定面Bと被測定面Cとの組み合せにつ
いてそれぞれ繰り返さなければならず、回転操作の位置
合わせ誤差により測定精度が低下するおそれがある。
However, in order to obtain the entire surface shape of the measured surface, at least one of the measured surfaces A, B, and C facing each other needs to be slightly rotated about the optical axis. This rotation operation is performed on the surface A to be measured.
And the surface to be measured B, the combination of the surface to be measured A and the surface to be measured C, and the combination of the surface to be measured B and the surface to be measured C, respectively. Accuracy may be reduced.

【0011】また、3面合わせの方法以外の表面形状を
測定する方法として、波面平均化法(特願平1-328066
号)が知られている。この波面平均化法は、図5に示す
ように一方を被測定面Dとし、他方を参照面Eとして互
いに向かい合わせる。そして、参照面Eの光軸O回りの
回転操作と参照面Eの光軸Oと直交する方向への移動操
作と参照面Eの交換操作とのいずれかの操作を行い、測
定を多数回繰り返す。図5(a)、5(b)、5(c)は
参照面Eを光軸Oと直交する方向に移動させて測定する
状態を示している。
As a method of measuring a surface shape other than the three-plane matching method, a wavefront averaging method (Japanese Patent Application No. 1-328066) is used.
No.) is known. In this wavefront averaging method, as shown in FIG. 5, one is set as a measured surface D, and the other is set as a reference surface E, facing each other. Then, one of a rotation operation of the reference surface E around the optical axis O, a movement operation of the reference surface E in a direction orthogonal to the optical axis O, and an exchange operation of the reference surface E is performed, and the measurement is repeated many times. . 5 (a), 5 (b), and 5 (c) show a state where the measurement is performed by moving the reference plane E in a direction orthogonal to the optical axis O.

【0012】そして、この多数回の測定により得られた
測定値を平均することにより形状誤差を減少させ、結果
的に被測定面Dの表面形状を求めるものである。
The shape error is reduced by averaging the measured values obtained by the multiple measurements, and as a result, the surface shape of the surface D to be measured is obtained.

【0013】例えば、図5(a)に示すように、被測定
面Dと被測定面Eとを向い合わせて、被測定面Dの理想
平面からのずれ量をWR(X,Y)、被測定面Eの理想
平面からのずれ量(各面の相対変位)をWT1(X,
Y)、2面間の光路差を表す測定値をW1(X,Y)と
すると、 W1=WR(X,Y)+WT1(X,Y) …(7) と表せる。
For example, as shown in FIG. 5A, the measured surface D and the measured surface E face each other, and the deviation amount of the measured surface D from the ideal plane is represented by W R (X, Y), The deviation amount (relative displacement of each surface) of the measured surface E from the ideal plane is represented by W T1 (X,
Y) If the measured value representing the optical path difference between the two surfaces is W 1 (X, Y), then W 1 = W R (X, Y) + W T1 (X, Y) (7)

【0014】なお、上記式において、面間の距離に関係
する平面成分は、演算の結果に影響しないので省略され
ている。
In the above equation, the plane component related to the distance between the surfaces is omitted because it does not affect the result of the calculation.

【0015】このとき、被測定面Dと被測定面Eの座標
を互いに合致させておくものとする。
At this time, it is assumed that the coordinates of the surface D to be measured and the surface E to be measured coincide with each other.

【0016】次に図5(b)、(c)に示すように、被
測定面Dを固定したまま参照面Eを光軸Oと直交する方
向に移動させ、このときの参照面Eの形状をWT2(X,
Y)、測定値をW2(X,Y)とすると、 W2=WR(X,Y)+WT2(X,Y) …(8) となる。このように参照面Eを光軸Oと直交する方向に
移動させるか、参照面Eを光軸Oの回りに回転させる
か、参照面Eを交換することにより、n通りの測定値W
i(X,Y)(i=1,2,…,n)を求める。
Next, as shown in FIGS. 5B and 5C, the reference surface E is moved in a direction perpendicular to the optical axis O while the surface D to be measured is fixed, and the shape of the reference surface E at this time is changed. To W T2 (X,
Y), assuming that the measured value is W 2 (X, Y), W 2 = W R (X, Y) + W T2 (X, Y) (8) By moving the reference plane E in the direction orthogonal to the optical axis O, rotating the reference plane E around the optical axis O, or exchanging the reference plane E, the n measured values W
i (X, Y) (i = 1, 2,..., n) is obtained.

【0017】このn通りの測定値Wi(X,Y)(i=
1,2,…,n)を全て加算すると、下記の(9)式が
得られる。
The n measurement values W i (X, Y) (i =
, N), the following equation (9) is obtained.

【数1】 上記(9)式を変形した下記(10)式によりWR(X,
Y)を得ることができる。
(Equation 1) By the following equation (10) obtained by modifying the above equation (9), W R (X,
Y) can be obtained.

【数2】 上記(10)式において、右辺の第2項は、参照面Eの各
種の形状を平均したものを意味するから、理論的に測定
回数nを増大させると零に近づくことになる。従って、
nを充分大きくとると、下記の式(11)を得ることがで
きる。
(Equation 2) In the above equation (10), the second term on the right-hand side means an average of various shapes of the reference surface E. Therefore, when the number of measurements n is theoretically increased, the second term approaches zero. Therefore,
When n is sufficiently large, the following equation (11) can be obtained.

【数3】 すなわち、被測定面Dの表面形状WR(X,Y)を求め
ることができる。この波面平均化法は測定回数nが大き
いほど、測定精度が向上する。また、被測定面Dの表面
形状がランダムであるほど測定精度が向上する。
(Equation 3) That is, the surface shape W R (X, Y) of the measured surface D can be obtained. In this wavefront averaging method, as the number of measurements n increases, the measurement accuracy improves. Further, as the surface shape of the surface D to be measured is more random, the measurement accuracy is improved.

【0018】しかし、参照面Eが曲率を有する場合には
参照面Dを光軸Oと直交する方向に移動させるか参照面
Eの光軸Oの回りに回転させても平均化されず、また、
複数の参照面Eを用いたとしても凹面若しくは凸面に偏
る可能性があって、平均化の精度が悪くなる可能性があ
る。被測定面Dが球面の場合には、表面形状と曲率とは
別の量として測定することが可能であるが、被測定面D
の理想平面からのずれ量を測定する場合には、曲率自体
も誤差の原因となる。従って、波面平均化法は被測定面
Dの理想平面からのずれ量の測定には不向きである。
However, when the reference surface E has a curvature, the reference surface D is not averaged even if the reference surface D is moved in a direction orthogonal to the optical axis O or rotated about the optical axis O of the reference surface E. ,
Even if a plurality of reference planes E are used, there is a possibility that the reference plane E is biased toward a concave surface or a convex surface, and the accuracy of averaging may be deteriorated. When the surface D to be measured is a spherical surface, the surface shape and the curvature can be measured as different amounts.
When measuring the deviation amount from the ideal plane, the curvature itself also causes an error. Therefore, the wavefront averaging method is not suitable for measuring a deviation amount of the measured surface D from an ideal plane.

【0019】[0019]

【発明が解決しようとする課題】すなわち、3面合わせ
方法では、被測定面の面全体の表面形状を求めるのが困
難であり、波面平均化法では被測定面の形状誤差のうち
曲率を求めるのが困難であるという問題があった。従っ
て、被測定面の面全体に渡る形状誤差を精度良く測定す
る被測定面の表面形状測定方法及び被測定面の表面形状
測定装置の出現が強く望まれていた。
That is, it is difficult to obtain the surface shape of the whole surface to be measured by the three-plane matching method, and to obtain the curvature among the shape errors of the surface to be measured by the wavefront averaging method. There was a problem that it was difficult. Therefore, the appearance of a surface shape measurement method and a surface shape measurement device for a measured surface that accurately measures a shape error over the entire surface of the measured surface has been strongly desired.

【0020】本発明は、上記の課題を解決するためにな
されたものであり、被測定面の表面形状を2次元的に精
度良く求めることのできる被測定面の表面形状測定方法
及び被測定面の表面形状測定装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a method and a method for measuring the surface shape of a surface to be measured, which can determine the surface shape of the surface to be measured with high accuracy in two dimensions. It is an object of the present invention to provide a surface shape measuring device.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係わる被測定面の表面形状測定方法は、3
つの被測定面のうちから任意に選んで2つの被測定面を
向かい合わせて各二面間の光路差を二次元的に測定し、
この測定を異なる被測定面同士の組み合わせにより全体
として3回行う第1測定工程と、第1測定工程で用いた
3つの被測定面のうちから任意に選んだ1つの被測定面
を一方に固定し、他方に任意に選択した参照面を向かい
合わせ、参照面の光軸回りの回転操作と参照面の光軸と
直交する方向への移動操作と参照面の交換操作とのいず
れかの操作を行うことにより各二面間の光路差の測定を
複数回行う第2測定工程と、第1測定工程により得られ
る被測定面の表面形状から曲率成分のみを演算により求
め、第2測定工程により得られる被測定面の表面形状か
ら曲率成分を除いた表面形状成分のみを演算により求
め、第1測定工程により得られた曲率成分と前記被測定
面の曲率を除いた表面形状成分とを合成することにより
被測定面の全体の表面形状を求めることを特徴としてい
る。
In order to solve the above-mentioned problems, a method for measuring the surface shape of a surface to be measured according to the present invention comprises the steps of:
Arbitrarily select one of the two surfaces to be measured, face the two surfaces to be measured, measure the optical path difference between the two surfaces two-dimensionally,
Fixing a first measurement step of performing a whole as 3 times by a combination of the measurement surface mutually different this measurement, one measurement surface randomly selected from among the three measurement surface used in the first measurement step to the one Then, the reference surface arbitrarily selected is faced to the other, and either the rotation operation of the reference surface around the optical axis, the movement operation in the direction orthogonal to the optical axis of the reference surface, or the reference surface exchange operation is performed. By performing the second measurement step of measuring the optical path difference between each of the two surfaces a plurality of times, only the curvature component is calculated from the surface shape of the measured surface obtained in the first measurement step, and the curvature component is obtained in the second measurement step. Calculating only the surface shape component excluding the curvature component from the surface shape of the measured surface to be measured, and synthesizing the curvature component obtained in the first measurement step and the surface shape component excluding the curvature of the measured surface. By the whole table of the measured surface It is characterized by determining the shape.

【0022】[0022]

【0023】また、本発明の被測定面の表面形状測定装
置は、向かい合った2つの被測定面の面間隔を2次元的
に求める測定部と、測定データを記憶すると共に3つの
被測定面のうちから任意に選んだ2つの被測定面を向か
い合わせて各二面間の光路差を測定し、この測定を異な
る被測定面同士の組み合わせについて全体として3回行
う第1測定操作により得られる被測定面の表面形状から
曲率成分のみを演算すると共に、第1測定操作で用いた
3つの被測定面のうちから任意に選んだ1つの被測定面
を一方に固定し、これと対向する参照面の光軸回りの回
転操作と参照面の光軸と直交する方向への移動操作と参
照面の交換操作とのうちのいずれかの操作を行って各二
面間の光路差の測定を複数回行う第2測定操作により得
られる被測定面の表面形状から曲率成分を除いた表面形
状成分を演算し、前記曲率成分と前記曲率成分を除いた
表面形状成分とを合成することにより被測定面の全体の
表面形状を求める演算制御部と、からなることを特徴と
する。測定部には、向かい合った被測定面の面間隔を測
定するのに、フィゾータイプの干渉計を採用することが
可能である。
Further, the surface shape measuring apparatus for a surface to be measured according to the present invention comprises: a measuring unit for two-dimensionally determining a surface interval between two facing surfaces to be measured; face to face two of the surface to be measured arbitrarily selected to measure the optical path difference between the two surfaces from among obtained by the first measurement operation performed overall three combinations of the measurement surface mutually different this measurement object Only the curvature component is calculated from the surface shape of the measurement surface, and one measurement surface arbitrarily selected from the three measurement surfaces used in the first measurement operation is fixed to one, and a reference surface facing the measurement surface. of each secondary do one of the of the exchange operation of the moving operation and the reference surface in a direction perpendicular to the optical axis of the rotation operation and the reference plane of the optical axis
Calculate a surface shape component excluding a curvature component from a surface shape of the measured surface obtained by a second measurement operation of measuring the optical path difference between surfaces a plurality of times, and calculate the curvature component and the surface shape component excluding the curvature component And an arithmetic control unit for calculating the entire surface shape of the measured surface by combining The measuring unit measures the distance between the facing surfaces to be measured.
To use a Fizeau-type interferometer
It is possible.

【0024】[0024]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、本発明に係わる被測定面の表面形
状測定装置の構成図である。この実施例では、向いあっ
た2つの被測定面の面間隔を測定するのに、フィゾータ
イプの干渉計を用いている。図1において、1は測定部
の一部を構成する光源である。この光源1には例えばヘ
リウム・ネオンレーザ等が用いられる。光源1から出射
されたレーザー光は集光レンズ2とコリメータレンズ4
によりビーム径が拡大され、参照平面板5と被測定物6
とに導かれる。51は参照面であり、61は被測定面で
ある。
FIG. 1 is a block diagram of the apparatus for measuring the surface shape of a surface to be measured according to the present invention. In this embodiment, a Fizeau-type interferometer is used to measure the surface interval between two facing surfaces to be measured. In FIG. 1, reference numeral 1 denotes a light source constituting a part of a measuring unit. As the light source 1, for example, a helium / neon laser or the like is used. The laser light emitted from the light source 1 is collected by a condenser lens 2 and a collimator lens 4.
As a result, the beam diameter is enlarged, and the reference flat plate 5 and the DUT 6
It is led to. Reference numeral 51 denotes a reference surface, and reference numeral 61 denotes a measured surface.

【0026】参照平面51と被測定面61で反射された
2つの光束は干渉を起こし、逆向きに進んで、測定部の
一部を構成するビームスプリッタ3で反射される。この
ビームスプリッタ3により反射された干渉光束は結像レ
ンズ7を介して撮像素子8に導かれ、撮像素子8に干渉
縞が形成される。
The two light beams reflected by the reference plane 51 and the measured surface 61 cause interference, travel in opposite directions, and are reflected by the beam splitter 3 which forms a part of the measuring section. The interference light beam reflected by the beam splitter 3 is guided to the imaging device 8 via the imaging lens 7, and interference fringes are formed on the imaging device 8.

【0027】その撮像素子8によって得られる干渉縞に
基づく映像信号は演算制御部9に入力される。演算制御
部9は、その干渉縞の分布に基づき参照平面51と被測
定面61の面間隔を演算する。その演算制御部9は、例
えば、マイクロコンピュータ、メモリ、操作部、表示部
から構成されている。
A video signal based on the interference fringes obtained by the image pickup device 8 is input to the arithmetic and control unit 9. The arithmetic control unit 9 calculates the surface interval between the reference plane 51 and the measured surface 61 based on the distribution of the interference fringes. The arithmetic control unit 9 includes, for example, a microcomputer, a memory, an operation unit, and a display unit.

【0028】次に、本発明に係わる被測定面の表面形状
測定方法の測定原理を説明する。
Next, the measurement principle of the method for measuring the surface shape of the surface to be measured according to the present invention will be described.

【0029】被測定面61が被測定面Aであるとすると
その表面形状はWA(X,Y)と表わせる。このうち、
曲率の成分をk(X2+Y2)、曲率以外の成分をW
A-PO(X,Y)とすると、被測定面61の表面形状は下
記の式(12)で表わすことができる。
Assuming that the surface 61 to be measured is the surface A to be measured, its surface shape can be expressed as W A (X, Y). this house,
The component of curvature is k (X 2 + Y 2 ), and the component other than curvature is W
Assuming that A-PO (X, Y), the surface shape of the surface 61 to be measured can be expressed by the following equation (12).

【0030】 WA(X,Y)=k(X2+Y2)+WA-PO(X,Y) …(12) すなわち、被測定面61の表面形状は曲率の成分k(X
2+Y2)と曲率以外の成分WA-PO(X,Y)の2つの成
分を求めることにより得ることができる。
W A (X, Y) = k (X 2 + Y 2 ) + W A-PO (X, Y) (12) That is, the surface shape of the surface 61 to be measured has a curvature component k (X
2 + Y 2 ) and a component W A-PO (X, Y) other than the curvature can be obtained.

【0031】以下、2つの成分の求め方をそれぞれ説明
する。
Hereinafter, how to determine the two components will be described.

【0032】『曲率の成分k(X2+Y2)の求め方』先
ず、第1測定工程では、被測定面61、被測定面B、C
を用いて図3に示す3面合わせの方法による測定結果か
ら曲率の成分k(X2+Y2)を求める。被測定面61の
一次元的な表面形状WA(0,Y)は式(4)から求めること
ができ、これは計算により曲率の成分とそれ以外の成分
に分離することが可能で、 WA(0,Y)=k・Y2+WA-PO(0,Y) …(13) となる。この式(13)では、X=0の場合を表わしてい
るので、Xは省略されているが、k・Y2をk(X2+Y
2)と表してもよい。この演算による成分の分離には、
例えば、最小2乗法を使用できる。このように、第1測
定工程では被測定面61の表面形状のうちの曲率成分k
(X2+Y2)を算出する。
[Method of Determining Curvature Component k (X 2 + Y 2 )] First, in the first measurement step, the measured surface 61, the measured surfaces B and C
Is used to determine the curvature component k (X 2 + Y 2 ) from the measurement result by the three-plane matching method shown in FIG. The one-dimensional surface shape W A (0, Y) of the surface 61 to be measured can be obtained from Expression (4), which can be separated into a component of curvature and other components by calculation. A (0, Y) = k · Y 2 + W A-PO (0, Y) (13) In this equation (13), since X = 0, X is omitted, but k · Y 2 is represented by k (X 2 + Y
2 ). To separate components by this operation,
For example, a least squares method can be used. Thus, in the first measurement step, the curvature component k of the surface shape of the measured surface 61 is obtained.
Calculate (X 2 + Y 2 ).

【0033】『曲率以外の成分WA-PO(X,Y)の求め
方』次に、第2測定工程では、波面平均化法による測定
結果から曲率以外の成分WA-PO(X,Y)を求める。被
測定面61が被測定面Dであるとすると、式(11)から被
測定面Dの表面形状WA´(X,Y)を求めることがで
きる。ここでWA(X,Y)に「´」(ダッシュ)が付
してあるのは、式(10)の右辺第2項で表されている被測
定面Eの平均形状が曲率成分を有した場合を想定し、測
定誤差を伴っていると考えるからである。この表面形状
A´(X,Y)も同様に演算により曲率成分とそれ以
外の成分に分離することができ、下記の式を得る。
[0033] "Determination of components other than the curvature W A-PO (X, Y ) " Next, in the second measuring step, components other than the curvature from the measured result by the wavefront averaging method W A-PO (X, Y ). Assuming that the measured surface 61 is the measured surface D, the surface shape W A ′ (X, Y) of the measured surface D can be obtained from Expression (11). Here, “′” (dash) is added to W A (X, Y) because the average shape of the measured surface E represented by the second term on the right side of the equation (10) has a curvature component. This is because it is assumed that a measurement error accompanies this case. This surface shape W A ′ (X, Y) can be similarly separated into a curvature component and other components by calculation, and the following equation is obtained.

【0034】 WA´(X,Y)=k´(X2+Y2)+WA-PO(X,Y) …(14) このように第2測定工程では被測定面61の表面形状の
うち曲率以外の成分WA-PO(X,Y)を算出する。
[0034] W A '(X, Y) = k'(X 2 + Y 2) + W A-PO (X, Y) ... (14) Thus, in the second measuring step of the surface shape of the measurement surface 61 The component W A-PO (X, Y) other than the curvature is calculated.

【0035】以上2つの成分の求め方を説明したが、第
1測定工程で求めた曲率成分k(X2+Y2)と第2測定
工程で求めた曲率以外の成分WA-PO(X,Y)を(12)式
に示すように加算すると、最終的に被測定面61の2次
元的な表面形状WA(X,Y)が求められる。図2は被
測定面の表面形状の測定手順を説明するためのもので、
図2(a)は被測定面61の曲率成分k(X2+Y2)を
一次元的に示している。図2(b)は曲率以外の成分W
A-PO(X,Y)を一次元的に示している。図2(c)は
図2(a)の曲率成分と図2(b)の曲率以外の成分と
を加算することにより得られた被測定面61の全体の表
面形状WA(X,Y)を示している。
The method for obtaining the two components has been described above. The curvature component k (X 2 + Y 2 ) obtained in the first measurement step and the component W A-PO (X, When added to indicate Y) to (12), and finally two-dimensional surface shape W a (X of the measurement surface 61, Y) is determined. FIG. 2 is a view for explaining the procedure for measuring the surface shape of the surface to be measured.
FIG. 2A shows the one-dimensional curvature component k (X 2 + Y 2 ) of the surface 61 to be measured. FIG. 2B shows a component W other than the curvature.
A-PO (X, Y) is shown one-dimensionally. FIG. 2C shows the entire surface shape W A (X, Y) of the measured surface 61 obtained by adding the curvature component of FIG. 2A and the components other than the curvature of FIG. 2B. Is shown.

【0036】尚、本実施例では曲率成分をk(X2
2)で表示しているが、別の表示方法も可能で、たと
えばk{2(X2+Y2)−1}のようにに表示すること
も可能である。
In this embodiment, the curvature component is k (X 2 +
Are displayed in Y 2), but another display method may be, it is also possible to display on, for example, as k {2 (X 2 + Y 2) -1}.

【0037】[0037]

【効果】本発明に係わる被測定面の表面形状測定方法及
び被測定面の表面形状測定装置は、以上説明したように
構成したので、被測定面の表面形状を2次元的に精度良
く求めることが出来る。
The method for measuring the surface shape of a surface to be measured and the apparatus for measuring the surface shape of a surface to be measured according to the present invention are configured as described above. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の構成を示すものである。FIG. 1 shows a configuration of an embodiment of the present invention.

【図2】 測定順序を説明するための図である。FIG. 2 is a diagram for explaining a measurement order.

【図3】 従来の3面合わせ方法を説明するための図で
ある。
FIG. 3 is a diagram for explaining a conventional three-plane alignment method.

【図4】 測定面の座標の説明図である。FIG. 4 is an explanatory diagram of coordinates of a measurement surface.

【図5】 従来の波面平均化方法を説明するための図で
ある。
FIG. 5 is a diagram for explaining a conventional wavefront averaging method.

【符号の説明】[Explanation of symbols]

1…光源 2…集光レンズ 3…ビームスプリッタ 4…コリメータレンズ 5…参照平面板 51…参照平面 6…被測定物 61…被測定面 7…結像レンズ 8…撮像素子 9…演算制御部 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Condensing lens 3 ... Beam splitter 4 ... Collimator lens 5 ... Reference plane plate 51 ... Reference plane 6 ... Object to be measured 61 ... Surface to be measured 7 ... Imaging lens 8 ... Image sensor 9 ... Operation control part

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 3つの被測定面のうちから任意に選んで
2つの被測定面を向かい合わせて各二面間の光路差を二
次元的に測定し、この測定を異なる被測定面同士の組み
合わせにより全体として3回行う第1測定工程と、 第1測定工程で用いた3つの被測定面のうちから任意に
選んだ1つの被測定面を一方に固定し、他方に任意に選
択した参照面を向かい合わせ、参照面の光軸回りの回転
操作と参照面の光軸と直交する方向への移動操作と参照
面の交換操作とのいずれかの操作を行うことにより各二
面間の光路差の測定を複数回行う第2測定工程と、 第1測定工程により得られる被測定面の表面形状から曲
率成分のみを演算により求め、第2測定工程により得ら
れる被測定面の表面形状から曲率成分を除いた表面形状
成分のみを演算により求め、第1測定工程により得られ
た曲率成分と前記被測定面の曲率を除いた表面形状成分
とを合成することにより被測定面の全体の表面形状を求
めることを特徴とする被測定面の表面形状測定方法。
1. A three measured optical path difference in two dimensions between the face to face the two of the surface to be measured is arbitrarily selected respective two surfaces among the measured surface, the surface to be measured between different this measurement A first measurement step to be performed three times as a whole in combination with one measurement surface selected arbitrarily selected from the three measurement surfaces used in the first measurement process, and a reference arbitrarily selected to the other; facing surfaces, each by performing one operation and the exchange operation of the moving operation and the reference surface in the direction orthogonal rotational operation about the optical axis and the reference plane and the optical axis of the reference surface two
A second measuring step of measuring the optical path difference between the surfaces a plurality of times, and calculating only the curvature component from the surface shape of the measured surface obtained in the first measuring step, and calculating the curvature component of the measured surface obtained in the second measuring step. Only the surface shape component obtained by removing the curvature component from the surface shape is calculated, and the curvature component obtained in the first measurement step and the surface shape component obtained by removing the curvature of the surface to be measured are combined to obtain the surface shape of the measured surface. A method for measuring the surface shape of a surface to be measured, which comprises determining an entire surface shape.
【請求項2】 向かい合った2つの被測定面の面間隔を
2次元的に求める測定部と、 測定データを記憶すると共に3つの被測定面のうちから
任意に選んだ2つの被測定面を向かい合わせて各二面間
の光路差を測定し、この測定を異なる被測定面同士の組
み合わせについて全体として3回行う第1測定操作によ
り得られる被測定面の表面形状から曲率成分のみを演算
すると共に、第1測定操作で用いた3つの被測定面のう
ちから任意に選んだ1つの被測定面を一方に固定し、こ
れと対向する参照面の光軸回りの回転操作と参照面の光
軸と直交する方向への移動操作と参照面の交換操作との
うちのいずれかの操作を行って各二面間の光路差の測定
を複数回行う第2測定操作により得られる被測定面の表
面形状から曲率成分を除いた表面形状成分を演算し、前
記曲率成分と前記曲率成分を除いた表面形状成分とを合
成することにより被測定面の全体の表面形状を求める演
算制御部と、 からなる被測定面の表面形状測定装置。
2. A measurement section for two-dimensionally obtaining a surface interval between two facing surfaces to be measured, and a memory for storing measurement data and facing two surfaces to be arbitrarily selected from three surfaces to be measured. Together between each two sides
In the optical path difference is measured, as well as calculating a curvature only components from the surface shape of the whole surface to be measured obtained by the first measuring operation performed three times for a combination of the measurement surface mutually different this measurement, the first measurement operation A surface to be measured arbitrarily selected from the three surfaces to be measured is fixed to one side, and a rotation operation about the optical axis of the reference surface facing the surface to be measured and a direction perpendicular to the optical axis of the reference surface are performed. The curvature component is removed from the surface shape of the measured surface obtained by the second measurement operation in which the optical path difference between the two surfaces is measured a plurality of times by performing one of the movement operation and the reference surface exchange operation. An arithmetic control unit that calculates the surface shape component obtained, and combines the curvature component and the surface shape component excluding the curvature component to obtain the entire surface shape of the surface to be measured. measuring device.
【請求項3】 測定部がフィゾータイプの干渉計を有す
る請求項2に記載の被測定面の表面形状測定装置
3. The surface shape measuring device for a surface to be measured according to claim 2, wherein the measuring section has a Fizeau type interferometer.
JP04114292A 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured Expired - Lifetime JP3169189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04114292A JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04114292A JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Publications (2)

Publication Number Publication Date
JPH05240626A JPH05240626A (en) 1993-09-17
JP3169189B2 true JP3169189B2 (en) 2001-05-21

Family

ID=12600175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04114292A Expired - Lifetime JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Country Status (1)

Country Link
JP (1) JP3169189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661865B2 (en) 2002-03-29 2005-06-22 フジノン株式会社 Spherical shape measurement analysis method

Also Published As

Publication number Publication date
JPH05240626A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US5069548A (en) Field shift moire system
US6208416B1 (en) Method and apparatus for measuring shape of objects
CN100485312C (en) Methods and apparatus for wavefront manipulations and improved three-dimension measurements
CN106840027A (en) The astigmatic compensation type interference checking device and detection method of freeform optics surface
JP3162355B2 (en) Surface shape measurement method and device
JPS62129711A (en) Method and apparatus for measuring configurational error of object
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
JP2576576B2 (en) Interferometry method and Fizeau interferometer using the same
JP3169189B2 (en) Method and apparatus for measuring surface shape of surface to be measured
JP2000205822A (en) Image measurement system and its image correcting method
JP3146590B2 (en) Shape measuring method and shape measuring system
JPH02259510A (en) Method and instrument for measuring surface shape or the like
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP3610244B2 (en) Moire measuring method and moire measuring apparatus using the same
JP2831428B2 (en) Aspherical shape measuring machine
JP3086013B2 (en) Optical performance measuring method and apparatus
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JP3093400B2 (en) Dach surface measuring device
JP3068694B2 (en) Measuring method of roof surface shape
JP3466713B2 (en) Measuring device
Pérez et al. Dynamic coherence scanning interferometry based on an optical phase mask for simultaneous measurement of local induced vibration and local topology change of a mirror
JP3457918B2 (en) Opposite plane parallelism measurement method and apparatus
EP0467343A2 (en) Optical heterodyne interferometer
JP3111589B2 (en) Shape measuring method and shape measuring system
JP3393910B2 (en) Surface shape measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

EXPY Cancellation because of completion of term