JPH05240626A - Method and instrument for measuring shape of surface to be measured - Google Patents

Method and instrument for measuring shape of surface to be measured

Info

Publication number
JPH05240626A
JPH05240626A JP4041142A JP4114292A JPH05240626A JP H05240626 A JPH05240626 A JP H05240626A JP 4041142 A JP4041142 A JP 4041142A JP 4114292 A JP4114292 A JP 4114292A JP H05240626 A JPH05240626 A JP H05240626A
Authority
JP
Japan
Prior art keywords
measured
measurement
shape
curvature
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4041142A
Other languages
Japanese (ja)
Other versions
JP3169189B2 (en
Inventor
Hiroyuki Nagahama
博幸 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP04114292A priority Critical patent/JP3169189B2/en
Publication of JPH05240626A publication Critical patent/JPH05240626A/en
Application granted granted Critical
Publication of JP3169189B2 publication Critical patent/JP3169189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To two-dimensionally find the shape of a surface to be measured with high accuracy by finding the whole shape of the surface to be measured by composing surface forming components except the curvature component obtained in a first measuring process and the curvature of the surface to be measured. CONSTITUTION:Two luminous fluxes reflected by a reference plane 51 and surface 61 to be measured advance in the opposite direction while the luminous fluxes interfere with each other and are reflected by a beam splitter 3. After reflection, the luminous fluxes are led to an image pickup element 8 through an image forming lens 7. Image signals based on interference fringes obtained by means of the element 8 are inputted to an arithmetic and control section 9 and the section 9 calculates the interval between the plane 51 and surface 61 based on the distribution of the interference fringes. In a first measuring process, the curvature component K(X<2>+Y<2>) of the shape of the surface 61 is calculated. In a second measuring process, the component WA-PO(X, Y) of the surface shape of the surface 61 other than the curvature is calculated. Then when WA(X, Y)=K(X<2>+Y<2>)+WA-PO(X, Y) is calculated, the two-dimensional shape WA(X, Y) of the surface 61 is finally found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定面の表面形状、
特に被測定面の平面性を測定する被測定面の表面形状測
定方法及び被測定面の表面形状測定装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a surface shape of a surface to be measured,
In particular, the present invention relates to a surface shape measuring method for measuring a surface to be measured and a surface shape measuring apparatus for measuring the surface to be measured.

【0002】[0002]

【従来の技術】従来から、光学的な被測定面の表面形状
を測定する表面形状測定方法として、3面合わせ方法
(例えば、D.Malacara,Optical Shop Testing (John Wi
ley & Sons,1978)p41〜42の記載を参照)が知られてい
る。
2. Description of the Related Art Conventionally, as a surface shape measuring method for optically measuring the surface shape of a surface to be measured, a three-face matching method (for example, D. Malacara, Optical Shop Testing (John Wi
ley & Sons, 1978) p41-42) are known.

【0003】この3面合わせ方法は3個の被測定面A、
B、Cを準備し、この被測定面A、B、Cのうちから2
個を選択し、図3に示すように互いに向い合わせて光波
を干渉させる。
This three-sided alignment method uses three measured surfaces A,
Prepare B and C, and select 2 from the measured surfaces A, B and C.
Individual pieces are selected, and light waves are caused to interfere with each other as shown in FIG.

【0004】いま、被測定面を図4に示すように直交座
標系(X,Y)を用いて表わし、被測定面の点(X,
Y)における被測定面A、B、Cの理想平面からのズレ
量をWA(X,Y)、WB(X,Y)、WC(X,Y)と
表わす。
Now, the surface to be measured is represented by using an orthogonal coordinate system (X, Y) as shown in FIG.
The deviation amounts of the measured surfaces A, B, and C in Y) from the ideal plane are expressed as W A (X, Y), W B (X, Y), and W C (X, Y).

【0005】また、被測定面Aと被測定面Bとを互いに
向い合わせて得られる2面間の光路差の測定値をW
1(X,Y)、被測定面Aと被測定面Cとを互いに向か
い合わせて得られる2面間の光路差の測定値をW
2(X,Y)、被測定面Bと被測定面Cとを互いに向い
合わせて得られる2面間の光路差の測定値をW3(X,
Y)とすると、下記の関係式が得られる。
Further, the measured value of the optical path difference between the two surfaces obtained by making the surface A and the surface B to be measured face each other is W.
1 (X, Y), W is the measured value of the optical path difference between the two surfaces obtained by facing the measured surface A and the measured surface C to each other.
2 (X, Y), and the measured value of the optical path difference between the two surfaces obtained by making the measured surface B and the measured surface C face each other is W 3 (X,
Y), the following relational expression is obtained.

【0006】 W1(X,Y)=WA(X,Y)+WB(−X,Y) …(1) W2(X,Y)=WA(X,Y)+WC(−X,Y) …(2) W3(X,Y)=WB(X,Y)+WC(−X,Y) …(3) ここで、各式の右辺の第1項と第2項とでXの符号が反
転しているのは、Y軸を軸として反転させて測定を行う
場合、左側の被測定面の点(X,Y)に対応する右側の
被測定面の点は(−X,Y)だからである。なお、上記
各式においては、2面間の距離に関係する平面成分は、
演算の結果に影響しないので省略されている。
W 1 (X, Y) = W A (X, Y) + W B (−X, Y) (1) W 2 (X, Y) = W A (X, Y) + W C (−X) , Y) (2) W 3 (X, Y) = W B (X, Y) + W C (-X, Y) (3) where the first and second terms on the right side of each equation The sign of X inverts because the point on the right measured surface corresponding to the point (X, Y) on the left measured surface is (- This is because X, Y). In the above equations, the plane component related to the distance between the two surfaces is
It is omitted because it does not affect the result of the operation.

【0007】上記各式において、表面形状WAの変数
X、表面形状WBの変数X、−X、表面形状WCの変数−
Xはその座標の原点が必ずしも同じではない。というの
は、測定の際の被測定面の光軸O回りの回転、各被測定
面の交換によって絶対的位置が定まらないからである。
しかしながら、測定の都度、各被測定面A、B、Cにつ
いての原点を光軸O上に定め、その原点をX=0と置い
て、上記式を解くこととする。
In the above equations, the variable X of the surface shape W A , the variable X of the surface shape W B , -X, the variable of the surface shape W C-
The origin of the coordinates of X is not necessarily the same. This is because the absolute position cannot be determined by the rotation of the surface to be measured about the optical axis O and the replacement of each surface to be measured during measurement.
However, the origin of each of the measured surfaces A, B, and C is set on the optical axis O at each measurement, and the origin is set as X = 0 to solve the above equation.

【0008】X=0とおいて、上記(1)式ないし
(3)式を用いて、WA(0,Y)、WB(0,Y)、W
C(0,Y)を求めると、下記の式が得られる。
When X = 0, using the above formulas (1) to (3), W A (0, Y), W B (0, Y), W
When C (0, Y) is obtained, the following formula is obtained.

【0009】 WA(0,Y)={W1(0,Y)+W2(0,Y)−W3(0,Y)}/2 …(4) WB(0,Y)={W1(0,Y)−W2(0,Y)+W3(0,Y)}/2 …(5) WC(0,Y)={−W1(0,Y)+W2(0,Y)+W3(0,Y)}/2 …(6) 従って、各被測定面A、B、CのY軸方向に沿っての理
想平面からのずれ量(各面の相対変位)を求めることが
できる。
W A (0, Y) = {W 1 (0, Y) + W 2 (0, Y) −W 3 (0, Y)} / 2 (4) W B (0, Y) = { W 1 (0, Y) -W 2 (0, Y) + W 3 (0, Y)} / 2 ... (5) W C (0, Y) = {- W 1 (0, Y) + W 2 (0 , Y) + W 3 (0, Y)} / 2 (6) Therefore, the deviation amount (relative displacement of each surface) of each measured surface A, B, C from the ideal plane along the Y-axis direction can be calculated. You can ask.

【0010】しかしながら、被測定面の全体の表面形状
を求めるためには、各被測定面A、B、Cのうち向い合
わせた被測定面同志の少なくとも一方を少しずつ光軸回
りに回転させる必要があり、この回転操作を被測定面A
と被測定面Bとの組み合せ、被測定面Aと被測定面Cと
の組み合せ、被測定面Bと被測定面Cとの組み合せにつ
いてそれぞれ繰り返さなければならず、回転操作の位置
合わせ誤差により測定精度が低下するおそれがある。
However, in order to obtain the overall surface shape of the measured surface, at least one of the measured surfaces A, B and C facing each other needs to be rotated little by little around the optical axis. There is a rotation of the measured surface A
And measurement surface B, measurement surface A and measurement surface C, and measurement surface B and measurement surface C must be repeated. The accuracy may decrease.

【0011】また、3面合わせの方法以外の表面形状を
測定する方法として、波面平均化法(特願平1-328066
号)が知られている。この波面平均化法は、図5に示す
ように一方を被測定面Dとし、他方を参照面Eとして互
いに向かい合わせる。そして、参照面Eの光軸O回りの
回転操作と参照面Eの光軸Oと直交する方向への移動操
作と参照面Eの交換操作とのいずれかの操作を行い、測
定を多数回繰り返す。図5(a)、5(b)、5(c)は
参照面Eを光軸Oと直交する方向に移動させて測定する
状態を示している。
A wavefront averaging method (Japanese Patent Application No. 1-328066) is used as a method for measuring the surface shape other than the three-face matching method.
No.) is known. In this wavefront averaging method, as shown in FIG. 5, one side is set as a measured surface D and the other side is set as a reference surface E, which are opposed to each other. Then, any one of a rotating operation of the reference plane E around the optical axis O, a moving operation of the reference plane E in a direction orthogonal to the optical axis O, and an exchange operation of the reference plane E is performed, and the measurement is repeated many times. .. 5 (a), 5 (b) and 5 (c) show a state in which the reference plane E is moved in a direction orthogonal to the optical axis O and measurement is performed.

【0012】そして、この多数回の測定により得られた
測定値を平均することにより形状誤差を減少させ、結果
的に被測定面Dの表面形状を求めるものである。
Then, the shape error is reduced by averaging the measured values obtained by the multiple measurements, and as a result, the surface shape of the surface D to be measured is obtained.

【0013】例えば、図5(a)に示すように、被測定
面Dと被測定面Eとを向い合わせて、被測定面Dの理想
平面からのずれ量をWR(X,Y)、被測定面Eの理想
平面からのずれ量(各面の相対変位)をWT1(X,
Y)、2面間の光路差を表す測定値をW1(X,Y)と
すると、 W1=WR(X,Y)+WT1(X,Y) …(7) と表せる。
[0013] For example, as shown in FIG. 5 (a), face-to-face and the measurement surface D and the measured surface E, the amount of deviation from an ideal plane of the surface to be measured D W R (X, Y) , The amount of deviation of the measured surface E from the ideal plane (relative displacement of each surface) is calculated as W T1 (X,
Y), expressed a measurement value representing the optical path difference between the two surfaces when the W 1 (X, Y), W 1 = W R (X, Y) + W T1 (X, Y) ... and (7).

【0014】なお、上記式において、面間の距離に関係
する平面成分は、演算の結果に影響しないので省略され
ている。
In the above equation, the plane component related to the distance between the surfaces is omitted because it does not affect the calculation result.

【0015】このとき、被測定面Dと被測定面Eの座標
を互いに合致させておくものとする。
At this time, the coordinates of the surface to be measured D and the surface to be measured E are made to coincide with each other.

【0016】次に図5(b)、(c)に示すように、被
測定面Dを固定したまま参照面Eを光軸Oと直交する方
向に移動させ、このときの参照面Eの形状をWT2(X,
Y)、測定値をW2(X,Y)とすると、 W2=WR(X,Y)+WT2(X,Y) …(8) となる。このように参照面Eを光軸Oと直交する方向に
移動させるか、参照面Eを光軸Oの回りに回転させる
か、参照面Eを交換することにより、n通りの測定値W
i(X,Y)(i=1,2,…,n)を求める。
Next, as shown in FIGS. 5B and 5C, the reference surface E is moved in a direction orthogonal to the optical axis O while the surface D to be measured is fixed, and the shape of the reference surface E at this time. W T2 (X,
Y) and the measured value is W 2 (X, Y), W 2 = W R (X, Y) + W T2 (X, Y) (8) As described above, the reference surface E is moved in the direction orthogonal to the optical axis O, the reference surface E is rotated around the optical axis O, or the reference surface E is exchanged.
i (X, Y) (i = 1, 2, ..., N) is calculated.

【0017】このn通りの測定値Wi(X,Y)(i=
1,2,…,n)を全て加算すると、下記の(9)式が
得られる。
The n measured values W i (X, Y) (i =
1, 2, ..., N) are all added, the following expression (9) is obtained.

【数1】 上記(9)式を変形した下記(10)式によりWR(X,
Y)を得ることができる。
[Equation 1] By the following equation (10) which is a modification of the above equation (9), W R (X,
Y) can be obtained.

【数2】 上記(10)式において、右辺の第2項は、参照面Eの各
種の形状を平均したものを意味するから、理論的に測定
回数nを増大させると零に近づくことになる。従って、
nを充分大きくとると、下記の式(11)を得ることがで
きる。
[Equation 2] In the above equation (10), the second term on the right side means an average of various shapes of the reference surface E, and therefore theoretically approaches zero when the number of measurements n is increased. Therefore,
If n is made sufficiently large, the following formula (11) can be obtained.

【数3】 すなわち、被測定面Dの表面形状WR(X,Y)を求め
ることができる。この波面平均化法は測定回数nが大き
いほど、測定精度が向上する。また、被測定面Dの表面
形状がランダムであるほど測定精度が向上する。
[Equation 3] That is, the surface shape W R (X, Y) of the measured surface D can be obtained. In this wavefront averaging method, the larger the number of times of measurement n, the higher the measurement accuracy. Further, the more random the surface shape of the surface D to be measured, the higher the measurement accuracy.

【0018】しかし、参照面Eが曲率を有する場合には
参照面Dを光軸Oと直交する方向に移動させるか参照面
Eの光軸Oの回りに回転させても平均化されず、また、
複数の参照面Eを用いたとしても凹面若しくは凸面に偏
る可能性があって、平均化の精度が悪くなる可能性があ
る。被測定面Dが球面の場合には、表面形状と曲率とは
別の量として測定することが可能であるが、被測定面D
の理想平面からのずれ量を測定する場合には、曲率自体
も誤差の原因となる。従って、波面平均化法は被測定面
Dの理想平面からのずれ量の測定には不向きである。
However, if the reference surface E has a curvature, it will not be averaged even if the reference surface D is moved in a direction orthogonal to the optical axis O or rotated around the optical axis O of the reference surface E. ,
Even if a plurality of reference planes E are used, there is a possibility that the reference planes E are concave or convex, and the accuracy of averaging may deteriorate. When the measured surface D is a spherical surface, the surface shape and the curvature can be measured as different quantities.
When measuring the amount of deviation from the ideal plane of, the curvature itself also causes an error. Therefore, the wavefront averaging method is not suitable for measuring the amount of deviation of the measured surface D from the ideal plane.

【0019】[0019]

【発明が解決しようとする課題】すなわち、3面合わせ
方法では、被測定面の面全体の表面形状を求めるのが困
難であり、波面平均化法では被測定面の形状誤差のうち
曲率を求めるのが困難であるという問題があった。従っ
て、被測定面の面全体に渡る形状誤差を精度良く測定す
る被測定面の表面形状測定方法及び被測定面の表面形状
測定装置の出現が強く望まれていた。
That is, in the three-face matching method, it is difficult to obtain the surface shape of the entire surface to be measured, and in the wavefront averaging method, the curvature of the shape error of the measured surface is obtained. There was a problem that it was difficult. Therefore, the appearance of a method for measuring the surface shape of a surface to be measured and a surface shape measuring device for the surface to be measured that accurately measures the shape error over the entire surface of the surface to be measured has been strongly desired.

【0020】本発明は、上記の課題を解決するためにな
されたものであり、被測定面の表面形状を2次元的に精
度良く求めることのできる被測定面の表面形状測定方法
及び被測定面の表面形状測定装置を提供することを目的
とする。
The present invention has been made to solve the above-mentioned problems, and is a method for measuring the surface shape of a surface to be measured and a surface to be measured which can accurately obtain the surface shape of the surface to be measured two-dimensionally. An object of the present invention is to provide a surface profile measuring device.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係わる被測定面の表面形状測定方法は、3
つの被測定面のうちから任意に選んで2つの被測定面を
向い合わせて各面の相対変位を二次元的に測定し、この
測定を異なる被測定面同志の組み合せにより全体として
3回行う第1測定工程と、第1測定工程で用いた3つの
被測定面のうちから任意に選んだ1つの被測定面を一方
に固定し、これと向い合わせるもう一方の面は任意に選
んだ参照面であり回転または移動を行わせるか、あるい
は参照面を交換することにより各面の相対変位の測定を
複数回行う第2測定工程と、第1測定工程により得られ
る被測定面の表面形状から曲率成分のみを演算により求
め、第2測定工程により得られる被測定面の表面形状か
ら曲率成分を除いた表面形状成分のみを演算により求
め、第1測定工程により得られた曲率成分と前記被測定
面の曲率を除いた表面形状成分とを合成することにより
被測定面の全体の表面形状を求めることを特徴としてい
る。
In order to solve the above problems, the method for measuring the surface shape of a surface to be measured according to the present invention is 3
One of the two surfaces to be measured is arbitrarily selected, the two surfaces to be measured are faced to each other, and the relative displacement of each surface is two-dimensionally measured. This measurement is performed three times as a whole by combining different surfaces to be measured. One measurement surface and one measurement surface arbitrarily selected from the three measurement surfaces used in the first measurement step are fixed to one side, and the other surface facing this is a reference surface arbitrarily selected. The second measurement step in which the relative displacement of each surface is measured a plurality of times by rotating or moving, or by exchanging the reference surfaces, and the curvature from the surface shape of the measured surface obtained in the first measurement step. Only the component is obtained by calculation, only the surface shape component obtained by removing the curvature component from the surface shape of the surface to be measured obtained by the second measurement step is obtained by calculation, and the curvature component obtained by the first measurement step and the surface to be measured are obtained. Table excluding the curvature of It is characterized by determining the entire surface shape of the surface to be measured by combining the shape component.

【0022】そして、本発明の被測定面の表面形状測定
方法は、向い合った被測定面の面間隔を測定するのに、
フィゾータイプの干渉計を採用することが可能である。
The method for measuring the surface shape of the surface to be measured according to the present invention is characterized by measuring the surface distance between the surfaces to be measured facing each other.
It is possible to adopt a Fizeau type interferometer.

【0023】また、本発明の被測定面の表面形状測定装
置は、向い合った2つの被測定面の面間隔を2次元的に
求める測定部と、測定データを記憶すると共に3つの被
測定面のうちから任意に選んだ2つの被測定面を向い合
わせて各面の相対変位を測定し、この測定を異なる被測
定面同志の組み合せについて全体として3回行う第1測
定操作により得られる被測定面の表面形状から曲率成分
のみを演算すると共に、第1測定操作で用いた3つの被
測定面のうちから任意に選んだ1つの被測定面を一方に
固定し、これと対向する参照面の光軸回りの回転操作と
参照面の光軸と直交する方向への移動操作と参照面の交
換操作とのうちのいずれかの操作を行って各面の相対変
位の測定を複数回行う第2測定操作により得られる被測
定面の表面形状から曲率成分を除いた表面形状成分を演
算し、前記曲率成分と前記曲率成分を除いた表面形状成
分とを合成することにより被測定面の全体の表面形状を
求める演算制御部と、からなることを特徴とする。
Further, the surface shape measuring apparatus for measuring the surface to be measured according to the present invention has a measuring unit for two-dimensionally determining the surface distance between two opposed surfaces to be measured, and stores the measurement data and three surface to be measured. Measure the relative displacement of each of the two faces to be measured arbitrarily selected from the above, and perform this measurement three times as a whole for a combination of different faces to be measured. Only the curvature component is calculated from the surface shape of the surface, and one measured surface arbitrarily selected from the three measured surfaces used in the first measurement operation is fixed to one side, and the reference surface opposite to this is fixed. A second operation in which the relative displacement of each surface is measured a plurality of times by performing any one of an operation of rotating around the optical axis, an operation of moving the reference surface in a direction orthogonal to the optical axis, and an operation of exchanging the reference surface. Is it the surface shape of the measured surface obtained by the measurement operation? An arithmetic control unit for calculating a surface shape component excluding a curvature component and synthesizing the curvature component and the surface shape component excluding the curvature component to obtain an overall surface shape of the surface to be measured. Characterize.

【0024】[0024]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、本発明に係わる被測定面の表面形
状測定装置の構成図である。この実施例では、向いあっ
た2つの被測定面の面間隔を測定するのに、フィゾータ
イプの干渉計を用いている。図1において、1は測定部
の一部を構成する光源である。この光源1には例えばヘ
リウム・ネオンレーザ等が用いられる。光源1から出射
されたレーザー光は集光レンズ2とコリメータレンズ4
によりビーム径が拡大され、参照平面板5と被測定物6
とに導かれる。51は参照面であり、61は被測定面で
ある。
FIG. 1 is a block diagram of a surface shape measuring apparatus for a surface to be measured according to the present invention. In this embodiment, a Fizeau-type interferometer is used to measure the surface distance between two measurement surfaces facing each other. In FIG. 1, reference numeral 1 is a light source that constitutes a part of the measuring unit. As the light source 1, for example, a helium / neon laser or the like is used. The laser light emitted from the light source 1 has a condenser lens 2 and a collimator lens 4
The beam diameter is expanded by the reference flat plate 5 and the DUT 6.
Be led to. Reference numeral 51 is a reference surface, and 61 is a surface to be measured.

【0026】参照平面51と被測定面61で反射された
2つの光束は干渉を起こし、逆向きに進んで、測定部の
一部を構成するビームスプリッタ3で反射される。この
ビームスプリッタ3により反射された干渉光束は結像レ
ンズ7を介して撮像素子8に導かれ、撮像素子8に干渉
縞が形成される。
The two light beams reflected by the reference plane 51 and the surface 61 to be measured interfere with each other, travel in opposite directions, and are reflected by the beam splitter 3 which constitutes a part of the measuring section. The interference light flux reflected by the beam splitter 3 is guided to the image sensor 8 via the imaging lens 7, and interference fringes are formed on the image sensor 8.

【0027】その撮像素子8によって得られる干渉縞に
基づく映像信号は演算制御部9に入力される。演算制御
部9は、その干渉縞の分布に基づき参照平面51と被測
定面61の面間隔を演算する。その演算制御部9は、例
えば、マイクロコンピュータ、メモリ、操作部、表示部
から構成されている。
A video signal based on the interference fringes obtained by the image pickup device 8 is input to the arithmetic control unit 9. The arithmetic control unit 9 calculates the surface distance between the reference plane 51 and the measured surface 61 based on the distribution of the interference fringes. The arithmetic control unit 9 is composed of, for example, a microcomputer, a memory, an operation unit, and a display unit.

【0028】次に、本発明に係わる被測定面の表面形状
測定方法の測定原理を説明する。
Next, the measuring principle of the surface shape measuring method of the surface to be measured according to the present invention will be described.

【0029】被測定面61が被測定面Aであるとすると
その表面形状はWA(X,Y)と表わせる。このうち、
曲率の成分をk(X2+Y2)、曲率以外の成分をW
A-PO(X,Y)とすると、被測定面61の表面形状は下
記の式(12)で表わすことができる。
If the measured surface 61 is the measured surface A, its surface shape can be expressed as W A (X, Y). this house,
The curvature component is k (X 2 + Y 2 ), and the components other than curvature are W
Assuming A-PO (X, Y), the surface shape of the measured surface 61 can be expressed by the following equation (12).

【0030】 WA(X,Y)=k(X2+Y2)+WA-PO(X,Y) …(12) すなわち、被測定面61の表面形状は曲率の成分k(X
2+Y2)と曲率以外の成分WA-PO(X,Y)の2つの成
分を求めることにより得ることができる。
W A (X, Y) = k (X 2 + Y 2 ) + W A-PO (X, Y) (12) That is, the surface shape of the measured surface 61 has a curvature component k (X
2 + Y 2 ) and a component other than the curvature W A-PO (X, Y) can be obtained.

【0031】以下、2つの成分の求め方をそれぞれ説明
する。
The methods for obtaining the two components will be described below.

【0032】『曲率の成分k(X2+Y2)の求め方』先
ず、第1測定工程では、被測定面61、被測定面B、C
を用いて図3に示す3面合わせの方法による測定結果か
ら曲率の成分k(X2+Y2)を求める。被測定面61の
一次元的な表面形状WA(0,Y)は式(4)から求めること
ができ、これは計算により曲率の成分とそれ以外の成分
に分離することが可能で、 WA(0,Y)=k・Y2+WA-PO(0,Y) …(13) となる。この式(13)では、X=0の場合を表わしてい
るので、Xは省略されているが、k・Y2をk(X2+Y
2)と表してもよい。この演算による成分の分離には、
例えば、最小2乗法を使用できる。このように、第1測
定工程では被測定面61の表面形状のうちの曲率成分k
(X2+Y2)を算出する。
[Determination of Curvature Component k (X 2 + Y 2 )] First, in the first measuring step, the measured surface 61, the measured surfaces B and C are measured.
Is used to calculate the curvature component k (X 2 + Y 2 ) from the measurement result by the three-face matching method shown in FIG. The one-dimensional surface shape W A (0, Y) of the measured surface 61 can be obtained from the equation (4), which can be separated into a curvature component and other components by calculation. A (0, Y) = k · Y 2 + W A-PO (0, Y) (13) In this formula (13), since X = 0 is represented, X is omitted, but k · Y 2 is replaced by k (X 2 + Y
It may be expressed as 2 ). To separate the components by this operation,
For example, the least squares method can be used. Thus, in the first measurement step, the curvature component k of the surface shape of the measured surface 61 is
Calculate (X 2 + Y 2 ).

【0033】『曲率以外の成分WA-PO(X,Y)の求め
方』次に、第2測定工程では、波面平均化法による測定
結果から曲率以外の成分WA-PO(X,Y)を求める。被
測定面61が被測定面Dであるとすると、式(11)から被
測定面Dの表面形状WA´(X,Y)を求めることがで
きる。ここでWA(X,Y)に「´」(ダッシュ)が付
してあるのは、式(10)の右辺第2項で表されている被測
定面Eの平均形状が曲率成分を有した場合を想定し、測
定誤差を伴っていると考えるからである。この表面形状
A´(X,Y)も同様に演算により曲率成分とそれ以
外の成分に分離することができ、下記の式を得る。
[0033] "Determination of components other than the curvature W A-PO (X, Y ) " Next, in the second measuring step, components other than the curvature from the measured result by the wavefront averaging method W A-PO (X, Y ). If the measured surface 61 is the measured surface D, the surface shape W A ′ (X, Y) of the measured surface D can be obtained from the equation (11). Here, “′” (dash) is attached to W A (X, Y) because the average shape of the measured surface E represented by the second term on the right side of the equation (10) has a curvature component. This is because it is assumed that there is a measurement error, assuming the case. This surface shape W A ′ (X, Y) can also be similarly separated into a curvature component and other components, and the following equation is obtained.

【0034】 WA´(X,Y)=k´(X2+Y2)+WA-PO(X,Y) …(14) このように第2測定工程では被測定面61の表面形状の
うち曲率以外の成分WA-PO(X,Y)を算出する。
W A ′ (X, Y) = k ′ (X 2 + Y 2 ) + W A-PO (X, Y) (14) As described above, in the second measurement step, among the surface shapes of the measured surface 61, A component W A-PO (X, Y) other than the curvature is calculated.

【0035】以上2つの成分の求め方を説明したが、第
1測定工程で求めた曲率成分k(X2+Y2)と第2測定
工程で求めた曲率以外の成分WA-PO(X,Y)を(12)式
に示すように加算すると、最終的に被測定面61の2次
元的な表面形状WA(X,Y)が求められる。図2は被
測定面の表面形状の測定手順を説明するためのもので、
図2(a)は被測定面61の曲率成分k(X2+Y2)を
一次元的に示している。図2(b)は曲率以外の成分W
A-PO(X,Y)を一次元的に示している。図2(c)は
図2(a)の曲率成分と図2(b)の曲率以外の成分と
を加算することにより得られた被測定面61の全体の表
面形状WA(X,Y)を示している。
The method of obtaining the two components has been described above. The curvature component k (X 2 + Y 2 ) obtained in the first measurement step and the component W A-PO (X, other than the curvature obtained in the second measurement step) Y) is added as shown in the equation (12) to finally obtain the two-dimensional surface shape W A (X, Y) of the measured surface 61. FIG. 2 is for explaining the measurement procedure of the surface shape of the measured surface,
FIG. 2A shows the curvature component k (X 2 + Y 2 ) of the measured surface 61 one-dimensionally. FIG. 2B shows the component W other than the curvature.
A-PO (X, Y) is shown one-dimensionally. FIG. 2C shows the entire surface shape W A (X, Y) of the measured surface 61 obtained by adding the curvature component of FIG. 2A and the component other than the curvature of FIG. 2B. Is shown.

【0036】尚、本実施例では曲率成分をk(X2
2)で表示しているが、別の表示方法も可能で、たと
えばk{2(X2+Y2)−1}のようにに表示すること
も可能である。
In this embodiment, the curvature component is k (X 2 +
Are displayed in Y 2), but another display method may be, it is also possible to display on, for example, as k {2 (X 2 + Y 2) -1}.

【0037】[0037]

【効果】本発明に係わる被測定面の表面形状測定方法及
び被測定面の表面形状測定装置は、以上説明したように
構成したので、被測定面の表面形状を2次元的に精度良
く求めることが出来る。
[Effect] Since the method for measuring the surface shape of the surface to be measured and the apparatus for measuring the surface shape of the surface to be measured according to the present invention are configured as described above, the surface shape of the surface to be measured can be accurately obtained two-dimensionally. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の構成を示すものである。FIG. 1 shows a configuration of an embodiment of the present invention.

【図2】 測定順序を説明するための図である。FIG. 2 is a diagram for explaining a measurement order.

【図3】 従来の3面合わせ方法を説明するための図で
ある。
FIG. 3 is a diagram for explaining a conventional three-sided alignment method.

【図4】 測定面の座標の説明図である。FIG. 4 is an explanatory diagram of coordinates on a measurement surface.

【図5】 従来の波面平均化方法を説明するための図で
ある。
FIG. 5 is a diagram for explaining a conventional wavefront averaging method.

【符号の説明】[Explanation of symbols]

1…光源 2…集光レンズ 3…ビームスプリッタ 4…コリメータレンズ 5…参照平面板 51…参照平面 6…被測定物 61…被測定面 7…結像レンズ 8…撮像素子 9…演算制御部 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Condensing lens 3 ... Beam splitter 4 ... Collimator lens 5 ... Reference plane plate 51 ... Reference plane 6 ... Measured object 61 ... Measured surface 7 ... Imaging lens 8 ... Imaging element 9 ... Computation control part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3つの被測定面のうちから任意に選んで
2つの被測定面を向い合わせて各面の相対変位を二次元
的に測定し、この測定を異なる被測定面同志の組み合せ
により全体として3回行う第1測定工程と、 第1測定工程で用いた3つの被測定面のうちから任意に
選んだ1つの被測定面を一方に固定し、他方に任意に選
択した参照面を向い合わせ、参照面の光軸回りの回転操
作と参照面の光軸と直交する方向への移動操作と参照面
の交換操作とのいずれかの操作を行うことにより各面の
相対変位の測定を複数回行う第2測定工程と、 第1測定工程により得られる被測定面の表面形状から曲
率成分のみを演算により求め、第2測定工程により得ら
れる被測定面の表面形状から曲率成分を除いた表面形状
成分のみを演算により求め、第1測定工程により得られ
た曲率成分と前記被測定面の曲率を除いた表面形状成分
とを合成することにより被測定面の全体の表面形状を求
めることを特徴とする被測定面の表面形状測定方法。
1. A relative displacement of each surface is two-dimensionally measured by arbitrarily selecting two surfaces to be measured from three surfaces to be measured, and this measurement is performed by combining different surfaces to be measured. The first measurement step, which is performed three times as a whole, and one measurement surface arbitrarily selected from the three measurement surfaces used in the first measurement step are fixed to one side, and the reference surface arbitrarily selected to the other side. Relative displacement of each surface can be measured by facing, rotating the reference surface around the optical axis, moving the reference surface in a direction orthogonal to the optical axis, or replacing the reference surface. Only the curvature component was calculated from the surface shape of the measured surface obtained by the second measuring step and the first measuring step, and the curvature component was removed from the surface shape of the measured surface obtained by the second measuring step. First measurement by calculating only the surface shape component Surface shape measuring method of the surface to be measured, wherein the determination of the overall surface shape of the surface to be measured by combining the surface shape components except the curvature of the resulting curvature component the surface to be measured by the degree.
【請求項2】 向い合った2つの被測定面の面間隔を2
次元的に求める測定部と、 測定データを記憶すると共に3つの被測定面のうちから
任意に選んだ2つの被測定面を向い合わせて各面の相対
変位を測定し、この測定を異なる被測定面同志の組み合
せについて全体として3回行う第1測定操作により得ら
れる被測定面の表面形状から曲率成分のみを演算すると
共に、第1測定操作で用いた3つの被測定面のうちから
任意に選んだ1つの被測定面を一方に固定し、これと対
向する参照面の光軸回りの回転操作と参照面の光軸と直
交する方向への移動操作と参照面の交換操作とのうちの
いずれかの操作を行って各面の相対変位の測定を複数回
行う第2測定操作により得られる被測定面の表面形状か
ら曲率成分を除いた表面形状成分を演算し、前記曲率成
分と前記曲率成分を除いた表面形状成分とを合成するこ
とにより被測定面の全体の表面形状を求める演算制御部
と、 からなる被測定面の表面形状測定装置。
2. The surface distance between two measured surfaces facing each other is 2
The measurement unit that obtains dimensionally and the measurement data are stored, and the relative displacement of each surface is measured by facing two measured surfaces selected arbitrarily from the three measured surfaces, and this measurement is performed on different measured surfaces. The curvature component alone is calculated from the surface shape of the measured surface obtained by the first measurement operation performed three times as a whole for the combination of the surfaces, and any one of the three measured surfaces used in the first measurement operation is arbitrarily selected. Any one of the operation of fixing one surface to be measured to one side and rotating the reference surface facing the optical axis around the optical axis, the operation of moving the reference surface in a direction orthogonal to the optical axis, and the operation of exchanging the reference surface. By performing the above operation to measure the relative displacement of each surface a plurality of times, a surface shape component is calculated by removing the curvature component from the surface shape of the measured surface obtained by the second measurement operation, and the curvature component and the curvature component are calculated. And the surface shape component A surface shape measuring device for the surface to be measured, which comprises: an arithmetic control unit for obtaining the overall surface shape of the surface to be measured.
【請求項3】 測定部がフィゾータイプの干渉計を有す
る請求項2記載の被測定面の表面形状測定方法。
3. The method for measuring the surface shape of a surface to be measured according to claim 2, wherein the measuring unit has a Fizeau interferometer.
JP04114292A 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured Expired - Lifetime JP3169189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04114292A JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04114292A JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Publications (2)

Publication Number Publication Date
JPH05240626A true JPH05240626A (en) 1993-09-17
JP3169189B2 JP3169189B2 (en) 2001-05-21

Family

ID=12600175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04114292A Expired - Lifetime JP3169189B2 (en) 1992-02-27 1992-02-27 Method and apparatus for measuring surface shape of surface to be measured

Country Status (1)

Country Link
JP (1) JP3169189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912055B2 (en) 2002-03-29 2005-06-28 Fujinon Corporation Spherical form measuring and analyzing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912055B2 (en) 2002-03-29 2005-06-28 Fujinon Corporation Spherical form measuring and analyzing method

Also Published As

Publication number Publication date
JP3169189B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
EP0888522B1 (en) Method and apparatus for measuring shape of objects
US5069548A (en) Field shift moire system
US5581347A (en) Optimization method and device for direct measurement of an optical component
US6188482B1 (en) Apparatus for electronic speckle pattern interferometry
JP3237309B2 (en) System error measuring method and shape measuring device using the same
JPH05203414A (en) Method and apparatus for detecting abso- lute coordinate of object
JPS62129711A (en) Method and apparatus for measuring configurational error of object
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
US5075560A (en) Moire distance measurements using a grating printed on or attached to a surface
CN101165454A (en) Interferometer angle sensitivity correction method
JP2576576B2 (en) Interferometry method and Fizeau interferometer using the same
US20200240770A1 (en) Device and Method for Calibrating a Measuring Apparatus Using Projected Patterns and a Virtual Plane
JP3169189B2 (en) Method and apparatus for measuring surface shape of surface to be measured
JP3146590B2 (en) Shape measuring method and shape measuring system
JP2000205822A (en) Image measurement system and its image correcting method
JP2003139515A (en) Method for measuring absolute value of deformation quantity using speckle
JP3833713B2 (en) Fringe deflectometry apparatus and method
JP2831428B2 (en) Aspherical shape measuring machine
JPH02259510A (en) Method and instrument for measuring surface shape or the like
US20040105097A1 (en) Weighted least-square interferometric measurement of multiple surfaces
JP4007473B2 (en) Wavefront shape measurement method
Pérez et al. Experimental results of an innovative dynamic low-coherent interferometer for characterizing a gravitational wave detector
JP3086013B2 (en) Optical performance measuring method and apparatus
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JPH0357905A (en) Non-contact measuring apparatus of surface shape

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

EXPY Cancellation because of completion of term