JPH0357905A - Non-contact measuring apparatus of surface shape - Google Patents

Non-contact measuring apparatus of surface shape

Info

Publication number
JPH0357905A
JPH0357905A JP19344089A JP19344089A JPH0357905A JP H0357905 A JPH0357905 A JP H0357905A JP 19344089 A JP19344089 A JP 19344089A JP 19344089 A JP19344089 A JP 19344089A JP H0357905 A JPH0357905 A JP H0357905A
Authority
JP
Japan
Prior art keywords
light
beam splitter
reference mirror
interference fringes
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19344089A
Other languages
Japanese (ja)
Other versions
JPH0711413B2 (en
Inventor
Noriaki Fujiwara
憲明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19344089A priority Critical patent/JPH0711413B2/en
Publication of JPH0357905A publication Critical patent/JPH0357905A/en
Publication of JPH0711413B2 publication Critical patent/JPH0711413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To easily position an optical path correcting lens for measuring a spherical or an a spherical object by displaying the shape of one cross section of object after approximating the same by a quadratic function according to the method of minimum squares from a plurality of interference fringes. CONSTITUTION:A coherent light radiated from a laser source 1 is changed to parallel beams by a pin hole, an objective lens 3 and a collimator lens 4, and further divided into two by a beam splitter 7. One of the light is radiated to an object 6 to be measured through an optical path correcting lens 5, and the reflecting light is returned to the beam splitter 7 through the lens 5. The other light is reflected at the surface of a reference mirror 9 and returned to the beam splitter 7. The light returning from the reference mirror 9 to the beam splitter 7 interferes with the light returning from the object 6 to the beam splitter 7, thereby generating interference fringes. The interference fringes appear as a contour line representing the surface shape of the object 6. The shape of one cross section of the object 6 is approximated by quadratic function approximation by the method of squares from a plurality of interference fringes, which is shown by a display device 19 together with a secondary factor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光の干渉を用いて球面又は非球面状の被測定物
の表面を超高精度に測定するための非接触型の表面形状
測定装置に関するものである.[従来の技術] 従来、トワイマン・グリーン干渉計のような光の干渉測
定法を用いた高精度の非接触式の表面形状測定装置が開
発されている.この種の干渉測定法の中でも、光路長を
少しずつ変えることにより得られた複数枚の干渉縞を用
いる縞走査法は特に精度が高く、高精度の金型、光学レ
ンズ、半導体ウェハー等の表面形状を測定するために使
用されている.ところで、干渉測定法は被測定物の表面
に可干渉光を照射し、その反射光と参照光との干渉を利
用するものであるから、被測定物の表面に光が垂直に入
射する必要がある.そこで、被測定物の前に光路補正レ
ンズを配して、被測定物の表面が球面又は非球面状であ
っても被測定物の表面にほぼ垂直に光を照射し、光の干
渉による測定を可能とすることが提案されている(特願
昭63258904号参照〉.このとき発生する干渉縞
は、光路補正レンズの表面形状からのズレとして被測定
物の球面又は非球面形状を測定したものとなる。
Detailed Description of the Invention [Industrial Application Field] The present invention is a non-contact surface shape measurement method for measuring the surface of a spherical or aspherical object with ultra-high precision using optical interference. This is related to equipment. [Prior Art] High-precision non-contact surface profile measurement devices using optical interference measurement methods such as the Twyman-Green interferometer have been developed. Among these types of interference measurement methods, the fringe scanning method, which uses multiple interference fringes obtained by gradually changing the optical path length, has particularly high precision, and is used to measure the surfaces of high-precision molds, optical lenses, semiconductor wafers, etc. It is used to measure shape. By the way, since the interferometric method irradiates the surface of the object to be measured with coherent light and uses the interference between the reflected light and the reference light, the light must be incident perpendicularly to the surface of the object to be measured. be. Therefore, an optical path correction lens is placed in front of the object to be measured, and even if the surface of the object to be measured is spherical or aspherical, the light is irradiated almost perpendicularly to the surface of the object to be measured. It has been proposed to make this possible (see Japanese Patent Application No. 63258904).The interference fringes generated at this time are obtained by measuring the spherical or aspherical shape of the object as a deviation from the surface shape of the optical path correction lens. becomes.

[発明が解決しようとする課題] 上述の従来例にあっては、光路補正レンズのセッティン
グが不良であると、干渉縞の本数が過多又は過少となっ
て、表面形状の測定が困難になることがあった.そこで
、従来は光路補正レンズを測定者の勘と経験で最適位置
にセッティングしていた.しかしなから、その場合、光
路補正レンズのセッティングがプラス側にずれているの
か、マイナス開にずれているのか判定しにくいという問
題があり、また、セッティングの精度が測定者によって
異なり、誤差も大きいという問題がある.本発明はこの
ような点に鑑みてなされたものであり、その目的とする
ところは、光の干渉による縞走査法を用いた非接触型の
表面形状測定装置において、球面又は非球面の被測定物
を測定するための光路補正レンズの位置決めを容易にす
ることにある. [課題を解決するための手段コ 本発明にあっては、上記の課題を解決するために、第1
図に示すように、可干渉光を放射する光源lと、光源1
からの可干渉光を平行光線に変換する光学系2〜4と、
前記光学系1からの平行光線を第1の光線と第2の光線
に2分するビームスプリッタ7と、第1の光線をビーム
スブリッタ7に向けて反射する1Il.i定物6と、第
2の光線をビームスプリッタ7に向けて反射する参照鏡
9と、被測定eJ6とビームスプリッタフの間に介在す
る光路補正レンズ5と、参照鏡9からの反射光と被測定
物6からの反射光の干渉縞を観察する光学系(観測面8
及びCCDカメラ11)と、参照jm 9の位置を光路
方向に沿って微小量移動させる参照鏡駆動手段(圧電素
子10)と、参照鏡9の位置を微小量移動させて形成さ
れた複数枚の干渉縞から被測定物6の表面形状に関する
情報を演算出力する演算手段(マイクロプロセッサ14
)とを備える非接触型の表面形状測定装置において、前
記複数枚の干渉縞から被測定物6の一断面形状を最小2
乗法により2次関数近似して2次係数を符号と共に表示
する手段20を設けたことを特徴とするものである. [作用] 本発明にあっては、このように、光の干渉による縞走査
法を用いた非接触型の表面形状測定装置において、複数
枚の干渉縞から被測定物6の一断面形状を最小2乗法に
より2次関数近似して2次係数を符号と共に表示する手
段20を設けたので、光路補正レンズ5の位置ずれの方
向と量を正確に知ることができるものである. [実施例] 以下、本発明の実施例について説明する.第1図は本発
明の一実施例の概略構成を示している.レーザー光源1
から放射された可干渉光は、ビンホール2と対物レンズ
3及びコリメータレンズ4により平行光線に変換され、
ビームスブリッタ7により第1及び第2の光線に分割さ
れる.第1の光線は光路補正レンズ5を介して被測定物
6に照射され、被測定物6の表面にて反射されて光路補
正レンズ5を介してビームスプリッタ7に戻る.光路補
正レンズ5は第1の光線が被測定物6の表面に垂直に入
射し垂直に反射されるように、第lの光線を屈折させて
いる.被測定物6の表面が凸面であるときには光路補正
レンズ5は凸レンズとし、被測定物6の表面が凹面であ
るときには光路補正レンズ5は凹レンズとする.第2の
光線は参照鏡9の表面にて反射されてビームスブリッタ
7に戻る.参照鏡9からビームスブリッタ7に戻った光
と、被測定物6からビームスブリッタ7に戻った光は干
渉し、干渉縞を生じる.被測定物6からの反射光の光路
長は、被測定物6の表面形状に応じて異なるので、干渉
縞は被測定物6の表面形状を示す等高線として現れる.
光の波長をλとすると、隣接する等高線はλ/2の高さ
変化を表す.この干渉縞を観測面8にてCCDカメラ1
1によりFat 5&し、マイクロコンピュータ■4に
入力する.マイクロコンピュータ14は、撮像された干
渉縞画像の一走査線に含まれる等高線が適度な密度とな
るように、参照鏡9の位置制御量を決定し、D/A変換
器12、高圧アンプ13を介して圧電素子■0に駆動信
号を与えて、参照鏡9の位置制御を行う.また、マイク
ロコンピュータ14は、参照鏡9の位置を微小量移動さ
せて形戒された複数枚の干渉縞から被測定物6の測定面
の高さ情報を演算出力する. ここで、干渉縞画像の点(x,y)における強度は、次
式のようになる. f (x,y)=Axy+KxyXsin(t+α)上
式において、αは参照鏡9の位置で決まる位相戒分てあ
る.縞走査法において、λ/8ずつ参照jU 9を移動
させたときに得られる4枚の干渉縞画像の点(x,y)
における強度は、 I 1(x,F)=Axy+KxyXsint1 2(
X,y)= Axy+KxyXsin(t+ yr/ 
2 )I ,(x,y)=Axy+KxyXsin(t
+ 2π/2)I 4(x+y)= Axy+ Kxy
Xsin(t+ 3π/2)となる.そして、干捗縞画
像の各点(x.y)における高さH(x.y)は、次式
により求めることができる. H (x,y)−= (^/4π〉 xLan−’f(1 2  I 4)/ (I 3  
I +)1上記の4枚の干渉縞画像の点(x,y)にお
ける強度■1〜■,は、第1〜第4のメモリ15に記憶
される.このメモリl5の情報は一断面演算部16に入
力されて、中心を通る一断面の形状を示すy=f(x)
の曲線が得られる.次に、2次近似係数演算部17によ
り上記y4(x)の曲線を最小2乗法により2次閏数y
=ax2+bκ+Cで近似する.この2次関数における
係数aの大きさと符号を、表示ドライバ18を介して表
示器19により表示する.以上の一断面演算部16、2
次近似係数演算部l7、表示ドライバ18及び表示器1
9を含む位置ずれ検出表示千段20はハードウエアで構
成され、実時間処理を行う. 上記の測定装置において、光路補正レンズ5の位置決め
が正確であれば、球面波は被測定物6の表面で反射され
、同じ光路を戻って光路補正レンズ5に入り、ビームス
ブリッタ7に帰る.これにより、参照光との干渉が起こ
り、理論的には同一の明るさを持った干渉画像が観測面
8に形成される.もし、光路補正レンズ5の位置がずれ
ていれば、参照光との干渉で形戒される干渉縞は、同心
円状の縞画像どなる。つまり、光路補正レンズ5の位置
がずれていると、縞走査により中心を通る一断面は凹形
又は凸形となる。この弧形の曲線をf=ax2+bx+
eの2次関数を用いて最小2乗近似すれば、2次係数a
の符号と大きさが光路補正レンズ5の位置ずれの方向と
大きさを示すことになる。また、光路補正レンズ5の位
置ずれが無い状態では、2次係数aの値は理論的にはO
となり、このことにより精度の良い位置決めが可能とな
るものである. [発明の効果] 本発明にあっては、上述のように、光の干渉による縞走
査法を用いた非接触型の表面形状測定装置において、前
記複数枚の干渉縞から被測定物の一断面形状を最小2乗
法により2次関数近似して2次係数を符号と共に表示す
る手段を設けたから、球面又は非球面の被測定物を測定
するための光路補正レンズの位置ずれの方向と量を正確
に知ることができ、光路補正レンズの位置決めを容易に
行うことができるという効果がある.
[Problems to be Solved by the Invention] In the conventional example described above, if the setting of the optical path correction lens is incorrect, the number of interference fringes becomes too large or too small, making it difficult to measure the surface shape. was there. Therefore, in the past, the optical path correction lens was set at the optimal position based on the intuition and experience of the measurer. However, in that case, there is a problem that it is difficult to determine whether the setting of the optical path correction lens is shifted to the positive side or to the minus side.Also, the accuracy of the setting varies depending on the person measuring the measurement, and the error is large. There is a problem. The present invention has been made in view of the above points, and its purpose is to use a non-contact type surface profile measuring device that uses a fringe scanning method using optical interference to measure a spherical or aspherical surface. The purpose is to facilitate the positioning of the optical path correction lens for measuring objects. [Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, a light source l that emits coherent light and a light source 1
optical systems 2 to 4 that convert the coherent light from the
a beam splitter 7 that splits the parallel light beam from the optical system 1 into a first light beam and a second light beam; and a beam splitter 7 that reflects the first light beam toward the beam splitter 7. The i constant object 6, the reference mirror 9 that reflects the second light beam toward the beam splitter 7, the optical path correction lens 5 interposed between the measured object eJ6 and the beam splitter, and the reflected light from the reference mirror 9. An optical system (observation surface 8
and a CCD camera 11), a reference mirror drive means (piezoelectric element 10) that moves the position of the reference mirror 9 by a minute amount along the optical path direction, and a plurality of mirrors formed by moving the position of the reference mirror 9 by a minute amount. Calculating means (microprocessor 14
), the cross-sectional shape of the object to be measured 6 is determined from the plurality of interference fringes by at least two
The present invention is characterized by providing means 20 for approximating a quadratic function by multiplication and displaying the quadratic coefficient together with its sign. [Function] In this way, in the present invention, in a non-contact type surface profile measuring device using a fringe scanning method using light interference, one cross-sectional shape of the object to be measured 6 is determined from a plurality of interference fringes to a minimum. Since a means 20 is provided for performing quadratic function approximation using the square method and displaying the quadratic coefficient together with its sign, it is possible to accurately know the direction and amount of positional deviation of the optical path correction lens 5. [Examples] Examples of the present invention will be described below. Figure 1 shows a schematic configuration of an embodiment of the present invention. Laser light source 1
The coherent light emitted from is converted into parallel light by the bin hole 2, objective lens 3, and collimator lens 4,
The beam splitter 7 splits the beam into first and second beams. The first light beam is irradiated onto the object to be measured 6 via the optical path correction lens 5, reflected by the surface of the object to be measured 6, and returned to the beam splitter 7 via the optical path correction lens 5. The optical path correction lens 5 refracts the l-th ray so that the first ray is perpendicularly incident on the surface of the object to be measured 6 and is reflected perpendicularly. When the surface of the object to be measured 6 is convex, the optical path correction lens 5 is a convex lens, and when the surface of the object to be measured 6 is concave, the optical path correction lens 5 is a concave lens. The second beam is reflected from the surface of the reference mirror 9 and returns to the beam splitter 7. The light returning from the reference mirror 9 to the beam splitter 7 and the light returning from the object to be measured 6 to the beam splitter 7 interfere, producing interference fringes. Since the optical path length of the reflected light from the object to be measured 6 differs depending on the surface shape of the object to be measured 6, interference fringes appear as contour lines indicating the surface shape of the object to be measured 6.
If the wavelength of light is λ, adjacent contour lines represent a height change of λ/2. The CCD camera 1 detects this interference pattern on the observation surface 8.
1 makes Fat 5 & and inputs it to the microcomputer ■4. The microcomputer 14 determines the position control amount of the reference mirror 9 and controls the D/A converter 12 and the high voltage amplifier 13 so that the contour lines included in one scanning line of the captured interference fringe image have an appropriate density. A drive signal is given to the piezoelectric element 0 through the piezoelectric element 0 to control the position of the reference mirror 9. Further, the microcomputer 14 calculates and outputs height information of the measurement surface of the object to be measured 6 from a plurality of interference fringes formed by moving the position of the reference mirror 9 by a minute amount. Here, the intensity at the point (x, y) of the interference fringe image is as follows. f (x, y)=Axy+KxyXsin(t+α) In the above equation, α is a phase difference determined by the position of the reference mirror 9. In the fringe scanning method, the points (x, y) of the four interference fringe images obtained when the reference jU 9 is moved by λ/8
The intensity at I 1(x,F)=Axy+KxyXsint1 2(
X, y)=Axy+KxyXsin(t+yr/
2) I, (x,y)=Axy+KxyXsin(t
+ 2π/2)I 4(x+y)=Axy+Kxy
This becomes Xsin(t+3π/2). Then, the height H (x.y) at each point (x.y) of the ebb and flow stripe image can be determined by the following equation. H (x,y)-= (^/4π>xLan-'f(1 2 I 4)/ (I 3
I+)1 The intensities ■1 to ■ at points (x, y) of the four interference fringe images described above are stored in the first to fourth memories 15. The information in the memory l5 is input to the one-section calculating section 16, and is expressed as y=f(x), which indicates the shape of one section passing through the center.
A curve of is obtained. Next, the quadratic approximation coefficient calculation unit 17 calculates the curve of y4(x) using the least squares method to calculate the quadratic leap number y.
Approximate by =ax2+bκ+C. The magnitude and sign of the coefficient a in this quadratic function are displayed on a display 19 via a display driver 18. The above one section calculation section 16, 2
Order approximation coefficient calculation unit l7, display driver 18 and display device 1
The positional deviation detection display stage 20 including 9 is composed of hardware and performs real-time processing. In the above measurement apparatus, if the positioning of the optical path correction lens 5 is accurate, the spherical wave is reflected on the surface of the object to be measured 6, returns along the same optical path, enters the optical path correction lens 5, and returns to the beam splitter 7. This causes interference with the reference light, and theoretically an interference image with the same brightness is formed on the observation surface 8. If the optical path correction lens 5 is misaligned, interference fringes formed by interference with the reference light will become concentric fringe images. In other words, if the optical path correction lens 5 is misaligned, a cross section passing through the center due to fringe scanning will have a concave or convex shape. This arc-shaped curve is f=ax2+bx+
By performing least squares approximation using a quadratic function of e, the quadratic coefficient a
The sign and magnitude of the expression indicate the direction and magnitude of the positional shift of the optical path correction lens 5. Furthermore, in a state where there is no positional shift of the optical path correction lens 5, the value of the quadratic coefficient a is theoretically O.
This allows for highly accurate positioning. [Effects of the Invention] As described above, in the present invention, in a non-contact type surface profile measuring device using a fringe scanning method using light interference, one cross section of the object to be measured is determined from the plurality of interference fringes. Since we have provided a means for approximating the shape to a quadratic function using the least squares method and displaying the quadratic coefficient along with its sign, it is possible to accurately determine the direction and amount of positional deviation of the optical path correction lens for measuring spherical or aspherical objects. This has the effect of making it possible to easily determine the position of the optical path correction lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略楕或を示す図である. 1は光源、2はビンホール、3は対物レンズ、4はコリ
メータレンズ、5は光路補正レンズ、6は被測定物、7
はビームスプリッタ、8は観測面、9は参照鏡、10は
圧電素子、11はCCDカメラ、12はD/A変換器、
13は高圧アンプ、l5はメモリ、16は一断而演算部
、17は2次近似係数演算部、18は表示ドライバ、1
つは表示器である.
FIG. 1 is a diagram showing a schematic ellipse of an embodiment of the present invention. 1 is a light source, 2 is a bin hole, 3 is an objective lens, 4 is a collimator lens, 5 is an optical path correction lens, 6 is a measured object, 7
is a beam splitter, 8 is an observation surface, 9 is a reference mirror, 10 is a piezoelectric element, 11 is a CCD camera, 12 is a D/A converter,
13 is a high voltage amplifier, 15 is a memory, 16 is a calculation unit, 17 is a quadratic approximation coefficient calculation unit, 18 is a display driver, 1
One is the display.

Claims (1)

【特許請求の範囲】[Claims] (1)可干渉光を放射する光源と、光源からの可干渉光
を平行光線に変換する光学系と、前記光学系からの平行
光線を第1の光線と第2の光線に2分するビームスプリ
ッタと、第1の光線をビームスプリッタに向けて反射す
る被測定物と、第2の光線をビームスプリッタに向けて
反射する参照鏡と、被測定物とビームスプリッタの間に
介在する光路補正レンズと、参照鏡からの反射光と被測
定物からの反射光の干渉縞を観察する光学系と、参照鏡
の位置を光路方向に沿って微小量移動させる参照鏡駆動
手段と、参照鏡の位置を微小量移動させて形成された複
数枚の干渉縞から被測定物の表面形状に関する情報を演
算出力する演算手段とを備える非接触型の表面形状測定
装置において、前記複数枚の干渉縞から被測定物の一断
面形状を最小2乗法により2次関数近似して2次係数を
符号と共に表示する手段を設けたことを特徴とする非接
触型の表面形状測定装置。
(1) A light source that emits coherent light, an optical system that converts the coherent light from the light source into parallel rays, and a beam that divides the parallel ray from the optical system into a first ray and a second ray. a splitter, an object to be measured that reflects the first beam toward the beam splitter, a reference mirror that reflects the second beam toward the beam splitter, and an optical path correction lens interposed between the object to be measured and the beam splitter. , an optical system for observing interference fringes of the reflected light from the reference mirror and the reflected light from the measured object, a reference mirror driving means for moving the position of the reference mirror by a minute amount along the optical path direction, and a position of the reference mirror. In a non-contact surface profile measuring device, the non-contact type surface profile measuring device includes a calculation means for computing and outputting information regarding the surface profile of the object to be measured from a plurality of interference fringes formed by moving the plurality of interference fringes by a minute amount. A non-contact type surface profile measuring device characterized by comprising means for approximating a cross-sectional shape of a measurement object to a quadratic function by the method of least squares and displaying a quadratic coefficient together with a sign.
JP19344089A 1989-07-26 1989-07-26 Non-contact type surface profile measuring device Expired - Lifetime JPH0711413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19344089A JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19344089A JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Publications (2)

Publication Number Publication Date
JPH0357905A true JPH0357905A (en) 1991-03-13
JPH0711413B2 JPH0711413B2 (en) 1995-02-08

Family

ID=16308025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19344089A Expired - Lifetime JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Country Status (1)

Country Link
JP (1) JPH0711413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118831A (en) * 1991-10-25 1993-05-14 Sankyo Seiki Mfg Co Ltd End-face inspecting apparatus for optical connector
JP2008076336A (en) * 2006-09-25 2008-04-03 Institute Of National Colleges Of Technology Japan Interference/triangulation same-optical-axis combination distance measuring instrument
KR100849193B1 (en) * 2006-12-06 2008-07-30 부산대학교 산학협력단 Optical coherence tomography system
WO2009028494A1 (en) * 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118831A (en) * 1991-10-25 1993-05-14 Sankyo Seiki Mfg Co Ltd End-face inspecting apparatus for optical connector
JP2008076336A (en) * 2006-09-25 2008-04-03 Institute Of National Colleges Of Technology Japan Interference/triangulation same-optical-axis combination distance measuring instrument
KR100849193B1 (en) * 2006-12-06 2008-07-30 부산대학교 산학협력단 Optical coherence tomography system
WO2009028494A1 (en) * 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method
JP2009075094A (en) * 2007-08-28 2009-04-09 Nikon Corp Position detection device, position detecting method, exposure device, and device manufacturing method
US8416423B2 (en) 2007-08-28 2013-04-09 Nikon Corporation Interferometric apparatus for detecting 3D position of a diffracting object
US9885558B2 (en) 2007-08-28 2018-02-06 Nikon Corporation Interferometric apparatus for detecting 3D position of a diffracting object

Also Published As

Publication number Publication date
JPH0711413B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4340306A (en) Optical system for surface topography measurement
US6208416B1 (en) Method and apparatus for measuring shape of objects
US7595891B2 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
US5193120A (en) Machine vision three dimensional profiling system
Saldner et al. Profilometry using temporal phase unwrapping and a spatial light modulator based fringe projector
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
US4387994A (en) Optical system for surface topography measurement
JPS62129711A (en) Method and apparatus for measuring configurational error of object
JP4188515B2 (en) Optical shape measuring device
US20220170735A1 (en) Diffractive optical element for a test interferometer
US20120044503A1 (en) Shape measuring method and shape measuring apparatus
CN107063122A (en) The detection method and its device of surface shape of optical aspheric surface
US20210239452A1 (en) Method and Apparatus for Detecting Changes in Direction of a Light Beam
JP4183220B2 (en) Optical spherical curvature radius measuring device
JPH0357905A (en) Non-contact measuring apparatus of surface shape
JP2003139515A (en) Method for measuring absolute value of deformation quantity using speckle
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP6395582B2 (en) Phase singularity evaluation method and phase singularity evaluation apparatus
JP2009145068A (en) Surface profile measuring method and interferometer
JPH10141927A (en) Method and device for measuring surface shape in real time
Weingaertner et al. Simultaneous distance, slope, curvature, and shape measurement with a multipurpose interferometer
JPH07311117A (en) Apparatus for measuring position of multiple lens
JPH03269309A (en) Aspherical shape measuring machine
JP4390957B2 (en) Method for determining fringe phase in fringe analysis
JPH03156305A (en) Aspherical-shape measuring apparatus