JPH0711413B2 - Non-contact type surface profile measuring device - Google Patents

Non-contact type surface profile measuring device

Info

Publication number
JPH0711413B2
JPH0711413B2 JP19344089A JP19344089A JPH0711413B2 JP H0711413 B2 JPH0711413 B2 JP H0711413B2 JP 19344089 A JP19344089 A JP 19344089A JP 19344089 A JP19344089 A JP 19344089A JP H0711413 B2 JPH0711413 B2 JP H0711413B2
Authority
JP
Japan
Prior art keywords
light
optical path
dut
reference mirror
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19344089A
Other languages
Japanese (ja)
Other versions
JPH0357905A (en
Inventor
憲明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19344089A priority Critical patent/JPH0711413B2/en
Publication of JPH0357905A publication Critical patent/JPH0357905A/en
Publication of JPH0711413B2 publication Critical patent/JPH0711413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光の干渉を用いて球面又は非球面状の被測定物
の表面を超高精度に測定するための非接触型の表面形状
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a non-contact type surface shape measurement for measuring the surface of a spherical or aspherical object to be measured with ultrahigh accuracy by using light interference. It relates to the device.

[従来の技術] 従来、トワイマン・グリーン干渉計のような光の干渉測
定法を用いた高精度の非接触式の表面形状測定装置が開
発されている。この種の干渉測定法の中でも、光路長を
少しずつ変えることにより得られた複数枚の干渉縞を用
いる縞走査法は特に精度が高く、高精度の金型、光学レ
ンズ、半導体ウェハー等の表面形状を測定するために使
用されている。ところで、干渉測定法は被測定物の表面
に可干渉光を照射し、その反射光と参照光との干渉を利
用するものであるから、被測定物の表面に光が垂直に入
射する必要がある。そこで、被測定物の前に光路補正レ
ンズを配して、被測定物の表面が球面又は非球面状であ
っても非測定物の表面にほぼ垂直に光を照射し、光の干
渉による測定を可能とすることが提案されている(特願
昭63−258904号参照)。このとき発生する干渉縞は、光
路補正レンズの表面形状からのズレとして被測定物の球
面又は非球面形状を測定したものとなる。
[Prior Art] Conventionally, a highly accurate non-contact type surface profile measuring apparatus using an optical interferometric method such as a Twyman-Green interferometer has been developed. Among this kind of interferometric method, the fringe scanning method using a plurality of interference fringes obtained by gradually changing the optical path length has a particularly high precision, and the surface of a mold, an optical lens, a semiconductor wafer or the like with high precision Used to measure shape. By the way, since the interferometric method irradiates the surface of the object to be measured with coherent light and utilizes the interference between the reflected light and the reference light, it is necessary to make the light incident vertically on the surface of the object to be measured. is there. Therefore, an optical path correction lens is placed in front of the object to be measured, and even if the surface of the object to be measured is spherical or aspherical, light is irradiated almost perpendicularly to the surface of the object to be measured, and measurement is performed by light interference. Has been proposed (see Japanese Patent Application No. 63-258904). The interference fringes generated at this time are those obtained by measuring the spherical or aspherical shape of the measured object as a deviation from the surface shape of the optical path correction lens.

[発明が解決しようとする課題] 上述の従来例にあっては、光路補正レンズのセッティン
グが不良であると、干渉縞の本数が過多又は過少となっ
て、表面形状の測定が困難になることがあった。そこ
で、従来は光路補正レンズを測定者の勘と経験で最適位
置にセッティングしていた。しかしながら、その場合、
光路補正レンズのセッティングがプラス側にずれている
のか、マイナス側にずれているのか判定しにくいという
問題があり、また、セッティングの精度が測定者によっ
て異なり、誤差も大きいという問題がある。
[Problems to be Solved by the Invention] In the above-mentioned conventional example, if the setting of the optical path correction lens is improper, the number of interference fringes becomes too large or too small to make it difficult to measure the surface shape. was there. Therefore, in the past, the optical path correction lens was set at the optimum position based on the intuition and experience of the measurer. However, in that case,
There is a problem that it is difficult to determine whether the setting of the optical path correction lens is displaced to the plus side or the minus side, and the accuracy of the setting differs depending on the measurer, and there is a problem that the error is large.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、光の干渉による縞走査法を用い
た非接触型の表面形状測定装置において、球面又は非球
面の被測定物を測定するための光路補正レンズの位置決
めを容易にすることにある。
The present invention has been made in view of such a point, and an object thereof is to measure a spherical surface or an aspherical surface in a non-contact type surface profile measuring apparatus using a fringe scanning method by light interference. It is to facilitate the positioning of the optical path correction lens for measuring an object.

[課題を解決するための手段] 本発明にあっては、上記の課題を解決するために、第1
図に示すように、可干渉光を放射する光源1と、光源1
からの可干渉光を平行光線に変換する光学系2〜4と、
前記光学系1からの平行光線を第1の光線と第2の光線
に2分するビームスプリッタ7と、第1の光線をビーム
スプリッタ7に向けて反射する被測定物6と、第2の光
線をビームスプリッタ7に向けて反射する参照鏡9と、
被測定物6とビームスプリッタ7の間に介在する光路補
正レンズ5と、参照鏡9からの反射光と被測定物6から
の反射光の干渉縞を観察する光学系(観測面8及びCCD
カメラ11)と、参照鏡9の位置を光路方向に沿って微小
量移動させる参照鏡駆動手段(圧電素子10)と、参照鏡
9の位置を微小量移動させて形成された複数枚の干渉縞
から被測定物6の表面形状に関する情報を演算出力する
演算手段(マイクロプロセッサ14)とを備える非接触型
の表面形状測定装置において、前記複数枚の干渉縞から
被測定物6の一断面形状を最小2乗法により2次関数近
似して2次係数を符号と共に表示する手段20を備え、前
記光路補正レンズ5は前記2次係数がほぼ0となるよう
に位置決めされることを特徴とするものである。
[Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, a light source 1 that emits coherent light, and a light source 1
Optical systems 2 to 4 for converting the coherent light from the light into parallel rays,
A beam splitter 7 that divides a parallel light beam from the optical system 1 into a first light beam and a second light beam, an object 6 that reflects the first light beam toward the beam splitter 7, and a second light beam. A reference mirror 9 for reflecting the beam toward the beam splitter 7,
The optical path correction lens 5 interposed between the DUT 6 and the beam splitter 7, and an optical system for observing the interference fringes of the reflected light from the reference mirror 9 and the reflected light from the DUT 6 (observation surface 8 and CCD
Camera 11), reference mirror drive means (piezoelectric element 10) for moving the position of reference mirror 9 by a small amount along the optical path direction, and a plurality of interference fringes formed by moving the position of reference mirror 9 by a small amount. In the non-contact type surface profile measuring device including a calculation means (microprocessor 14) for computing and outputting information regarding the surface profile of the DUT 6 from the plurality of interference fringes, A means 20 for displaying a quadratic coefficient together with a sign by approximating a quadratic function by the method of least squares is provided, and the optical path correction lens 5 is positioned so that the quadratic coefficient becomes substantially zero. is there.

[作 用] 本発明にあっては、このように、光の干渉による縞走査
法を用いた非接触型の表面形状測定装置において、複数
枚の干渉縞から被測定物6の一断面形状を最小2乗法に
より2次関数近似して2次係数を符号と共に表示する手
段20を設けたので、光路補正レンズ5の位置ずれの方向
と量を正確に知ることができるものである。
[Operation] In the present invention, as described above, in the non-contact type surface profile measuring apparatus using the fringe scanning method by the interference of light, one cross-sectional profile of the DUT 6 can be determined from a plurality of interference fringes. Since the means 20 for displaying the quadratic coefficient together with the sign by performing the quadratic function approximation by the least squares method is provided, the direction and amount of the positional deviation of the optical path correction lens 5 can be accurately known.

[実施例] 以下、本発明の実施例について説明する。第1図は本発
明の一実施例の概略構成を示している。レーザー光源1
から放射された可干渉光は、ピンホール2と対物レンズ
3及びコリメータレンズ4により平行光線に変換され、
ビームスプリッタ7により第1及び第2の光線に分割さ
れる。第1の光線は光路補正レンズ5を介して被測定物
6に照射され、被測定物6の表面にて反射されて光路補
正レンズ5を介してビームスプリッタ7に戻る。光路補
正レンズ5は第1の光線が被測定物6の表面に垂直に入
射し垂直に反射されるように、第1の光線を屈折させて
いる。被測定物6の方面が凸面であるときには光路補正
レンズ5は凸レンズとし、被測定物6の表面が凹面であ
るときには光路補正レンズ5は凹レンズとする。第2の
光線は参照鏡9の表面にて反射されてビームスプリッタ
7に戻る。参照鏡9からビームスプリッタ7に戻った光
と、被測定物6からビームスプリッタ7に戻った光は干
渉し、干渉縞を生じる。被測定物6からの反射光の光路
長は、被測定物6の表面形状に応じて異なるので、干渉
縞は被測定物6の表面形状を示す等高線として現れる。
光の波長をλとすると、隣接する等高線はλ/2の高さ変
化を表す。この干渉縞を観測面8にてCCDカメラ11によ
り撮像し、マイクロコンピュータ14に入力する。マイク
ロコンピュータ14は、撮像された干渉縞画像の一走査線
に含まれる等高線が適度な密度となるように、参照鏡9
の位置制御量を決定し、D/A変換器12、高圧アンプ13を
介して圧電素子10に駆動信号を与えて、参照鏡9の位置
制御を行う。また、マイクロコンピュータ14は、参照鏡
9の位置を微小量移動させて形成された複数枚の干渉縞
から被測定物6の測定面の高さ情報を演算出力する。
[Examples] Examples of the present invention will be described below. FIG. 1 shows a schematic configuration of an embodiment of the present invention. Laser light source 1
The coherent light emitted from is converted into parallel rays by the pinhole 2, the objective lens 3 and the collimator lens 4,
The beam splitter 7 splits the light into first and second light rays. The first light beam is applied to the DUT 6 via the optical path correction lens 5, is reflected by the surface of the DUT 6, and returns to the beam splitter 7 via the optical path correction lens 5. The optical path correction lens 5 refracts the first light ray so that the first light ray is vertically incident on the surface of the DUT 6 and is reflected vertically. When the surface of the DUT 6 is convex, the optical path correction lens 5 is a convex lens, and when the surface of the DUT 6 is concave, the optical path correction lens 5 is a concave lens. The second light ray is reflected by the surface of the reference mirror 9 and returns to the beam splitter 7. The light returning from the reference mirror 9 to the beam splitter 7 and the light returning from the DUT 6 to the beam splitter 7 interfere with each other to generate an interference fringe. Since the optical path length of the reflected light from the DUT 6 differs depending on the surface shape of the DUT 6, the interference fringes appear as contour lines indicating the surface shape of the DUT 6.
When the wavelength of light is λ, adjacent contour lines represent a height change of λ / 2. This interference fringe is picked up by the CCD camera 11 on the observation surface 8 and input to the microcomputer 14. The microcomputer 14 uses the reference mirror 9 so that the contour lines included in one scanning line of the captured interference fringe image have an appropriate density.
Position control amount is determined and a drive signal is given to the piezoelectric element 10 via the D / A converter 12 and the high voltage amplifier 13 to control the position of the reference mirror 9. The microcomputer 14 also calculates and outputs height information of the measurement surface of the DUT 6 from a plurality of interference fringes formed by slightly moving the position of the reference mirror 9.

ここで、干渉縞画像の点(x,y)における強度は、次式
のようになる。
Here, the intensity at the point (x, y) of the interference fringe image is as follows.

I(x,y)=Axy+Kxy×sin(t+α) 上式において、αは参照鏡9,の位置で決まる位相成分で
ある。縞走査法において、λ/8ずつ参照鏡9を移動させ
たときに得られる4枚の干渉縞画像の点(x,y)におけ
る強度は、 I1(x,y)=Axy+Kxy×sint I2(x,y)=Axy+Kxy×sin(t+π/2) I3(x,y)=Axy+Kxy×sin(t+2π/2) I4(x,y)=Axy+Kxy×sin(t+3π/2) となる。そして、干渉縞画像の各点(x,y)における高
さH(x,y)は、次式により求めることができる。
I (x, y) = Axy + Kxy × sin (t + α) In the above equation, α is a phase component determined by the position of the reference mirror 9. In the fringe scanning method, the intensity at the point (x, y) of four interference fringe images obtained by moving the reference mirror 9 by λ / 8 is I 1 (x, y) = Axy + Kxy × sint I 2 (X, y) = Axy + Kxy × sin (t + π / 2) I 3 (x, y) = Axy + Kxy × sin (t + 2π / 2) I 4 (x, y) = Axy + Kxy × sin (t + 3π / 2). Then, the height H (x, y) at each point (x, y) of the interference fringe image can be obtained by the following equation.

H(x,y)=(λ/4π) ×tan-1{(I2−I4)/(I3−I1)} 上記の4枚の干渉縞画像の点(x,y)における強度I1〜I
4は、第1〜第4のメモリ15に記憶される。このメモリ1
5の情報は一断面演算部16に入力されて、中心を通る一
断面の形状を示すy=f(x)の曲線が得られる。次
に、2次近似係数演算部17により上記y=f(x)の曲
線を最小2乗法により2次関数y=ax2+bx+cで近似
する。この2次関数における係数aの大きさと符号を、
表示ドライバ18を介して表示器19により表示する。以上
の一断面演算部16、2次近似係数演算部17、表示ドライ
バ18及び表示器19を含む位置ずれ検出表示手段20はハー
ドウェアで構成され、実時間処理を行う。
H (x, y) = (λ / 4π) × tan −1 {(I 2 −I 4 ) / (I 3 −I 1 )} The intensity at the point (x, y) of the above four interference fringe images. I 1 ~ I
4 is stored in the first to fourth memories 15. This memory 1
The information of 5 is input to the one-section calculating unit 16 to obtain a curve of y = f (x) showing the shape of one section passing through the center. Next, the quadratic approximation coefficient calculation unit 17 approximates the curve of y = f (x) by the quadratic function y = ax 2 + bx + c by the method of least squares. The magnitude and sign of the coefficient a in this quadratic function are
It is displayed by the display device 19 via the display driver 18. The positional shift detection display means 20 including the one-section calculation unit 16, the second-order approximation coefficient calculation unit 17, the display driver 18, and the display unit 19 is configured by hardware and performs real-time processing.

上記の測定装置において、光路補正レンズ5の位置決め
が正確であれば、球面波は被測定物6の表面で反射さ
れ、同じ光路を戻って光路補正レンズ5に入り、ビーム
スプリッタ7に帰る。これにより、参照光との干渉が起
こり、理論的には同一の明るさを持った干渉画像が観測
面8に形成される。もし、光路補正レンズ5の位置がず
れていれば、参照光との干渉で形成される干渉縞は、同
心円状の縞画像となる。つまり、光路補正レンズ5の位
置がずれていると、縞走査により中心を通る一断面は凹
系又は凸形となる。この弧形の曲線をf=ax2+bx+c
の2次関数を用いて最小2乗近似すれば、2次係数aの
符号と大きさが光路補正レンズ5の位置ずれの方向と大
きさを示すことになる。また、光路補正レンズ5の位置
ずれが無い状態では、2次係数aの値は理論的には0と
なり、このことにより精度の良い位置決めが可能となる
ものである。
In the above measuring apparatus, if the optical path correction lens 5 is positioned accurately, the spherical wave is reflected by the surface of the DUT 6, returns through the same optical path, enters the optical path correction lens 5, and returns to the beam splitter 7. This causes interference with the reference light, and theoretically an interference image having the same brightness is formed on the observation surface 8. If the position of the optical path correction lens 5 is deviated, the interference fringes formed by the interference with the reference light become concentric fringe images. That is, if the position of the optical path correction lens 5 is displaced, one cross section passing through the center by the fringe scanning becomes concave or convex. This arc-shaped curve is f = ax 2 + bx + c
If the least-squares approximation is performed using the quadratic function of, the sign and size of the quadratic coefficient a indicate the direction and size of the positional deviation of the optical path correction lens 5. Further, in the state where there is no displacement of the optical path correction lens 5, the value of the quadratic coefficient a is theoretically 0, which enables accurate positioning.

[発明の効果] 本発明にあっては、上述のように、光の干渉による縞走
査法を用いた非接触型の表面形状測定装置において、前
記複数枚の干渉縞から被測定物の一断面形状を最小2乗
法により2次関数近似して2次係数を符号と共に表示す
る手段を設けたから、球面又は非表面の被測定物を測定
するための光路補正レンズの位置ずれの方向と量を正確
に知ることができ、光路補正レンズの位置決めを容易に
行うことができるという効果がある。
[Effects of the Invention] In the present invention, as described above, in the non-contact type surface profile measuring apparatus using the fringe scanning method by the interference of light, one cross section of the object to be measured is obtained from the plurality of interference fringes. Since the means for displaying the quadratic coefficient together with the sign by approximating the quadratic function to the shape by the least-squares method, the direction and amount of the positional deviation of the optical path correction lens for measuring the spherical or non-surface object to be measured are accurate. Therefore, there is an effect that the optical path correction lens can be easily positioned.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の概略構成を示す図である。 1は光源、2はピンホール、3は対物レンズ、4はコリ
メータレンズ、5は光路補正レンズ、6は被測定物、7
はビームスプリッタ、8は観測面、9は参照鏡、10は圧
電素子、11はCCDカメラ、12はD/A変換器、13は高圧アン
プ、15はメモリ、16は一断面演算部、17は2次近似係数
演算部、18は表示ドライバ、19は表示器である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. 1 is a light source, 2 is a pinhole, 3 is an objective lens, 4 is a collimator lens, 5 is an optical path correction lens, 6 is an object to be measured, 7
Is a beam splitter, 8 is an observation surface, 9 is a reference mirror, 10 is a piezoelectric element, 11 is a CCD camera, 12 is a D / A converter, 13 is a high-voltage amplifier, 15 is a memory, 16 is a one-section operation unit, and 17 is A second-order approximation coefficient calculator, 18 is a display driver, and 19 is a display.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可干渉光を放射する光源と、光源からの可
干渉光を平行光線に変換する光学系と、前記光学系から
の平行光線を第1の光線と第2の光線に2分するビーム
スプリッタと、第1の光線をビームスプリッタに向けて
反射する被測定物と、第2の光線をビームスプリッタに
向けて反射する参照鏡と、被測定物とビームスプリッタ
の間に介在する光路補正レンズと、参照鏡からの反射光
と被測定物からの反射光の干渉縞を観察する光学系と、
参照鏡の位置を光路方向に沿って微小量移動させる参照
鏡駆動手段と、参照鏡の位置を微小量移動させて形成さ
れた複数枚の干渉縞から被測定物の表面形状に関する情
報を演算出力する演算手段とを備える非接触型の表面形
状測定装置において、前記複数枚の干渉縞から被測定物
の一断面形状を最小2乗法により2次関数近似して2次
係数を符号と共に表示する手段を備え、前記光路補正レ
ンズは前記2次係数がほぼ0となるように位置決めされ
ること特徴とする非接触型の表面形状測定装置。
1. A light source that emits coherent light, an optical system that converts the coherent light from the light source into parallel rays, and a parallel ray from the optical system is divided into a first ray and a second ray. Beam splitter, a DUT that reflects a first light beam toward the beam splitter, a reference mirror that reflects a second light beam toward the beam splitter, and an optical path interposed between the DUT and the beam splitter. A correction lens, an optical system for observing the interference fringes of the reflected light from the reference mirror and the reflected light from the DUT,
Information about the surface shape of the DUT is calculated and output from the reference mirror driving means that moves the position of the reference mirror by a small amount along the optical path direction and the plurality of interference fringes formed by moving the position of the reference mirror by a small amount. In the non-contact type surface profile measuring device including the calculating means, a means for displaying a quadratic coefficient together with a sign by approximating a quadratic function of one cross section of the object to be measured from the plurality of interference fringes by the least square method. And a non-contact type surface profile measuring device, wherein the optical path correction lens is positioned so that the quadratic coefficient is substantially zero.
JP19344089A 1989-07-26 1989-07-26 Non-contact type surface profile measuring device Expired - Lifetime JPH0711413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19344089A JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19344089A JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Publications (2)

Publication Number Publication Date
JPH0357905A JPH0357905A (en) 1991-03-13
JPH0711413B2 true JPH0711413B2 (en) 1995-02-08

Family

ID=16308025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19344089A Expired - Lifetime JPH0711413B2 (en) 1989-07-26 1989-07-26 Non-contact type surface profile measuring device

Country Status (1)

Country Link
JP (1) JPH0711413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625599B2 (en) * 1991-10-25 1997-07-02 株式会社三協精機製作所 Optical connector end face inspection equipment
JP4945750B2 (en) * 2006-09-25 2012-06-06 独立行政法人国立高等専門学校機構 Apparatus and method for measuring unevenness and displacement of diffusion surface
KR100849193B1 (en) * 2006-12-06 2008-07-30 부산대학교 산학협력단 Optical coherence tomography system
WO2009028494A1 (en) 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method

Also Published As

Publication number Publication date
JPH0357905A (en) 1991-03-13

Similar Documents

Publication Publication Date Title
US4340306A (en) Optical system for surface topography measurement
US6208416B1 (en) Method and apparatus for measuring shape of objects
US7595891B2 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
JP3741472B2 (en) Object surface shape measuring method and system using large equivalent wavelength
US7130059B2 (en) Common-path frequency-scanning interferometer
JPH02170033A (en) Inspection method and apparatus for
JPS6039518A (en) Interferometer system
JPS62129711A (en) Method and apparatus for measuring configurational error of object
EP1209442A2 (en) Automated radius of curvature measurements
US20120044503A1 (en) Shape measuring method and shape measuring apparatus
US20210239452A1 (en) Method and Apparatus for Detecting Changes in Direction of a Light Beam
US8289525B2 (en) Optical surface measuring apparatus and method
JPH0711413B2 (en) Non-contact type surface profile measuring device
US7042578B2 (en) Method and apparatus for absolute figure metrology
JP2000258142A (en) Non-contact method for measuring surface shape
JP4100663B2 (en) Absolute thickness measuring device
JP3327998B2 (en) Shape measuring method and device
EP1384044B1 (en) Reducing coherent artifacts in an interferometer
JP2595050B2 (en) Small angle measuring device
JP2557377B2 (en) Depth measuring device
JPH01235807A (en) Depth measuring instrument
KR0173509B1 (en) Optical phase-shifting interferometry and method for inspecting precision surface using it
JP2831428B2 (en) Aspherical shape measuring machine
JP6395582B2 (en) Phase singularity evaluation method and phase singularity evaluation apparatus
Weingaertner et al. Simultaneous distance, slope, curvature, and shape measurement with a multipurpose interferometer